aggregate Documentation

Release 0.22.0

Stephen J. Mildenhall
1 Getting Started 1
1.1 Installation 1
1.2 Source Code 1
1.3 Prerequisites 1
1.4 License 1
1.5 Dependencies 1
1.6 Help Parameters and Examples 2
1.7 Help Structure 2
1.8 Help Coding Conventions 2
1.9 Numbers and Units 3
1.10 aggregate Hello World 3
2 User Guides 5
2.1 Student 6
2.1.1 What Is an Aggregate Probability Distribution? 6
2.1.2 Formal Construction 7
2.1.3 Simple Example 7
2.1.4 Exercise - Test Your Understanding 9
2.1.5 Dice Rolls 10
2.1.6 Summary of Objects Created by DecL 14
2.2 Actuarial Student 14
2.2.1 Realistic Insurance Example 15
2.2.2 College and Exam Questions 16
2.2.3 Advantages of Modeling with Aggregate Distributions 17
2.2.4 Summary of Objects Created by DecL 18
2.3 A Ten Minute Guide to aggregate 18
2.3.1 Principal Classes 19
2.3.2 The Underwriter Class 20
2.3.3 How aggregate Represents Distributions 24
2.3.4 The Severity Class 24
2.3.5 The Aggregate Class 30
2.3.6 The Distortion Class 37
2.3.7 The Portfolio Class 38
2.3.8 Estimating Bucket Size for Discretization 40
2.3.9 Methods and Properties Common To Aggregate and Portfolio Classes 42
2.3.10 Additional Portfolio Methods 53
2.3.11 Extensions 61
2.3.12 Summary of Objects Created by DecL 61
2.4 The Dec Language 61
2.4.1 DecL Design and Purpose 62
2.4.2 The Exposure Clause 64
2.4.3 The Limits Sub-Clause 65
2.4.4 The Severity Clause 65
2.4.5 The Frequency Clause 70
2.4.6 Mixed Severity Distributions 71
2.4.7 Limit Profiles 80
2.4.8 Vectorization: Limit Profiles and Mixed Severity 81
2.4.9 The Reinsurance Clauses 84
2.4.10 The Note Clause 86
2.4.11 The tweedie Keyword 86
2.4.12 Summary of Objects Created by DecL 93
2.5 Individual Risk Pricing 94
2.5.1 Helpful References 94
2.5.2 Insurance Charge and Insurance Savings in Aggregate 94
2.5.3 Summary of Objects Created by DecL 99
2.6 Reinsurance Pricing 99
2.6.1 Helpful References 100
2.6.2 Basic Examples 100
2.6.3 Modes of Reinsurance Analysis 105
2.6.4 Reinsurance Functions 105
2.6.5 Casualty Exposure Rating 109
2.6.6 Property Risk Exposure Rating 111
2.6.7 Variable Features 116
2.6.8 Inwards Analysis of Bear and Nemlick Variable Features 116
2.6.9 Outwards Analysis 130
2.6.10 Summary of Objects Created by DecL 137
2.7 Reserving 138
2.7.1 Helpful References 138
2.7.2 Modeling the Current Accident Year, Case and IBRN Reserves 138
2.7.3 The Resolution of Reserve Uncertainty Over Time 138
2.8 Catastrophe Modeling 138
2.8.1 Helpful References 139
2.8.2 Jewson's US Wind PML Estimates 139
2.8.3 Jewson's US Wind Climate Change Estimates 144
2.8.4 ILW Pricing 148
2.8.5 Secondary Uncertainty 150
2.8.6 Summary of Objects Created by DecL 151
2.9 Capital Modeling and Risk Management 151
2.9.1 Helpful References 152
2.9.2 Conditional Expectation as a Risk Management and Visualization Device 152
2.10 Strategy and Portfolio Management 152
2.10.1 Helpful References 152
2.10.2 Margin Allocation Using Spectral Risk Measures 152
2.11 Case Studies 152
2.11.1 PIR Case Studies 153
2.11.2 Creating a Case Study 154
2.11.3 Case Study Factory Arguments 155
2.11.4 PIR Case Specifications 155
2.11.5 Defining a Custom Case Study 160
2.11.6 Standard Case Study Exhibits 160
2.12 Working With Samples 162
2.12.1 Helpful References 162
2.12.2 Samples and Densities 162
2.12.3 Samples from aggregate Object 162
2.12.4 Applying the Iman-Conover Algorithm 167
2.12.5 Applying the Re-Arrangement Algorithm 168
2.12.6 Creating a Portfolio From a Sample 170
2.12.7 Using Samples and the Switcheroo Trick 171
2.12.8 Summary of Objects Created by DecL 174
2.13 Published Problems and Examples 174
2.13.1 Grübel and Hermesmeier (1999) 174
2.13.2 Embrechts and Frei (2009) 176
2.13.3 Denuit (2019 and 2022) 179
2.13.4 Loss Data Analytics Book 183
2.13.5 Loss Models Book 200
2.13.6 Bahnemann Monograph 234
2.13.7 Enterprise Risk Analysis 251
2.13.8 Other Papers 264
3 API Reference 275
3.1 Underwriter Module 275
3.1.1 Underwriter Class 275
3.1.2 Other Underwriter functions 279
3.2 Parser Module 279
3.2.1 Lexer Class 279
3.2.2 Parser Class 279
3.2.3 Remaining Functions 280
3.3 Distributions Module 280
3.3.1 Frequency Class 280
3.3.2 Severity Class 282
3.3.3 Aggregate Class 286
3.4 Portfolio Module 297
3.4.1 Portfolio Class 297
3.4.2 Other Portfolio functions 316
3.5 Utilities 317
3.5.1 Moment Aggregator Class 317
3.5.2 Moment Wrangler Class 319
3.5.3 Axis Manager Class 320
3.5.4 Utilities Module 321
3.5.5 Constants 335
3.6 Distortion Module 336
3.7 Bounds Module 339
3.8 Extensions 347
3.8.1 Basic 347
3.8.2 Case Study Support 347
3.8.3 Pentagon 348
3.8.4 Samples 349
3.8.5 Figures 349
3.8.6 PIR Figures 350
3.8.7 Test Suite 352
4 Dec Language Reference 353
4.1 Pre-Processing 353
4.2 Lexer Term Definitions 353
4.3 Dec Language Grammar Specification 355
4.4 Test Suite Programs 358
4.5 sly Parser 365
5 Technical Guides 367
5.1 Probability Background 367
5.1.1 Helpful References 367
5.1.2 Types 368
5.1.3 Severity Distributions 368
5.1.4 Frequency Distributions 369
5.1.5 Moment Generating Functions 370
5.1.6 Mixed Frequency Distributions 371
5.1.7 Aggregate Distributions 375
5.1.8 Shifted Gamma and Lognormal Distributions 376
5.1.9 Appendix: Selected scipy.stats Discrete Random Variables 377
5.1.10 Appendix: scipy.stats Continuous Random Variables 379
5.2 Quantiles and Related Risk Measures 399
5.2.1 Helpful References 399
5.2.2 Quantiles 399
5.2.3 Value at Risk 401
5.2.4 The Failure of VaR to be Subadditive 401
5.2.5 Tail VaR and Related Risk Measures 402
5.3 Insurance Probability 404
5.3.1 Helpful References 404
5.3.2 Occurrence and Aggregate Probable Maximal Loss 404
5.3.3 Self-Insurance Plan Stop-Loss Insurance 406
5.3.4 Adjusting Layer Loss Picks 407
5.3.5 The Tweedie Distribution 409
5.3.6 Excess Frequency Distributions 410
5.3.7 When Is Severity Irrelevant? 411
5.4 Numerical Methods and FFT Convolution 413
5.4.1 Helpful References 413
5.4.2 Overview 414
5.4.3 Digital Representation of Distributions 417
5.4.4 Fourier Transform Convolution Algorithm 427
5.4.5 Floating Point Arithmetic and Rounding Errors 437
5.5 Distortions and Spectral Risk Measures 440
5.5.1 Helpful References 440
5.5.2 Distortion Function and Spectral Risk Measures 440
5.5.3 Layer Densities 441
5.5.4 Portfolio Pricing with Spectral Risk Measures 443
5.5.5 The Equal Priority Default Rule 446
5.5.6 Expected Loss Payments at Different Asset Levels 447
5.5.7 The Natural Allocation Premium 448
5.5.8 Properties of Alpha, Beta, and Kappa 450
5.5.9 Properties of the Natural Allocation 450
5.5.10 The Natural Allocation of Equity 452
5.5.11 Appendix: Notation and Conventions 453
5.6 Bodoff's Percentile Layer Capital Method 454
5.6.1 Helpful References 454
5.6.2 Introduction 454
5.6.3 Assumptions and Notation 455
5.6.4 Three Possible Allocation Methods 455
5.6.5 Percentile Layer Allocation: Definition 456
5.6.6 Thought Experiments 456
5.6.7 Thought Experiment Number 1 458
5.6.8 Bodoff Examples 1-3 461
5.6.9 Bodoff Example 4 461
5.6.10 Bodoff Summary 465
5.6.11 CAS Exam Question: Spring 2018 Question 15 465
5.7 The Pollaczeck-Khinchine Formula 466
5.7.1 Helpful References 467
5.7.2 Classical Risk Theory and the Pollaczeck-Khinchine Formula 467
5.7.3 FFT Computation 468
5.7.4 Using The Pollaczeck-Khinchine Formula I 468
5.7.5 Using The Pollaczeck-Khinchine Formula II 471
5.7.6 Market Scale and Viability 472
5.8 Calculations For Each aggregate Class 474
5.8.1 Helpful References 474
5.8.2 Aggregate Class Calculations 474
5.8.3 Portfolio Class Calculations 474
5.8.4 Distortion Class Calculations 478
5.8.5 Bounds Class Calculations 478
5.9 Working With Samples 478
5.9.1 Helpful References 478
5.9.2 Using Samples and The Switcheroo Trick 478
5.9.3 The Iman-Conover Method 479
5.9.4 The Rearrangement Algorithm 490
6 Design and Development 495
6.1 Help Structure 495
6.2 Design Philosophy 496
6.3 History 496
7 Introduction 497
Bibliography 501
Python Module Index 509
Index 511

GETTING STARTED

1.1 Installation

To install from PyPI

```
pip install aggregate
```

See https://pypi.org/project/aggregate/.

1.2 Source Code

The source code is hosted on GitHub, https://github.com/mynl/aggregate.

1.3 Prerequisites

This help assumes you know how to program in Python, understand probability, and are familiar with the concept of an aggregate distribution. Awareness of insurance terminology such as limit, attachment and deductible, and the material covered in SOA exam STAM, CAS exam MAS I, or IFOA CS-2 is helpful.

1.4 License

BSD 3.

1.5 Dependencies

See pyproject.toml. Requirements are split between those needed to run the project, and a larger set needed to build the documentation.

Apart from sly and $t i t l e c a s e$, all run-dependencies are standard.

1.6 Help Parameters and Examples

Warning: All parameters are fabrications. They try to be realistic (or at least not materially unrealistic) but are not intended to be applied to real-world pricing. They are for educational purposes only.

1.7 Help Structure

This help is structured around access, application, theory, and implementation. There are six parts.

1. Getting Started (this document).
2. User Guides, explaining how to access functionality and practical guides explaining how to apply it.
3. API Reference: all functions, classes, methods, and properties.
4. Dec Language Reference: syntax and grammar.
5. Technical Guides, covering the underlying theory and its specific implementation.
6. Design and Development, giving some history, the design philosophy, and ideas for future development.

There is also a Bibliography.

1.8 Help Coding Conventions

Throughout the help, you will see input code inside code blocks such as:

```
import pandas as pd
pd.DataFrame({'A': [1, 2, 3]})
or:
```

```
In [1]: import pandas as pd
```

In [1]: import pandas as pd
In [2]: pd.DataFrame({'A': [1, 2, 3]})
In [2]: pd.DataFrame({'A': [1, 2, 3]})
Out[2]:
A
0 1
12
2 3

```

The first block is a standard Python input, while in the second the In [1] : indicates the input is inside a notebook. In Jupyter Notebooks the last line is printed and plots are shown inline.

For example:
```

In [3]: a = 1
In [4]: a
Out[4]: 1

```
is equivalent to:
```

a = 1
print(a)

```

The Python line continuation \(\backslash\) is used to create compact input.

\subsection*{1.9 Numbers and Units}

You can choose your own units. The examples include numbers interpreted in ones, thousands, and millions. Amounts are broadly calibrated to make sense in USD, EUR, and GBP.

\subsection*{1.10 aggregate Hello World}

The only object you need to import to get started is build. The quick display function qd is a nice-to-have utility function that handles printing with sensible defaults. It is used extensively throughout.
```

In [5]: from aggregate import build, qd
In [6]: build
Out[6]:
underwriter Rory
version 0.22.0
knowledge 145 programs
update True
log2 16
debug False
validation_eps 0.0001
site dir ~/aggregate/databases
default dir ~/checkouts/readthedocs.org/user_builds/aggregate/checkouts/
\hookrightarrowstable/aggregate/agg
help
build.knowledge list of all programs
build.qshow(pat) show programs matching pattern
build.show(pat) build and display matching pattern

```
build is a Underwriter object. It allows you to create all other objects and includes a library of examples, called the knowledge.

Using build you can create an Aggregate object using an DecL program. For example, the program:
```

agg Eg1 dfreq [1:5] dsev [1:3]

```
creates an aggregate distribution called Eg1. The frequency distribution is 1, 2, 3, 4, or 5, all equally likely, and the severity is 1,2 , or 3 , also equally likely. The mean frequency is 3 , the mean severity 2 , and hence the aggregate has a mean of 6 . It is built and displayed like so:
```

In [7]: a = build('agg Eg1 dfreq [1:5] dsev [1:3]')
In [8]: qd(a)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

```


```

log2 = 5, bandwidth = 1, validation: fails sev skew.

```

The DecL program:
```

agg Eg2 5 claims 1000 xs 0 sev lognorm 50 cv 4 poisson

```
creates a realistic insurance portfolio, with 5 expected claims, severity sampled from a 1000 xs 0 layer of a lognormal with mean 50 and CV 4 and Poisson frequency.

Aggregate objects act like a discrete probability distribution. There are properties for the mean, standard deviation, coefficient of variation (cv), and skewness.
```

In [9]: a.agg_m, a.agg_sd, a.agg_cv, a.agg_skew
Out[9]: (6.0, 3.1622776601683795, 0.5270462766947299, 0.2529822128134703)

```

They have probability mass, cumulative distribution, survival, and quantile (inverse of distribution) functions.
```

In [10]: a.pmf(6), a.cdf(5), a.sf(6), a.q(a.cdf(6)), a.q(0.5)
Out[10]: (0.102880658436214, 0.4650205761316873, 0.4320987654320987, 6.0, 6.0)

```

It is easy to check some of these calculations. The probability of the minimum outcome of one equals \(1 / 15(1 / 5\) for a frequency of 1 and \(1 / 3\) for a severity of 1 ) and the maximum outcome of 15 equals \(1 / 1215\) ( \(1 / 5\) for a frequency of 5 and \((1 / 3) * * 5\) to draw severity of 3 on each). The object returns the correct values.
```

In [11]: a.pmf(1), 1/15, a.pmf(15), 1/5/3**5, 5*3**5
Out[11]:
(0.06666666666666668,
0.06666666666666667,
0.0008230452674897143,
0.000823045267489712,
1215)

```

Creating an object automatically adds its specification to the knowledge, with name Eg1. Use build.knowledge to view the knowledge dataframe.
```

In [12]: qd(build.knowledge.head(), line_width=73, max_colwidth=50, justify='left')
program
kind name
agg A.Dice00 agg A.Dice00 dfreq [1:6] dsev [1] note{The...
A.Dice01 agg A.Dice01 dfreq [1] dsev [1:6] note{Sam...
A.Dice02 agg A.Dice02 dfreq [2] dsev [1:6] note{Sum...
A.Dice03 agg A.Dice03 dfreq [5] dsev [1:6] note{Sum...
A.Dice04 agg A.Dice04 dfreq [1:6] dsev [1:6] note{S...
spec
kind name
agg A.Dice00 {'name': 'A.Dice00', 'freq_name': 'empirical',...
A.Dice01 {'name': 'A.Dice01', 'freq_name': 'empirical',...
A.Dice02 {'name': 'A.Dice02', 'freq_name': 'empirical',...
A.Dice03 {'name': 'A.Dice03', 'freq_name': 'empirical',...
A.Dice04 {'name': 'A.Dice04', 'freq_name': 'empirical',...
In [13]: qd(build.knowledge.query('name == "Eg1"'), line_width=73, max_colwidth=50,
\hookrightarrow justify='left')
program
kind name
agg Eg1 agg Eg1 dfreq [1:5] dsev [1:3]
spec
kind name
agg Eg1 {'name': 'Eg1', 'freq_name': 'empirical', 'fre...

```

The User Guides contain more details and examples.

The User Guides show how to access aggregate functionality and apply it to solve actuarial problems. It alternates between access-oriented reference guides and problem and application based practice guides. New users should start reading the Student or Actuarial Student guide and scan through A Ten Minute Guide to aggregate. See Technical Guides for the theory and implementation details. Sections in the guides marked Details can be skipped. There is some duplication between sections to make them independent.
1. Student (practice): Introduction to aggregate distributions using simple discrete examples for actuarial science majors and short-term actuarial modeling exam candidates; get started using aggregate.
2. Actuarial Student (practice): Introduce the aggregate library for working with aggregate probability distributions in the context of actuarial society exams (SOA exam STAM, CAS exam MAS I, or IFOA CS-2) and university courses in (short-term) actuarial modeling.
3. A Ten Minute Guide to aggregate (reference): A whirlwind introduction-don't expect to understand everything the first time, but you will see what you can achieve with the package. Read in parallel with the Student or Actuarial Student practice guides. Follows the pandas model, a long 10 minutes.
4. The Dec Language (reference): Introduce the Dec Language (DecL) used to specify aggregate distributions in familiar insurance terminology.
5. Individual Risk Pricing (practice): Applications of the Aggregate class to individual risk pricing, including LEVs, ILFs, layering, and the insurance charge and savings (Table L, M), illustrated using problems from CAS Part 8.
6. Reinsurance Pricing (practice): Applications of the Aggregat e class to reinsurance exposure rating, including swings and slides, aggregate stop loss and swing rated programs, illustrated using problems from CAS Parts 8 and 9 .
7. Reserving (practice, placeholder): Applications of the Aggregate class to reserving, including models of loss emergence and determining ranges for IBNR and case reserves.
8. Catastrophe Modeling (practice): Applications of the Aggregate class to catastrophe risk evaluation and pricing using thick-tailed Poisson Pareto and lognormal models, including occurrence and aggregate PMLs (OEP, AEP) and layer loss costs. Covers material on CAS Parts 8 and 9.
9. Capital Modeling and Risk Management (practice, placeholder): Application of the Port folio class to capital modeling, including VaR, TVaR, and risk visualization and quantification. Covers material on CAS Part 9.
10. Strategy and Portfolio Management (practice, placeholder): Application of the Portfolio and and Distortion classes to strategy and portfolio management, including margin (capital) allocation, determining benchmark pricing within a portfolio using alternative pricing methodologies, and the evaluation of reinsurance.
11. Case Studies (practice): Using aggregate to reproduce the case study exhibits from the book Pricing Insurance Risk and build similar exhibits for your own cases.
12. Working With Samples (reference): How to sample from aggregate and how to a build a Port folio from a sample. Inducing correlation in a sample using the Iman-Conover algorithm and determining the worst-VaR rearrangement using the rearrangement algorithm.
13. Published Problems and Examples (practice): aggregate solutions to a wide selection of problems and examples from books (Loss Models, Loss Data Analytics), actuarial exam study notes, and academic papers. Demonstrates the method of solution and verifies the correctness of aggregate calculations.
Guides marked practice are problem and application based and give possible driving destinations; those marked reference are access-based and describe how to unlock the car, start the engine, and engage a gear.

Guides marked placeholder are work in progress, often just a sketch of planned content.

\subsection*{2.1 Student}

Objectives: Introduction to aggregate distributions using simple discrete examples for actuarial science majors and short-term actuarial modeling exam candidates; get started using aggregate.

Audience: New user, with no knowledge of aggregate distributions or insurance terminology.
Prerequisites: Basic probability theory; Python and pandas programming.
See also: Actuarial Student.

\section*{Contents:}
1. What Is an Aggregate Probability Distribution?
2. Formal Construction
3. Simple Example
4. Exercise - Test Your Understanding
5. Dice Rolls
6. Summary of Objects Created by DecL

\subsection*{2.1.1 What Is an Aggregate Probability Distribution?}

An aggregate probability distribution describes the sum of a random number of identically distributed outcome random variables. The distribution of the number called the frequency distribution and of the outcome the severity distribution.

\section*{Examples.}
1. Total losses from insurance claims from a portfolio of policies: frequency equals the number of claims and the severity outcome is the amount of each claim.
2. Larvae per unit area (Neyman 1939): frequency is the number of egg clusters per unit area and severity is the number of larvae per egg cluster.
3. Number of vehicle occupants passing a point on the road: frequency is the number of vehicles passing the point and severity is the number of occupants per vehicle.
4. Total transaction value in an exchange: frequency is the number of transactions and severity is the amount of each transaction.

Aggregate distributions are used in many fields and go by different names, including compound distributions, generalized distributions, and stopped-sum distributions.

\subsection*{2.1.2 Formal Construction}

Let \(N\) be a discrete random variable taking non-negative integer values. Its outcomes give the frequency (number) of events. Let \(X_{i}\) be a series of independent, identically distributed (iid) severity random variables modeling an outcome. An aggregate distribution is the distribution of the random sum
\[
A=X_{1}+\cdots+X_{N}
\]
\(N\) is called the frequency component of the aggregate and \(X\) the severity.
An observation from \(A\) is realized by:
1. Sample (or simulate) an outcome \(n\) from \(N\)
2. For \(i=1, \ldots, n\), sample \(X_{i}\)
3. Return \(A:=X_{1}+\cdots+X_{n}\)

It is usual to assume that \(X\) and \(N\) are independent. Check this assumption is reasonable for your use case; it is not always appropriate. For example, consider modeling hourly takings from a shop checkout till as the number of customers served (frequency) and the amount spent by each customer (severity). Larger orders take longer to tabulate and so frequency is negatively correlated with severity. Example 4 above assumes large orders on an exchange are transacted as quickly as small ones.

\subsection*{2.1.3 Simple Example}

Frequency \(N\) can equal 1,2 , or 3 , with probabilities \(1 / 2,1 / 4\), and \(1 / 4\).
Severity \(X\) can equal 1,2 , or 4 , with probabilities \(5 / 8,1 / 4\), and \(1 / 8\).
Aggregate \(A=X_{1}+\cdots+X_{N}\).

\section*{Exercise.}
1. What are the expected value and CV of \(N\) ?
2. What are the expected value and CV of \(X\) ?
3. What are the expected value and CV of \(A\) ?
4. What possible values can \(A\) take? What are the probabilities of each?

Important: Stop and solve the exercise!

The exercise is not difficult, but it requires careful bookkeeping and attention to detail. It would soon become impractical to solve by hand if there were more outcomes for frequency or severity. This is where aggregate comes in. It can solve exercise in the following few lines of code, which we now go through step-by-step.

The first line imports build and a helper "quick display" function qd. You almost always want to start this way.
```

In [1]: from aggregate import build, qd

```

The next three lines specify the aggregate using a Dec Language (DecL) program to describe its frequency and severity components.
```

In [2]: a01 = build('agg Student:01 '
...: 'dfreq [1 2 3] [1/2 1/4 1/4] '
...: 'dsev [1 2 4] [5/8 1/4 1/8]')
... :

```

The DecL program has three parts:
- agg is a keyword and Student : 01 is a user-selected name. Names must start with a letter and can include numbers and colons. This clause declares that we are building an aggregate distribution.
- dfreq is a keyword to specify the frequency distribution. The next two blocks of numbers are the outcomes \(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\) and their probabilities [1/2 \(1 / 4\) 1/4\(]\). Commas are optional in the lists and only division arithmetic is supported.
- dsev is a keyword to specify the a discrete severity distribution. It has the same outcomes-probabilities form as dfreq.

The program string is only one line long because Python automatically concatenates strings within parenthesis; it is split up for clarity. It is recommended that DecL programs be split in this way. Note the spaces at the end of each line, see 10 mins formatting.
Use qd to print a dataframe of statistics that answer the first three questions: the mean and CV for the frequency (Freq), severity (Sev) and aggregate (Agg) distributions.
```

In [3]: qd(a01)

	E [X]	E [X]	Err E[X]	CV (X)	Est CV(X)	Skew (X)	Est	Skew (X)
X								
Freq	1.75			0.4738		0.49338		
Sev	1.625	1.625	0	0.61056	0.61056	1.5719		1.5719
Agg	2.8438	2.8437	-1.1102e-16	0.66144	0.66144	1.0808		1.0808
$\log 2=5$, bandwidth $=1$, validation: not unreasonable.								

```

The columns E [X], CV (X), and Skew (X) report the mean, CV, and skewness for each component computed analytically or very accurately with numerical integration. The columns Est E [X], Est CV (X), and Est Skew (X) are computed numerically by aggregate. For discrete models they equal the analytic answer because the only errors introduced by aggregate come from discretizing the severity distribution. That is also why there are no estimates for frequency. Err \(\mathrm{E}[\mathrm{X}]\) shows the error (difference, not relative error) in the mean. This handy dataframe can be accessed directly via the property a 01 . describe. The note \(\log 2=5, \mathrm{bs}=1\) describe the inner workings, discussed in REF.
It remains to give the aggregate probability mass function. It is available in the dataframe a01. density_df. Here are the probability masses, and distribution and survival functions evaluated for all possible aggregate outcomes.
```

In [4]: qd(a01.density_df.query('p_total > 0')[['p_total', 'F', 'S']])
p_total F S
loss
2.0 0.22266 0.53516 0.46484
3.0 0.13916 0.67432 0.32568
4.0 0.15137 0.82568 0.17432
5.0 0.068359 0.89404 0.10596
6.0 0.056152 0.9502 0.049805
7.0 0.029297 0.97949 0.020508
8.0 0.0097656 0.98926 0.010742
9.0 0.0073242 0.99658 0.003418
10.0 0.0029297 0.99951 0.00048828
12.0 0.00048828 1 0

```

The possible outcomes range from 1 (frequency 1 , outcome 1 ) to 12 (frequency 3, all outcomes 4). It is easy to check the reported probabilities are correct. It is impossible to obtain an outcome of 11.

For extra credit, here is a plot of the pmf, cdf, and the outcome Lee diagram, showing the severity and aggregate. These are produced automatically by a \(01 . \operatorname{plot}()\) from the density_df dataframe.
```

In [5]: a01.plot()

```


\subsection*{2.1.4 Exercise - Test Your Understanding}

Frequency: 1, 2 or 3 events; \(50 \%\) chance of 1 event, \(25 \%\) chance of 2 , and \(25 \%\) chance of 3 .
Severity: \(1,2,4,8\) or 16 , each with equal probability.
1. What is the average frequency?
2. What is the average severity?
3. What are the average aggregate?
4. What is the aggregate coefficient of variation?
5. Tabulate the probability of all possible aggregate outcomes.

First, try by hand and then using aggregate.
Here is the aggregate solution. The probability clause in dsev can be omitted when all outcomes are equally likely. The moments and CVs are shown in the table.
```

In [6]: a02 = build('agg Student:02 '
...: 'dfreq [11 2 3] [.5 . 25 . 25] '
...: 'dsev [1 2 4 4 8 16] ')
... :
In [7]: qd(a02)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

```

```

Agg 10.85 10.85 -1.1102e-16 0.81663 0.81663 1.0066 1.0066
log2 = 7, bandwidth = 1, validation: not unreasonable.

```

All possible aggregate outcomes are shown next. The largest outcome of 48 has probability \(1 / 4 *(1 / 5) * * 3=1 / 500\) \(=0.002\).
```

In [8]: qd(a02.density_df.query('p_total > 0')[['p_total', 'F', 'S']])
p_total F S
loss
1.0 0.1 0.1 0.9
2.0 0.11 0.21 0.79
3.0 0.022 0.232 0.768
4.0 0.116 0.348 0.652
5.0 0.026 0.374 0.626
6.0 0.028 0.402 0.598
7.0 0.012 0.414 0.586
8.0 0.116 0.53 0.47
9.0 0.026 0.556 0.444
10.0 0.032 0.588 0.412
11.0 0.012 0.6 0.4

```
(continues on next page)
(continued from previous page)
\begin{tabular}{lrrr}
12.0 & 0.028 & 0.628 & 0.372 \\
\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
21.0 & 0.012 & 0.882 & 0.118 \\
22.0 & 0.012 & 0.894 & 0.106 \\
24.0 & 0.028 & 0.922 & 0.078 \\
25.0 & 0.012 & 0.934 & 0.066 \\
26.0 & 0.012 & 0.946 & 0.054 \\
28.0 & 0.012 & 0.958 & 0.042 \\
32.0 & 0.016 & 0.974 & 0.026 \\
33.0 & 0.006 & 0.98 & 0.02 \\
34.0 & 0.006 & 0.986 & 0.014 \\
36.0 & 0.006 & 0.992 & 0.008 \\
40.0 & 0.006 & 0.998 & 0.002 \\
48.0 & 0.002 & 1 & \(-2.2204 e-16\) \\
& &
\end{tabular}


\subsection*{2.1.5 Dice Rolls}

This section presents a series of examples involving dice rolls. The early examples are useful because you know the answer and can see aggregate is correct.

\section*{One Dice Roll}

The DecL program for one dice roll.
```

In [10]: one_dice = build('agg Student:01Dice '
....: 'dfreq [1] '
...: 'dsev [1:6]')
.... :
In [11]: one_dice.plot()
In [12]: qd(one_dice)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 3.5 3.5 0 0.48795 0.48795 0 2.8529e-15
Agg 3.5 3.5 0 0.48795 0.48795 0 8.5588e-15
log2 = 4, bandwidth = 1, validation: not unreasonable.

```


\section*{Two Dice Rolls}

The program for two dice rolls produces a triangular aggregate distribution, as shown in the table and illustrated in the graph (left, probability mass function in blue).
```

In [13]: import numpy as np
In [14]: two_dice = build('agg Student:02Dice '
....: 'dfreq [2] '
....: 'dsev [1:6]')
.... :
In [15]: two_dice.plot()
In [16]: qd(two_dice)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0
Sev 3.5 3.5 0 0.48795 0.48795 0 2.8529e-15
Agg 7 7 -3.3307e-16 0.34503 0.34503 0-4.0346e-14
log2 = 5, bandwidth = 1, validation: not unreasonable.
In [17]: bit = two_dice.density_df.query('p_total > 0')[['p_total', 'F', 'S']]
In [18]: bit['36p'] = np.round(bit.p_total * 36)
In [19]: bit['36p'] = bit['36p'].astype(int)
In [20]: qd(bit)

```
    p_total F S 36p
loss
\(2.0 \quad 0.027778 \quad 0.027778 \quad 0.97222 \quad 1\)
\(\begin{array}{lllll}3.0 & 0.055556 & 0.083333 & 0.91667 & 2\end{array}\)
\(4.0 \quad 0.083333 \quad 0.16667 \quad 0.83333 \quad 3\)
\(\begin{array}{lllll}5.0 & 0.11111 & 0.27778 & 0.72222 & 4\end{array}\)
\(\begin{array}{llll}6.0 & 0.13889 & 0.41667 & 0.58333\end{array}\)
\(\begin{array}{lllll}7.0 & 0.16667 & 0.58333 & 0.41667 & 6\end{array}\)
\(8.0 \quad 0.13889 \quad 0.72222 \quad 0.27778 \quad 5\)
\(\begin{array}{lllll}9.0 & 0.11111 & 0.83333 & 0.16667\end{array}\)
\(10.0 \quad 0.083333 \quad 0.91667 \quad 0.083333 \quad 3\)
\(\begin{array}{rrrrr}11.0 & 0.055556 & 0.97222 & 0.027778 & 2\end{array}\)


\section*{Twelve Dice Rolls}

The aggregate program for twelve dice rolls, which is much harder to compute by hand!
```

In [21]: twelve_dice = build('agg Student:12Dice '
....: 'dfreq [12]
...: 'dsev [1:6]')
.... :
In [22]: qd(twelve_dice)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 12 0
Sev 3.5 3.5 0 0.48795 0.48795 0 2.8529e-15
Agg 42 42 1.9984e-15 0.14086 0.14086 0 1.4337e-11
log2 = 8, bandwidth = 1, validation: not unreasonable.

```

The distribution compared to a moment-matched normal approximation. \(f z\) is a scipy. stats normal random variable created using the approximate method. The last two plots show very good convergence to the central limit theorem normal distribution.
```

In [23]: import matplotlib.pyplot as plt
In [24]: fz = twelve_dice.approximate('norm')
In [25]: df = twelve_dice.density_df[['p_total', 'F', 'S']]
In [26]: df['normal'] = np.diff(fz.cdf(df.index + 0.5), prepend=0)
In [27]: qd(df.iloc[32:52])
p_total F S normal
loss
32.0 0.016609 0.054298 0.9457 0.016196
33.0 0.021737 0.076034 0.92397 0.021233
34.0}00.027592 0.10363 0.89637 0.027054
35.0 0.033997 0.13762 0.86238}00.03350
36.0}0.04069 0.17831 0.82169 0.040322
37.0 0.04733 0.22564 0.77436 0.047165
38.0 0.05353 0.27917 0.72083 0.05362
39.0 0.058887 0.33806 0.66194 0.059245
40.0 0.063026 0.40109 0.59891 0.063621
41.0 0.065643 0.46673 0.53327 0.0664
42.0 0.066539 0.53327 0.46673 0.067353
43.0}00.065643 0.59891 0.40109 0.0664
44.0 0.063026 0.66194 0.33806 0.063621
45.0 0.058887 0.72083 0.27917 0.059245
46.0}00.05353 0.77436 0.22564 0.05362
47.0 0.04733 0.82169 0.17831 0.047165

```
(continues on next page)
```

48.0 0.04069 0.86238 0.13762 0.040322
49.0 0.033997 0.89637 0.10363 0.033502
50.0 0.027592 0.92397 0.076034 0.027054
51.0 0.021737 0.9457 0.054298 0.021233
In [28]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
\hookrightarrowlayout=True); \
....: ax0, ax1 = axs.flat; \
....: df[['p_total', 'normal']].plot(xlim=[22, 64], ax=ax0); \
....: ax0.set(ylabel='pmf'); \
....: df[['p_total', 'normal']].cumsum().plot(xlim=[22, 64], ax=ax1);
.... :
In [29]: ax1.set(ylabel='Distribution');

```



\section*{A Dice Roll of Dice Rolls}

The last example is a dice roll of dice rolls: throw a dice, then throw that many dice and add up the dots. The result range from 1 (throw 1 first, then 1 again) to 36 (throw 6 first, then 6 for each of the six die).
```

In [30]: dd = build('agg Student:DD
....: 'dfreq [1:6] '
....: 'dsev [1:6]')
....:
In [31]: qd(dd)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lllllll
Agg 12.25 12.25 1.5543e-15 0.55328 0.55328 0.28689 0.28689
log2 = 7, bandwidth = 1, validation: not unreasonable.
In [32]: dd.plot()

```


The largest outcome of 36 has probability \(6^{* *-}\). See below for a check of the accuracy. Work out the probability of 6 or 7 to better appreciate the work performed by aggregate! Why is there a sudden drop between 6 and 7 in the (blue) probability mass function (left hand plot)?
```

In [33]: import pandas as pd
In [34]: a, e = (1/6)**7, dd.density_df.loc[36, 'p_total']
In [35]: pd.DataFrame([a, e, e/a-1],
....: index=['Actual worst', 'Computed worst', 'error'],
....: columns=['value'])
Out [35]:
Actual worst 3.572245e-06
Computed worst 3.572245e-06
error 1.178835e-12

```

We return to this example in Reinsurance Pricing.

\subsection*{2.1.6 Summary of Objects Created by DecL}

Objects created by build() in this guide.
```

In [36]: from aggregate import pprint_ex
In [37]: for n, r in build.qlist('^Student:').iterrows():
....: pprint_ex(r.program, split=20)
.... :

```

\subsection*{2.2 Actuarial Student}

Objectives: Introduce the aggregate library for working with aggregate probability distributions in the context of actuarial society exams (SOA exam STAM, CAS exam MAS I, or IFOA CS-2) and university courses in (short-term) actuarial modeling.

Audience: Actuarial science university students and actuarial analysts.
Prerequisites: Familiarity with aggregate probability distributions as covered on actuarial society exams and basic insurance terminology from insurance company operations.
See also: Student for a more basic introduction; User Guides for other applications.

\section*{Contents:}
1. Realistic Insurance Example
2. College and Exam Questions
3. Advantages of Modeling with Aggregate Distributions
4. Summary of Objects Created by DecL

\subsection*{2.2.1 Realistic Insurance Example}

Assumptions. You are given the following information about a book of trucking liability insurance business.
1. Premium equals 2000 and the expected loss ratio equals \(67.5 \%\).
2. Ground-up severity has been fit to a lognormal distribution with a mean of 100 and CV (coefficient of variation) of 1.75 .
3. All policies have a limit of 1000 with no deductible or retention.
4. Frequency is modeled using a Poisson distribution.

You model aggregate losses using the collective risk model.
Questions. Model aggregate losses using the collective risk model and compute the following:
1. The expected insured severity and expected claim count.
2. The aggregate expected value, standard deviation, CV, and skewness.
3. The probability aggregate losses exceed the premium.
4. The probability aggregate losses exceed 2500
5. The expected value of aggregate losses limited to 2500
6. The expected policyholder deficit in excess of 2500

\section*{Answers.}

Build an aggregate object using simple DecL program. The dataframe a01. describe gives the answers to questions 1 and 2. It printed and formatted automatically by qd (a01). Note the validation report in the last line.
```

In [1]: from aggregate import build, qd
In [2]: a01 = build('agg Actuary:01 '
..: '2000 premium at 0.675 lr '
...: '1000 xs 0 '
...: 'sev lognorm 100 cv 1.75 '
...: 'poisson')
. . . :
In [3]: qd(a01)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lllllllll
Agg 1350 1350-6.8412e-11 0.46809 0.46809 0.88368 0.88368
log2 = 16, bandwidth = 1/8, validation: not unreasonable.

```

The survival function a01. sf answers 3 and 4. qd is used to print with reasonable defaults. The dataframe a 01 . density_df computes limited expected values (levs) and expected policyholder deficit indexed by loss level, and other values. Querying it answers 5 and 6.
```

In [4]: qd(a01.sf(2000), a01.sf(2500))
0.14971
0.053466
In [5]: qd(a01.density_df.loc[[2500], ['F', 'S', 'lev', 'epd']])
loss
2500.0 0.94653 0.053466 1327.7 0.016541

```

\subsection*{2.2.2 College and Exam Questions}

College courses and the early actuarial exams often ask purely technical questions. Using assumptions from the Realistic Insurance Example answer the following.
1. Compute the severity lognormal parameters mu and sigma.
2. Compute the expected insured severity and expected claim count.
3. Compute the probability the aggregate exceeds the premium using the following matched moment approximations:
1. Normal
2. Gamma
3. Lognormal
4. Shifted gamma
5. Shifted lognormal
4. Using the aggregate and a lognormal approximation, compute:
1. The probability losses exceed 2500
2. The expected value of losses limited to 2500
3. The expected value of losses in excess of 2500

The code below provides all the answers. mu_sigma_from_mean_cv computes the lognormal parameters-one of the most written macro in actuarial science! Start by applying it to the given severity parameters to answer question 1.
```

In [6]: from aggregate import mu_sigma_from_mean_cv
In [7]: import pandas as pd
In [8]: print(mu_sigma_from_mean_cv(50, 1.25))
(3.441531333195883, 0.9700429601128635)

```

The function a01.approximate parameterizes all the requested matched moment approximations, returning frozen scipy. stats distribution objects that expose cdf methods. The Aggregate class object a also has a cdf method. Using these functions, we can assemble a dataframe to answer question 3.
```

In [9]: fz = a01.approximate('all')
In [10]: fz['agg'] = a01
In [11]: df = pd.DataFrame({k: v.sf(2000) for k, v in fz.items()}.items(),
...: columns=['Approximation', 'Value']
....:).set_index("Approximation")
.... .
In [12]: df['Error'] = df.Value / df.loc['agg', 'Value'] - 1
In [13]: qd(df.sort_values('Value'))
Value Error
Approximation
lognorm 0.13445 -0.1019
slognorm 0.14456 -0.03437
gamma 0.14689 -0.018844
sgamma 0.14745 -0.015088
agg 0.14971 0
norm 0.15183 0.014183

```

The function lognorm_lev computes limited expected values for the lognormal. It is used to assemble a dataframe to answer question 4. In this case, the lognormal approximation EPD is over \(50 \%\) higher than the more accurate estimate provided by aggregate.
```

In [14]: from aggregate import lognorm_lev
In [15]: mu, sigma = mu_sigma_from_mean_cv(a01.agg_m, a01.agg_cv)
In [16]: lev = lognorm_lev(mu, sigma, 1, 2500)
In [17]: lev_agg = a01.density_df.loc[2500, 'lev']
In [18]: default = a01.agg_m - lev
In [19]: epd = default / a01.est_m
In [20]: default_agg = a01.est_m - lev_agg
In [21]: bit = pd.DataFrame((lev, default, lev_agg, default_agg, epd, default_agg /
@ a01.agg_m),
...: index=pd.Index(['Lognorm LEV', 'Lognorm Default', 'Agg LEV',
...: 'Agg Default', 'Lognorm EPD', 'Agg EPD'],
...: name='Item'),
...: columns=['Value'])
....:
In [22]: qd(bit)
Value
Item
Lognorm LEV 1319.5
Lognorm Default 30.495
Agg LEV 1327.7
Agg Default 22.331
Lognorm EPD 0.022589
Agg EPD 0.016541

```

\subsection*{2.2.3 Advantages of Modeling with Aggregate Distributions}

Aggregate distributions provide a powerful modeling paradigm. It separates the analysis of frequency and severity. Different datasets can be used for each. KPW list seven advantages.
1. Only the expected claim count changes with volume. The severity distribution is a characteristic of the line of business.
2. Inflation impacts ground-up severity but not claim count. The situation is more complicated when limits and deductibles apply.
3. Coverage terms impact occurrence limits and deductibles, which affect ground-up severity.
4. The impact on claims frequencies of changing deductibles is better understood.
5. Severity curves can be estimated from homogeneous data. Kaplan-Meier and related methods can adjust for censoring and truncation caused by limits and deductibles.
6. Retained, insured, ceded, and net losses can be modeled consistently.
7. Understanding properties of frequency and severity separately illuminates the shape of the aggregate.

\subsection*{2.2.4 Summary of Objects Created by DecL}

Objects created by build() in this guide.
```

In [23]: from aggregate import pprint_ex
In [24]: for n, r in build.qlist('^Actuary:').iterrows():
....: pprint_ex(r.program, split=20)
.... :

```

\subsection*{2.3 A Ten Minute Guide to aggregate}

Objectives: A whirlwind introduction-don't expect to understand everything the first time, but you will see what you can achieve with the package. Follows the pandas model, a long 10 minutes.

Audience: A new user.
Prerequisites: Python programming; aggregate distributions. Read in conjunction with Student or Actuarial Student practice guides.

See also: API Reference, The Dec Language.

\section*{Contents:}
1. Principal Classes
2. The Underwriter Class
- Object Creation Using DecL and build()
- Important: Formatting a DecL Program
- Object Creation from the Knowledge Database
- Underwriter Behind the Scenes
3. How aggregate Represents Distributions
4. The Severity Class
5. The Aggregate Class
- Creating an Aggregate Distribution
- Aggregate Quick Diagnostics
- Aggregate Algorithm in Detail
- Basic Probability Functions
- Mixtures
- Accessing Severity in an Aggregate
- Reinsurance
6. The Distortion Class
7. The Portfolio Class
8. Estimating Bucket Size for Discretization
- Hyper-parameters log2 and bs
- Estimating and Testing bs For Aggregate Objects
- Estimating and Testing bs For Portfolio Objects
9. Methods and Properties Common To Aggregate and Portfolio Classes
- The info Dataframe
- The describe Dataframe
- The density_df Dataframe
- The statistics Series and Dataframe
- The report_df Dataframe
- The spec and spec_ex Dictionaries
- The DecL Program
- The update() Method
- Statistical Functions
- The plot() Method
- The price() Method
- The snap() Method
- The approximate() Method
10. Additional Portfolio Methods
- Conditional Expected Values
- Calibrate Distortions
- Analyze Distortions
- Twelve Plot
11. Extensions
12. Summary of Objects Created by DecL

\subsection*{2.3.1 Principal Classes}

The aggregate package makes working with aggregate probability distributions as straightforward as working with parametric distributions even though their densities rarely have closed-form expressions. It is built around five principal classes.
1. The Underwriter class keeps track of everything in its knowledge dataframe, interprets Dec Language (DecL, pronounced like deckle, /'d \(\operatorname{dk}(\partial) 1 /\) ) programs, and acts as a helper.
2. The Severity class models a size of loss distribution (a severity curve).
3. The Aggregate class models a single unit of business, such as a line, business unit, geography, or operating division.
4. The Distortion class provides a distortion function, the basis of a spectral risk measure.
5. The Portfolio class models multiple units. It extends the functionality in Aggregate, adding pricing, calibration, and allocation capabilities.
There is also a Frequency class that Aggregate derives from, but it is rarely used standalone, and a Bounds class for advanced users.

\subsection*{2.3.2 The Underwriter Class}

The Underwriter class is an interface into the computational functionality of aggregate. It does two things:
1. Creates objects using the DecL language, and
2. Maintains a library of DecL object specifications called the knowledge. New objects are automatically added to the knowledge.

To get started, import build, a pre-configured Underwriter and qd (), a quick-display function. Import the usual suspects too, for good measure.
```

In [1]: from aggregate import build, qd
In [2]: import pandas as pd, numpy as np, matplotlib.pyplot as plt

```

Printing build reports its name, the number of objects in its knowledge, and other information about hyperparameter default values. site_dir is where various outputs will be stored. default_dir is for internal package data. The build object loads an extensive test suite of DecL programs with over 130 entries.
```

In [3]: build
Out [3]:
underwriter Rory
version 0.22.0
knowledge 146 programs
update True
log2 16
debug False
validation_eps 0.0001
site dir ~/aggregate/databases
default dir ~/checkouts/readthedocs.org/user_builds/aggregate/checkouts/
\hookrightarrowstable/aggregate/agg
help
build.knowledge list of all programs
build.qshow(pat) show programs matching pattern
build.show(pat) build and display matching pattern

```

\section*{Object Creation Using DecL and build ()}

The Underwriter class interprets DecL programs (The Dec Language). These allow severities, aggregates and portfolios to be created using standard insurance language.

For example, to build an Aggregate using DecL and report key statistics for frequency, severity, and aggregate, needs just two commands.
```

In [4]: a01 = build('agg TenM:01 100 claims 100 xs 0 sev lognorm 10 cv 1.25 poisson
\hookrightarrow')
In [5]: qd(a01)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 100 0.1 0.1
Sev 9.918 9.918 2.8334e-10 1.1639 1.1639 3.4165 3.4165
Agg 991.8 991.8 -4.5175e-10 0.15345 0.15345 0.28923 0.28923
log2 = 16, bandwidth = 1/32, validation: not unreasonable.

```

DecL is supposed to be human-readable, so I hope you can guess the meaning of the DecL code (TenM: 01 is just a label):
```

agg TenM:01 5 claims 1000 xs 0 sev lognorm 50 cv 4 poisson

```

The units are 1000s of USD, EUR, or GBP.
DecL is a custom language, created to describe aggregate distributions. Alternatives are to use positional arguments or key word arguments in function calls. The former are confusing because there are so many. The latter are verbose, because of the need to specify the parameter name. DecL is a concise, expressive, flexible, and powerful alternative.

\section*{Important: Formatting a DecL Program}

\section*{Important: All DecL programs are one line long.}

It is best to break a DecL program up to make it more readable. The fact that Python automatically concatenates strings between parenthesis makes this easy. The program above is always entered in the help as:
```

a01 = build('agg TenM:01 '
'100 claims '
'100 xs 0 '
'sev lognorm 10 cv 1.25 '
'poisson')

```
which Python makes equivalent to:
```

a01 = build('agg TenM:01 100 claims 100 xs 0 sev lognorm 10 cv 1.25 poisson')

```
as originally entered. Pay attention to spaces at the end of each line! Entering:
```

a01 = build('agg TenM:01'
'100 claims'
'100 xs 0'
'sev lognorm 10 cV 1.25'
'poisson')

```
produces:
```

a01 = build('agg TenM:01100 claims100 xs 0sev lognorm 10 cv 1.25poisson')

```
which results in syntax errors.
DecL includes a Python newline \(\backslash\). All programs in the help are entered so they can be cut and pasted.

\section*{Object Creation from the Knowledge Database}

The knowledge dataframe is a database of DecL programs and a parsed dictionaries to create objects. build loads an extensive library by default. Users can create and load their own databases, allowing them to share common parameters for
- severity (size of loss) curves,
- aggregate distributions (e.g., industry losses in major classes of business, or total catastrophe losses from major perils), and
- portfolios (e.g., an insurer's reference portfolio or educational examples like Bodoff's examples and Pricing Insurance Risk case studies).

It is indexed by object kind (severity, aggregate, portfolio) and name, and accessed as the read-only property build. knowledge. Here are the first five rows of the knowledge loaded by build.
```

In [6]: qd(build.knowledge.head(), justify="left", max_colwidth=60)
program
kind name
agg A.Dice00 agg A.Dice00 dfreq [1:6] dsev [1] note{The roll of a...
A.Dice01 agg A.Dice01 dfreq [1] dsev [1:6] note{Same as previ...
A.Dice02 agg A.Dice02 dfreq [2] dsev [1:6] note{Sum of the ro...
A.Dice03 agg A.Dice03 dfreq [5] dsev [1:6] note{Sum of the ro...
A.Dice04 agg A.Dice04 dfreq [1:6] dsev [1:6] note{Sum of a di...
spec
kind name
agg A.Dice00 {'name': 'A.Dice00', 'freq_name': 'empirical', 'freq_a':...
A.Dice01 {'name': 'A.Dice01', 'freq_name': 'empirical', 'freq_a':...
A.Dice02 {'name': 'A.Dice02', 'freq_name': 'empirical', 'freq_a':...
A.Dice03 {'name': 'A.Dice03', 'freq_name': 'empirical', 'freq_a':...
A.Dice04 {'name': 'A.Dice04', 'freq_name': 'empirical', 'freq_a':...

```

A row in the knowledge can be accessed by name using build. This example models the roll of a single die.
```

In [7]: print(build['A.Dice00'])
kind agg
name A.Dice00
spec <class 'dict'>
program agg A.Dice00 dfreq [1:6] dsev [1] note{The roll of_
\hookrightarrowa single dice.}
object <class 'NoneType'>

```

The argument 'A.Dice00' is passed through to the underlying dataframe's getitem.
A row in the knowledge can be created as a Python object using:
```

In [8]: aDice = build('A.Dice00')
In [9]: qd(aDice)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3.5 0.48795 0
Sev 1 1 0 0 0
Agg 3.5 3.5 4.4409e-16 0.48795 0.48795 0 4.85e-14
log2 = 4, bandwidth = 1, validation: not unreasonable.

```

The argument in this case is passed through to the method Underwriter.build(), which first looks for A. Dice00 in the knowledge. If it fails, it tries to interpret its argument as a DecL program.

The method build.qlist () (quick list) searches the knowledge using a regex (regular expression) applied to the names, and returning a dataframe of specifications. build. qshow () (quick show) just displays them.
```

In [10]: build.qshow('Dice')
program
name
A.Dice00 agg A.Dice00 dfreq [1:6] dsev [1] note{The roll of a single\smile
->dice.}
A.Dice01
\hookrightarrowexample.}
A.Dice02
\hookrightarrowtwo dice.}
A.Dice03
agg A.Dice01 dfreq [1] dsev [1:6] note{Same as previousu
agg A.Dice02 dfreq [2] dsev [1:6] note{Sum of the rolls ofu
agg A.Dice03 dfreq [5] dsev [1:6] note{Sum of the rolls of`
(continued from previous page)

```
\hookrightarrowfive dice.}
A.Dice04 agg A.Dice04 dfreq [1:6] dsev [1:6] note{Sum of a dice roll`
\hookrightarrowOf dice rolls}
A.Dice05 agg A.Dice05 dfreq [1:4] dsev [1:16] note{Something you can'tr
\hookrightarrowdo easily by hand}
```

The method build.show () also searches the knowledge using a regex applied to the names, but it creates and plots each match by default. Be careful not to create too many objects! Try running:

```
build.show('Dice')
```

Add argument return_df=True to return a list of created objects and a dataframe containing information about each.

Underwriter Behind the Scenes

This section should be skipped the first time through.
Each object has a kind property and a name property, and it can be manifest as a DecL program, a dictionary specification, or a Python class instance. The class can be updated or not updated. In detail:

1. kind equals sev for a Severity, agg for a Aggregate, port for a Portfolio, and distortion for a Distortion (dist could be distribution);
2. name is assigned to the object by the user; it is different from the Python variable name holding the object;
3. spec is a (derived) dictionary specification;
4. program is the DecL program as a text string; and
5. object is the actual Python object, an instance of a class.

Underwriter.write () is a low-level creator function. It takes a DecL program or knowledge item name as input.

- It searches the knowledge for the argument and returns it if it finds one object. It throws an error if the name is not unique. If the name is not in the knowledge it continues.
- It calls Underwriter.interpret_program () to pre-process the DecL and then lex and parse it one line at a time.
- It looks up occurrences of sev.ID, agg. ID (ID is an object name) in the knowledge and replaces them with their definitions.
- It calls Underwriter.factory () to create any objects and update them if requested.
- It returns a list of Answer objects, with kind, name, spec, program, and object attributes.

Underwriter.write_file() reads a file and passes it to Underwriter.write(). It is a convenience function.

The Underwriter.build() method wraps the Underwriter.write() and provides sensible defaults to shield the user from its internal details. build takes the following steps:

- It calls write() with update=False.
- It then estimates sensible hyper-parameters and uses them to update () the object's discrete distribution. It tries to distinguish discrete output distributions from continuous or mixed ones.
- If the DecL program produces only one output, it strips it out of the answer returned by write and returns just that object.
- If the DecL program produces only one portfolio output (but possibly other non-portfolio objects), it returns just that.

Underwriter.interpret_program() interprets DecL programs and matches them with the parsed specs in an Answer (kind, name, spec, program, object=None) object. It adds the result to the knowledge.

Underwriter.factory () takes an Answer argument and updates it by creating the relevant object and updating it if build.update is True.

A set of methods called interpreter_xxx () run DecL programs through parser for debugging purposes, but do not create any output or add anything to the knowledge.

- Underwriter.interpreter_line() works on one line.
- Underwriter.interpreter_file() works on each line in a file.
- Underwriter.interpreter_list() works on each item in a list.
- Underwriter._interpreter_work() does the actual parsing.

2.3.3 How aggregate Represents Distributions

A distribution is represented as a discrete numerical approximation. To "know or compute a distribution" means that we have a discrete stair-step approximation to the true distribution function that jumps (is supported) only on integer multiples of a fixed bandwidth or bucket size b (called bs in the code). The distribution is represented by b and a vector of probabilities $\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)$ with the interpretation

$$
\operatorname{Pr}(X=k b)=p_{k} .
$$

All subsequent computations assume that this approximation is the distribution. For example, moments are estimated using

$$
\mathrm{E}\left[X^{r}\right]=b \sum_{k} k^{r} p_{k}
$$

See Digital Representation of Distributions for more details.

2.3.4 The Severity Class

The Severity class derives from scipy.stats.rv_continuous, see scipy help. It contains a member stats.rv_continuous variable $f z$ that is the ground-up unlimited severity and it adds support for limits and attachments. For example, the cdf function is coded:

```
def _cdf(self, x, *args):
    if self.conditional:
        return np.where(x >= self.limit, 1,
            np.where(x < 0, 0,
                                    (self.fz.cdf(x + self.attachment) -
                                    (1 - self.pattach)) / self.pattach))
    else:
        return np.where(x < 0, 0,
            np.where(x == 0, 1 - self.pattach,
                np.where(x > self.limit, 1,
                        self.fz.cdf(x + self.attachment, *args))))
```

Severity can determine its shape parameter from a CV analytically for lognormal, gamma, inverse gamma, and inverse Gaussian distributions, and attempts to use a Newton-Raphson method to determine it for all other one-shape parameter distributions. (The CV is adjusted using the scale factor for zero parameter distributions.) Once the shape is known, it uses scaling to produce the required mean. Warning: The numerical methods are not always reliable.

Severity computes layer moments analytically for the lognormal, Pareto, and gamma, and uses numerical integration of the quantile function (isf) for all other distributions. These estimates can become unreliable for very thick tailed distributions. It uses self.fz.stats ('mvs') and the object limit to determine if the requested moment actually exists before attempting numerical integration.

Severity has a plot () method that graphs the density, \log density, cdf, and quantile (Lee) functions.
A Severity can be created using DecL using any of the following five forms.

1. sev NAME sev.BUILDIN_ID is a knowledge lookup for BUILTIN_ID
2. sev NAME DISTNAME SHAPE1 <SHAPE2> where DISTAME is the name of any scipy.stats continuous random variable with zero, one, or two shape parameters, see the DecL/list of distributions.
3. sev NAME SCALE * DISTNAME SHAPE1 <SHAPE2> + LOC
4. sev NAME DISTNAME MEAN cv CV
5. sev NAME SCALE * DISTNAME MEAN cv CV + LOC or sev NAME SCALE * DISTNAME MEAN Cv CV - LOC

Either or both of SCALE and LOC can be present. In the mean and CV form, the mean refers to the unshifted, unscaled mean, but the CV refers to the shifted and scaled CV - because you usually want to control the overall CV.

Example.

lognorm 80 CV 0.5 results in an unshifted lognormal with mean 80 and CV 0.5.

```
In [11]: s0 = build(f'sev TenM:Sev.1 '
    ....: 'lognorm 80 cV .5')
    .... :
In [12]: mf, vf = s0.fz.stats(); m, v = s0.stats()
In [13]: s0.plot(figsize=(2*3.5, 2*2.45+0.15), layout='AB\nCD');
In [14]: plt.gcf().suptitle(f'{s0.name}, mean {m:.2f}, CV {v**.5/m:.2f} ({mf:.2f},
\hookrightarrow{vf**.5/mf:.2f})');
In [15]: print(m,v,mf,vf)
79.99999999999997 1599.999999999991 80.00000000000001 1600.0000000000002
```


Combining scaling, shifts, and mean/cv entry like so 10 * lognorm $1 \mathrm{cv} 0.5+70$ results in a distribution with mean $10 * 1+70=80$, a standard deviation of $10 * 0.5=5$, and a cv of $5 / 80$.

```
In [16]: s1 = build(f'sev TenM:Sev.2 '
    ...: '10 * lognorm 1 cv . 5 + 70')
    .... :
```

(continued from previous page)

```
In [17]: mf, vf = s1.fz.stats(); m, v = s1.stats()
In [18]: s1.plot(figsize=(2*3.5, 2*2.45+0.15), layout='AB\nCD');
In [19]: plt.gcf().suptitle(f'{s1.name}, mean {m:.2f}, CV {v**.5/m:.2f} ({mf:.2f},
\hookrightarrow{vf**.5/mf:.2f})');
In [20]: print(m,v,mf,vf)
80.00000002527862 25.000006201477845 80.0 25.000000000000004
```

TenM:Sev.2, mean 80.00, CV 0.06 (80.00, 0.06)

Examples.

This example compares the shapes of gamma, inverse Gaussian, lognormal, and inverse gamma severities with the same mean and CV. First, a short function to create the examples.

```
In [21]: def plot_example(dist_name):
    ....: S = build(f'sev TenM:{dist_name.title()}
    ....: f'{dist_name} 10 cv .5')
    ....: m, v, sk, k = s.fz.stats('mvsk')
    ....: s.plot(figsize=(2*3.5, 2*2.45+0.15), layout='AB\nCD')
    ....: plt.gcf().suptitle(f'{dist_name.title()}, mean {m:.2f},
    ...: f'CV {v**.5/m:.2f}, skew {sk:.2f}, kurt {k:.2f}')
    .... :
```

Execute on the desired distributions.

```
In [22]: plot_example('gamma')
In [23]: plot_example('invgauss')
In [24]: plot_example('lognorm')
In [25]: plot_example('invgamma')
```

Gamma, mean 10.00 , CV 0.50 , skew 1.00 , kurt 1.50

Invgauss, mean 10.00, CV 0.50, skew 1.50, kurt 3.75

Lognorm, mean 10.00 , CV 0.50 , skew 1.62 , kurt 5.04

Probability distribution

Examples.

This example show the impact of adding a limit and attachment. Limits and attachments determine exposure in DecL and they belong to the Aggregate specification. DecL cannot be used to set the limit and attachment of a Severity object. One way to apply them is to create an aggregate with a fixed frequency of one claim. By default, the severity is conditional on a loss to the layer.

```
In [26]: limit, attach = 15, 5
In [27]: s2 = build(f'agg TenM:SevLayer 1 claim {limit} xs {attach} sev gamma 10_
\hookrightarrowCV . 5 fixed')
In [28]: m, v, sk, k = s2.sevs[0].fz.stats('mvsk')
In [29]: s2.sevs[0].plot(n=401, figsize=(2*3.5, 2*2.45+0.3), layout='AB\nCD')
In [30]: plt.gcf().suptitle(f'Ground-up severity\nGround-up gamma mean {m:.2f}, CV
\hookrightarrow{v**0.5/m:.2f}, skew {sk:.2f}, kurt {k:.2f}\n'
    ....: f'{limit} xs {attach} excess layer mean {s2.est_m:.2f},
\hookrightarrowCV {s2.est_cv:.2f}, skew {s2.est_skew:.2f}, kurt {k:.2f}');
    .....:
```

15 xs 5 excess layer mean 5.88, CV 0.70

A Severity can be created directly using args and kwargs. Here is an example. It also shows the impact of making the severity unconditional (on a loss to the layer). Start by creating the conditional (default) severity and plotting it.

```
In [31]: from aggregate import Severity
In [32]: s3 = Severity('gamma', attach, limit, 10, 0.5)
In [33]: s3.plot(n=401, figsize=(2*3.5, 2*2.45+0.15), layout='AB\nCD')
In [34]: m, v = s3.stats()
In [35]: plt.gcf().suptitle(f'{limit} xs {attach} excess layer mean {m:.2f}, CV
\hookrightarrow{v**.5/m:.2f}');
```

15 xs 5 excess layer mean 5.88 , CV 0.70

Next, create an unconditional version. The lower pdf is scaled down by the probability of attaching the layer, and the left end of the cdf shifted up by the probability of not attaching the layer. These probabilities are given by the underlying fz object's sf and cdf.

```
In [36]: s4 = Severity('gamma', attach, limit, 10, 0.5, sev_conditional=False)
In [37]: s4.plot(figsize=(2*3.5, 2*2.45+0.15), layout='AB\nCD')
In [38]: m, v = s4.stats()
In [39]: plt.gcf().suptitle(f'Unconditional {limit} xs {attach} excess layer mean
\hookrightarrow{m:.2f}, CV {v**.5/m:.2f}');
In [40]: print(f'Probability of attaching layer {s4.fz.cdf(attach):.3f}')
Probability of attaching layer 0.143
```


Although Severity accepts a weight argument, it does not actually support weighted severities. It models only one component. Aggregate handles weighted severities by creating a separate Severity for each component.

2.3.5 The Aggregate Class

Creating an Aggregate Distribution

Aggregate objects can be created in three ways:

1. Generally, they are created using DecL by Underwriter.build(), as shown in Object Creation Using DecL and build().
2. Objects in the knowledge can be created by name.
3. Advanced users and programmers can create Aggregate objects directly using kwargs, see Aggregate Class.

Example.

This example uses build () to make an Aggregate with a Poisson frequency, mean 5, and gamma severity with mean 10 and CV 1 . It includes more discussion than the example above. The line breaks improve readability but are cosmetic.

```
In [41]: a02 = build('agg TenM:02 '
    ....: '5 claims '
    ...: 'sev gamma 10 cv 1 '
```

```
    ....: 'poisson')
    . . . :
In [42]: qd(a02)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 5 0.44721 0.44721
Sev 10 10 -2.5431e-08 1 1 1 < 1 % 2
Agg 50 50 -2.5432e-08 0.63246 0.63246 0.94868 0.94868
log2 = 16, bandwidth = 1/128, validation: not unreasonable.
```

qd displays the dataframe a.describe. This example fails the aliasing validation test because the aggregate mean error is suspiciously greater than the severity. (Run with logger level 20 for more diagnostics.) However, it passes both the severity mean and aggregate mean tests.

Aggregate Quick Diagnostics

The quick display reports a set of quick diagnostics, showing

- Exact $\mathrm{E}[\mathrm{X}]$ and estimated Est $\mathrm{E}[\mathrm{X}]$ frequency, severity, and aggregate statistics.
- Relative errors Err $E[X]$ for the means.
- Coefficient of variation CV (X) and estimated CV, Est CV (X)
- Skewness Skew (X) and estimated skewness, Est Skew (X)

The line below the table shows the (\log to base 2) of the number of buckets used, $\log 2$ and the bucket size bs used in discretization.

These statistics make it easy to see if the numerical estimation is invalid. Look for a small error in the mean and close second (CV) and third (skew) moments. The last item validation: not unreasonable shows the model did not fail any tests. The test should be interpreted like a null hypothesis; you expect it to be True and are worried when it is False.

In this case, the aggregate mean error is too high because the discretization bucket size b s is too small. Update with a larger bucket.

```
In [43]: a02.update(bs=1/128)
In [44]: qd(a02)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lrreq 
Agg 50 50 -2.5432e-08 0.63246 0.63246 0.94868 0.94868
log2 = 16, bandwidth = 1/128, validation: not unreasonable.
```


Aggregate Algorithm in Detail

Here's the aggregate FFT convolution algorithm stripped down to bare essentials and coded in raw Python to show you what happens behind the curtain. The algorithm steps are:

1. Inputs

- Severity distribution cdf. Use scipy. stats.
- Frequency distribution probability generating function. For a Poisson with mean λ the PGF is $\mathscr{P}(z)=$ $\exp (\lambda(z-1))$.
- The bucket size b. Use the value simple.bs.
- The number of buckets $n=2^{\log _{2}}$. Use the default $\log 2=16$ found in simple. log 2 .
- A padding parameter, equal to 1 by default, from simple.padding.

2. Discretize the severity cdf.
3. Apply the FFT to discrete severity with padding to size 2 ** (log2 + padding).
4. Apply the frequency pgf to the FFT.
5. Apply the inverse FFT to create is a discretized version of the aggregate distribution and output it.

Let's recreate the following simple example. The variable names for the means and shape are for clarity. sev_shape is σ for a lognormal.

```
In [45]: from aggregate import build, qd
In [46]: en = 50
In [47]: sev_scale = 10
In [48]: sev_shape = 0.8
In [49]: simple = build('agg Simple '
    ....: f'{en} claims '
    ...: f'sev {sev_scale} * lognorm {sev_shape}'
    ....: 'poisson')
    .... :
In [50]: qd(simple)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 
Agg 688.56 688.56 -9.4705e-09 0.19476 0.19476 0.36935 0.36933
log2 = 16, bandwidth = 1/32, validation: not unreasonable.
```

The next few lines of code implement the FFT convolution algorithm. Start by importing the probability distribution and FFT routines. rfft and irfft take the FFT and inverse FFT of real input.

```
In [51]: import numpy as np
In [52]: from scipy.fft import rfft, irfft
In [53]: import scipy.stats as ss
```

Pull parameters from simple to match calculations, step 1. $n _$pad is the length of the padded vector used in the convolution to manage aliasing.

```
In [54]: bs = simple.bs
In [55]: log2 = simple.log2
In [56]: padding = simple.padding
In [57]: n = 1 << log2
In [58]: n_pad = 1 << (log2 + padding)
In [59]: sev = ss.lognorm(sev_shape, scale=sev_scale)
```

Use the round method and the survival function to discretize, completing step 2.

```
In [60]: xs = np.arange(0, (n + 1) * bs, bs)
In [61]: discrete_sev = -np.diff(sev.sf(xs - bs / 2))
```

The next line of code carries out algorithm steps 3,4 , and 5! All the magic happens here. The forward FFT adds padding, but the answer must be unpadded manually, with the final $[: n$].

```
In [62]: agg = irfft( np.exp( en * (rfft(discrete_sev, n_pad) - 1) ) ) [:n]
```

Plots to compare the two approaches. They are spot on!

```
In [63]: import matplotlib.pyplot as plt
In [64]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45),
    ....: constrained_layout=True);
    ....: ax0, ax1 = axs.flat;
    ....: simple.density_df.p_total.plot(lw=2, label='Aggregate', ax=ax0);
    ....: ax0.plot(xs[:-1], agg, lw=1, label='By hand');
    ....: ax0.legend();
    ....: simple.density_df.p_total.plot(lw=2, label='Aggregate', ax=ax1);
    ....: ax1.plot(xs[:-1], agg, lw=1, label='By hand');
    ....: ax1.legend();
    ....:
In [65]: ax1.set(yscale='log');
```


The very slight difference for small loss values arises because build removes numerical fuzz, setting values below machine epsilon (about $2 e-16$) to zero, explaining why the blue aggregate line drops off vertically on the left.

Basic Probability Functions

An Aggregat e object acts like a discrete probability distribution. There are properties for the aggregate and severity mean, standard deviation, coefficient of variation, and skewness, both computed exactly and numerically estimated.

```
In [66]: print(a02.agg_m, a02.agg_sd, a02.agg_cv, a02.agg_skew)
50.0 31.622776601683793 0.6324555320336759 0.9486832980505139
In [67]: print(a02.est_m, a02.est_sd, a02.est_cv, a02.est_skew)
49.9999987284203 31.622777003581923 0.6324555561559914 0.9486832857144013
In [68]: print(a02.sev_m, a02.sev_sd, a02.sev_cv, a02.sev_skew)
10.0 10.0 1.0 2.0
In [69]: print(a02.est_sev_m, a02.est_sev_sd, a02.est_sev_cv, a02.est_sev_skew)
9.99999974568674 10.000000508623474 1.0000000762936754 1.9999996947979108
```

They have probability mass, cumulative distribution, survival, and quantile (inverse of distribution) functions.

```
In [70]: a02.pmf(60), a02.cdf(50), a02.sf(60), a02.q(a02.cdf(60)), a02.q(0.5)
Out[70]: (7.923645058165983e-05, 0.5639640504996987, 0.3244107518264777, 60.0, 44.
490625)
```

The pdf, cdf, and sf for the underlying severity are also available.

```
In [71]: a02.sev.pdf(60), a02.sev.cdf(50), a02.sev.sf(60)
Out[71]: (0.00024787521766663585,0.9932620530009145,0.002478752176666357)
```

Note: Aggregate and Portfolio objects need to be updated after they have been created. Updating builds out discrete numerical approximations, analogous to simulation. By default, build () handles updating automatically.

Warning: Always use bucket sizes that have an exact binary representation (integers, $1 / 2,1 / 4,1 / 8$, etc.) Never use 0.1 or 0.2 or other numbers that do not have an exact float representation, see REF.

Mixtures

An Aggregate can have a mixed severity. The mixture can include different distributions, parameters, shifts, and locations.

```
In [72]: a03 = build('agg TenM:03 '
    ....: '25 claims '
    ...: 'sev [gamma lognorm invgamma][[5 10 10] cv [0.5 0.75 1.5] '
    ...: '+ [0 10 20] wts [.5 .25 .25] '
    ...: 'mixed gamma 0.5'
    ...: , bs=1/16)
    .... :
In [73]: qd(a03)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 25 0.53852 1.0028
Sev 15 14.999 -3.7467e-05 0.90907 0.89065 inf 9.9075
Agg 375 374.99-3.8034e-05 0.56838 0.5672 inf 1.0698
log2 = 16, bandwidth = 1/16, validation: fails sev cv, agg cv.
```

An Aggregate can model multiple units at once, and allow them to share mixing variables. This induces correlation between the components, see the report dataframe. All parts of the specification can vary, including limits and attachments (not shown). This case differentiated from a mixed severity by having no weights.

```
In [74]: a04 = build('agg TenM:04 '
    ...: '[500 250 100] premium at [.8 . 7 .5] lr '
    ...: 'sev [gamma lognorm invgamma] [5 10 10] cv [0.5 0.75 1.5] '
    ...: 'mixed gamma 0.5'
    ....: , bs=1/8)
    .... :
In [75]: qd(a04)
```



```
log2 = 16, bandwidth = 1/8, validation: fails sev cv.
```


Accessing Severity in an Aggregate

The attribute Aggregate.sevs is an array of the Severity objects. Usually, it contains only one distribution but when severity is a mixture it contains one for each mixture component. It can be iterated over. Each Severity object wraps a scipy. stats continuous random variable called $f z$ that represents ground-up severity. The args are its shape variable(s) and kwds its scale and location variables. This is most interesting when the object has a mixed severity.

```
In [76]: for s in a03.sevs:
    ....: print(s.sev_name, s.fz.args, s.fz.kwds)
    .... :
gamma (4.0,) {'scale': 1.25, 'loc': 0.0}
lognorm (0.6680472308365775,) {'scale': 8.0, 'loc': 10.0}
invgamma (2.4444444444444446,) {'scale': 14.444444444444446, 'loc': 20.0}
```

The property 003 . sev is a namedt uple exposing the exact weighted pdf, cdf, and sf of the underlying Severity objects.

```
In [77]: a03.sev.pdf(20), a03.sev.cdf(20), a03.sev.sf(20)
Out[77]: (0.014150102336136361, 0.657658211871339, 0.342341788128661)
```

The component weights are proportional to a 03 .en and a 03 . sev. cdf is computed as

```
In [78]: (np.array([s.cdf(20) for s in a03.sevs]) * a03.en).sum() / a03.en.sum()
Out[78]: 0.6576582118713391
```

The following are equal using the defaut discretization method.

```
In [79]: a03.density_df.loc[20, 'F_sev'], a03.sev.cdf(20 + a03.bs/2)
Out[79]: (0.6580993598330426, 0.6580993598330431)
```


Reinsurance

Aggregate objects can apply per occurrence and aggregate reinsurance using clauses

- occurrence net of [limit] xs]attach]
- occurrence net of [pct] so [limit] xs [attach], where so stands for "share of"
- occurrence ceded to [limit] xs]attach]
- and so forth.

Examples.

Gross distribution: a triangular aggregate created as the sum of two uniform distribution on $1,2, \ldots, 10$.

```
In [80]: a05g = build('agg TenM:05g dfreq [2] dsev [1:10]')
In [81]: qd(a05g)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0
Sev 5.5 5.5 0 0.52223 0.52223 0
Agg 11 11 -3.3307e-16 0.36927 0.36927 0 -6.1064e-14
log2 = 6, bandwidth = 1, validation: not unreasonable.
```

Apply 3 xs 7 occurrence reinsurance to cap individual losses at 7 . a 05 no is the net of occurrence distribution.

```
In [82]: a05no = build('agg TenM:05no dfreq [2] dsev [1:10] '
    ....: 'occurrence net of 3 xs 7')
    ....:
In [83]: qd(a05no)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0
Sev 5.5 4.9-0.10909 0.52223 0.44197 0. 5 0.0.52103
Agg 11 9.8 -0.10909 0.36927 0.31252 0 -0.36842
log2 = 6, bandwidth = 1, validation: n/a, reinsurance.
```

Warning: The describe dataframe always reports gross analytic statistics (E [X], CV (X), Skew (X)) and the requested net or ceded estimated statistics (Est E[X], Est CV (X), Est Skew (X)). Look at the gross portfolio first to check computational accuracy. Net and ceded "error" report the difference to analytic gross.

Add an aggregate 4 xs 8 reinsurance cover on the net of occurrence distribution. a05n is the final net distribution.

```
In [84]: a05n = build('agg TenM:05n dfreq [2] dsev [1:10] '
    ....: 'occurrence net of 3 xs 7 '
    ...: 'aggregate net of 4 xs 8')
    .... :
In [85]: qd(a05n)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0
Sev 5.5 4.9 -0.10909 0.52223 0.44197 0 -0.52103
Agg 11 7 7.84 -0.28727 0.36927 0.20781 0
log2 = 6, bandwidth = 1, validation: n/a, reinsurance.
```

See The plot() Method for plots of the different distributions.

2.3.6 The Distortion Class

See Distortions and Spectral Risk Measures and PIR Chapter 10.5 for more information about distortions.
A Distortion can be created using DecL. It object has methods for g, the distortion function, along with its dual g_dual (s)=1-g(1-s) and inverse g_inv. The plot () method shows g (above the diagonal) and g_inv (below).

```
In [86]: d06 = build('distortion TenM:06 dual 3')
In [87]: qd(d06.g(.2), d06.g_inv(.2), d06.g_dual(0.2),
    ....: d06.g(.8), d06.g_inv(.992), d06)
.... :
0.488
0.071682
0.008
0.992
0.8
Dual Moment, 3.000
In [88]: d06.plot();
```


The Distortion class can create distortions from a number of parametric families.

```
In [89]: from aggregate import Distortion
In [90]: Distortion.available_distortions(False, False)
Out [90]:
('ph',
    'wang',
    'cll',
    'lep',
    'ly',
    'clin',
    'dual',
    'ccoc',
    'tvar',
    'bitvar',
    'convex'
    'tt')
```

Run the command:

```
Distortion.test()
```

for graphs of samples from each available family. $t t$ is not a distortion because it is not concave. It is included for historical reasons.

2.3.7 The Portfolio Class

A Portfolio object models a portfolio (book, block) of units (accounts, lines, business units, regions, profit centers), each represented as an Aggregate. It uses FFTs to convolve (add) the unit distributions. By default, all the units are assumed to be independent, though there are ways to adjust this. REF. The independence assumption is not as bad as it may appear; its effect can be ameliorated by selecting units carefully and sharing mixing variables appropriately (see REF for further discussion).

Portfolio objects have all of the attributes and methods of a Aggregate and add methods for pricing and allocation to units.

The DecL for a portfolio is simply:

```
port NAME AGG1 <AGG2> <AGG3> ...
```

where AGG1 is an aggregate specification. Portfolios can have one or more units. The DecL can be split over multiple lines if each aggregate begins on a new line and is indented by a tab (like a Python function).

Example.

Here is a three-unit portfolio built using a DecL program. The line breaks and horizontal spacing are cosmetic since Python just concatenates the input.

```
In [91]: p07 = build('port TenM:07 '
    ...: 'agg A '
    ...: '100 claims '
    ...: '10000 xs 0'
    ...: 'sev lognorm 100 cv 1.25 '
    ...: 'poisson '
    ...: 'agg B '
    ...: '150 claims '
    ...: '2500 xs 5 '
    ...: 'sev lognorm 50 cv 0.9 '
    ....: 'mixed gamma . 6 '
    ....: 'agg Cat '
    ...: '2 claims '
    ....: '1e5 xs 0 '
    ...: 'sev 500 * pareto 1.8 - 500 '
    .... 'poisson'
    ...: , approximation='exact', padding=2)
    ....:
In [92]: qd(p07)
```

 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew (X) Est Skew (X)
 unit X
A Freq 100 0.1 0.1

B	Sev	100	100	-1.1973e-08	1.2498	1.2498	5.6619	5.6617
	Agg	10000	10000	-1.1973e-08	0.16006	0.16007	0.4082	0.40819
	Freq	150			0.60553		1.2001	
	Sev	45.213	45.212	-1.2825e-05	0.99517	0.99528	3.4345	3.4335
	Agg	6781.9	6781.8	-1.2825e-05	0.61096	0.61096	1.2009	1.2009
Cat	Freq	2			0.70711		0.70711	
	Sev	616.02	616.02	-9.7399e-07	3.1331	3.1331	23.278	23.278
	Agg	1232	1232	-4.3508e-06	2.3256	2.3254	14.837	14.828
total	Freq	252			0.36266		1.1783	
	Sev	71.484	71.483	-4.9016e-06	2.7998		172.51	
	Agg	18014	18013	-2.6963e-05	0.29343	0.29322	2.9528	2.925

$\log 2=16$, bandwidth $=2$, validation: not unreasonable.
The portfolio units are called A, B and Cat. Printing using qd shows p07. describe, which concatenates each unit's describe and adds the same statistics for the total.

- Unit A has 100 (expected) claims, each pulled from a lognormal distribution with mean of 30 and coefficient of variation 1.25 within the layer 100 xs 0 (i.e., losses are limited at 100). The frequency distribution is Poisson.
- Unit B is similar.
- The Cat unit is has expected frequency of 2 claims from the indicated limit, with severity given by a Pareto distribution with shape parameter 1.8 , scale 500 , shifted left by 500 . This corresponds to the usual Pareto with survival function $S(x)=(500 /(500+x))^{1.8}=(1+x / 500)^{-1.8}$ for $x \geq 0$.

The portfolio total (i.e., the sum of the units) is computed using FFTs to convolve (add) the unit's aggregate distributions. All computations use the same discretization bucket size; here the bucket-size bs=2. See For Portfolio Objects.

A Portfolio object acts like a discrete probability distribution, the same as an Aggregate. There are properties for the mean, standard deviation, coefficient of variation, and skewness, both computed exactly and numerically estimated.

```
In [93]: print(p07.agg_m, p07.agg_sd, p07.agg_cv, p07.agg_skew)
18013.930242377213 5285.799078302742 0.29342841940555886 2.9527686953572805
In [94]: print(p07.est_m, p07.est_sd, p07.est_cv, p07.est_skew)
18013.444535983497 5281.917148512574 0.29322082947331163 2.9249704103192653
```

They have probability mass, cumulative distribution, survival, and quantile (inverse of distribution) functions.

```
In [95]: p07.pmf(12000), p07.cdf(11000), p07.sf(12000), p07.q(p07.cdf(12000)), p07.
    \hookrightarrowq(0.5)
Out [95]:
(9.80844644134903e-05,
0.031240713459624474,
0.930037600482374,
12000.0,
17176.0)
```

The names of the units in a Portfolio are in a list called p07.unit_names or p07.unit_names_ex including total. The Aggregate objects in the Portfolio can be iterated over.

```
In [96]: for u in p07:
    ....: print(u.name, u.agg_m, u.est_m)
A 9999.982520635798 9999.982400907693
B 6781.909658669757 6781.822680927324
Cat 1232.038063071656 1232.0327026845005
```


2.3.8 Estimating Bucket Size for Discretization

Selecting an appropriate bucket size bs is critical to obtaining accurate results. This is a hard problem that may have hindered broad adoption of FFT-based methods.
See Numerical Methods and FFT Convolution for further discussion.

Hyper-parameters $\log 2$ and bs

The hyper-parameters $\log 2$ and bs control numerical calculations. $\log 2$ equals the \log to base 2 of the number of buckets used and bs equals the bucket size. These values are printed by qd.

Estimating and Testing bs For Aggregate Objects

For an Aggregate, recommend_bucket () uses a shifted lognormal method of moments fit and takes the recommend_p percentile as the right-hand end of the discretization. By default recommend_p=0.999, but for thick tailed distributions it may be necessary to use a value closer to 1 . recommend_bucket () also considers any limits: ideally limits are multiples of the bucket size.

The recommended value of bs should rounded up to a binary fraction (denominator is a power of 2) using utilities.round_bucket().

Aggregate also includes two functions for assessing bs, one based on the overall error and one based on looking at each severity component.

Aggregate.aggregate_error_analysis() updates the object at a range of different bs values and reports the total absolute (strictly, signed absolute error) and relative error as well as an upper bound $\mathrm{bs} / 2$ on the absolute value of the discretization error. log 2 must be input and, optionally, the log base 2 of the smallest bucket to model. It then models six doublings of the input bucket. If no bucket is input, it models three doublings up and down from the rounded recommend_bucket () suggestion. The output table shows:

- The actual (agg, m) and estimated (est, m) means, from the describe dataframe.
- The implied absolute (abs, m) and relative (rel, m) errors in the mean.
- (rel, h) shows the maximum relative severity discretization error, which equals bs / 2 divided by the average severity.
- (rel, total), equal to the sum of (rel, h) and rel m.

Thick tailed distributions can favor a large bucket size without regard to the impact on discretization; accounting for the impact of $\mathrm{bs} / 2$ is a countervailing force.

view	agg	est	abs	rel	rel	rel
stat	m	m	m	m	h	total
bs						
0.03125	625	624.71	-0.28786	-0.00046057	0.0025625	-0.0030231
0.06250	625	624.99	-0.011699	-1.8718e-05	0.005125	-0.0051437
0.12500	625	625	-0.0041472	$-6.6355 e-06$	0.01025	-0.010257
0.25000	625	625	-0.0015133	$-2.4212 e-06$	0.0205	-0.020502
0.50000	625	625	-0.00050174	-8.0278e-07	0.041	-0.041001
1.00000	625	625	0.0026758	$4.2813 \mathrm{e}-06$	0.082	0.082004
2.00000	625	625.14	0.13828	0.00022125	0.164	0.16422

Aggregate.severity_error_analysis() performs a detailed error analysis of each severity component. It reports:

- The name, limit, attachment, and truncation point for each severity component.
- S the probability the component (or total losses) exceed the truncation.
- sum_p the sum of discrete probabilities, which can be <1 if normalize=False.
- wt the weight of the component and en the corresponding claim count.
- agg_mean and agg_wt the aggregate mean contribution from the component (sums to the overall mean), and the each component's proportion of the total. The loss weight can differ drastically from the count weight.
- mean and est_mean the analytic and estimated severity by component and the corresponding abs and rel error.
- trunc_error the truncation error by component (tail integral) and relative truncation error.
- The h_error based on bs / 2 by component, a (conservative) upper bound on discretization error and the relative error compared to the component mean.
- h2_adj and rel_h2_adj estimate a second order adjustment to the numerical mean. They give a better idea of the discretization error.

```
In [98]: qd(a04.severity_error_analysis(), line_width=75)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline name & limit & attachm & & trunc & S & sum_p & wt & en \\
\hline gamma & inf & & 0 & 8192 & 0 & 1 & 0.78049 & 80 \\
\hline lognorm & inf & & 0 & 8192 & \(1.5989 \mathrm{e}-25\) & 1 & 0.17073 & 17.5 \\
\hline invgamma & inf & & 0 & 8192 & 5.9297e-08 & 1 & 0.04878 & 5 \\
\hline total & inf & & 0 & 8192 & 8.6388e-08 & 1 & 1 & 102.5 \\
\hline agg_mean & agg_wt & mean & est & mean & abs & & rel \} & \\
\hline 400 & 0.64 & 5 & & 5 & \(1.5997 \mathrm{e}-10\) & 3.199 & e-11 & \\
\hline 175 & 0.28 & 10 & & 10 & -1.6414e-12 & -1.641 & e-13 & \\
\hline 50 & 0.08 & 10 & & . 9992 & -0.00082165 & -8.216 & 5e-05 & \\
\hline 625 & 1 & 6.0976 & & . 0975 & -4.008e-05 & -6.5732 & e-06 & \\
\hline
\end{tabular}
trunc_error rel_trunc_error h_error rel_h_error h2_adj
    -0 -0 0.0625 0.0125 5.1607e-09
-0.00033646 -3.3646e-05 0.0625 0.00625 1.1514e-14
-1.6408e-05 -2.6909e-06 0.0625 0.01025 4.0279e-09
rel_h2_adj
1.0321e-09
1.0915e-15
1.1514e-15
6.6058e-10
```

Generally there is either discretization or truncation error. Look for one of them to dominate. Discretization error is solved with a smaller bucket; truncation with a larger. When the two conflict, add more buckets by increasing log 2 .

Estimating and Testing bs For Portfolio Objects

For a Portfolio, the right hand end of the distribution is estimated using the square root of sum of squares (proxy independent sum) of the right hand ends of each unit.

The method port.recommend_bucket () suggests a reasonable bucket size.

```
In [99]: print(p07.recommend_bucket().iloc[:, [0, 3, 6,10]])
    bs10 bs13 bs16 bs20
line
A 18.545709 2.318214 0.289777 0.018111
B 43.766975 5.470872 0.683859 0.042741
Cat 143.204295 17.900537 2.237567 0.139848
total 205.516978 25.689622 3.211203 0.2007
In [100]: p07.best_bucket (16)
Out[100]: 2
```

The column bsN corresponds to discretizing with $2 * * \mathrm{~N}$ buckets. The rows show suggested bucket sizes by unit and in total. For example with $\mathrm{N}=16$ (i.e., 65,536 buckets) the suggestion is 2.19 . It is best the bucket size is a divisor of any limits or attachment points. best_bucket () takes this into account and suggests 2.

To test bs, run the tests above on each unit.

2.3.9 Methods and Properties Common To Aggregate and Portfolio Classes

Aggregate and Portfolio both have the following methods and properties. See Aggregate Class and Portfolio Class for full lists.

- info and describe are dataframes with statistics and other information; they are printed with the object.
- density_df a dataframe containing estimated probability distributions and other expected value information.
- The statistics dataframe shows analytically computed mean, variance, CV, and sknewness for each unit and in total.
- report_df are dataframe with information to test if the numerical approximations appear valid. Numerically estimated statistics are prefaced est_or empirical.
- $\log 2$ and bs hyper-parameters that control numerical calculations.
- spec a dictionary containing the kwargs needed to recreate each object. For example, if a is an Aggregate object, then Aggregate (**a.spec) creates a new copy.
- spec_ex a dictionary that appends hyper-parameters to spec including log2 and bs.
- program the DecL program used to create the object. Blank if the object has been created directly. (A given object can often be created in different ways by DecL, so there is no obvious reverse mapping from the spec.)
- renamer a dictionary used to rename columns of member dataframes to be more human readable.
- update () a method to run the numerical calculation of probability distributions.
- recommend_bucket () to recommend the value of bs.
- Common statistical functions including pmf, cdf, sf, the quantile function (value at risk) and tail value at risk.
- Statistical functions: pdf, cdf, sf, quantile, value at risk, tail value at risk, and so on.
- plot () method to visualize the underlying distributions. Plots the pmf and log pmf functions and the quantile function. All the data is contained in density_df and the plots are created using pandas standard plotting commands.
- price () to apply a distortion (spectral) risk measure pricing rule with a variety of capital standards.
- snap () to round an input number to the index of density_df.
- approximate () to create an analytic approximation.
- sample () pulls samples, see Samples from aggregate Object.

The info Dataframe

The info dataframe contains information about the frequency and severity stochastic models, how the object was computed, and any reinsurance applied (none in this case).

```
In [101]: print(a05n.info)
aggregate object name TenM:05n
claim count 2.00
frequency distribution empirical
severity distribution dhistogram, unlimited.
bs 1
log2 6
```

```
padding 1
sev_calc discrete
normalize True
approximation exact
validation_eps 0.0001
reinsurance occurrence and aggregate
occurrence reinsurance net of 100% share of 3 xs 7 per occurrence
aggregate reinsurance
validation
    net of 100% share of 4 xs 8 in the aggregate.
    n/a, reinsurance
In [102]: print(p07.info)
portfolio object name TenM:07
aggregate objects 3
bs 2
log2 16
padding 2
sev_calc discrete
normalize True
last update 2024-01-23T15:11:25
hash 35bed9f3483dda16
```


The describe Dataframe

The describe dataframe contains gross analytic and estimated (net or ceded) statistics. When there is no reinsurance, comparison of analytic and estimated moments provides a test of computational accuracy (first case). It should always be reviewed after updating. When there is reinsurance, empirical is net (second case).

```
In [103]: qd(a05g.describe)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Estu
\hookrightarrowSkew (X)
X
Frreq NaN NaN NaN
M0 111 -3.3307e-16 0.36927 0.36927 0-6.1064e-
\hookrightarrow14
In [104]: with pd.option_context('display.max_columns', 15):
    .....: print(a05n.describe)
    ..... :
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Estu
Skew (X)
X
Freq 2.0 NaN NaN 0.000000 NaN NaN Nal
MNaN 
\hookrightarrow21027
Agg 11.0 7.84 -0.287273 0.369274 0.207810 -0.437247 0.0 -1.
\hookrightarrow267573
In [105]: qd(p07.describe)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) -
\hookrightarrowEst Skew(X)
```

(continued from previous page)

unit	X								-
\hookrightarrow									
A	Freq	100	NaN	NaN	0.1	NaN	NaN	0.1	-
\hookrightarrow	NaN								
	Sev	100	100	-1.1973e-08	1.2498	1.2498	$1.0689 \mathrm{e}-05$	5.6619	-
\hookrightarrow	5.6617								
	Agg	10000	10000	-1.1973e-08	0.16006	0.16007	$6.5169 \mathrm{e}-06$	0.4082	-
$\hookrightarrow \quad 0$	0.40819								
B	Freq	150	NaN	NaN	0.60553	NaN	NaN	1.2001	-
\hookrightarrow	NaN								
	Sev	45.213	45.212	$-1.2825 \mathrm{e}-05$	0.99517	0.99528	0.00010815	3.4345	-
\hookrightarrow	3.4335								
	Agg	6781.9	6781.8	$-1.2825 \mathrm{e}-05$	0.61096	0.61096	$1.913 \mathrm{e}-06$	1.2009	\checkmark
\hookrightarrow	1.2009								
Cat	Freq	2	NaN	NaN	0.70711	NaN	NaN	0.70711	\checkmark
\hookrightarrow	NaN								
	Sev	616.02	616.02	-9.7399e-07	3.1331	3.1331	$1.118 \mathrm{e}-06$	23.278	-
\hookrightarrow	23.278								
	Agg	1232	1232	$-4.3508 e-06$	2.3256	2.3254	-7.109e-05	14.837	\checkmark
\hookrightarrow	14.828								
total	1 Freq	252	NaN	NaN	0.36266	NaN	NaN	1.1783	\checkmark
\hookrightarrow	NaN								
	Sev	71.484	71.483	-4.9016e-06	2.7998	NaN	NaN	172.51	\checkmark
\hookrightarrow	NaN								
	Agg	18014	18013	$-2.6963 e-05$	0.29343	0.29322	-0.00070746	2.9528	\checkmark
\hookrightarrow	2.925								

Printing the object using qd add $\log 2, \mathrm{bs}$, and validation information.

The density_df Dataframe

The density_df dataframe contains a wealth of information. It has $2 * * \log 2$ rows and is indexed by the outcomes, all multiples of bs. Columns containing p are the probability mass function, of the aggregate or severity.

- the aggregate and severity pmf (called p and duplicated as p_total for consistency with Portfolio objects), log pmf, cdf and sf
- the aggregate lev (duplicated as exa)
- exlea (less than or equal to a) which equals $\mathrm{E}[X \mid X \leq a]$ as a function of loss
- exgta (greater than) which equals $\mathrm{E}[X \mid X>a]$

In an Aggregate, p and p_total are identical, the latter included for consistency with Portfolio output. F and S are the cdf and sf (survival function). lev and exa are identical and equal the limited expected value at the loss level. Here are the first five rows.

```
In [106]: print(a05g.density_df.shape)
(64, 17)
In [107]: print(a05g.density_df.columns)
Index(['loss', 'p_total', 'p', 'p_sev', 'log_p', 'log_p_sev', 'F', 'F_sev', 'S',
\hookrightarrow'S_sev', 'lev', 'exa', 'exlea', 'e',
    'epd', 'exgta', 'exeqa'],
    dtype='object')
In [108]: with pd.option_context('display.max_columns', a05g.density_df.shape[1]):
    .....: print(a05g.density_df.head())
    . . . . .:
    loss p_total p p_sev log_p log_p_sev F F_sev S S_sev u
\hookrightarrowlev exa exlea e epd \
```

(continues on next page)
(continued from previous page)

loss												
\hookrightarrow												
0.0	0.0		0.00	0.00	0.0	-inf	-inf	0.00	0.0	1.00	1.0	0.
$\hookrightarrow 00$	0.00		NaN	11.0	1.00							
1.0	1.0		0.00	0.00	0.1	-inf	-2.302585	0.00	0.1	1.00	0.9	1.
$\hookrightarrow 00$	1.00		NaN	11.0	0.90							
2.0	2.0		0.01	0.01	0.1	5170	-2.302585	0.01	0.2	0.99	0.8	2.
$\hookrightarrow 00$	2.00	2.00	00000	11.0	0.81							
3.0	3.0		0.02	0.02	0.1	2023	-2.302585	0.03	0.3	0.97	0.7	2.
$\hookrightarrow 99$	2.99	2.66	66667	11.0	0.72							
4.0	4.0		0.03	0.03	0.1	6558	-2.302585	0.06	0.4	0.94	0.6	3.
$\hookrightarrow 96$	3.96	3.33	33333	11.0	0.64							
exgta exeqa												
loss												
0.0	11.00	0000		. 0								
1.0	11.00	000		. 0								
2.0	11.09	909		. 0								
3.0	11.25	7732		. 0								
4.0	11.48	9362		0								

The Portfolio version is more exhaustive. It includes a variety of columns for each unit, suffixed _unit, and for the complement of each unit (sum of everything but that unit) suffixed _ μ __unit. The totals are suffixed _total. The most important columns are exeqa_unit, Conditional Expected Values. All the column names and a subset of density_df are shown next.

```
In [109]: print(p07.density_df.shape)
(65536, 46)
In [110]: print(p07.density_df.columns)
Index(['loss', 'p_A', 'p_B', 'p_Cat', 'p_total', 'F', 'S', 'exa_total', 'lev_total
\hookrightarrow', 'exlea_total', 'e_total',
    'exgta_total', 'exeqa_total', 'exeqa_A', 'lev_A', 'exlea_A', 'e_A', 'exgta_A
\hookrightarrow', 'exi_x_A', 'exi_xlea_A',
    'exi_xgta_A', 'exi_xeqa_A', 'exa_A', 'exeqa_B', 'lev_B', 'exlea_B', 'e_B',
\hookrightarrow'exgta_B', 'exi_x_B', 'exi_xlea_B',
    'exi_xgta_B', 'exi_xeqa_B', 'exa_B', 'exeqa_Cat', 'lev_Cat', 'exlea_Cat',
\hookrightarrow'e_Cat', 'exgta_Cat', 'exi_x_Cat',
            'exi_xlea_Cat', 'exi_xgta_Cat', 'exi_xeqa_Cat', 'exa_Cat', 'exi_xlea_sum',
\hookrightarrow'exi_xgta_sum', 'exi_xeqa_sum'],
    dtype='object')
In [111]: with pd.option_context('display.max_columns', p07.density_df.shape[1]):
    .....: print(p07.density_df.filter(regex=r'[aipex012]_A').head())
    ..... :
        p_A exeqa_A exlea_A e_A exgta_A exi_x_A exi_xlea_A exi_
\hookrightarrowxgta_A exi_xeqa_A exa_A
0.0 0.0 0.0 0.0 9999.982401 9999.982401 0.585913 0.0 0.
485913 0.0 0.000000
2.0 0.0 0.0 0.0 9999.982401 9999.982401 0.585913 NaN 0.
\hookrightarrow585913 0.0 1.171827
4.0 0.0 0.0 0.0 9999.982401 9999.982401 0.585913 NaN 0.
\hookrightarrow85913 0.0 2.343653
6.0 0.0
\hookrightarrow55913
8.0 0.0 0.0 0.0 9999.982401 9999.982401 0.585913 NaN 0.
\hookrightarrow85913
    0.0 4.687306
```


The statistics Series and Dataframe

The statistics dataframe shows analytically computed mean, variance, CV, and sknewness. It is indexed by

- severity name, limit and attachment,
- freq1, freq2, freq3 non-central frequency moments,
- sev1, sev2, sev3 non-central severity moments, and
- the mean, cv and skew(ness).

It applies to the gross outcome when there is reinsurance, so the results for a 05 g and a 05 no are the same.

```
In [112]: oco = ['display.width', 150, 'display.max_columns', 15,
    .....: 'display.float_format', lambda x: f'{x:.5g}']
    .....
In [113]: with pd.option_context(*oco):
    .....: print(a05g.statistics)
    .....: print('\n')
    .....: print(p07.statistics)
    ......
name TenM:05g
component measure
limit inf
attachment None
sevcv param 0
el
prem
    0
lr
freq ex1 2
ex2 4
mean
sev ex1 NaN
ex2 38.5
    ex3 302.5
    mean 5.5
    cv 0.52223
    skew 0
agg ex1 11
    ex2 137.5
    ex3 1875.5
    mean 11
    cv 0.36927
    skew 0
mix cv [2.0]
wt
\begin{tabular}{lrrrr} 
& & A & B & Cat
\end{tabular} total
```

(continued from previous page)

		100	45.213	616.02
mean	1.2498	0.99517	3.1331	2.7998
cv	5.6619	3.4345	23.278	172.51
skew	10000	6781.9	1232	18014
ex1	$1.0256 e+08$	$6.3163 e+07$	$9.7273 e+06$	$3.5244 e+08$
ex2	$1.0785 e+12$	$7.4665 e+11$	$3.8119 e+11$	$7.7915 e+12$
ex3	10000	6781.9	1232	18014
mean	0.16006	0.61096	2.3256	0.29343
cv	0.4082	1.2009	14.837	2.9528
skew	10000	2500	$1 e+05$	$1 e+05$

The report_df Dataframe

The report_df dataframe combines information from statistics with estimated moments to test if the numerical approximations appear valid. It is an expanded version of describe. Numerically estimated statistics are prefaced est or empirical.

```In [114]: with pd.option_context(*oco): .....: print(a05g.report_df) .....: print('\n') .....: print(p07.report_df)```					
view	0 inde	ependent	mixed	empirical	error
statistic					
name	TenM: 05 g	TenM:05g	TenM: 05 g		
limit	inf	inf	inf		
attachment		0	0		
el	11	11	11		
freq_m	2	2	2		
freq_cv	0	0	0		
freq_skew					
sev_m	5.5	5.5	5.5	5.5	50
sev_cv	0.52223	0.52223	0.52223	0.52223	0
sev_skew	0	0	0	0	
agg_m	11	11	11	11	-3.3307e-16
agg_cv	0.36927	0.36927	0.36927	0.36927	0
agg_skew	0	0	0	-6.1064e-14	-inf
unit	A		B	Cat	total
statistic					
freq_m	100		150	2	252
freq_cv	0.1	0.60	5530.	. 707110	. 36266
freq_skew	0.1	1.2	0010	. 70711	1.1783
sev_m	100	45.	213	616.02	71.484
sev_cv	1.2498	0.99	517	3.1331	2.7998
sev_skew	5.6619	3.4	345	23.278	172.51
agg_m	10000	678	1.9	1232	18014
agg_emp_m	10000	678	1.8	1232	18013
agg_m_err	-1.1973e-08	$-1.2825 e$	-05-2.769	92e-05-2.696	63e-05
agg_cv	0.16006	0.61	0962	2.32560	0.29343
agg_emp_cv	0.16007	0.61	0962	2.32490	. 29322
agg_cv_err	$6.5168 \mathrm{e}-06$	$1.9129 e$	-06-0.000	$027305-0.000$	070746
agg_skew	0.4082	1.2	009	14.837	2.9528
agg_emp_skew	T 0.40819	1.2	0091	14.818	2.925
agg_skew_err	-1.3542e-05	$1.6687 e$	-08-0.00	$012766-0.00$	094143
agg_emp_kurt	0.40604	2.1	621	381.65	33.187
P99.0_emp	14206		834	10246	33586
P99.6_emp	14956		626	16610	38304

The report_df provides extra information when there is a mixed severity.


The dataframe shows statistics for each mixture component, columns $0,1,2$, their sum if they are added independently and their sum if there is a shared mixing variable, as there is here. The common mixing induces correlation between the mix components, acting to increases the CV and skewness, often dramatically.

## The spec and spec_ex Dictionaries

The spec dictionary contains the input information needed to create each object. For example, if a is an Aggregate, then Aggregate ( $* *$ a.spec) creates a new copy. spec_ex appends meta-information to spec about hyper-parameters.

```
In [116]: from pprint import pprint
In [117]: pprint(a05n.spec)
{'agg_kind': 'net of',
 'agg_reins': [(1.0, 4.0, 8.0)],
 'exp_attachment': None,
 'exp_el': 0,
 'exp_en': -1,
 'exp_limit': inf,
 'exp_lr': 0,
 'exp_premium': 0,
 'freq_a': array([2.]),
 'freq_b': array([1.]),
 'freq_name': 'empirical',
 'freq_p0': nan,
 'freq_zm': False,
 'name': 'TenM:05n',
 'note': '',
 'occ_kind': 'net of',
 'occ_reins': [(1.0, 3.0, 7.0)],
 'sev_a': nan,
 'sev_b': 0,
 'sev_conditional': True,
 'sev_cv': 0,
 'sev_lb': 0,
 'sev_loc': 0,
 'sev_mean': 0,
 'sev_name': 'dhistogram',
 'sev_pick_attachments': None,
 'sev_pick_losses': None,
```

(continued from previous page)

```
'sev_ps': array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]),
'sev_scale': 0,
'sev_ub': inf,
'sev_wt': 1,
'sev_xs': array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])}
```


## The DecL Program

The program property returns the DecL program used to create the object. It is blank if the object was not created using DecL. The helper function pprint_ex () pretty prints a program.

```
In [118]: from aggregate import pprint_ex
In [119]: pprint_ex(a05n.program, split=20)
Out[119]: 'agg TenM:05n\n dfreq [2]\n dsev [1:10]\n occurrence net of 3 xs 7\n v
\hookrightarrowaggregate net of 4 xs 8'
In [120]: pprint_ex(p07.program, split=20)
Out[120]: 'port TenM:07\n agg A\n 100 claims 10000 xs 0\n sev lognorm 100_
CV 1.25\n poisson\n agg B\n 150 claims 2500 xs 5\n sev lognorm 50 cv 0.
\hookrightarrow\\n mixed gamma.6\n agg Cat\n 2 claims 1e5 xs 0\n sev 500 * pareto 1.
\hookrightarrow8-500\n poisson'
```


## The update () Method

After an Aggregate or a Portfolio object has been created it needs to be updated to populate its density_df dataframe. build () automatically updates the objects it creates with default hyper-parameter values. Sometimes it is necessary to re-update with different hyper-parameters. The update () method takes arguments $\log 2=13$, $\mathrm{b} s=0$, and recommend_p=0.999. The first two control the number and size of buckets. When $\mathrm{bs}==0$ it is estimated using the method recommend_bucket (). If bs $!=0$ then recommend_p is ignored.

Further control over updating is available, as described in REF.

## Statistical Functions

Aggregate and Portfolio objects include basic mean, CV, standard deviation, variance, and skewness statistics as attributes. Those prefixed agg are based on exact calculations:

- agg_m, agg_cv, agg_sd, agg_var, and agg_skew
and prefixed est are based on the estimated numerical statistics:
- est_m, est_cv, est_sd, est_var, and est_skew.

In addition, Aggregate has similar series prefixed sev and est_sev for the exact and estimated numerical severity. These attributes are just conveniences; they are all available in (or derivable from) report_df.

Aggregate and Portfolio objects act like scipy.stats (continuous) frozen random variable objects and include the following statistical functions.

- pmf () the probability mass function
- $\operatorname{pdf}()$ the probability density function-broadly interpreted-defined as the pmf divided by bs
- $\operatorname{cdf}()$ the cumulative distribution function
- Sf() the survival function
- q () the quantile function (left inverse cdf), also known as value at risk
- tvar () tail value at risk function
- var_dict () a dictionary of tail statistics by unit and in total

We aren't picky about whether the density is technically a density when the aggregate is actually mixed or discrete. The discrete output (density_df.p_*) is interpreted as the distribution, so none of the statistical functions is interpolated. For example:

```
In [121]: qd(a05g.pmf(2), a05g.pmf(2.2), a05g.pmf(3), a05g.cdf(2), a05g.cdf(2.2))
0.01
0
0.02
0.01
0.01
In [122]: print(1 - a05g.cdf(2), a05g.sf(2))
0.99 0.99
In [123]: print(a05g.q(a05g.cdf(2)))
2.0
```

The last line illustrates that q() and cdf() are inverses. The var_dict () function computes tail statistics for all units, return in a dictionary.

```
In [124]: p07.var_dict(0.99), p07.var_dict(0.99, kind='tvar')
Out[124]:
({'A': 14206.0, 'B': 19834.0, 'Cat': 10246.0, 'total': 33586.0},
 {'A': 15025.781065024481,
 'B': 22845.87765881529,
 'Cat': 20360.45124669143,
 'total': 41763.10848610794})
```


## The plot() Method

The plot () method provides basic visualization. There are three plots: the pdf/pmf for severity and the aggregate on the left. The middle plot shows log density for continuous distributions and the distribution function for discrete ones (selected when $\mathrm{bs}==1$ and the mean is $<100$ ). The right plot shows the quantile (or VaR or Lee) plot.
The reinsurance examples below show the discrete output format. The plots show the gross, net of occurrence, and net severity and aggregate pmf (left) and cdf (middle), and the quantile (Lee) plot (right). The property a 05 g . figure returns the last figure made by the object as a convenience. You could also use plt.gcf().

```
In [125]: a05g.plot()
In [126]: a05g.figure.suptitle('Gross - discrete format');
In [127]: a05no.plot()
In [128]: a05no.figure.suptitle('Net of occurrence');
In [129]: a05n.plot()
In [130]: a05n.figure.suptitle('Net of occurrence and aggregate');
```




Continuous distributions substitute the log density for the distribution in the middle.

```
In [131]: a03.plot()
In [132]: a03.figure.suptitle('Continuous format');
```



A Portfolio object plots the density and log density of each unit and the total.

```
In [133]: p07.plot()
In [134]: p07.figure.suptitle('Portfolio plot');
```



## The price() Method

The price () method computes the risk adjusted expected value (technical price net of expenses) of losses limited by capital at a specified VaR threshold. Suppose the $99.9 \%$ ile outcome is used to specify regulatory assets $a$.

```
In [135]: qd(a03.q(0.999))
1358
```

The risk adjustment is specified by a spectral risk measure corresponding to an input distortion. Distortions can be built using DecL, see The Distortion Class. price () applies to $X \wedge a$. It returns expected limited losses L, the risk adjusted premium $P$, the margin $M=P-L$, the capital $Q=a-P$, the loss ratio, leverage as premium to capital $P Q$, and return on capital ROE.

```
In [136]: qd(a03.price(0.999, d06).T)
line TenM:03
statistic
L 374.82
P 558.25
M 183.43
Q 799.75
a 1358
LR 0.67142
PQ 0.69802
ROE 0.22936
```

When price () is applied to a Portfolio, it returns the total premium and its (lifted) natural allocation to each unit, see PIR Chapter 14, along with all the other statistics in a dataframe. Losses are allocated by equal priority in default.

```
In [137]: qd(p07.price(0.999, d06).df.T)
distortion Dual Moment, 3.000
unit A B Cat total
statistic
L 9997.3 6779.8 1212.4 17990
P 10448 9874.5 1913.8 22236
M 450.25 3094.7 701.35 4246.2
Q 7656.6 10203 12817 30662
a 18104 20078 14731 52898
LR 0.9569 0.68659
```



The ROE varies by unit, reflecting different consumption and cost of capital by layer. The less risky unit A runs at a higher loss ratio (cheaper insurance) but higher ROE than unit B because it consumes more expensive, equity-like lower layer capital but less capital overall (higher leverage).

## The snap() Method

snap () rounds an input number to the index of density_df. It selects the nearest element.

## The approximate() Method

The approximate () method creates an analytic approximation fit using moment matching. Normal, lognormal, gamma, shifted lognormal, and shifted gamma distributions can be fit, the last two requiring three moments. To fit all five and return a dictionary call with argument "all".

```
In [138]: fzs = a03.approximate('all')
In [139]: d = pd.DataFrame({k: fz.stats('mvs') for k, fz in fzs.items()},
 : index=pd.Index(['mean', 'var', 'skew'], name='stat'),
 : dtype=float)
 :
In [140]: qd(d)
\begin{tabular}{lrrrrr}
& norm & gamma & lognorm & sgamma & slognorm \\
stat & & & & & \\
mean & 374.99 & 374.99 & 374.99 & 374.99 & 374.99 \\
var & 45238 & 45238 & 45238 & 45238 & 45238 \\
skew & 0 & 1.1344 & 1.8841 & 1.0698 & 1.0698
\end{tabular}
```


### 2.3.10 Additional Portfolio Methods

## Conditional Expected Values

A Portfolio object's density_df includes a slew of values to allocate capital (please don't) or margin (please do). These all rely on what Mildenhall and Major [2022] call the $\kappa$ function, defined for a sum $X=\sum_{i} X_{i}$ as the conditional expectation

$$
\kappa_{i}(x)=\mathrm{E}\left[X_{i} \mid X=x\right] .
$$

Notice that $\sum_{i} \kappa_{i}(x)=x$, hinting at its allocation application. See PIR Chapter 14.3 for an explanation of why $\kappa$ is so useful. In short, it shows which units contribute to bad overall outcomes. It is in density_df as the columns exeqa_unit, read as the "expected value given X eq(uals) a ".

Here are some $\kappa$ values and graph for p 07 . Looking the log density plot on the right shows that unit B dominates for moderately large events, but Cat dominates for the largest events.

```
In [141]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45)); \
 : ax0, ax1 = axs.flat; \
 : lm = [-1000, 65000]; \
 : bit = p07.density_df.filter(regex='exeqa_[ABCt]').rename(
 : columns=lambda x: x.replace('exeqa_', '')).sort_index(axis=1); \
 : bit.index.name = 'Loss'; \
 : bit.plot(xlim=lm, ylim=lm, ax=ax0); \
 : ax0.set(title=r'$E[X_i\mid X]$', aspect='equal'); \
 : ax0.axhline(bit['B'].max(), lw=.5, c='C7');
 :
In [142]: p07.density_df.filter(regex='p_[ABCt]').rename(
 columns=lambda x: x.replace('p_', '')).plot(ax=ax1, xlim=lm,\sqcup
\hookrightarrowlogy=True);
 :
In [143]: ax1.set(title='Log density');
```

```
In [144]: bit['Pct A'] = bit['A'] / bit.index
In [145]: qd(bit.loc[:lm[1]:1024])
```

	A	B	Cat	total	Pct A
Loss					
0.0	0	0	0	0	NaN
2048.0	0	0	0	2048	0
4096.0	3729.8	307.48	58.741	4096	0.91059
6144.0	5419.3	602.16	122.54	6144	0.88205
8192.0	6911.6	1062.4	217.99	8192	0.8437
10240.0	8133.9	1757.5	348.62	10240	0.79432
12288.0	9041.7	2735.6	510.69	12288	0.73582
14336.0	9655.4	3986.6	694.09	14336	0.6735
16384.0	10048	5445.7	890.17	16384	0.61329
18432.0	10299	7035.3	1098	18432	0.55874
20480.0	10464	8692.1	1324.3	20480	0.51092
22528.0	10576	10370	1582.2	22528	0.46946
..	..	...	. .9	..	..
40960.0	10622	17734	12604	40960	0.25932
43008.0	10551	16531	15926	43008	0.24532
45056.0	10477	15060	19519	45056	0.23253
47104.0	10408	13547	23149	47104	0.22096
49152.0	10349	12178	26625	49152	0.21055
51200.0	10301	11051	29847	51200	0.20119
53248.0	10264	10185	32799	53248	0.19276
55296.0	10236	9545.6	35515	55296	0.18511
57344.0	10214	9085.2	38045	57344	0.17812
59392.0	10197	8755.1	40440	59392	0.17169
61440.0	10184	8516	42740	61440	0.16575
63488.0	10172	8339.2	44976	63488	0.16023




The thin horizontal line at the maximum value of exeqa_B (left plot) shows that $\kappa_{B}$ is not increasing. Unit B contributes more to moderately bad outcomes than Cat, but in the tail Cat dominates.

Using filter (regex=. . .) to select columns from density_df is a helpful idiom. The total column is labeled _total. Using upper case for unit names makes them easier to select.

## Calibrate Distortions

The calibrate_distortions () method calibrates distortions to achieve requested pricing for the total loss. Pricing can be requested by loss ratio or return on capital (ROE). Asset levels can be specified in monetary terms, or as a probability of non-exceedance. To calibrate the usual suspects (constant cost of capital, proportional hazard, dual, Wang, and TVaR) to achieve a $15 \%$ return with a $99.6 \%$ capital level run:

```
In [146]: p07.calibrate_distortions(Ps=[0.996], ROEs=[0.15], strict='ordered');
In [147]: qd(p07.distortion_df)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & S & L & P & PQ & Q & COC & param & error \\
\hline & LR & method & & & & & & & & \\
\hline \multirow[t]{5}{*}{\[
38304.0
\]} & 0.871293 & ccoc & 0.0039991 & 17962 & 20615 & 1.1654 & 17689 & 0.15 & 0.15 & 0 \\
\hline & & ph & 0.0039991 & 17962 & 20615 & 1.1654 & 17689 & 0.15 & 0.61919 & \(1.095 e-09\) \\
\hline & & wang & 0.0039991 & 17962 & 20615 & 1.1654 & 17689 & 0.15 & 0.51526 & \(4.7105 e-06\) \\
\hline & & dual & 0.0039991 & 17962 & 20615 & 1.1654 & 17689 & 0.15 & 2.0031 & -2.8012e-09 \\
\hline & & tvar & 0.0039991 & 17962 & 20615 & 1.1654 & 17689 & 0.15 & 0.37271 & \(9.7863 e-06\) \\
\hline
\end{tabular}
In [148]: pprint(p07.dists)
{'ccoc': ccoc (0.14999999999999997, 0),
 'dual': dual (2.003099750057873),
 'ph': ph (0.6191915749880643),
 'tvar': tvar (0.37271484907821667),
 'wang': wang (0.5152633577003828)}
```

The answer is returned in the dist_ans dataframe. The requested distortions are all single parameter, returned in the param column. The last column gives the error in achieved premium. The attribute p07. dists is a dictionary with keys distortion types and values Distortion objects. See PIR REF for more discussion.

## Analyze Distortions

The analyze_distortions() method applies the distortions in p07. dists at a given capital level and summarizes the implied (lifted) natural allocations across units. Optionally, it applies a number of traditional (bullshit) pricing methods. The answer dataframe includes premium, margin, expected loss, return, loss ratio and leverage statistics for each unit and method. Here is a snippet, again at the $99.6 \%$ capital level.

```
In [149]: ans = p07.analyze_distortions(p=0.996)
In [150]: print(ans.comp_df.xs('LR', axis=0, level=1).
 : to_string(float_format=lambda x: f'{x:.1%}'))
line A B Cat total
Method
Dist ccoc 109.8% 103.8% 24.0% 87.1%
Dist dual 96.9% 77.8% 75.4% 87.1%
Dist ph 99.0% 80.6% 56.4% 87.1%
Dist tvar 96.3% 77.8% 77.8% 87.1%
Dist wang 97.7% 78.6% 67.7% 87.1%
EL 87.1% 87.1% 87.1% 87.1%
EPD 96.0% 78.3% 10.3% 58.6%
EqRiskEPD 99.7% 90.7% 38.4% 87.1%
EqRiskTVaR 95.7% 83.5% 58.0% 87.1%
EqRiskVaR 95.5% 82.7% 61.0% 87.1%
MerPer 97.9% 88.9% 66.0% 91.5%
ScaledEPD 107.9% 99.5% 26.3% 87.1%
ScaledTVaR 99.0% 85.3% 46.3% 87.1%
ScaledVaR 99.3% 84.9% 46.5% 87.1%
TVaR 94.3% 78.0% 38.0% 80.1%
VaR 93.9% 76.6% 37.3% 79.2%
```

```
CoTVaR 99.1% 83.5% 49.3% 87.1%
covar 97.6% 80.6% 60.5% 87.1%
```


## Twelve Plot

The twelve_plot () method produces a detailed analysis of the behavior of a two unit portfolio. To run it, build the portfolio and calibrate some distortions. Then apply one of the distortions (to compute an augmented version of density_df with pricing information). We give two examples.

First, the case of a thin-tailed and a thick-tailed unit. Here, the thick tailed line benefits from pooling at low capital levels, resulting in negative margins to the thin-tail line in compensation. At moderate to high capital levels the total margin for both lines is positive. Assets are 12.5. The argument efficient=False in apply_distortion() includes extra columns in density_df that are needed to compute the plot.

```
In [151]: p09 = build('port TenM:09 '
 : 'agg X1 1 claim sev gamma 1 cv 0.25 fixed''
 : 'agg X2 1 claim sev 0.7 * lognorm 1 cv 1.25 + 0.3 fixed'
 : , bs=1/1024)
 :
In [152]: qd(p09)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
X1 Freq 1
 Sev 1 1 -5.5511e-16 0.25 0. 1- 0.25 0.5
 Agg 1 1 1 -5.5511e-16 0.25 0. 0. 1-25 0.5
```



```
 Sev 1 0.99999 -1.0796e-05 0.875 0.87452 5.7031 5.603
 Agg 1 0.99999-1.0796e-05 0.875 0.87452 5.7031 5.603
total Freq
 0
 Sev 1 0.99999 -5.398e-06 0.64348 7.1845
 Agg 2 2 -5.8107e-06 0.45501 0.45476 5.0802 4.9869
log2 = 16, bandwidth = 1/1024, validation: fails sev skew, agg skew.
In [153]: print(f'Asset P value {p09.cdf(12.5):.5g}')
Asset P value 0.99958
In [154]: p09.calibrate_distortions(ROEs=[0.1], As=[12.5], strict='ordered');
In [155]: qd(p09.distortion_df)
aerror m
12.5 0.676722 ссос 0.00041558 1.9985 2.9531 0.30933 9.5469 0.1 0.1
@
0.00041558 1.9985 2.9531 0.30933 9.5469
wang 0.00041558 1.9985 2.9531 0.30933 9.5469 0.1 0.88394 1.6577e-
\hookrightarrow06
 dual 0.00041558 1.9985 2.9531 0.30933 9.5469 0.1 4.4902 -2.0466e-
\hookrightarrow10
 tvar 0.00041558 1.9985 2.9531 0.30933 9.5469 0.1 0.71207 6.2397e-
\hookrightarrow06
In [156]: p09.apply_distortion('dual', efficient=False);
```

(continued from previous page)
In [157]: fig, axs = plt.subplots(4, 3, figsize=(3 * 3.5, 4 * 2.45), constrained_
$\rightarrow$ layout=True)
In [158]: p09.twelve_plot(fig, axs, $p=0.999, \mathrm{p} 2=0.999$ )













There is a lot of information here. We refer to the charts as $(r, c)$ for row $r=1,2,3,4$ and column $c=1,2,3$, starting at the top left. The horizontal axis shows the asset level in all charts except $(3,3)$ and $(4,3)$, where it shows probability, and $(1,3)$ where it shows loss. Blue represents the thin tailed unit, orange thick tailed and green total. When both dashed and solid lines appear on the same plot, the solid represent risk-adjusted and dashed represent non-risk-adjusted functions. Here is the key.

- $(1,1)$ shows density for $X_{1}, X_{2}$ and $X=X_{1}+X_{2}$; the two units are independent. Both units have mean 1 .
- $(1,2): \log$ density; comparing tail thickness.
- $(1,3)$ : the bivariate log-density. This plot illustrates where $\left(X_{1}, X_{2}\right)$ lives. The diagonal lines show $X=k$ for different $k$. These show that large values of $X$ correspond to large values of $X_{2}$, with $X_{1}$ about average.
- $(2,1)$ : the form of $\kappa_{i}$ is clear from looking at $(1,3)$. $\kappa_{1}$ peaks above 1.0 around $x=2$ and hereafter it declines to $1.0 . \kappa_{2}$ is monotonically increasing.
- $(2,2)$ : The $\alpha_{i}$ functions. For small $x$ the expected proportion of losses is approximately $50 / 50$, since the means are equal. As $x$ increases $X_{2}$ dominates. The two functions sum to 1 .
- $(2,3)$ : The thicker lines are $\beta_{i}$ and the thinner lines $\alpha_{i}$ from $(2,2)$. Since $\alpha_{1}$ decreases $\beta_{1}(x) \leq \alpha_{1}(x)$. This can lead to $X_{1}$ having a negative margin in low asset layers. $X_{2}$ is the opposite.
- $(3,1)$ : illustrates premium and margin determination by asset layer for $X_{1}$. For low asset layers $\alpha_{1}(x) S(x)>$ $\beta_{1}(x) g(S(x))$ (dashed above solid) corresponding to a negative margin. Beyond about $x=1.38$ the lines cross and the margin is positive.
- $(4,1)$ : shows the same thing for $X_{2}$. Since $\alpha_{2}$ is increasing, $\beta_{2}(x)>\alpha_{2}(x)$ for all $x$ and so all layers get a positive margin. The solid line $\beta_{2} g S$ is above the dashed $\alpha_{2} S$ line.
- $(3,2)$ : the layer margin densities. For low asset layers premium is fully funded by loss with zero overall margin. $X_{2}$ requires a positive margin and $X_{1}$ a negative one, reflecting the benefit the thick unit receives from pooling in low layers. The overall margin is always non-negative. Beyond about $x=1.5, X_{1}$ 's margin is also positive.
- $(4,2)$ : the cumulative margin in premium by asset level. Total margin is zero in low dollar-swapping layers and then increases. It is always non-negative. The curves in this plot are the integrals of those in $(3,2)$ from 0 to $x$.
- $(3,3)$ : shows stand-alone loss $(1-S(x), x)=(p, q(p))$ (dashed) and premium $(1-g(S(x)), x)=(p, q(1-$ $\left.g^{-1}(1-p)\right)$ (solid, shifted left) for each unit and total. The margin is the shaded area between the two. Each set of three lines (solid or dashed) does not add up vertically because of diversification. The same distortion $g$ is applied to each unit to the stand-alone $S_{X_{i}}$. It is calibrated to produce a 10 percent return overall. On a standalone basis, calculating capital by unit to the same return period as total, $X_{1}$ is priced to a 77.7 percent loss ratio and $X_{2} 52.5$ percent, producing an average 62.7 percent, vs. 67.6 percent on a combined basis. Returns are 37.5 percent and 9.4 percent respectively, averaging 11.5 percent, vs 10 percent on a combined basis, see stand-alone analysis below.
- $(4,3)$ : shows the natural allocation of loss and premium to each unit. The total (green) is the same as $(3,3)$. For each $i$, dashed shows $\left(p, \mathrm{E}\left[X_{i} \mid X=q(p)\right]\right)$, i.e. the expected loss recovery conditioned on total losses $X=q(p)$, and solid shows $\left(p, \mathrm{E}\left[X_{i} \mid X=q\left(1-g^{-1}(1-p)\right)\right]\right)$, i.e. the natural premium allocation. Here the solid and dashed lines add up vertically: they are allocations of the total. Looking vertically above $p$, the shaded areas show how the total margin at that loss level is allocated between lines. $X_{1}$ mostly consumes assets at low layers, and the blue area is thicker for small $p$, corresponding to smaller total losses. For $p$ close to 1 , large total losses, margin is dominated by $X_{2}$ and in fact $X_{1}$ gets a slight credit (dashed above solid). The change in shape of the shaded margin area for $X_{1}$ is particularly evident: it shows $X_{1}$ benefits from pooling and requires a lower overall margin.

There may appear to be a contradiction between figures $(3,2)$ and $(4,3)$ but it should be noted that a particular $p$ value in $(4,3)$ refers to different events on the dotted and solid lines.

Plots $(3,3)$ and $(4,3)$ explain why the thick unit requires relatively more margin: its shape does not change when it is pooled with $X_{1}$. In $(3,3)$ the green shaded area is essentially an upwards shift of the orange, and the orange areas in $(3,3)$ and $(3,4)$ are essentially the same. This means that adding $X_{1}$ has virtually no impact on the shape of $X_{2}$; it is like adding a constant. This can also be seen in $(4,3)$ where the blue region is almost a straight line.

Applying the same distortion on a stand-alone basis produces:

In [160]: print (a.iloc[:8])					
line		X1	X2	sop	total
method	stat				
sa Dual Moment, 4.490	L	0.999956	0.998459	1.998414	1.998459
	LR	0.777176	0.525226	0.626922	0.676722
	M	0.286697	0.902547	1.189244	0.954686
	P	1.286652	1.901006	3.187658	2.953145
	PQ	1.681666	0.198284	0.307915	0.309332
	Q	0.765106	9.587275	10.352381	9.546855
	ROE	0.374715	0.094140	0.114876	0.100000
	a	2.051758	11.488281	13.540039	12.500000

The lifted natural allocation (diversified pricing) is given next. These numbers are so different than the stand-alone because X2 has to compensate X1 for the transfer of wealth in default states. When there is a large loss, it is caused by X 2 and so X 2 receives a disproportionate share of the assets in default.

```
In [161]: a2 = p09.analyze_distortion('dual', ROE=0.1, p=p09.cdf(12.5))
In [162]: print(a2.pricing.unstack(1).droplevel(0, axis=0).T)
line X1 X2 total
 stat
12.5 L 0.999920 0.998539 1.998459
 LR 0.908669 0.538958 0.676722
 M 0.100502 0.854183 0.954686
 P 1.100422 1.852722 2.953145
 PQ 0.888570 0.222992 0.309332
 Q 1.238419 8.308458 9.546855
 ROE 0.081154 0.102809 0.100000
```

The second portfolio has been selected with two thick tailed units. A appears riskier at lower return periods and B at higher. Pricing is calibrated to a $15 \%$ ROE at a $99.6 \%$ capital level.

```
In [163]: p10 = build('port TenM:10 '
 : 'agg A '
 : '30 claims '
 : '1000 xs 0 '
 : 'sev gamma 25 cv 1.5
 : 'mixed delaporte 0.75 0.6'
 : 'agg B '
 : '5 claims '
 : '20000 xs 20 '
 : 'sev lognorm 25 cv 3.0'
 : 'poisson'
 : , bs=1)
 :
In [164]: qd(p10)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
A Freq 30
 Sev 25 24.989 -0.00045632 1.5 1.5 1.501 2.9984
 Agg 750 749.66 -0.00045632 0.81904 0.81911 3.2482
B Freq
Agg 277.91 277.9 -3.0222e-05 1.141
total Freq 35 0.66471 3.5156
 Sev 29.369 29.359 -0.00034112 2.0855 27.142
 Agg 1027.9 1027.6 -0.00034112 0.67253 0.67256 2.9521 2.9519
log2 = 16, bandwidth = 1, validation: fails sev mean, agg mean.
In [165]: p10.calibrate_distortions(ROEs=[0.15], Ps=[0.996], strict='ordered');
In [166]: qd(p10.distortion_df)
 S L P PQ Q COC param
Gerror
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline a & LR & method & & & & & & & & \\
\hline \(\hookrightarrow\) & & & & & & & & & & \\
\hline 4596.0 & 0.68709 & CCOC & 0.0039969 & 1023.3 & 1489.3 & 0.47937 & 3106.7 & 0.15 & 0.15 & \\
\hline \(\hookrightarrow 0\) & & & & & & & & & & \\
\hline & & ph & 0.0039969 & 1023.3 & 1489.3 & 0.47937 & 3106.7 & 0.15 & 0.57953 & \(3.9482 \mathrm{e}-\) \\
\hline \(\hookrightarrow 06\) & & & & & & & & & & \\
\hline & & wang & 0.0039969 & 1023.3 & 1489.3 & 0.47937 & 3106.7 & 0.15 & 0.64115 & \(3.716 e-\) \\
\hline \(\hookrightarrow 06\) & & & & & & & & & & \\
\hline & & dual & 0.0039969 & 1023.3 & 1489.3 & 0.47937 & 3106.7 & 0.15 & 2.6459 & \\
\hline \(\hookrightarrow 0\) & & & & & & & & & & \\
\hline & & tvar & 0.0039969 & 1023.3 & 1489.3 & 0.47937 & 3106.7 & 0.15 & 0.52695 & 8.0193e- \\
\hline
\end{tabular}

Apply the dual distortion and then create the twelve plot.
```

In [167]: p10.apply_distortion('dual', efficient=False);
In [168]: fig, axs = plt.subplots(4, 3, figsize=(3 * 3.5, 4 * 2.45), constrained_
\hookrightarrowlayout=True)
In [169]: p10.twelve_plot(fig, axs, p=0.999995, p2=0.999999)

```


Applying the same distortion on a stand-alone basis produces:
```

In [170]: assets = p10.q(0.996)
In [171]: a = p10.stand_alone_pricing(p10.dists['dual'], p=p10.cdf(assets))
In [172]: print(a.iloc[:8])

line		A	B	sop	total
method		stat			
sa Dual Moment, 2.646	L	745.845783	274.056275	1019.902058	1023.266475
		LR	0.652332	0.590524	0.634487

```
(continued from previous page)
\begin{tabular}{lrrrrr}
M & 397.506631 & 190.033998 & 587.540629 & 466.008721 \\
P & 1143.352413 & 464.090274 & 1607.442687 & 1489.275195 \\
PQ & 0.383850 & 0.309206 & 0.358840 & 0.479371 \\
Q & 2978.647587 & 1500.909726 & 4479.557313 & 3106.724805 \\
ROE & 0.133452 & 0.126613 & 0.131160 & 0.150000 \\
a & 4122.000000 & 1965.000000 & 6087.000000 & 4596.000000
\end{tabular}

The lifted natural allocation (diversified pricing) is given next.
```

In [173]: a2 = p10.analyze_distortion('dual', ROE=0.1, p=p10.cdf(assets))
In [174]: print(a2.pricing.unstack(1).droplevel(0, axis=0).T)
line A B total
stat
4596.0 L 746.454112 276.812363 1023.266475
LR 0.752826 0.776418 0.759066
M 245.081324 79.712633 324.793957
P 991.535436 356.524996 1348.060432
PQ 0.379589 0.560741 0.415051
Q 2612.128741 635.810828 3247.939568
ROE 0.093824 0.125372 0.100000

```

\subsection*{2.3.11 Extensions}

The extens ions sub-package contains additional classes and functions that are either peripheral to the main project or still under development (and subject to change). Currently, extensions includes:
- case_studies for creating and managing PIR case studies (see Case Studies).
- pir_figures for creating various exhibits and figures in PIR.
- figures for creating various other exhibits and figures.
- samples includes functions for working with samples and executing a switcheroo. Eventually, these will be integrated into Portfolio.

\subsection*{2.3.12 Summary of Objects Created by DecL}

Each of the objects created by build() is automatically stored in the knowledge. We can list them out now.
```

In [175]: from aggregate import pprint_ex
In [176]: for n, r in build.qlist('^TenM:').iterrows():
.....: pprint_ex(r.program, split=20)
..... :

```

\subsection*{2.4 The Dec Language}

Objectives: Introduce the Dec Language (DecL) used to specify aggregate distributions in familiar insurance terminology.

Audience: User who wants to use DecL to build realistic aggregates.
Prerequisites: Familiar with using build. Probability theory behind aggregate distributions. Insurance and reinsurance terminology.

See also: Reinsurance Pricing, and Dec Language Reference.

Notation: <item> denotes an optional term. See the note 10 mins formatting for important information about how DecL programs are formatted and laid out in the help.

\section*{Contents:}

\subsection*{2.4.1 DecL Design and Purpose}

The Dec Language, or simply DecL, is designed to make it easy to go from "Dec page to distribution" - hence the name. An insurance policy's Declarations page spells out key coverage terms and conditions such as the limit and deductible, effective date, named insured, and covered property. A reinsurance slip performs the same functions.

Coverage expressed concisely in words on a Dec page is often incomplete and hard to program. Consider the declaration
"Aggregate losses from trucking policy with a premium of 2000, a limit of 1000, and no deductible."
To estimate the distribution of outcomes for this policy, the actuary must:
1. Estimate the priced loss ratio on the policy to determine the loss pick (expected loss) as premium times loss ratio. Say they select \(67.5 \%\).
2. Select a suitable trucking ground-up severity curve, say lognormal with mean 100 and CV 1.75.
3. Compute the expected conditional layer severity for the layer 1000 xs 0 .
4. Divide severity into the loss pick to determine the expected claim count.
5. Select a suitable frequency distribution, say Poisson.
6. Calculate a numerical approximation to the resulting compound-Poisson aggregate distribution

A DecL program takes care of many of these details. The DecL program corresponding to the trucking policy is simply:
```

agg Trucking
2000 premium at 0.675 lr
1000 xs 0
sev lognorm 100 cv 1.75
poisson

```

It specifies the loss ratio and distributions selected in steps 1,2 and 5 ; these require actuarial judgment and cannot be automated. Based on this input, the aggregate package computes the rest of steps \(1,3,4\), and 6 . The details of the program are explained in the rest of this chapter.

Note: All DecL programs are one-line long. The program above uses a Python \(\backslash\) line break so that the code above can be cut and pasted as an argument to build using a triple quoted string. See 10 mins formatting.

\section*{Specifying a Realistic Aggregate Distribution}

The trucking example hints at the complexity of specifying a realistic insurance aggregate distribution. Abstracting the details, a complete specification has seven parts:
1. A name
2. The exposure, optionally including occurrence limits and deductibles
3. The ground-up severity distribution
4. Occurrence reinsurance (optional)
5. The frequency distribution
6. Aggregate reinsurance (optional)

\section*{7. Additional notes (optional)}

DecL follows the same pattern:
```

agg name
exposure <limit>
severity
<occurrence re>
<frequency>
<aggregate re>
<note>

```
where \(<\ldots\) denotes an optional clause. All programs are one-line long and horizontal white space is ignored.
DecL programs are built (interpreted) using the build function. Python automatically concatenates strings between parenthesis (no need for \(\backslash\)), making it is easiest and clearest to enter a program as:
```

build('agg Trucking
'2000 premium at 0.675 lr '
'1000 xs 0 '
'sev lognorm 100 cv 1.75 '
'poisson')

```

The entries in this example are as follows.
- agg is the DecL keyword used to create an aggregate distribution. Keywords are part of the language, like if/then/else in VBA, R or Python, or select in SQL.
- Trucking is a string name. It can contain letters and numbers and periods and must start with a letter. It is case sensitive. It cannot contain an underscore. It cannot be a DecL keyword. E.g., Motor, NE. Region, Unit. A but not 12Line or NE_Region.
- The exposure clause is 2000 premium at \(0.675 \operatorname{lr} 1000\) xs 0 . (Percent notation is acceptable: the loss ratio can be entered as \(67.5 \%\) lr.) It determines the volume of insurance, see The Exposure Clause. It includes 1000 xs 0, an optional layers subclause to set policy occurrence limits and deductibles.
- The severity clause sev lognorm 100 cv 1.75 determines the ground-up severity, see severity. sev is a keyword
- The frequency clause, poisson, specifies the frequency distribution, see frequency.

The occurrence re, aggregate re and note clauses are omitted. See 2_agg_class_reinsurance_clause and The Note Clause.
aggregate automatically computes the expected claim count from the premium, expected loss ratio, and average severity.

Python f-strings allow variables to be passed into DecL programs, f'sev lognorm \{x\} Cv \{cv\}.

\section*{Alternative Specifications}

There are two other specifications for different situations that reference a distribution from the knowledge database. The first simply refers to the object by name, prefixing it with agg . . Thus:
```

agg.Trucking

```
refers to the Trucking example above.
The second allows the flexibility to provide a new name for the object:
```

agg NewTruckingAccount agg.Trucking

```

These forms are mostly used in portfolios. See the Dec Language Reference.
The rest of this Chapter describes the basic features of each clause.

\subsection*{2.4.2 The Exposure Clause}

The exposure clause has two parts: exposures and an optional layers sub-clause described in The Limits Sub-Clause. It specifies the volume of insurance. There are five forms:
1. Expected loss
2. Premium and loss ratio
3. Exposure and rate
4. Claim count
5. Using the dfreq keyword to enter the frequency distribution directly

\section*{Examples:}
```

1000 loss
1000 premium at 0.7 lr
5 exposure at 2000 rate
123 claims
dfreq [1 2 3] [3/4 3/16 1/16]

```
- 1000 loss directly specifies expected loss. The claim count is derived from average severity. It is typical for an actuary to estimate the loss pick and select a severity curve, and then derive frequency.
- 1000 premium at 0.7 Ir directly specifies premium and a loss ratio. Expected losses equal the product. The claim count is again derived from severity. Actuaries often take plan premiums and apply loss ratio picks to determine losses, rather than starting with a loss pick. This idiom supports that approach.
- 5 exposure at 2000 rate directly specifies exposure and a loss rate. It is analogous to the loss ratio form. Actuaries often know exposure and unit rates (per vehicle, per 100 insured value, per location). This idiom supports that approach.
- 123 claims directly specifies the expected claim count; the last letter \(s\) on claims is optional, allowing 1 claim. Expected losses equal claim count times average severity.
- dfreq [lll \(\left.1 \begin{array}{lll}1 & 2 & 3\end{array}\right]\left[\begin{array}{lll}3 / 4 & 3 / 16 & 1 / 16\end{array}\right]\) specifies frequency outcomes and probabilities directly. It is described in Non-Parametric Frequency Distributions.

All values in the first three specifications can be vectorized, see Vectorization: Limit Profiles and Mixed Severity.

\section*{Determining Expected Claim Count}

Variables are used in the following order to determine overall expected losses.
- If count is given it is used and loss is derived from severity.
- Else if loss is given, then count is derived from the severity.
- Else if either pp premium at xx lroree exposure at rr rate is given, then the loss is derived by multiplication and counts from severity.
- In all cases, if premium is given the loss ratio is computed

These choices present no ambiguity when using DecL. But the input arguments could conflict if you create the object directly.

By default, claim count is conditional on a loss to the layer, but severity can have a mass at zero. The severity can be specified to be unconditional, see Unconditional Severity.

\section*{Details.}

In terms of exp_en, exp_el, exp_premium, and exp_lr the second and third steps are:
```

exp_el = np.where(exp_el > 0, exp_el, exp_premium * exp_lr)

```
i.e., expected losses are used if given and premium times loss ratio used if not. All these values default to 0 . At this point the object must know either loss or claim count:
```

assert np.all( exp_el > 0 or exp_en > 0 )

```

Then
- If exp_en is input, it determines the expected claim count; expected losses determined from expected severity
- Else if exp_el > 0 then it is used as expected loss and claim count determined from severity

Finally,
- If exp_prem > 0 then the the loss ratio is computed
- Else if exp_lr > 0 the premium is computed

Thus, if only exp_en or exp_loss is entered, the object knows loss, but not premium or loss ratio.

\subsection*{2.4.3 The Limits Sub-Clause}

The optional limits sub-clause specifies policy occurrence limits and deductibles.

\section*{Examples:}
```

100 xs 0
inf xs 100
750 xs 250
1 xs 1

```
- 100 xs 0 applies an occurrence limit of 100 .
- inf xs 100 applies a deductible of 100 and no limit.
- 750 xs 250 is an excess layer, with limit 750 and deductible 250.
- 1 xs 1 is also an excess layer of 1 xs 1 .
inf denotes infinity, for an unlimited layer. Both xs and x are acceptable.
Multiple layers can be entered at once using vectors.

\subsection*{2.4.4 The Severity Clause}

The severity clause specifies the ground-up severity distribution, or "severity curve" as it is sometimes known. It is a very flexible clause. Its design follows the scipy.stats package's specification of random variables using shape, location, and scale factors, see probability background. The syntax is different for non-parametric discrete distributions and parametric continuous distributions.

\section*{Non-Parametric Severity Distributions}

Discrete distributions (supported on a finite number of outcomes) can be directly entered as a severity using the dsev keyword followed by two equal-length row vectors. The first gives the outcomes and the (optional) second gives the probabilities.
```

dsev [outcomes] < [probabilities]>

```

The horizontal layout is irrelevant and commas are optional. If the probabilities vector is omitted then all probabilities are set equal to the reciprocal of the length of the out comes vector. A Python-like colon notation is available for ranges. Probabilities can be entered as fractions, but no other arithmetic operation is supported.

\section*{Examples:}
```

dsev [[0 9 10] [0.5 0.3 0.2]
dsev [0 9 10]
dsev [1:6]
dsev [0:100:25]
dsev [1:6] [1/4 1/4 1/8 1/8 1/8 1/8]

```
- dsev [\(\left.\begin{array}{lll}0 & 9 & 10\end{array}\right]\left[\begin{array}{lll}0.5 & 0.3 & 0.2\end{array}\right]\) is a severity with a 0.5 chance of taking the value \(0,0.3\) chance of 9 , and 0.2 of 10 .
- dsev [\(\left.\begin{array}{lll}0 & 9 & 10\end{array}\right]\) gives equally likely outcomes of 0,9 , or 10 .
- dsev [1:6] gives equally likely outcomes \(1,2,3,4,5,6\). Unlike Python (but like pandas. DataFrame. loc) the right-hand limit is included.
- dsev [0:100:25] gives qually likely outcomes \(0,25,50,100\).
- dsev [1:6] [1/4 \(1 / 4 \quad 1 / 8 \quad 1 / 8 \quad 1 / 8 \quad 1 / 8]\) gives outcomes 1 or 2 with probability 0.25 or 3-6 with probability 0.125 .

Warning: Use binary fractions (denominator a power of two) to avoid rounding errors!

\section*{Details}

A dsev clause is converted by the parser into a dhistogram step distribution:
```

sev dhistogram xps [outcomes] [probabilities]

```

In rare cases you want a continuous (ogive, piecewise linear distribution) version:
```

sev chistogram xps [outcomes] [probabilities]

```

When executed, these are both converted into a scipy. stats histogram class.
Discrete severities, specified using the dsev keyword, are implemented using a scipy. stats rv_historgram object, which is actually continuous. They work by concentrating the probability in small intervals just to the left of each knot point (to make the function right continuous). Given:
```

dsev [xs] [ps]

```
where xs and ps are the vectors of outcomes and probabilities, internally aggregate creates:
```

xss = np.sort(np.hstack((xs - 2 ** -30, xs)))
pss = np.vstack((ps1, np.zeros_like(ps1))).reshape((-1,), order='F')[:-1]
fz_discr = ss.rv_histogram((pss, xSs))

```

The value \(2 * *-30\) needs to be smaller than the bucket size resolution, i.e., enough not to "split the bucket". The mass is to the left of the knot to make a right continuous function (the approximation ramps up before the knot). Generally histograms are downsampled, not upsampled, so this is not a restriction.

A dsev statement is translated into the more general:
```

sev dhistorgram xps [xs] [ps]

```
where dhistrogram creates a discrete histogram (as above) and the xps keyword prefixes inputting the knots and probabilities. It is also possible to specify the input severity as a continuous histogram that is uniform on \(\left(x_{k}, x_{k+1}\right]\). The discrete probabilities are \(p_{k}=P\left(x_{k}<X \leq x_{k+1}\right)\). To create a rv_histogram variable is much easier, just use:
```

sev chistorgram xps [xs] [ps]

```
which is translated into:
```

xs2 = np.hstack((xs, xs[-1] + xs[1]))
fz_cts = ss.rv_histogram((ps2, xs2))

```

The code adds an additional knot at the end to create enough differences (there are only two differences between three points). The Sidebar: Continuous Discretization uses a chistogram.

The discrete method is appropriate when the distribution will be used and interpreted as fully discrete, which is the assumption the FFT method makes and the default. The continuous method is useful if the distribution will be used to create a scipy.stats rv_histogram variable. If the continuous method is interpreted as discrete and if the mean is computed as \(\sum_{i} p_{k} x_{k}\), which is appropriate for a discrete variable, then it will be under-estimated by \(b / 2\).

\section*{Parametric Severity}

A parametric distribution can be specified in two ways:
```

sev DIST_NAME MEAN cv CV
sev DIST_NAME <SHAPE1> <SHAPE2>

```
where
- sev is a keyword indicating the severity specification,
- DIST_NAME is the scipy.stats distribution name, see scipy.stats Continuous Random Variables,
- MEAN is the expected loss,
- cv (lowercase) is a keyword indicating entry of the CV,
- CV is the loss coefficient of variation, and
- SHAPE1, SHAPE2 are the (optional) shape variables.

The first form enters the expected ground-up severity and CV directly. It is available for distributions with only one shape parameter and the beta distribution on \([0,1]\). aggregate uses a formula (lognormal, gamma, beta) or numerical method (all other one shape parameter distributions) to solve for the shape parameter to achieve the correct CV and then scales to the desired mean. The second form directly enters the shape variable(s). Shape parameters entered for zero parameter distributions are ignored.
Example. Entering sev lognorm 10 Cv 0.2 produces a lognormal distribution with a mean of 10 and a CV of 0.2 . Entering lognorm 0.2 produces a lognormal with \(\mu=0\) and \(\sigma=0.2\), which can then be scaled and shifted.

DIST_NAME can be any zero, one, or two shape parameter scipy. stats continuous distribution. They have (mostly) easy to guess names. For example:
- Distributions with no shape parameters include: norm, Gaussian normal; unif, uniform; and expon, the exponential.
- Distributions with one shape parameter include: pareto, lognorm, gamma, invgamma, loggamma, and weibull_min the Weibull.
- Distributions with two shape parameters include: beta and gengamma, the generalized gamma.

See scipy.stats Continuous Random Variables for a full list and list of distributions for details of each.

\section*{Details.}
dhistogram and chistogram create discrete (point mass) and continuous (ogive) empirical distributions. chistogram is rarely used and dhistogram is easier to input using dsev, Non-Parametric Severity Distributions.

\section*{Shifting and Scaling Severity}

A parametric severity clause can be transformed by scaling and location factors, following the scipy.stats scale and loc syntax. Location is a shift or translation. The syntax is:
```

sev SCALE * DISTNAME SHAPE + LOC
sev SCALE * DISTNAME SHAPE - LOC

```

For zero parameter distributions SHAPE is omitted. Two parameter distributions are entered sev SCALE * DISTNAME SHAPE1 SHAPE2 + LOC.

\section*{Examples.}
- sev lognorm 10 cv 3: lognormal, mean 10, CV 0.
- sev 10 * lognorm 1.75: lognormal, \(10 X, X \sim \operatorname{lognormal}(\mu=0, \sigma=1.75)\)
- sev 10 * lognorm \(1.75+20\) l lognormal, \(10 X+20\)
- sev 10 * lognorm \(1 \mathrm{cv} 3+50\) : lognormal: \(10 Y+50, Y \sim \operatorname{lognormal}\) mean 1, CV 3
- sev 100 * pareto 1.3 - 100: Pareto, shape \(\alpha=3\), scale \(\lambda=100\).
- sev 100 * pareto 1.3: Single parameter Pareto for \(x \geq 100\), Shape \((\alpha) 3\), scale (\(\lambda\)) 100
- sev 50 * norm + 100: normal, mean (location) 100, standard deviation (scale) 50. No shape parameter.
- sev 5 * expon: exponential, mean (scale) 5 . No shape parameter.
- sev 5 * uniform + 1: uniform between 1 and 6 , scale 5 , location 1 . No shape parameters.
- sev 50 * beta 2 3: beta: \(50 Z, Z \sim \beta(2,3)\), shape parameters 2 , 3, scale 50.

With this parameterization, the Pareto has survival function \(S(x)=(100 /(100+x))^{1.3}\).
The scale and location parameters can be vectors.

Warning: dsev severities cannot be shifted or scaled. If that is required use a Python f-string to adjust the outcomes:
```

f'dsev [{{5 * outcomes + 10}}] [probabilities]'

```

Warning: Shifting left (negative shift) must be written with space sev 10 * lognorm \(1.5-10\) not sev 10 * lognorm \(1.5-10\). The lexer binds uniary minus to the number, so the latter omits the operator. sev 10 * lognorm \(1.5+-10\), sev 10 * lognorm \(1.5+10\) and sev 10 * lognorm \(1.5+10\) are all acceptable because there is no unary + . This is a known bug and is insidious: the -10 will be interpreted as a second shape parameter and ignored. You will not get the answer you expect.

\section*{Unconditional Severity}

The severity clause is entered ground-up. It is converted to a distribution conditional on a loss to the layer if there is a limits sub-clause. Thus, for an excess layer \(y\) xs \(a\), the severity used to create the aggregate has a distribution \(X \mid X>a\), where \(X\) is specified in the sev clause. For a ground-up (or missing) layer there is no adjustment.

The default behavior can be over-ridden by adding! after the severity distribution.

\section*{Example.}

The default behavior uses severity conditional to the layer. In this example, the conditional layer severity is 6 .
```

In [1]: from aggregate import build, qd
In [2]: cond = build('agg DecL:Conditional '
...: '1 claim '
...: '12 xs 8 '
...: 'sev 20 * uniform '
...: 'fixed')
... :
In [3]: qd(cond)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 6 6 -9.992e-16 0.57735 0.57735 -8.2046e-15 -9.0251e-14
Agg 6 6 -9.992e-16 0.57735 0.57735 -9.5721e-15 -9.0251e-14
log2 = 16, bandwidth = 1/2048, validation: fails sev skew, agg skew.

```

To specify unconditional severity, append ! to the severity clause. The unconditional layer severity is only 3.6 because there is just a \(60 \%\) chance of attaching the layer. In the last line, uncd. sevs [0].fz is sev 20 * uniform ground-up.
```

In [4]: uncd = build('agg DecL:Unconditional '
...: '1 claim '
...: '12 xs 8 '
...: 'sev 20 * uniform!'
...: 'fixed')
... :
In [5]: qd(uncd)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 3.6 3.6-1.1102e-16 1.1055 1.1055 0.65784 0.65784
Agg 3.6 3.6 -1.1102e-16 1.1055 1.1055 0.65784 0.65784
log2 = 16, bandwidth = 1/2048, validation: not unreasonable.
In [6]: print(uncd.sevs[0].fz.sf(8), uncd.agg_m / cond.agg_m)
0.6 0.6

```
scipy.stats Continuous Random Variables

All scipy.stats continuous random variable classes can be used as severity distributions, see scipy.stats Severity Distributions for a complete list. As always, with great power comes great responsibility.

Warning: The user must determine if a severity distribution is appropriate, aggregate will not check! Only specified zero parameter (uniform, exponential, normal) and two parameter () distributions are allowed, but all one parameter distributions will work. However, any zero parameter distribution can be called with a dummy argument, that is ignored. Be careful out there!

\subsection*{2.4.5 The Frequency Clause}

The exposure and severity clauses determine the expected claim count. The frequency clause specifies the other particulars of the claim count distribution. As with severity, the syntax is different for non-parametric and parametric distributions.

\section*{Non-Parametric Frequency Distributions}

An exposure clause:
```

dfreq [outcomes] <[probabilities]>

```
directly specifies the frequency distribution. The outcomes and probabilities are specified as in NonParametric Severity Distributions. There is no need for a frequency clause at the end.

\section*{Examples.}
```

agg A dfreq [1 2 3] [.5 3/8 1/8] sev lognorm 50 cv 1.75
agg A dfreq [1 2 3] [.5 3/8 1/8] dsev [1:11]

```

The first specifies a frequency distribution with outcomes 1,2 , or 3 occurring with probabilities \(0.5,0.375\), and 0.125 respectively. Probabilities can be entered as decimals or fractions. The second combines a non-parametric frequency and severity.

\section*{Parametric Frequency Distributions}

The following parametric frequency distributions are supported. Remember that the exposure clause determines the expected claim count.
- poisson, no additional parameters required.
- geometric, no additional parameters required.
- fixed, no additional parameters required, expected claim count must be an integer.
- bernoulli, no additional parameters required; expected claim count must be \(\leq 1\).
- binomial SHAPE, the shape parameter sets \(p\) and \(n=\mathrm{E}[N] / p\).
- neyman SHAPE (or neymana or neymanA), the Neyman A Poisson-compound Poisson. The shape variable gives the average number of claimants per claim. See JKK and Consul and Shenton [1973].
- pascal SHAPE1 SHAPE2 (the generalized Poisson-Pascal, see REF), where SHAPE1 gives the cv and SHAPE2 the number of claims per occurrence.

\section*{Example.}
```

agg A 100 claims sev lognorm 50 cv 0.75 poisson
agg A 100 claims sev lognorm 50 cv 0.75 mixed gamma 0.2

```
specifies a Poisson frequency. and negative binomial frequency respectively. For the latter, frequency CV equals (1 \(+.2 * * 2\) * 100) ** \(.5 / 10=0.22361\).

\section*{Mixed-Poisson Frequency Distributions}

A \(G\)-mixed Poisson frequency (see Mixed Frequency Distributions), where \(G\) has expectation 1, can be specified using the mixed keyword, followed by the name and shape parameters of the mixing distribution:
```

mixed DIST_NAME SHAPE1 <SHAPE2>

```

SHAPE1 specifies cv of the mixing distribution. The following mixing distributions are supported:
- gamma SHAPE1 is a gamma-Poisson, i.e., negative binomial. Since the mix mean (shape times scale) equals one \(\alpha \beta=1\) and hence the mix variance equals \(c:=\alpha=(c v)^{-2}\), which is sometimes called the contagion. The negative binomial variance equals \(n(1+c n)\).
- delaporte SHAPE1 SHAPE2, a shifted gamma and the second parameter equals the proportion of certain claims (which determines a minimum claim count).
- ig SHAPE1 the inverse Gaussian distribution
- sig SHAPE1 SHAPE2 the shifted inverse Gaussian, parameter 2 as for Delaporte.
- beta SHAPE1 a beta-Poisson with mean 1 and cv SHAPE1. Use with caution.
- sichel SHAPE1 SHAPE2 is Sichel's (generalized inverse Gaussian) distribution with SHAPE2 equal to \(\lambda\).
- sichel.gamma SHAPE1 is the same as Delaporte
- sichel.ig SHAPE1 is the same as a shifted inverse Gaussian.

\section*{Example.}
```

agg A 100 claims sev lognorm 50 cv 0.75 mixed gamma 0.2

```
specifies a negative binomial (gamma-mixed Poisson) frequency respectively. The variance equals \(100 \times\left(1+0.2^{2} \times\right.\) \(100)\) and the CV equals \((1+.2 * * 2 * 100) * * .5 / 10=0.22361\).

Warning: Fixed frequency will accept non-integer input, but will not return a distribution (it will have negative probabilities). Be careful!

\section*{Zero Modification and Zero Truncation}

Todo: Not yet implemented.

\subsection*{2.4.6 Mixed Severity Distributions}

Prerequisites: Examples use build and qd, and basic Aggregate output.
The variables in the severity clause (scale, location, distribution ID, shape parameters, mean and CV) can be vectors to create a mixed severity distribution. All elements are broadcast against one-another.

\section*{Example:}
```

sev lognorm 1000 cv [0.75 1.0 1.25 1.5 2] wts [0.4, 0.2, 0.1, 0.1, 0.1]

```
expresses a mixture of five lognormals, each with a mean of 1000 and CVs equal to \(0.75,1.0,1.25,1.5\), and 2 , and with weights \(0.4,0.2,0.1,0.1,0.1\). Equal weights are expressed as \(w t s=5\), or the relevant number of components (note equals sign). A missing weights clause is interpreted as giving each severity weight 1 which results in five times the total loss. Commas in the lists are optional.

Warning: Weights are applied to exposure, and their meaning depends on how exposure is entered.

If exposure is given by claim count, then the weights apply to claim count. This gives the usual mixture of severity curves. However, if exposure is entered as loss or premium times a loss ratio, then the weights give the proportion of expected loss, not the claim count. Make sure the weights are appropriate to the way exposure is expressed. For example, if the mixture is used to split small and large claims, then an \(80 / 20\) split small/large claim counts may well correspond to a \(20 / 80\) split of expected losses (Pareto rule of thumb).

\section*{Example.}

This example illustrates the different behaviors of wt s . The weights adjust claim counts for each mixture component when exposures are given by claims.
```

In [1]: from aggregate import build, qd
In [2]: a01 = build('agg DecL:01 '
...: '100 claims '
...: '5000 xs 0'
..: 'sev lognorm [10 20 50 75 100] '
...: 'cv [l0.75 1.0 1.25 1.5 2] '
...: 'wts [0.4, 0.25, 0.15, 0.1, 0.1]
...: 'poisson'
...: , bs=1/2, approximation='exact')
... :
In [3]: qd(a01)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 100 0.1 0.1
Sev 33.978 33.978 2.5414e-09 2.3807 2.3807 15.161 15.161
Agg 3397.8 3397.8 2.5414e-09 0.25822 0.25822 1.2927 1.2927
log2 = 16, bandwidth = 1/2, validation: not unreasonable.

```

Mixed severity with Poisson frequency is the same as the sum of five independent components. The report_df shows the mixture details.
\begin{tabular}{lrrrrrr}
In [4]: qd (a01.report_df.iloc[:, :-3]) & & \\
view & 0 & 1 & 2 & 3 & 4 independent \\
statistic & & & & & \\
name & DecL:01 & DecL:01 & DecL:01 & DecL:01 & DecL:01 & DecL:01 \\
limit & 5000 & 5000 & 5000 & 5000 & 5000 & 5000 \\
attachment & 0 & 0 & 0 & 0 & 0 & 0 \\
el & 400 & 500 & 750 & 749.93 & 997.86 & 3397.8 \\
freq_m & 40 & 25 & 15 & 10 & 10 & 100 \\
freq_cv & 0.15811 & 0.2 & 0.2582 & 0.31623 & 0.31623 & 0.1 \\
freq_skew & 0.15811 & 0.2 & 0.2582 & 0.31623 & 0.31623 & 0.1 \\
sev_m & 10 & 20 & 50 & 74.993 & 99.786 & 33.978 \\
sev_cv & 0.75 & 1 & 1.2498 & 1.4942 & 1.9175 & 2.3807 \\
sev_skew & 2.6719 & 4 & 5.6619 & 7.1636 & 8.3826 & 15.161 \\
agg_m & 400 & 500 & 750 & 749.93 & 997.86 & 3397.8 \\
agg_cv & 0.19764 & 0.28284 & 0.41329 & 0.56857 & 0.68386 & 0.25822 \\
agg_skew & 0.30882 & 0.56568 & 1.054 & 1.7191 & 2.224 & 1.2927
\end{tabular}

This aggregate can also be built as a Portfolio.
```

In [5]: a02 = build(
...: 'port DecL:02 '
...: 'agg Unit1 40 loss 5000 xs 0 sev lognorm 10 cv 0.75 poisson '
...: 'agg Unit2 25 loss 5000 xs 0 sev lognorm 20 cv 1.00 poisson '

```
(continued from previous page)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & 'ag & gg Unit3 1 & 15 loss 5000 & xs 0 sev & lognorm & 0 cv 1.25 & poi & sson \\
\hline & & & gg Unit4 10 & 10 loss 5000 & xs 0 sev & lognorm & 5 CV 1.5 & poi & sson ' \\
\hline & & 'ag & gg Unit5 1 & 10 loss 5000 & xs 0 sev & lognorm 1 & 00 cv 2.0 & 00 po & isson ' \\
\hline & : & , bs=1 & 2, approx & ximation= 'exa & act') & & & & \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{In [6]: \(\mathrm{qd}(\mathrm{aO2}\))} \\
\hline & & E[X] & Est E[X] & Err E[X] & CV (X) & Est CV(X) & Skew (X) & Est & Skew (X) \\
\hline \multicolumn{10}{|l|}{unit X} \\
\hline \multirow[t]{3}{*}{Unit1} & Freq & 4 & & & 0.5 & & 0.5 & & \\
\hline & Sev & 10 & 10 & \(8.9604 \mathrm{e}-09\) & 0.75 & 0.75014 & 2.6719 & & 2.6704 \\
\hline & Agg & 40 & 40 & \(8.9606 \mathrm{e}-09\) & 0.625 & 0.62504 & 0.97656 & & 0.97653 \\
\hline \multirow[t]{3}{*}{Unit2} & Freq & 1.25 & & & 0.89443 & & 0.89443 & & \\
\hline & Sev & 20 & 20 & -9.7705e-09 & 1 & 1 & 4 & & 3.9997 \\
\hline & Agg & 25 & 25 & -9.7705e-09 & 1.2649 & 1.2649 & 2.5298 & & 2.5298 \\
\hline \multirow[t]{3}{*}{Unit 3} & Freq & 0.3 & & & 1.8257 & & 1.8257 & & \\
\hline & Sev & 50 & 50 & -1.0074e-09 & 1.2498 & 1.2498 & 5.6619 & & 5.6618 \\
\hline & Agg & 15 & 15 & -1.0074e-09 & 2.9224 & 2.9224 & 7.4526 & & 7.4526 \\
\hline \multirow[t]{3}{*}{Unit4} & Freq & 0.13335 & & & 2.7385 & & 2.7385 & & \\
\hline & Sev & 74.993 & 74.993 & \(-4.0382 \mathrm{e}-10\) & 1.4942 & 1.4942 & 7.1636 & & 7.1635 \\
\hline & Agg & 10 & 10 & \(-4.0383 \mathrm{e}-10\) & 4.9237 & 4.9237 & 14.887 & & 14.887 \\
\hline \multirow[t]{3}{*}{Unit5} & Freq & 0.10021 & & & 3.1589 & & 3.1589 & & \\
\hline & Sev & 99.786 & 99.786 & \(1.1018 \mathrm{e}-08\) & 1.9175 & 1.9175 & 8.3826 & & 8.3826 \\
\hline & Agg & 10 & 10 & \(1.1019 \mathrm{e}-08\) & 6.8313 & 6.8313 & 22.216 & & 22.216 \\
\hline \multirow[t]{3}{*}{total} & Freq & 5.7836 & & & 0.41582 & & 0.41582 & & \\
\hline & Sev & 17.29 & 17.29 & \(2.0519 \mathrm{e}-09\) & 2.2699 & & 26 & & \\
\hline & Agg & 100 & 100 & \(2.031 \mathrm{e}-09\) & 1.0314 & 1.0314 & 8.7339 & & 8.7338 \\
\hline \multicolumn{2}{|l|}{\(\log 2=16\),} & bandwidt & h = 1/2, & validation: & not unre & easonable. & & & \\
\hline
\end{tabular}

Actual frequency equals total frequency times weight. Setting wt \(s=5\) results in equal weights, here 0.2.
```

In [7]: a03 = build('agg DecL:03 '
...: '100 claims '
...: '5000 xs 0 '
...: 'sev lognorm [10 20 50 75 100] '
...: 'cv [l0.75 1.0 1.25 1.5 2] '
...: ' wts=5 '
...: 'poisson'
...: , bs=1/2, approximation='exact')
...:

```

In [8]: qd (a03)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & E [X] & Est E[X] & Err E[X] & CV (X) & Est CV(X) & Skew (X) & Est & Skew (X) \\
\hline \multicolumn{9}{|l|}{X} \\
\hline Freq & 100 & & & 0.1 & & 0.1 & & \\
\hline Sev & 50.956 & 50.956 & \(3.5836 e-09\) & 2.1341 & 2.1341 & 11.891 & & 11.891 \\
\hline Agg & 5095.6 & 5095.6 & 3.5835e-09 & 0.23568 & 0.23568 & 0.99494 & & 0.99494 \\
\hline \(\log 2\) & \multicolumn{8}{|l|}{= 16, bandwidth \(=1 / 2\), validation: not unreasonable.} \\
\hline
\end{tabular}

Missing weights are set to 1 , resulting in five times loss. This behavior is generally not what you want!
```

In [9]: a04 = build('agg DecL:04 '
...: '100 claims '
...: '5000 xs 0'
...: 'sev lognorm [10 20 50 75 100] '
..: 'cv [l0.75 1.0 1.25 1.5 2] '
...: 'poisson'
...: , bs=1, approximation='exact')
... :

```
(continued from previous page)
```

In [10]: qd(a04)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 500 0.044721 0.044721
Sev 50.956 50.956 -2.2323e-08 2.1341 2.1341 11.891 11.891
Agg 25478 25478 -2.2323e-08 0.1054 0.1054 0.44495 0.44495
log2 = 16, bandwidth = 1, validation: not unreasonable.

```

If exposures are determined via losses (directly or using premium and loss ratio or exposure and rate), then the weights apply to expected loss. The resulting mixture is quite different.
```

In [11]: a01e = build('agg DecL:01e '
....: f'{a01.agg_m} loss '
....: '5000 xs 0 '
...: 'sev lognorm [10 20 50 60 70]
...: 'cv [0.75 1.0 1.25 1.5 2] '
...: 'wts [0.4, 0.25, 0.15, 0.1, 0.1]'
....: 'poisson'
...: , bs=1/2, approximation='exact')
....:

```
In [12]: qd(a01e)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew (X)
X
Freq 115.2 0.093168 0.093168
Sev 29.493 29.493 1.1694e-08 \(2.1101 \quad 2.1101 \quad 14.661 \quad 14.661\)
Agg 3397.8 \(3397.81 .1694 \mathrm{e}-08 \quad 0.21755 \quad 0.21755 \quad 1.113 \quad 1.113\)
\(\log 2=16\), bandwidth \(=1 / 2\), validation: not unreasonable.
In [13]: qd(a01e.report_df.iloc[:, :-3])
\begin{tabular}{lrrrrrr}
view & 0 & 1 & 2 & 3 & 4 & independent \\
statistic & & & & & \\
name & DecL:01e & DecL:01e & DecL:01e & DecL:01e & DecL:01e & DecL:01e \\
limit & 5000 & 5000 & 5000 & 5000 & 5000 & 5000 \\
attachment & 0 & 0 & 0 & 0 & 0 & 0 \\
el & 460.82 & 576.02 & 864.03 & 691.2 & 805.71 & 3397.8 \\
freq_m & 46.082 & 28.801 & 17.281 & 11.52 & 11.52 & 115.2 \\
freq_cv & 0.14731 & 0.18634 & 0.24056 & 0.29462 & 0.29462 & 0.093168 \\
freq_skew & 0.14731 & 0.18634 & 0.24056 & 0.29462 & 0.29462 & 0.093168 \\
sev_m & 10 & 20 & 50 & 59.997 & 69.938 & 29.493 \\
sev_cv & 0.75 & 1 & 1.2498 & 1.4968 & 1.9523 & 2.1101 \\
sev_skew & 2.6719 & 4 & 5.6619 & 7.3823 & 9.6027 & 14.661 \\
agg_m & 460.82 & 576.02 & 864.03 & 691.2 & 805.71 & 3397.8 \\
agg_cv & 0.18414 & 0.26352 & 0.38505 & 0.53034 & 0.64624 & 0.21755 \\
agg_skew & 0.28772 & 0.52703 & 0.98195 & 1.6404 & 2.3418 & 1.113
\end{tabular}

\section*{Mixed Exponential Distributions}

The mixed exponential distribution (MED) is used by major US rating bureaus to model severity and compute increased limits factors (ILFs). This example explains how to create a MED in aggregate. The distribution is initially created as an Aggregate object with a degenerate frequency identically equal to 1 claim to focus on the severity. We then explain how frequency mixing interacts with a mixed severity.

The next table of exponential means and weights appears on slide 24 of Li Zhu, Introduction to Increased Limits Factors, 2011 RPM Basic Ratemaking Workshop,, titled a "Sample of Actual Fitted Distribution". At the time, it was a reasonable curve for US commercial auto. We will use these means and weights.
\begin{tabular}{rr}
\hline Mean & Weight \\
\hline 2,763 & 0.824796 \\
24,548 & 0.159065 \\
275,654 & 0.014444 \\
\(1,917,469\) & 0.001624 \\
\(10,000,000\) & 0.000071 \\
\hline
\end{tabular}

Here the DecL to create this mixture.
```

In [14]: med = build('agg Decl:MED '
....: '1 claim '
...: 'sev [2.764e3 24.548e3 275.654e3 1.917469e6 10e6] * '
...: 'expon 1 '
...: 'wts [0.824796 0.159065 0.014444 0.001624, 0.000071] '
...: 'fixed')
.... :
In [15]: qd(med)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 13990 13798 -0.013708 12.034 12.203 103.79 103.76
Agg 13990 13798 -0.013708 12.034 12.203 103.79 103.76
log2 = 16, bandwidth = 4000, validation: fails sev mean, agg mean.

```

Note: Currently, it is necessary to enter a dummy shape parameter 1 for the exponential, even though it does not take a shape. This is a known bug in the parser.

The exponential distribution is surprisingly thick-tailed. It can be regarded as the dividing line between thin and thick tailed distributions. In order to achieve good accuracy, the modeling increases the number of buckets to \(2^{18}\) (i.e., \(\log 2=18\)) and uses a bucket size \(b s=500\). The dataframe report_df is a more detailed version of the audit dataframe that includes information from statistics_df about each severity component. (The reported claim counts are equal to the weights and cannot be interpreted as fixed frequencies. They can be regarded as frequencies for a Poisson or mixed Poisson.)
```

In [16]: med.update(log2=18, bs=500)
In [17]: qd(med)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 13990 13987 -0.00022819 12.034 12.037 103.79 103.72
Agg 13990 13987 -0.00022819 12.034 12.037 103.79 103.72
log2 = 18, bandwidth = 500, validation: fails sev mean, agg mean.

```

The middle diagnostic plot, the log density, shows the mixture components.

The density_df dataframe includes a column lev. From this we can pull out ILFs. Zhu reports the ILF at 1M equals 1.52.
```

In [19]: qd(med.density_df.loc[1000000, 'lev'] / med.density_df.loc[100000, 'lev'])
1.5204

```

Here is a graph of the ILFs by limit.
```

In [20]: base = med.density_df.loc[100000, 'lev']
In [21]: ax = (med.density_df.lev / base).plot(xlim=[-100000,10.1e6], ylim=[0.9, 1.
485],
...: figsize=(3.5, 2.45))
. . . . :
In [22]: ax.set(xlabel='Limit', ylabel='ILF', title='Pure loss ILFs relative to\smile
\hookrightarrow100K base');

```


\section*{Saving to the Knowledge}

We can save the MED severity in the knowledge and then refer to it by name.
```

In [23]: build('sev COMMAUTO [2.764e3 24.548e3 275.654e3 1.917469e6 10e6] * '
....: ' expon 1 wts [0.824796 0.159065 0.014444 0.001624, 0.000071]');
.... :
In [24]: a05 = build('agg DecL:05 [20 8 4 2] claims [1e6, 2e6 5e6 10e6] xs 0 '
....: 'sev sev.COMMAUTO fixed',
...: log2=18, bs=500)
.... :
In [25]: qd(a05)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 34 0
Sev 11973 11970 -0.00026506 6.328 6.3298 31.665 < < lllll
(continues on next page)

```
(continued from previous page)
```

Agg 4.0708e+05 4.0697e+05 -0.00026506 1.0852 1.0855 5.4306 5.4305
log2 = 18, bandwidth = 500, validation: fails sev mean, agg mean.

```

\section*{Different Distributions}

The kind of distribution can vary across mixtures. In the following, exposure varies for each curve, rather than using weights, see Vectorization: Limit Profiles and Mixed Severity.
```

In [26]: a06 = build('agg DecL:06 [100 200] claims '
...: '5000 xs 0'
...: 'sev [gamma lognorm] [100 150] cv [1 0.5] '
....: 'mixed gamma 0.5',
...: }\quad\operatorname{log}2=16, bs=2.5
. . . :
In [27]: qd(a06.report_df.iloc[:, :-2])

view	0	1	independent	mixed
statistic				
name	DecL:06	DecL:06	DecL:06	DecL:06
limit	5000	5000	5000	5000
attachment	0	0	0	0
el	10000	30000	40000	40000
freq_m	100	200	300	300
freq_cv	0.5099	0.50498	0.37712	0.50332
freq_skew	1.0002	1	0.80295	1
sev_m	100	150	133.33	133.33
sev_cv	1	0.5	0.65551	0.65551
sev_skew	2	1.625	1.4508	1.4508
agg_m	10000	30000	40000	40000
agg_cv	0.51962	0.50621	0.40127	0.50474
agg_skew	1.0022	1.0002	0.88112	1.0001
In [28]: a06.plot()				

```


Using a Delaporte (shifted) gamma mixing often produces more realistic output than a gamma, avoiding very good years.
```

In [29]: a07 = build('agg DecL:07 [100 200] claims '
...: '5000 xs 0 '
...: 'sev [gamma lognorm] [100 150] cv [1 0.5] '
...: 'mixed delaporte 0.5 0.6',
...: }\quad\operatorname{log}2=18,bs=2.5
.... :

```
In [30]: qd(a07.report_df.iloc[:, :-2])
view \(0 \quad 1\) independent mixed
statistic
(continued from previous page)
\begin{tabular}{lrrrr}
name & DecL:07 & DecL:07 & DecL:07 & DecL:07 \\
limit & 5000 & 5000 & 5000 & 5000 \\
attachment & 0 & 0 & 0 & 0 \\
el & 10000 & 30000 & 40000 & 40000 \\
freq_m & 100 & 200 & 300 & 300 \\
freq_cv & 0.5099 & 0.50498 & 0.37712 & 0.50332 \\
freq_skew & 2.4145 & 2.4561 & 1.9682 & 2.4705 \\
sev_m & 100 & 150 & 133.33 & 133.33 \\
sev_cv & 1 & 0.5 & 0.65551 & 0.65551 \\
sev_skew & 2 & 1.625 & 1.4508 & 1.4508 \\
agg_m & 10000 & 30000 & 40000 & 40000 \\
agg_cv & 0.51962 & 0.50621 & 0.40127 & 0.50474 \\
agg_skew & 2.3386 & 2.4456 & 2.1507 & 2.4582 \\
& & & & \\
In [31]: a07.plot() & & &
\end{tabular}

\section*{Severity Mixtures and Mixed Frequency}

All severity components in an aggregate share the same frequency mixing value, inducing correlation between the parts. An Aon study, Aon Benfield [2015], shows that commercial auto has parameter uncertainty CV around 25\%. Building with
```

In [32]: a08 = build('agg DecL:08 '
....: '500 claims '
...: '500000 xs 0 sev sev.COMMAUTO '
....: 'poisson'
...: , approximation='exact')
.... :
In [33]: a09 = build('agg DecL:09 '
....: '500 claims '
...: '500000 xs 0 sev sev.COMMAUTO '
....: 'mixed gamma 0.25'
...: , approximation='exact')
.... :

```
In [34]: \(q d(a 08)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & E[X] & Est E[X] & Err E[X] & CV (X) & Est CV(X) & Skew (X) & Est & Skew (X) \\
\hline \multicolumn{9}{|l|}{X} \\
\hline Freq & 500 & & & 0.044721 & & 0.044721 & & \\
\hline Sev & 10266 & 10266 & -4.9496e-05 & 3.9519 & 3.9522 & 9.4914 & & 9.4913 \\
\hline Agg & \(5.1332 e+06\) & \(.1329 \mathrm{e}+06\) & -4.9496e-05 & 0.18231 & 0.18232 & 0.41833 & & 0.41833 \\
\hline \multicolumn{9}{|l|}{\(\log 2=16, ~ b a n d w i d t h=200, ~ v a l i d a t i o n: ~ n o t ~ u n r e a s o n a b l e . ~\)} \\
\hline
\end{tabular}
X E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew (X) Est Skew (X)
(continued from previous page)
\begin{tabular}{lrrrrrr}
Freq & 500 & & 0.25397 & & 0.50006 & \\
Sev & 10266 & 10264 & -0.0001979 & 3.9519 & 3.9528 & 9.4914
\end{tabular}

The effect of shared mixing is shown in report_df. In order to focus on the mixing and ease the computational burden, apply a 500,000 policy limit to model a self-insured retention. Assume a claim count of 500 claims; for smaller portfolios the impact of mixing is less pronounced because idiosyncratic process risk dominates.

The independent column in report_df shows statitics assuming the mixture components are independent; mixed includes the effect of shared mixing variables.

The next block shows results with a Poisson frequency, where there is no mixing. The independent and mixed columns are identical.
```

In [36]: qd(a08.report_df.drop(['name']).iloc[:, :-2])
view 0 1 2 0 4 independent
\hookrightarrowmixed
statistic
limit 5e+05 5e+05 5e+05 5 5e+05 5e+05 5e+05
4 5e+05
attachment
@ 0
el 1.1399e+06 1.9524e+06 1.6662e+06 3.5738e+05 17314 5.1332e+06 5.
\hookrightarrow1332e+06
freq_m 412.4 79.532 7 7.222
4 500
freq_cv [lllllllll
\hookrightarrow44721
freq_skew 0.049243 0.11213 0.37211 1.1097 5.3074 0.044721
\hookrightarrow44721
sev_m
2764 24548 2.3072e+05 4.4013e+05 4.8771e+0
\hookrightarrow10266
sev_cv
\hookrightarrow.9519
sev skew
\hookrightarrow9.4914
agg_m

agg_cv	0.06964	0.15858	0.46257	1.1569	5.3515	0.18231	0.

    \hookrightarrow18231
    agg_skew
0.10446
0.23787
0.54133
1.1826
5.3739
0.
0.41833
\hookrightarrow41833

```

This block shows mixed gamma (negative binomial) frequency. There are two differences: the individual components have higher CVs (they asymptotically approach \(25 \%\) for a large portfolio), and the mixed column includes correlation between units (aggregate CV is greater than independent). Glenn Meyers had the idea of using shared mixing variables to ensure aggregate portfolio dynamics are not influenced by how the portfolio is split into units.
```

In [37]: qd(a09.report_df.drop(['name']).iloc[:, :-2])
view 0 1 2 0 3 independent
@mixed
statistic
lrcrcrcc
@ 0

```
(continues on next page)
(continued from previous page)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline el & \(1.1399 \mathrm{e}+06\) & \(1.9524 \mathrm{e}+06\) & \(1.6662 e+06\) & \(3.5738 e+05\) & 17314 & \(5.1332 e+06\) & 5. \\
\hline \(\rightarrow 1332 \mathrm{e}+06\) & & & & & & & \\
\hline freq_m & 412.4 & 79.532 & 7.222 & 0.812 & 0.0355 & 500 & \(\checkmark\) \\
\hline \(\rightarrow \quad 500\) & & & & & & & \\
\hline freq_cv & 0.2548 & 0.274 & 0.44829 & 1.1376 & 5.3133 & 0.21474 & 0. \\
\hline \(\hookrightarrow 25397\) & & & & & & & \\
\hline freq_skew & 0.50009 & 0.5021 & 0.58771 & 1.1925 & 5.3251 & 0.473 & 0. \\
\hline \(\hookrightarrow 50006\) & & & & & & & \\
\hline sev_m & 2764 & 24548 & \(2.3072 e+05\) & \(4.4013 e+05\) & \(4.8771 e+05\) & 10266 & - \\
\hline \(\hookrightarrow 10266\) & & & & & & & \\
\hline sev_cv & 1 & 1 & 0.73847 & 0.29449 & 0.12909 & 3.9519 & \(\checkmark\) \\
\hline \(\hookrightarrow 3.9519\) & & & & & & & \\
\hline sev_skew & 2 & 2 & 0.39392 & -2.071 & -5.6054 & 9.4914 & \(\checkmark\) \\
\hline \(\hookrightarrow 9.4914\) & & & & & & & \\
\hline agg_m & \(1.1399 \mathrm{e}+06\) & \(1.9524 \mathrm{e}+06\) & \(1.6662 \mathrm{e}+06\) & \(3.5738 e+05\) & 17314 & \(5.1332 e+06\) & 5. \\
\hline \(\hookrightarrow 1332 \mathrm{e}+06\) & & & & & & & \\
\hline agg_cv & 0.25952 & 0.29605 & 0.52581 & 1.1836 & 5.3573 & 0.22858 & 0. \\
\hline \(\hookrightarrow 30941\) & & & & & & & \\
\hline agg_skew & 0.50102 & 0.51935 & 0.6983 & 1.2604 & 5.3913 & 0.42255 & 0. \\
\hline \(\hookrightarrow 55969\) & & & & & & & \\
\hline
\end{tabular}

\subsection*{2.4.7 Limit Profiles}

Prerequisites: Examples use build and qd, and basic Aggregate output.
All exposure variables can be vectors. This feature makes it easy to express a limit profile. All exposure related elements (claim count, premium, loss, loss ratio) are broadcast against one-another.

\section*{Example:}
```

agg Eg1
[1000 2000 4000 1000] premium at 0.65 lr \
[1000 2000 5000 4000] xs [0 0 0 1000]
sev lognorm 500 cv 1.25
mixed gamma 0.6

```
expresses a limit profile with 1000 of premium at 1000 xs \(0 ; 2000\) at \(2000 \mathrm{xs} 0,4000\) at 5000 xs 0 , and 1000 at 4000 xs 1000 . In this case all the loss ratios are the same, but they could vary too.

A (mixed) compound Poisson aggregate with a mixed severity is a sum of aggregates, with the mixture weights applied to the expected claim count. This is analogous to the fact that \(\exp (a+b)=\exp (a) \exp (b)\). In terms of a compound Poisson,
\[
\mathrm{CP}\left(\lambda, \sum w_{i} F_{i}\right)={ }_{d} \sum_{i} \mathrm{CP}\left(w_{i} \lambda, F_{i}\right)
\]
where \(={ }_{d}\) indcates the two sides have the same distribution. For Poisson frequency, the components on the right are independent; for mixed frequencies they are not.
In this case, we have selected a mixed frequency, using a gamma CV 0.6 mixing distribution. All of the limits share the same mixing variable. The effect of this is shown in the report_df, comparing the independent and mixed columns. The former adds the mixture components independently whereas the latter uses the common mixing variable. The increase in aggregate CV is quite marked.
```

In [1]: from aggregate import build, qd
In [2]: a10 = build('agg DecL:10 '
...: '[1000 2000 4000 1000] premium at 0.65 lr '
...: '[1000 2000 5000 4000] xs [0 0 0 1000] '
...: 'sev lognorm 500 cv 1.25 '

```
```

...: 'mixed gamma 0.6')
... :
In [3]: qd(a10)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lllllllll
Agg 5200 5200 -8.9414e-09 0.75651 0.75651 1.3155 1.3155
log2 = 16, bandwidth = 1, validation: not unreasonable.
In [4]: qd(a10.report_df.iloc[:, :-2])

view	0	1	2	3	independent	mixed
statistic						
name	DecL:10	DecL:10	DecL:10	DecL:10	DecL:10	DecL:10
limit	1000	2000	5000	4000	3518.1	3518.1
attachment	0	0	0	1000	83.724	83.724
el	650	1300	2600	650	5200	5200
freq_m	1.5833	2.77	5.243	0.87685	10.473	10.473
freq_cv	0.99579	0.84913	0.74211	1.2249	0.47078	0.67489
freq_skew	1.3573	1.2731	1.2272	1.5188	0.80136	1.2083
sev_m	410.54	469.32	495.9	741.29	496.51	496.51
sev_cv	0.74534	0.96384	1.1639	1.1443	1.1061	1.1061
sev_skew	0.77863	1.8007	3.4165	2.019	3.1179	3.1179
agg_m	650	1300	2600	650	5200	5200
agg_cv	1.1587	1.0278	0.89949	1.7302	0.5797	0.75651
agg_skew	1.6154	1.5795	1.5449	2.5962	1.019	1.3155

```

\subsection*{2.4.8 Vectorization: Limit Profiles and Mixed Severity}

Prerequisites: Examples use build and qd, and basic Aggregate output.

\section*{Using a Limit Profile with a Mixed Severity}

Limit Profiles and Mixed Severity Distributions can be combined. Each mixed severity is applied to each limit profile component.
sub-components.

\section*{Example.}

This example combines three limit bands and a severity with two mixture components. It creates an aggregate with six severities. The report_df dataframe shows the components (transposed extract shown). The mixture weights apply to claim counts, since exposure is specified by number of expected claims.
```

In [1]: from aggregate import build, qd
In [2]: a11 = build('agg DecL:11 '
...: '[10 20 30] claims '
...: '[100 200 75] xs [0 50 75] '
...: 'sev lognorm 100 cv [1 2] wts [0.6 0.4] '
...: 'poisson')
... :
In [3]: qd(a11)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)

```
(continues on next page)
(continued from previous page)
```

X
Freq 60 0.1291 0.1291
Sev 60.65 60.65 -8.3258e-08 0.76525 0.76525 1.2624 1.2624
Agg 3639 3639-8.3262e-08 0.16256 0.16256 0.21483 0.21483
log2 = 16, bandwidth = 1/8, validation: not unreasonable.
In [4]: qd(a11.report_df.loc[['limit', 'attachment', 'freq_m',
...: 'agg_m', 'agg_cv']].T.iloc[:-4])
... :
statistic limit attachment freq_m agg_m agg_cv
view
0 100 0 6 406.32 0.44721
1 100 0 4 210.35 0.6055
200 50 13.618 984.54 0.35857
300 50 6.3822 552.26 0.51379
4 75 75 20.23 969.19 0.25552
5 75 75 9.7703 516.34 0.35838

```

\section*{Example.}

We can combine the mixed exponential from Mixed Exponential Distributions with a limits profile.
```

In [5]: from aggregate import build, qd
In [6]: a12 = build('agg DecL:12 [20 8 4 2] claims [1e6, 2e6 5e6 10e6] xs 0 '
..: 'sev [2.764e3 24.548e3 275.654e3 1.917469e6 10e6] * '
..: 'expon 1 wts [0.824796 0.159065 0.014444 0.001624,0.
\hookrightarrow000071] fixed',
...: }\quad\operatorname{log}2=18,bs=500
... :
In [7]: qd(a12)
X
Freq 34 0
Sev 11973 11970 -0.00026506 6.328 6.3298 31.665 % 31.665
Agg 4.0708e+05 4.0697e+05 -0.00026506 1.0852 1.0855 5.4306 5.4305
log2 = 18, bandwidth = 500, validation: fails sev mean, agg mean.

```

The report_df shows all 20 components: 4 limits x 5 mixture components.
```

In [8]: qd(a12.report_df.loc[['limit', 'attachment', 'freq_m',
...: 'agg_m', 'agg_cv']].T.iloc[:-4])
... :
statistic limit attachment freq_m agg_m agg_cv
view

0	$1 e+06$	0	16.496	45595	0.24621
1	$1 e+06$	0	3.1813	78095	0.56066
2	$1 e+06$	0	0.28888	77515	1.7165
3	$1 e+06$	0	0.03248	25309	2.3031
4	$1 e+06$	0	0.00142	1351.3	4.8442
5	$2 e+06$	0	6.5984	18238	0.3893
6	$2 e+06$	0	1.2725	31238	0.88648
7	$2 e+06$	0	0.11555	31830	2.9287
8	$2 e+06$	0	0.012992	16133	5.082
9	$2 e+06$	0	0.000568	1029.6	10.827
10	$5 e+06$	0	3.2992	9118.9	0.55055
11	$5 e+06$	0	0.63626	15619	1.2537

```
\begin{tabular}{lrrrr|}
12 & \(5 e+06\) & 0 & 0.057776 & 15926 \\
13 & \(5 e+06\) & 0 & 0.006496 & 11538 \\
10.1603 \\
14 & \(5 e+06\) & 0 & 0.000284 & 1117.5 \\
15 & \(1 e+07\) & 0 & 1.6496 & 4559.5 \\
16 & \(1 e+07\) & 0 & 0.31813 & 7809.5 \\
17 & \(1 e+07\) & 0 & 0.028888 & 7963.1 \\
18 & \(1 e+07\) & 0 & 0.003248 & 6194.1 \\
19 & \(1 e+07\) & 0 & 0.000142 & 897.136 \\
19 & & & 47.664 \\
\hline
\end{tabular}

\section*{Circumventing Products: Modeling Multiple Units in One Aggregate}

When severity weights sum to one, the severity is treated as a mixture and all exposure terms are broadcast against all severity terms in an outer product.

When severity weights are missing or sum to the number of severity components (e.g., are all equal to 1) the result is an item by item combination, circumventing the outer product. There are two cases when this alternative is useful:
1. Two or more units each with a different severity, but with a shared mixing variable. For example, to model two units with expected losses 100 and 200, one with a gamma mean 10 CV 1 severity and the other lognormal mean 15 CV 1.5 and both share a gamma mixing variable:
```

agg MixedPremReserve
[100 200] claims
sev [gamma lognorm] [10 15] Cv [1 1.5]
mixed gamma 0.4

```

The result should be the two-way combination, not the four-way exposure and severity product.
2. Exposures with different limits may have different severity curves. Again, the limit profile and severity curves should all be broadcast together at once, rather than broadcasting limits and severities separately and then taking the outer product:
```

agg Eg4
[10 10 10] claims
[1000 2000 5000] xs 0
sev lognorm [[50 100 150] cv [0.1 0.15 0.2] \
poisson

```

\section*{Example.}

The next two examples illustrate the different behavior.
1. Two units with different limits and severities and no weights. report_df shows only two components modeled.
```

In [9]: a13 = build('agg DecL:13 '
...: '[10 20] claims '
... '[1000 2000] xs 0 '
..: 'sev [gamma lognorm] [10 15] CV [1 1.5] '
...: 'mixed gamma 0.4 ')
... :
In [10]: qd(a13)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lrreq
Sev 13.333 1r.333 -4.0697e-07 13.3.4543
log2 = 16, bandwidth = 1/16, validation: not unreasonable.

```
(continued from previous page)
```

In [11]: qd(a13.report_df.loc[['limit', 'attachment', 'freq_m'
....: 'agg_m', 'agg_cv']].T.iloc[:-4])
.... :
statistic limit attachment freq_m agg_m agg_cv
view
0 1000 0 10 100 100
12000 0 20 300 0.56778

```
1. Adding weights results in a mixed severity, \(80 \%\) for the gamma and \(20 \%\) for lognormal. Now report_df shows that each limit band is combined with each severity, resulting in four modeled components.
```

In [12]: a14 = build('agg DecL:14 '
....: '[10 20] claims '
...: '[1000 2000] xs 0 '
...: 'sev [gamma lognorm] [10 15] cv [1 1.5] '
....: 'wts [.8 . 2] '
....: 'mixed gamma 0.4 ')
....:
In [13]: qd(a14)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq
Agg 330 330 -2.1305e-06 0.49424 0.49422 0.94603 0.94464
log2 = 16, bandwidth = 1/32, validation: not unreasonable.
In [14]: qd(a14.report_df.loc[['limit', 'attachment', 'freq_m',
....: 'agg_m', 'agg_cv']].T.iloc[:-4])
.... .
statistic limit attachment freq_m agg_m agg_cv
view
1000 0 8 8 80 0.64031
1 1000 0 2 29.997 1.3328
2 2000 0

```

\subsection*{2.4.9 The Reinsurance Clauses}

Prerequisites: Excess of loss reinsurance terminology.
Occurrence and aggregate reinsurance can be specified in a way similar to limits and deductibles. Both clauses are optional. The ceded or net position can be output. Layers can be stacked and can include co-participations.

The options for both clauses are:
- Keywords ceded to or net of determine which losses flow out of the reinsurance.
- A fraction po limit xs attachment describes a partial placement, e.g., 0.5 so 3 xs 2 .
- A participation so limit \(x s\) attachment describes a partial placement by the ceded limit, e.g., 1 po 3 xs 2. This syntax is equivalent to 0.333 so 3 xs 2 .

An unlimited cover is denoted inf. Shares of unlimited covers must be expressed as shares, for obvious reasons.
Layers can be stacked using the and keyword. The initial net of or ceded to applies to all layers in the tower.
The occurrence reinsurance clause comes after severity but before frequency, because you need to know severity but not frequency. The aggregate clause comes after frequency. If frequency is specified using \(d f r e q\) the occurrence clause comes before the aggregate clause.

The syntax is best illustrated with some examples.

\section*{Examples.}
1. Occurrence reinsurance:
```

agg Trucking
5000 loss 1000 xs 0
sev lognorm 50 cv 1.75
occurrence net of 750 xs 250 \
poisson

```
specifies the distribution of losses to the net position on the Trucking policy after a per occurrence cession of the 750 xs 250 layer. This net position can also be written using limits and attachments rather than reinsurance:
```

agg Trucking \
?? loss
250 xs 0
sev lognorm 50 1.75
poisson

```
for some level of losses. Running:
```

agg Trucking
5000 loss 1000 xs 0
sev lognorm 50 cv 1.75
occurrence ceded to 750 xs 250 \
poisson

```
models ceded losses.
2. Aggregate reinsurance:
```

agg WorkComp
15000 loss
500 xs 0
sev lognorm 50 cv 1.75
poisson
aggregate ceded to 50% so 2000 xs 15000

```
specifies the distribution of losses ceded to an aggregate protection for the 2000 xs 15000 layer of total losses (attaching at the loss pick), with occurrences limited to 500 . The underlying business could be an SIR on a large account Workers Compensation policy, and the aggregate is a part of the insurance charge (Table L, M).
3. Occurrence and aggregate reinsurance:
```

agg Trucking 5000
loss 1000 xs 0
sev lognorm 50 cv 1.75
occurrence net of 50% so 250 xs 250 and 500 xs 500 \
poisson
aggregate net of 250 po 1000 xs 4000 and 5000 xs 5000

```
applies two occurrence and two aggregate layers to the Trucking portfolio. The 250 xs 250 occurrence layer is only \(50 \%\) placed (so stands for share of), and the second is \(100 \%\) (by default) of 500 xs 500 . The net of the occurrence programs flows through to aggregate layers, 250 part of 1000 xs 4000 (\(25 \%\) placement, po stands for part of), and \(100 \%\) share of the 5000 xs 5000 aggregate layers. The modeled outcome is net of all four layers. In this case, it is not possible to write the net of occurrence using limits and attachments.

Note: All occurrence reinsurance assumes free and unlimited reinstatements.

\section*{Layering Losses in a Tower}

Underwriters are often interested in layering out losses from ground-up to the policy limit. For example, a 5 M limit may be layered as 250 xs 0,250 xs 250,500 xs 500 , 1000 xs 1000 , and 3000 xs 2000 . A tower can be input manually:
```

occurrence ceded to 250 xs 0 and 250 xs 250 and 500 xs 500 \
and 1000 xs 1000 and 3000 xs 2000

```

There is also a shorthand for layering, since it is quite common. A layering can be entered by specifying just the layer break points using the tower keyword:
```

occurrence ceded to tower [0 250 500 1000 2000 5000]

```

The tower does not have to start at 0 and does not have to exhaust the entire policy limit. Towers can be applied to occurrence and aggregate reinsurance.

See reinsurance pricing for more examples, including an approach to reinstatements.

\subsection*{2.4.10 The Note Clause}

An optional note (comment) on the distribution can be added at the end, as the last clause. The note can include hints for computation. The text is enclosed in braces.
```

note{US Prems Ops, light hazard severity; for ABC account; recommend:- log2:16, bs:
\hookrightarrow1/32}

```

Notes cannot include a line break.

\subsection*{2.4.11 The tweedie Keyword}

Prerequisites: Tweedie distribution from GLMs. Use of build.
See also: ../../5_technical_guides/5_x_tweedie.
The aggregate language keyword tweedie makes it easy to build Tweedie distributions. It uses reproductive parameters \(\mu, p, \sigma^{2}\) (mean, power, and dispersion), since these are most natural for GLM modeling.

\section*{Example.}

The keyword is used as follows to produce \(\operatorname{Tw}_{1.05}(2,5)\), mean \(2, p=1.05\), and dispersion 5 .
```

In [1]: from aggregate import build, qd, mv
In [2]: a15 = build('agg DecL:15 tweedie 2 1.05 5')
In [3]: qd(a15)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.40671 1.568 1.568
Sev 4.9175 4.9175 -2.3315e-15 0.22942 0.22942 0.45883 0.45883
Agg 2 2 -2.2204e-15 1.6088 1.6088 1.6892 1.6892
log2 = 16, bandwidth = 1/512, validation: not unreasonable.
In [4]: mv(a15)
mean = 2

```
```

variance = 10.35265
std dev = 3.21755
In [5]: print(f'Expected variance = disp x mean ** p = {2**1.05 * 5:.5f}')
Expected variance = disp x mean ** p = 10.35265

```

Inspecting the (non-trivial parts of the) specification shows the parser converts it into the additive form:
```

In [6]: {k: v for k,v in a15.spec.items()
...: if v!=0 and v is not None and v!=''}

```
 ... :
Out [6]:
\{'name': 'DecL:15',
 'exp_en': 0.4067100332315139,
 'exp_limit': inf,
 'sev_name': 'gamma',
 'sev_a': 18.999999999999982,
 'sev_scale': 0.2588162309603446,
 'sev_wt': 1,
 'sev_ub': inf,
 'sev_conditional': True,
 'freq_name': 'poisson',
 'freq_p0': nan,
 'note': 'Tw \(\left(p=1.05, \mu=2.0, \sigma^{\wedge} 2=5.0\right)-->C P(\lambda=0.40671, g a(a=19, \beta=0.25881623)\), -
\(\rightarrow\) scale=0.25881623'\}

The note shows the compound Poisson specification.
The helper function tweedie_convert translates between parameterizations. The scale (dispersion) parameter \(\sigma^{2}\) has offsetting effects: higher \(\sigma^{2}\) results in a lower claim count, a higher gamma mean, and a more skewed aggregate distribution with a bigger mass at zero.

\section*{Example.}

The code below shows the three Tweedie representations, starting with the easiest to interpret.
```

In [7]: from aggregate import tweedie_convert
In [8]: import pandas as pd
In [9]: p = 1.005; }\mu=1;\sigma2=0.1
...: m0 = tweedie_convert (p=p, }\mu=\mu,\sigma2=\sigma2)
...: \lambda = 苂* (2-p) / ((2-p) * \sigma2);
...: a = (2 - p) / (p - 1);
···: \beta = \mu / (\lambda * a);
...: tw_cv = \sigma2**.5 * }\mp@subsup{\mu}{}{**}(\textrm{p}/2-1)
...: sev_m = a * \beta;
...: sev_cv = a**-0.5;
...: m1 = tweedie_convert ( }\lambda=\lambda, m=sev_m, cv=sev_cv); \
...: m2 = tweedie_convert( }\lambda=\lambda, a=a, \beta=\beta)
...:
In [10]: assert np.allclose(m0, m1, m2)
In [11]: temp = pd.concat((m0, m1, m2), axis=1); \
....: temp.columns = ['mean p disp', 'lambda sev m cv', 'lambda shape scale'];
.... .
In [12]: with pd.option_context('display.float_format', lambda x: f'{x:.12g}'):
....: print (temp)
.... :
mean p disp lambda sev m cv lambda shape scale

```
(continued from previous page)
\begin{tabular}{lrrr}
\(\mu\) & 1 & 1 & 1 \\
\(p\) & 1.005 & 1.005 & 1.005 \\
\(\sigma^{\wedge} 2\) & 0.1 & 0.1 & 0.1 \\
\(\lambda\) & 10.0502512563 & 10.0502512563 & 10.0502512563 \\
a & 199 & 199 & 199 \\
\(\beta\) & 0.0005 & 0.0005 & 0.0005 \\
tw_cv & 0.316227766017 & 0.316227766017 & 0.316227766017 \\
sev_m & 0.0995 & 0.0995 & 0.0995 \\
sev_cv & 0.0708881205008 & 0.0708881205008 & 0.0708881205008 \\
p0 & \(4.31748997327 e-05\) & \(4.31748997327 e-05\) & \(4.31748997327 e-05\)
\end{tabular}

Three different ways of specifying the same Tweedie distribution.
```

In [13]: program = f'''
....: agg DecL:16 {\lambda} claims sev gamma {sev_m:.8g} cv {sev_cv} poisson
....: agg DecL:17 {\lambda} claims sev {\beta:.4g} * gamma {a:.4g} poisson
....: agg DecL:18 tweedie {\mu} {p} {\sigma2}
....: '''
.... :
In [14]: tweedies = build(program)
In [15]: for a in tweedies:
....: print(a.program)
....: qd(a.object.describe)
....: print()
. . . :
agg DecL:16 10.050251256281404 claims sev gamma 0.0995 cv 0.07088812050083283_
4poisson
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Estu
\hookrightarrowSkew (X)
X
Freq 10.05 NaN NaN 0.31544 NaN NaN 0.31544
\leftrightarrow N a N
Sev 0.0995 0.0995-8.2379e-14 0.070888 0.070888 3.12e-06 0.14178 0
\hookrightarrow14177
Agg 1 1 -1.1036e-13 0.31623 0.31623 1.5599e-08 0.31781 0.
\hookrightarrow1781
agg DecL:17 10.050251256281404 claims sev 0.0005 * gamma 199 poisson
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Estu
\hookrightarrowSkw (X)
X
Freq 10.05 NaN NaN 0.31544 NaN NaN 0.31544
NaN
Sev 0.0995 0.0995-1.0825e-13 0.070888 0.070888 3.12e-06 0.14178 0.
\hookrightarrow14177
Agg 1 1 -1.3756e-13 0.31623 0.31623 1.5599e-08 0.31781 0.
\hookrightarrow1781
agg DecL:18 tweedie 1 1.005 0.1
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Estu
GSkew(X)
X
Freq 10.05 NaN NaN 0.31544 NaN NaN 0.31544

```
(continues on next page)
(continued from previous page)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\(\hookrightarrow\) NaN} \\
\hline \[
\begin{aligned}
& \text { Sev } 0.0995 \\
& \hookrightarrow 14177
\end{aligned}
\] & 0.0995 & -8.6597e-14 & 0.070888 & 0.070888 & \(3.12 \mathrm{e}-06\) & 0.14178 & 0. \\
\hline \[
\begin{array}{ll}
\text { Agg } & 1 \\
\hookrightarrow 31781
\end{array}
\] & 1 & \(-1.148 \mathrm{e}-13\) & 0.31623 & 0.31623 & \(1.5599 \mathrm{e}-08\) & 0.31781 & 0. \\
\hline
\end{tabular}

\section*{Convert from reproductive form:}
```

In [16]: tweedie_convert(p=1.05, \mu=2, \sigma2=5)
Out[16]:

$\mu$	2.000000

1.050000
2.000000
\lambda 0.406710
a 19.000000
B 0.258816
tw_cv 1.608777
sev_m 4.917508
sev_cv 0.229416
p0 0.665837
dtype: float64

```

Convert from additive form:
```

In [17]: tweedie_convert ( }\lambda=0.406710033, m=4.917508388, cv=0.229415734

```
Out [17]:
\begin{tabular}{lr}
\(\mu\) & 2.000000 \\
\(p\) & 1.050000 \\
\(\sigma^{\wedge} 2\) & 5.000000 \\
\(\lambda\) & 0.406710 \\
a & 19.000000 \\
\(\beta\) & 0.258816 \\
tw_cv & 1.608777 \\
sev_m & 4.917508 \\
sev_cv & 0.229416 \\
p0 & 0.665837 \\
dtype: float 64
\end{tabular}

Build a Tweedie using reproductive parameters, p, mu, sigma2.
```

In [18]: a19 = build('agg DecL:19 tweedie 2 1.05 5')
In [19]: a19.plot()
In [20]: qd(a19)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.40671 1.568 1.568
Sev 4.9175 4.9175 -2.3315e-15 0.22942 0.22942 0.45883 0.45883
Agg 2 2 -2.2204e-15 1.6088 1.6088 1.6892 1.6892
log2 = 16, bandwidth = 1/512, validation: not unreasonable.
In [21]: print(a19.spec)
{'name': 'DecL:19', 'exp_el': 0, 'exp_premium': 0, 'exp_lr': 0, 'exp_en': 0.
\hookrightarrow4067100332315139, 'exp_attachment': None, 'exp_limit': inf, 'sev_name': 'gamma',
\hookrightarrow'sev_a': 18.999999999999982, 'sev_b': 0, 'sev_mean': 0, 'sev_cv': 0, 'sev_loc':\longleftarrow
\hookrightarrow0, 'sev_scale': 0.2588162309603446, 'sev_xs': None, 'sev_ps': None, 'sev_wt': 1,
\hookrightarrow'sev_lb': 0, 'sev_ub': inf, 'sev_conditional': True, 'sev_pick_attachments':\longleftarrow
\leftrightarrowNone, 'sev_pick_losses': None, 'occ_reins': None, 'occ_kind': '', 'freq_name':
\hookrightarrow'poisson', 'freq_a': 0, 'freq_b': 0, 'freq_zm': False, 'freq_p0': nan, 'agg_reins
(continued from previous page)

```
\hookrightarrow': None, 'agg_kind': '', 'note': 'Tw(p=1.05, \mu=2.0, \sigma^2=5.0) --> CP (\lambda= 0.40671,
ga(a=19, \beta=0.25881623), scale=0.25881623'}
In [22]: print(a19.cdf(0), np.exp(-.40671))
0.6658372329829731 0.6658372551097528
```



## Example.

When p is close to 1 , the Tweedie approaches a Poisson. Here mean $=10$ and sigma $2=1$, so the distribution is not over-dispersed. The gamma severity has mean 1 and a very small CV ; it acts like degenerate distribution at 1 .

```
In [23]: a20 = build('agg DecL:20 tweedie 10 1.0001 1')
In [24]: a20.plot()
In [25]: qd(a20)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 9.9987 0.31625 0.31625
Sev 1.0001 1.0001 1.9973e-11 0.010001 0.010004 0.019989 0.019977
Agg 10 10 1.997e-11 0.31626 0.31626 0.3163 0.3163
log2 = 16, bandwidth = 1/1024, validation: not unreasonable.
In [26]: tweedie_convert(}p=1.0001, \mu=10,\sigma2=1
Out[26]:
\begin{tabular}{lr}
\(\mu\) & 10.000000 \\
\(p\) & 1.000100 \\
\(\sigma^{\wedge} 2\) & 1.000000 \\
\(\lambda\) & 9.998698 \\
a & 9999.000000 \\
\(\beta\) & 0.000100 \\
tw_cv & 0.316264 \\
sev_m & 1.000130 \\
sev_cv & 0.010001 \\
p0 & 0.000045 \\
dtype: float 64
\end{tabular}
```





## Example.

When $p$ is close to 2 , the Tweedie approaches a Gamma. Here mean $=10$, and sigma $2=0.04$. The variance equals sigma2 $\mathrm{mu}^{\wedge} 2$, so $C V=$ sigma $=0.2$

```
In [27]: a21 = build('agg DecL:21 tweedie 10 1.999 0.04', log2=16, bs=1/256)
In [28]: a21.plot()
In [29]: qd(a21)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & E [X] & Est E[X] & Err E[X] & CV (X) & Est CV(X) & Skew (X) & Est Skew (X) \\
\hline \multicolumn{8}{|l|}{X} \\
\hline Freq & 25058 & & & 0.0063173 & & 0.0063173 & \\
\hline Sev & 0.00039908 & 0.00039773 & -0.0033706 & 31.607 & 31.715 & 63.214 & 63.21 \\
\hline Agg & 10 & 9.9663 & -0.0033706 & 0.19977 & 0.20045 & 0.39934 & 0.39932 \\
\hline \multicolumn{8}{|l|}{\(\log 2=16\), bandwidth \(=1 / 256\), validation: fails sev mean, agg mean.} \\
\hline
\end{tabular}
```





Build the same distribution explicitly from gamma severities. Here the gamma is built using mean and CV or shape and scale.

```
In [30]: tc = tweedie_convert(p=1.9999, }\mu=10,\sigma2=.04
In [31]: print(tc)
\mu 10.000000
p 1.999900
\sigma^2 0.040000
\lambda 250057.571255
a 0.000100
\beta 0.399868
tw_cv 0.199977
sev_m 0.000040
sev_cv 99.995000
p0 0.000000
dtype: float64
In [32]: m, cv = tc['\mu'], tc['tw_cv']
In [33]: print(m, cv)
10.0 0.19997697547449372
In [34]: g = build(f'sev g gamma {m} CV {Cv}')
In [35]: sh = cv ** -2; sc = m / sh
In [36]: print(sc, sh)
0.39990790719926267 25.005757125520617
In [37]: g2 = build(f'sev g2 {sc} * gamma {sh}')
In [38]: print(g2.stats(), g.stats())
(9.999999999999968, 3.999079071994487)(10.000000000000108, 3.999079071991673)
```


## Analytic Error Analysis

There is a series expansion for the pdf of a Tweedie computed by conditioning on the number of claims and using that a convolution of gammas with the same scale parameter is again gamma. For a Tweedie with expected frequency $\lambda$, gamma shape $\alpha$ and scale $\beta$, it is given by

$$
f(x)=\sum_{n \geq 1} e^{-\lambda} \frac{\lambda^{n}}{n!} \frac{x^{n \alpha-1} e^{-x / \beta}}{\Gamma(n \alpha) \beta^{n \alpha}}
$$

for $x>0$ and $f(x)=\exp (-\lambda)$. The exact function shows the FFT method is very accurate.

```
In [39]: from aggregate import tweedie_convert, build, qd
In [40]: from scipy.special import loggamma
In [41]: import matplotlib.pyplot as plt
In [42]: import numpy as np
In [43]: from pandas import option_context
In [44]: a = build('agg Tw tweedie 10 1.01 1')
In [45]: qd(a)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 9.8711
```



```
log2 = 16, bandwidth = 1/1024, validation: not unreasonable.
In [46]: a.plot()
```



A Tweedie with $p$ close to 1 approximates a Poisson. Its gamma severity is very peaked around its mean (high $\alpha$ and offsetting small $\beta$ ).

The next function provides a transparent, if inefficient, implementation of the Tweedie density.

```
In [47]: def tweedie_density(x, mean, p, disp):
 : pars = tweedie_convert(p=p, \mu=mean, \sigma2=disp)
```



```
 ...: a=pars['a']
 \ldots..: }\beta=\operatorname{pars['\beta']
 : if x == 0:
 : return np.exp (-\lambda)
 ...: }\quad\operatorname{logl}=np.log(\lambda
 ...: }\quad\operatorname{log}x=np.log(x
 : logb = np.log (}\beta\mathrm{)
 : logbase = - \lambda
 : log_term = 100
 ...: const = - - - x / \beta
```

```
....: ans = 0.0
....: for n in range(1, 2000): #while log_term > -20:
...: log_term = (const +
...: + n * logl +
...: + (n * a - 1) * logx +
...: - loggamma(n+1) +
...: - loggamma (n * a)
...: - n * a * logb)
....: ans += np.exp(log_term)
...: if n > 20 and log_term < -227:
....: break
....: return ans
....:
```

The following graphs show that the FFT approximation is excellent, across a wide range, just as its good momentmatching performance suggests it would be.

```
In [48]: bit = a.density_df.loc[5:a.q(0.99):256, ['p']]
In [49]: bit['exact'] = [tweedie_density(i, 10, 1.01, 1) for i in bit.index]
In [50]: bit['p'] /= a.bs
In [51]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
\hookrightarrowlayout=True, squeeze=True)
In [52]: ax0, ax1 = axs.flat
In [53]: bit.plot (ax=ax0);
In [54]: ax0.set(ylabel='density');
In [55]: bit['err'] = bit.p / bit.exact - 1
In [56]: bit.err.plot(ax=ax1);
In [57]: ax1.set(ylabel='relative error', ylim=[-1e-5, 1e-5]);
```




### 2.4.12 Summary of Objects Created by DecL

Objects created by build () in the DecL guide.

```
In [1]: from aggregate import build, pprint_ex
In [2]: for n, r in build.qlist('^DecL:').iterrows():
 ...: pprint_ex(r.program, split=20)
 ... :
```


### 2.5 Individual Risk Pricing

Objectives: Applications of the Aggregate class to individual risk pricing, including LEVs, ILFs, layering, and the insurance charge and savings (Table L, M), illustrated using problems from CAS Part 8.

Audience: Individual risk large account pricing, broker, or risk retention actuary.
Prerequisites: DecL, underwriting and insurance terminology, aggregate distributions, risk measures.
See also: Reinsurance Pricing, The Reinsurance Clauses. For other related examples see Published Problems and Examples, especially Bahnemann Monograph. ir stop loss for theoretical background.

## Contents:

1. Helpful References
2. Insurance Charge and Insurance Savings in Aggregate
3. Summary of Objects Created by DecL

The examples in this section are illustrative. aggregate gives the gross, ceded, and net distributions and with those in hand, it is possible to answer any reasonable question about a large account program.

### 2.5.1 Helpful References

- Fisher et al. [2019]
- Bahnemann [2015]
- Other CAS Part 8 readings.


### 2.5.2 Insurance Charge and Insurance Savings in Aggregate

Creating a custom table of insurance charges and savings, varying with account size, specific occurrence limit, and entry ratio (aggregate limit) is very easy using aggregate. We will make a custom function to illustrate one solution.

First, we need a severity curve. This step is very important, and would be customized to the state and hazard group distribution of expected losses. We use a simple mixture of a lognormal for small claims and a Pareto for large claims, with a mean of about 25 (work in 000s). Create it as an object in the knowledge using build (). The parameters are selected judgmentally.

```
In [1]: from aggregate import build, qd
In [2]: mu, sigma, shape, scale, wt = \
 ...: -0.204573975, 1.409431871, 1.633490596, 57.96737143, 0.742942461
 ...:
In [3]: mean = wt * np.exp(mu + sigma**2 / 2) + (1 - wt) * scale / (shape - 1)
In [4]: build(f'sev IR:WC
 ...: f'[exp({mu}) {scale}] * [lognorm pareto] [{sigma} {shape}] '
 ...: f'+ [0 {-scale}] wts [{wt} {1-wt}]');
 ...:
In [5]: print(f'Mean = {mean:.1f} in 000s')
Mean = 25.2 in 000s
```

Second, we will build the model for a large account with 350 expected claims and an occurrence limit of 100M. This model is used to set the update parameters. Assume a gamma mixed Poisson frequency distribution with a mixing CV of $25 \%$ throughout. The CV could be an input parameter in a production application.

```
In [6]: a01 = build('agg IR:Base '
 ...: '350 claims '
 ...: '100000 xs 0 '
 ...: 'sev sev.IR:WC '
 ...: 'mixed gamma 0.25 ',
 ...: update=False)
 ... :
```

In [7]: qd (a01)
E[X] CV(X) Skew(X)
X
Freq $\quad 350 \quad 0.25565 \quad 0.50012$
Sev $24.94710 .172 \quad 177.37$
Agg 8731.6 $0.6008 \quad 7.3319$
$\log 2=0$, bandwidth $=$ na, validation: $n / a$, not updated.
In [8]: qd(a01.statistics.loc['sev', [0, 1, 'mixed']])

name	0	1	mixed
measure			
ex1	2.2005	90.69	24.947
ex2	35.299	$2.5281 e+05$	65013
ex3	4127.8	$1.1293 e+10$	$2.9029 e+09$
mean	2.2005	90.69	24.947
cv	2.508	5.4532	10.172
skew	23.299	92.803	177.37

Look at the aggregate_error_analysis to pick bs (see Estimating and Testing bs For Aggregate Objects). Use an expanded number of buckets $\log 2=19$ because the mixture includes small mean lognormal and large mean Pareto components (some trial and error not shown).

```
In [9]: err_anal = a01.aggregate_error_analysis(19)
In [10]: qd(err_anal, sparsify=False)
\begin{tabular}{lrrrrrr}
view & agg & est & abs & rel & rel & rel \\
stat & \(m\) & \(m\) & \(m\) & \(m\) & \(h\) & total
\end{tabular}
bs
0.0625 8731.6 8552.1 -179.54 -0.020562 0.0012526 -0.021815
0.1250 8731.6 8647.1 -84.529 -0.0096808 0.0025053 -0.012186
0.2500 8731.6 8731.1 -0.5447 -6.2382e-05 0.0050105 -0.0050729
0.5000 8731.6 8728.8 -2.798 -0.00032045 0.010021 -0.010342
1.0000 8731.6 8719.9 -11.715 -0.0013417 0.020042 -0.021384
2.0000 8731.6 8694.4 -37.172 -0.0042572 0.040084 -0.044341
4.0000 8731.6 8639.2 -92.465 -0.01059 0.080168 -0.090758
```

Select $\mathrm{bs}=1 / 4$ as the most accurate from the displayed range (" ('rel', ' m ')"). Update and plot. The plot shows the impact of the occurrence limit in the extreme right tail.

```
In [11]: a01.update(approximation='exact', log2=19, bs=1/4, normalize=False)
In [12]: qd(a01)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Agg 8731.6 8731.1 -6.2382e-05 0.6008 0.60063 7.3319 7.3121
log2 = 19, bandwidth = 1/4, validation: not unreasonable.
In [13]: a01.plot()
```



Third, create a custom function of account size and the occurrence limit, to produce the Aggregate object and a small table of insurance savings and charges. Account size is measured by the expected ground-up claim count. It should be clear how to extend this function to include custom severity, different mixing CVs, or produce factors for different entry ratios. The answer is returned in a namedt uple.

```
In [14]: from collections import namedtuple
In [15]: def make_table(claims=360, occ_limit=100000):
 : """
 : Make a table of insurance charges and savings by entry ratio for
 ...: specified account size (expected claim count) and specific
 : occurrence limit.
 : """
 : a01 = build(f'agg IR:{claims}:{occ_limit} '
 ...: f'{claims} claims '
 ...: f'{occ_limit} xs 0 '
 ...: 'sev sev.IR:WC '
 ...: 'mixed gamma 0.25 '
 ...: , approximation='exact', log2=19, bs=1/4, normalize=False)
 : er_table = np.linspace(.1, 2., 20)
 : df = a01.density_df
 : ix = df.index.get_indexer(er_table * a01.est_m, method='nearest')
 : df = a01.density_df.iloc[ix][['loss', 'F', 'S', 'e', 'lev']]
 : df['er'] = er_table
 : df['charge'] = (df.e - df.lev) / a01.est_m
 ...: df['savings'] = (df.loss - df.lev) / a01.est_m
 : df['entry'] = df.loss / a01.est_m
 : df = df.set_index('entry')
 : df = df.drop(columns=['e', 'er'])
 : df.index = [f"{x:.2f}" for x in df.index]
 : df.index.name = 'r'
 : Table = namedtuple('Table', ['ob', 'table_df'])
 : return Table(a01, df)
 :
```

Finally, apply the new function to create some tables.

1. A small account with 25 expected claims, about 621 K limited losses, and a low 50 K occurrence limit. The output shows the usual describe diagnostics for the underlying Aggregate object, followed by a small Table across different entry ratios. The Table is indexed by entry ratio(aggregate attachment as a proportion of limited losses) and shows loss the aggregate limit loss level in currency units; the cdf and sf at that loss level (the latter giving the probability the aggregate layer attaches); the limited expected value at the entry ratio lev; and the insurance charge (1 - lev / loss) and savings (r - lev / loss).
```
In [16]: tl = make_table(25, 50)
In [17]: fc = lambda x: f'{x:,.1f}' if abs(x) > 10 else f'{x:.3f}'
In [18]: qd(tl.ob)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```

(continued from previous page)

2. The impact of increasing the occurrence limit to 250 K :

(continued from previous page)

1.50	637.0	0.808	0.192	386.9	0.089	0.589
1.60	679.5	0.842	0.158	394.3	0.072	0.672
1.70	722.0	0.870	0.130	400.4	0.057	0.757
1.80	764.5	0.894	0.106	405.4	0.046	0.846
1.90	807.0	0.915	0.085	409.4	0.036	0.936
2.00	849.5	0.931	0.069	412.7	0.028	1.029

3. The impact of increasing the account size to 250 expected claims, still at 250 K occurrence limit:
```
In [23]: tl3 = make_table(250, 250)
In [24]: qd(tl3.ob)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq
Agg 4247.3 4246.9 -8.0799e-05 0.30548 0.30549 0.52614 0.52615
log2 = 19, bandwidth = 1/4, validation: not unreasonable.
In [25]: qd(tl3.table_df, float_format=fc, col_space=8)
\begin{tabular}{lrrrrrr}
& loss & F & S & lev & charge & savings \\
\(r\) & & & & & \\
0.10 & 424.8 & 0.000 & 1.000 & 424.7 & 0.900 & 0.000 \\
0.20 & 849.5 & 0.000 & 1.000 & 849.5 & 0.800 & 0.000 \\
0.30 & \(1,274.0\) & 0.001 & 0.999 & \(1,273.7\) & 0.700 & 0.000 \\
0.40 & \(1,698.8\) & 0.009 & 0.991 & \(1,696.7\) & 0.600 & 0.000 \\
0.50 & \(2,123.5\) & 0.031 & 0.969 & \(2,113.8\) & 0.502 & 0.002 \\
0.60 & \(2,548.2\) & 0.080 & 0.920 & \(2,516.2\) & 0.408 & 0.008 \\
0.70 & \(2,972.8\) & 0.161 & 0.839 & \(2,890.8\) & 0.319 & 0.019 \\
0.80 & \(3,397.5\) & 0.272 & 0.728 & \(3,224.5\) & 0.241 & 0.041 \\
0.90 & \(3,822.2\) & 0.402 & 0.598 & \(3,506.5\) & 0.174 & 0.074 \\
1.00 & \(4,247.0\) & 0.535 & 0.465 & \(3,732.1\) & 0.121 & 0.121 \\
1.10 & \(4,671.8\) & 0.657 & 0.343 & \(3,903.0\) & 0.081 & 0.181 \\
1.20 & \(5,096.2\) & 0.760 & 0.240 & \(4,025.9\) & 0.052 & 0.252 \\
1.30 & \(5,521.0\) & 0.840 & 0.160 & \(4,110.1\) & 0.032 & 0.332 \\
1.40 & \(5,945.8\) & 0.898 & 0.102 & \(4,165.1\) & 0.019 & 0.419 \\
1.50 & \(6,370.5\) & 0.937 & 0.063 & \(4,199.6\) & 0.011 & 0.511 \\
1.60 & \(6,795.0\) & 0.963 & 0.037 & \(4,220.4\) & 0.006 & 0.606 \\
1.70 & \(7,219.8\) & 0.979 & 0.021 & \(4,232.5\) & 0.003 & 0.703 \\
1.80 & \(7,644.5\) & 0.988 & 0.012 & \(4,239.3\) & 0.002 & 0.802 \\
1.90 & \(8,069.2\) & 0.994 & 0.006 & \(4,243.0\) & 0.001 & 0.901 \\
2.00 & \(8,494.0\) & 0.997 & 0.003 & \(4,244.9\) & 0.000 & 1.000
\end{tabular}
```

4. Finally, increase the occurrence limit to 10 M :
```
In [26]: tl4 = make_table(250, 10000)
In [27]: qd(tl4.ob)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 250 0.25788 0.50024
Sev 24.26 24.258 -5.6594e-05 6.2915 6.2918 33.759 33.759
Agg 6064.9 6064.6 -5.6594e-05 0.47416 0.47418 1.6385 1.6386
log2 = 19, bandwidth = 1/4, validation: not unreasonable.
In [28]: qd(tl4.table_df, float_format=fc, col_space=8)
```

    loss \(F\) S lev charge savings
    (continued from previous page)

$r$						
0.10	606.5	0.000	1.000	606.5	0.900	0.000
0.20	$1,213.0$	0.001	0.999	$1,212.9$	0.800	0.000
0.30	$1,819.2$	0.008	0.992	$1,817.1$	0.700	0.000
0.40	$2,425.8$	0.033	0.967	$2,412.5$	0.602	0.002
0.50	$3,032.2$	0.086	0.914	$2,984.7$	0.508	0.008
0.60	$3,638.8$	0.168	0.832	$3,515.7$	0.420	0.020
0.70	$4,245.2$	0.272	0.728	$3,989.4$	0.342	0.042
0.80	$4,851.8$	0.385	0.615	$4,396.7$	0.275	0.075
0.90	$5,458.0$	0.496	0.504	$4,735.5$	0.219	0.119
1.00	$6,064.5$	0.595	0.405	$5,010.4$	0.174	0.174
1.10	$6,671.0$	0.680	0.320	$5,229.3$	0.138	0.238
1.20	$7,277.5$	0.750	0.250	$5,401.4$	0.109	0.309
1.30	$7,884.0$	0.805	0.195	$5,535.8$	0.087	0.387
1.40	$8,490.5$	0.847	0.153	$5,640.8$	0.070	0.470
1.50	$9,096.8$	0.880	0.120	$5,723.1$	0.056	0.556
1.60	$9,703.2$	0.905	0.095	$5,788.1$	0.046	0.646
1.70	$10,309.8$	0.924	0.076	$5,839.8$	0.037	0.737
1.80	$10,916.2$	0.938	0.062	$5,881.6$	0.030	0.830
1.90	$11,522.8$	0.949	0.051	$5,915.7$	0.025	0.925
2.00	$12,129.0$	0.958	0.042	$5,943.8$	0.020	1.020

These Tables all behave as expected. The insurance charge decreases with increasing expected losses (claim count) and decreasing occurrence limit.

### 2.5.3 Summary of Objects Created by DecL

Objects created by build() in this guide.

```
In [29]: from aggregate import pprint_ex
In [30]: for n, r in build.qlist('^IR:').iterrows():
 : pprint_ex(r.program, split=20)
 :
```


### 2.6 Reinsurance Pricing

Objectives: Applications of the Aggregate class to reinsurance exposure rating, including swings and slides, aggregate stop loss and swing rated programs, illustrated using problems from CAS Parts 8 and 9 .

Audience: Reinsurance pricing, broker, or ceded re actuary.
Prerequisites: DecL, underwriting and reinsurance terminology, aggregate distributions, risk measures.
See also: The Reinsurance Clauses, Individual Risk Pricing. For other related examples see Published Problems and Examples, especially Bahnemann Monograph.

## Contents:

1. Helpful references
2. Basic examples
3. Modes of reinsurance analysis
4. Reinsurance Functions
5. Casualty exposure rating
6. Property exposure rating
7. Variable features
8. Inwards analysis of Bear and Nemlick variable features

- Aggregate deductible
- Aggregate limit
- Loss corridor
- Retro rated program
- Profit share
- Sliding scale commission

9. Outwards analysis
10. Adjusting layer loss picks
11. Summary of Objects Created by DecL

### 2.6.1 Helpful References

- General reinsurance: Strain [1997], Carter [2013], Albrecher et al. [2017], Parodi [2015]
- Clark [2014], CAS Part 8 reading
- General reinsurance pricing: Bear and Nemlick [1990], Mata et al. [2002]
- Property rating: Bernegger [1997], Ludwig [1991]
- Mildenhall and Major [2022] chapter 19


### 2.6.2 Basic Examples

Here are some basic examples. They are not realistic, but it is easy to see what is going on. The subsequent sections add realism. The basic example gross loss is a "die roll of dice rolls": roll a die, then roll that many dice and sum, see Student. The outcome is between 1 (probability $1 / 36$ ) and 36 (probability $1 / 6^{* *} 7$ ), as confirmed by this output.

```
In [1]: import pandas as pd
In [2]: from aggregate import build, qd
In [3]: a01 = build('agg Re:01 '
 ...: 'dfreq [1 2 3 4 5 6] '
 ...: 'dsev [\begin{array}{llllll}{1}&{2}&{3}&{4}&{5}&{6}\end{array}]
 ... :
In [4]: a01.plot()
In [5]: qd(a01)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lllllll
Agg 12.25 12.25 1.5543e-15 0.55328 0.55328 0.28689 0.28689
log2 = 7, bandwidth = 1, validation: not unreasonable.
In [6]: print(f'Pr D = 1: {a01.pmf(1) : 11.6g} = {a01.pmf(1) * 36:.0f} / 36\n'
 ...: f'Pr D = 36: {a01.pmf(36):8.6g}={a01.pmf(36)* 6**7:.0f}/ 6**7')
 ...:
Pr D = 1: 0.0277778 = 1 / 36
Pr D = 36: 3.57225e-06=1/6**7
```



An occurrence excess of loss reinsurance layer is specified between the severity and frequency clauses because you need to know severity but not frequency. Multiple layers can be applied at once. This example enters 2 xs 4 as two layers:

```
occurrence net of 1 xs 4 and 1 xs 5
```

Requesting net of propagates losses net of the cover through to the aggregate.

```
In [7]: a02 = build('agg Re:02 '
 ...: 'dfreq [1:6] '
 ...: 'dsev [1:6] '
 ...: 'occurrence net of 1 xs 4 and 1 xs 5')
 ... :
In [8]: a02.plot()
In [9]: qd(a02)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lllllll
Agg 12.25 10.5 -0.14286 0.55328 0.52955 0.28689 0.18324
log2 = 7, bandwidth = 1, validation: n/a, reinsurance.
```


[1:6] is shorthand for $[1,2,3,4,5,6]$. The net severity equals $3=(1+2+3+4+4+4) / 6$.
The reinsurance_audit_df dataframe shows unconditional (per ground up claim) severity statistics by layer. Multiply by the claim count $\mathrm{a} 02 . \mathrm{n}$ to get layer loss picks. The severity, ex, equals $(1+2) / 6=0.5$ (first block). The expected loss to the layer equals $0.5 * 3.5=1.75$ (second block).

```
In [10]: qd(a02.reinsurance_audit_df['ceded'])
lllllllll
In [11]: qd(a02.reinsurance_audit_df['ceded'], sparsify=False)
 ex var sd cv skew
```

(continued from previous page)

```
kind share limit attach
occ 1.0 1.0 4.0 0.33333 0.22222 0.4714 1.4142 0.70711
осс 1.0 1.0 5.0 0.16667 0.13889 0.37268 2.2361 1.7889
occ all inf gup 0.5 0.58333 0.76376 1.5275 1.1223
In [12]: qd(a02.reinsurance_audit_df['ceded'][['ex']] * a02.n)
 ex
kind share limit attach
occ 1.0 1.0 4.0 1.1667
 all inf gup 1.75
```

The reinsurance_occ_layer_df shows conditional layer expected loss and CV of loss, along with expected counts by layer and layer severity. The expected count to 1 xs 4 equals $3.5 / 3$, because there is a $1 / 3$ chance the layer attaches.

```
In [13]: qd(a02.reinsurance_occ_layer_df, sparsify=False)
```



```
ceded
share limit attach
```



```
\hookrightarrow.095238
1.0 1.0 5.0 0.58333 11.667 12.25 2.2361 0.44721 0.48795 0.58333 1-
\hookrightarrow0.047619
all inf gup 1.75 10.5 12.25 1.5275 0.3849 0.48795 3.5 0.5 llllllll
\hookrightarrow.14286
```

An aggregate excess of loss reinsurance layer, 12 xs 24 , is specified after the frequency clause (you need to know frequency):

```
aggregate ceded to 12 xs 34.
```

Requesting ceded to propagates the ceded losses through to the aggregate. Refer to agg. Re:01 by name as a shorthand. reinsurance_audit_df reports expected loss to the aggregate layer. The layer is shown in two parts to illustrate reporting.

```
In [14]: a03 = build('agg Re:03 agg.Re:01
 ...: 'aggregate ceded to 6 xs 24 and 6 xs 30')
 :
In [15]: a03.plot()
In [16]: qd(a03)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3.5 0.48795 0
Sev 3.5 3.5 0 0.48795 0.48795 0 2.8529e-15
Agg 12.25 0.10661 -0.9913 0.55328 5.9383 0.28689 7.6018
log2 = 7, bandwidth = 1, validation: n/a, reinsurance.
In [17]: qd(a03.reinsurance_audit_df.stack(0))
```


(continued from previous page)


Occurrence and aggregate programs can both be applied. The ceded to and net of clauses can be mixed. You cannot refer to agg. Re: 01 by name because you need to see into the object to apply the occurrence reinsurance.

```
In [18]: a04 = build('agg Re:04 dfreq [1:6] dsev [1:6] '
 ...: 'occurrence net of 1 xs 4 and 1 xs 5 '
 ...: 'aggregate net of 4 xs 12 and 4 xs 16')
 :
In [19]: a04.plot()
In [20]: qd(a04)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lllllll
Agg 12.25 8.8731 -0.27566 0.55328 0.41047 0.28689 -0.61588
log2 = 7, bandwidth = 1, validation: n/a, reinsurance.
In [21]: qd(a04.reinsurance_audit_df['ceded'])
```




Layers can be specified as a share of or part of to account for coinsurance (partial placement) of the layer:

- 0.5 so 2 xs 2 , read $50 \%$ share of 2 xs 2 , or
- 1 po 4 xs 10 , read 1 part of 4 xs 10 .

Warning: aggregate works with discrete distributions. All outcomes are multiples of the bucket size, bs. Any cession is rounded to a multiple of bs. Ensure bs is appropriate to capture cessions when applying share or part of. By default build uses $\mathrm{bs}=1$ when it detects a discrete distribution, such as the die roll example. Ceding to 0.5 so 2 xs 2 produces ceded losses of 0.5 and net losses of 2.5 . To capture these needs a much smaller discretization grid. Non-discrete aggregates plot as though they are continuous or mixed distributions.

These concepts are illustrated in the next example. Note the bucket size.

```
In [22]: a05 = build('agg Re:05 '
 ...: 'dfreq [1:6] dsev [1:6] '
 ...: 'occurrence net of 0.5 so 2 xs 2 and 2 xs 4 '
 ...: 'aggregate net of 1 po 4 xs 10'
 ...: , bs=1/512, log2=16)
 :
In [23]: a05.plot()
In [24]: qd(a05)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
llllllll
Agg 12.25 8.2063 -0.3301 0.55328 0.49122 0.28689 0.0035585
log2 = 16, bandwidth = 1/512, validation: n/a, reinsurance.
In [25]: qd(a05.reinsurance_audit_df['ceded'])
```




A tower of limits can be specified by giving the attachment points of each layer. The shorthand:

```
occurrence ceded to tower [\begin{array}{llllllll}{0}&{1}&{2}&{5}&{10}&{20}&{36}\end{array}]
```

is equivalent to:

```
occurrence ceded to 1 xs 0 and 1 xs 1 and 3 xs 2 \
and 5 xs 5 and 10 xs 10 and 16 xs 20
```

Here is a summary of these examples. The audit dataframe gives a layering of aggregate losses. The plot is omitted; it is identical to gross since the tower covers all losses.

```
In [26]: a06 = build('agg Re:06 '
 : 'agg.Re:01
 ...: 'aggregate ceded to tower [0 1 2 5 5 10 20 36]')
 :
In [27]: a06.plot()
In [28]: qd(a06)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Agg 12.25 12.25 2.2204e-16 0.55328 0.55328 0.28689 0.28689
log2 = 7, bandwidth = 1, validation: n/a, reinsurance.
In [29]: qd(a06.reinsurance_audit_df['ceded'], sparsify=False)
```



See Reinsurance Functions for more about the reinsurance functions.

### 2.6.3 Modes of Reinsurance Analysis

Inwards reinsurance pricing is begins with an estimated loss pick, possibly supplemented by distribution and volatility statistics such as loss standard deviation or quantiles. aggregate can help in two ways.

1. Excess of loss exposure rating that accounts for the limits profile of the underlying business and how it interacts with excess layers. Uses only the severity distribution through difference of increased limits factors. This application is peripheral to the underlying purpose of aggregate, but is very convenient nonetheless.
2. The impact of treaty variable features that are derived from the full aggregate distribution of ceded losses and expenses-a showcase application.

Outwards reinsurance is evaluated based on the loss pick and the impact of the cession on the distribution of retained losses. Ceded re and broker actuaries often want the full gross and net outcome distributions.

### 2.6.4 Reinsurance Functions

This section demonstrates Aggregate methods and properties for reinsurance analysis. These are:

- reinsurance_kinds () a text description of the kinds (occurrence and/or aggregate) of reinsurance applied.
- reinsurance_description() a text description of the layers and shares, by kind.
- reinsurance_occ_plot () plots subject (usually gross), ceded, and net severity, and aggregates created from each. Does not consider aggregate reinsurance.
- reinsurance_audit_df dataframe summary by ceded, net, and subject, showing mean, CV, SD, and skewness of occurrence loss by layer and in total by kind.
- reinsurance_occ_layer_df dataframe showing an expected loss layering analysis for occurrence reinsurance.
- reinsurance_df dataframe showing all possible densities.
- reinsurance_report_df dataframe showing mean, CV, skew, and SD statistics for each column in reinsurance_df.
These are illustrated using the a more realistic example that includes occurrence and aggregate reinsurance. Notice that the occurrence program just layers gross (subject) losses. Gross losses are then passed through to the aggregate program. This is done to illustrate the functions below. In a real-world application is is likely the bottom few occurrence layers would be dropped and you would pass the net of through to the aggregate.

```
In [30]: from aggregate import build, qd
In [31]: a = build('agg ReTester '
 : '10 claims '
 ...: '5000 xs 0 '
 ...: 'sev lognorm 100 cv 5 '
 ...: 'occurrence ceded to 250 xs 0 and 250 xs 250 and 500 xs 500 andu
\hookrightarrow1000 xs 1000 and 3000 xs 2000 '
 'poisson '
 ...: 'aggregate ceded to 250 xs 750 and 1500 xs 1000'
 :)
 :
In [32]: qd(a)
```



```
log2 = 16, bandwidth = 1/2, validation: n/a, reinsurance.
In [33]: print(a.reinsurance_kinds())
Occurrence and aggregate
In [34]: print(a.reinsurance_description())
Ceded to 100% share of 250 xs 0 and 100% share of 250 xs 250 and 100% share of 500.
Gs 500 and 100% share of 1,000 xs 1,000 and 100% share of 3,000 xs 2,000 peru
\hookrightarrowoccurrence then ceded to 100% share of 250 xs 750 and 100% share of 1,500 xs 1,
\hookrightarrow000 in the aggregate.
```

'plot shows the impact of occurrence reinsurance on severity and aggregate losses, and the ceded severity and aggregate.

In [35]: a.reinsurance_occ_plot()


The reinsurance_audit_df dataframe shows unconditional layer severity that "adds-up" to the total layer severity; compare to the total with the severity statistics in description above. These only match when the reinsurance layers exhaust the ground-up limit.

```
In [36]: qd(a.reinsurance_audit_df, sparsify=False)
```

(continued from previous page)


The reinsurance_occ_layer_df dataframe shows unconditional aggregate statistics. The blocks ex and cv show values from audit_df times expected claim counts; en shows claim counts by layer. severity shows the implied conditional layer severity, equal to expected loss from audit_df divided by the probability of attaching the layer.

```
In [37]: qd(a.reinsurance_occ_layer_df, sparsify=False)
```


(continued from previous page)

| all inf | inup | 950.57 | 0 | 950.57 | 3.2307 | NaN | 3.2307 | 10 | $95.057-1$ |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\hookrightarrow$ | 1 |  |  |  |  |  |  |  |  |

The reinsurance_df density dataframe shows subject, ceded, and net occurrence (severity); aggregates created from each (without aggregate reinsurance); and subject, ceded, and net of requested aggregate reinsurance.

```
In [38]: qd(a.reinsurance_df, max_rows=20)
 loss p_sev_gross p_sev_ceded p_sev_net p_agg_gross_occ p_agg_ceded_
Occ \
loss
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 0.0 \\
& \hookrightarrow 05
\end{aligned}
\] & 0 & 0.0078283 & 0.0078283 & 1 & \(4.9097 e-05\) & \(4.9097 e-\) \\
\hline \[
\begin{aligned}
& 0.5 \\
& \hookrightarrow 05
\end{aligned}
\] & 0.5 & 0.027461 & 0.027461 & 0 & \(1.3482 \mathrm{e}-05\) & \(1.3482 \mathrm{e}-\) \\
\hline \[
\begin{aligned}
& 1.0 \\
& \rightarrow 05
\end{aligned}
\] & 1 & 0.028318 & 0.028318 & 0 & \(1.5754 \mathrm{e}-05\) & \(1.5754 \mathrm{e}-\) \\
\hline \[
\begin{aligned}
& 1.5 \\
& \rightarrow 05
\end{aligned}
\] & 1.5 & 0.026716 & 0.026716 & 0 & \(1.7104 \mathrm{e}-05\) & \(1.7104 \mathrm{e}-\) \\
\hline \[
\begin{aligned}
& 2.0 \\
& \rightarrow 05
\end{aligned}
\] & 2 & 0.024836 & 0.024836 & 0 & \(1.83 e-05\) & \(1.83 \mathrm{e}-\) \\
\hline \[
\begin{aligned}
& 2.5 \\
& \rightarrow 05
\end{aligned}
\] & 2.5 & 0.023058 & 0.023058 & 0 & \(1.9467 \mathrm{e}-05\) & \(1.9467 e-\) \\
\hline \[
\begin{aligned}
& 3.0 \\
& \rightarrow 05
\end{aligned}
\] & 3 & 0.021453 & 0.021453 & 0 & \(2.0635 \mathrm{e}-05\) & \(2.0635 \mathrm{e}-\) \\
\hline \[
\begin{aligned}
& 3.5 \\
& \rightarrow 05
\end{aligned}
\] & 3.5 & 0.020023 & 0.020023 & 0 & \(2.1812 \mathrm{e}-05\) & \(2.1812 \mathrm{e}-\) \\
\hline \[
\begin{aligned}
& 4.0 \\
& \rightarrow 05
\end{aligned}
\] & 4 & 0.01875 & 0.01875 & 0 & \(2.3 e-05\) & \(2.3 e^{-}\) \\
\hline 4.5 & 4.5 & 0.017615 & 0.017615 & 0 & \(2.42 e-05\) & \(2.42 \mathrm{e}-\) \\
\hline
\end{tabular}
\hookrightarrow05
\hookrightarrow.
32763.0 32763
\hookrightarrow0
32763.5 32764
\hookrightarrow0
32764.0 32764
\hookrightarrow0
32764.5 32764
\hookrightarrow0
32765.0 32765 0 0
\hookrightarrow0
32765.5 32766
\hookrightarrow0
32766.0 32766
\hookrightarrow0
32766.5 32766 0
\hookrightarrow0
32767.0 32767
\hookrightarrow0
32767.5 3276
\hookrightarrow0
 p_agg_net_occ p_agg_gross p_agg_ceded p_agg_net
loss
0.0 1 4.9097e-05 0.57612 4.9097e-05
0.5 0 1.3482e-05 0.00029446 1.3482e-05
1.0 0 1.5754e-05 0.00029422 1.5754e-05
1.5 0 1.7104e-05 0.00029398 1.7104e-05
```

				(continued from previous page)	
2.0	0	$1.83 e-05$	0.00029374	$1.83 e-05$	
2.5	0	$1.9467 e-05$	0.00029351	$1.9467 e-05$	
3.0	0	$2.0635 e-05$	0.00029327	$2.0635 e-05$	
3.5	0	$2.1812 e-05$	0.00029303	$2.1812 e-05$	
4.0	0	$2.3 e-05$	0.00029279	$2.3 e-05$	
4.5	0	$2.42 e-05$	0.00029256	$2.42 e-05$	
$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\cdots$	0
32763.0	0	$4.3423 e-19$	0	0	0
32763.5	0	$4.2049 e-19$	0	0	0
32764.0	0	$4.3521 e-19$	0	0	0
32764.5	0	$4.2965 e-19$	0	0	0
32765.0	0	$4.2249 e-19$	0	0	0
32765.5	0	$4.1451 e-19$	0	0	0
32766.0	0	$4.2417 e-19$	0	0	0
32766.5	0	$4.0984 e-19$	0	0	0

The reinsurance_report_df shows statistics for the densities in reinsurance_df. The p_agg_gross column matches the theoretical (gross) output shown in qd (a) at the top and the p_agg_ceded column matches the estimated output because the aggregate program requested ceded to output. The net column is the difference.


### 2.6.5 Casualty Exposure Rating

This example calculates the loss pick for excess layers across a subject portfolio with different underlying limits and deductibles but a common severity curve. The limit profile is given by a premium distribution and the expected loss ratio varies by limit. Values are in 000 s . Policies at 1 M and 2 M limits are ground-up and those at 5 M and 10 M limits have a 100 K and 250 K deductible. The full assumptions are:

```
In [40]: profile = pd.DataFrame({'limit': [1000, 2000, 5000, 10000],
 'ded' : [0, 0, 100, 250],
 : 'premium': [10000, 5000, 2500, 1500],
 ...: 'lr': [.75,.75,.7,.65]
 ...: }, index=pd.Index(range(4), name='class'))
 :
In [41]: qd(profile)
 limit ded premium lr
class
```

(continued from previous page)

0	1000	0	10000	0.75
1	2000	0	5000	0.75
2	5000	100	2500	0.7
3	10000	250	1500	0.65

The severity is a lognormal with an unlimited mean of 50 and cv of $10, \sigma=2.148$. The gross portfolio and tower are created in a 07 . A typical XOL tower up to 10 M is created by specifying the layer break points in an occurrence ceded to tower clause.

```
In [42]: a07 = build('agg Re:07 '
 ...: f'{profile.premium.values} premium at {profile.lr.values} lr '
 : f'{profile.limit.values} xs {profile.ded.values} '
 ...: 'sev lognorm 50 cv 10 '
 ...: 'occurrence ceded to tower [0 250 500 1000 2000 5000 10000] '
 : 'poisson '
 ...: , approximation='exact', log2=18, bs=1/2)
 :
In [43]: qd(a07)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & E [X] & t E[X] & Err E [X] & CV (X) & Est CV(X) & Skew (X) & Est & Skew (X) \\
\hline \multicolumn{9}{|l|}{X} \\
\hline Freq & 292.72 & & & 0.058448 & & 0.058448 & & \\
\hline Sev & 47.741 & 47.737 & -8.6055e-05 & 4.0096 & 4.01 & 15.901 & & 15.901 \\
\hline Agg & 13975 & 13974 & -8.6055e-05 & 0.24153 & 0.24156 & 0.88974 & & 0.88974 \\
\hline \multicolumn{9}{|l|}{log2 = 18, bandwidth = 1/2, validation: \(\mathrm{n} / \mathrm{a}\), reinsurance} \\
\hline
\end{tabular}
```

There are special options in build because the claim count is high: 292.7. To force a convolution use approximation='exact'. Reviewing the default $\mathrm{bs}=1 / 2$ and $\log 2=16$ shows a moderate error. Looking at the density via:

```
a07.density_df.p_total.plot(logy=True)
```

shows aliasing, i.e., there is not enough space in the answer. Adjust by increasing $\log 2$ from 16 to 18 and leaving bs=1/2.

The dataframe reinsurance_occ_layer_df shows layer expected loss, CV, counts, and conditional severity. The last column shows the percent of subject ceded to each layer.

stat	ex	ex	ex	cv	CV	CV	enь	
$\rightarrow$ severity pct								
view	ceded	net	subject	ceded	net	subject	ceded	-
$\rightarrow$ ceded ceded share limit attach								$\checkmark$
$\rightarrow$ -								
1.0 $250.0 \quad 0.0$	8724.1	5249.7	13974	1.9905	8.8564	4.01	292.72	29.
$\hookrightarrow 803 \quad 0.62432$								
1.0 250.0 250.0	2076.6	11897	13974	5.4793	4.0236	4.01	12.063	$\checkmark$
$\hookrightarrow 172.150 .14861$								
1.0 500.0 500.0	1917.9	12056	13974	8.0564	3.7267	4.01	5.8545	$\checkmark$
$\hookrightarrow 327.58 \quad 0.13725$								
$1.0 \quad 1000.01000 .0$	775.37	13198	13974	17.887	3.5805	4.01	1.2306	$\checkmark$
$\hookrightarrow 630.10 .055488$								
$1.0 \quad 3000.02000 .0$	400.74	13573	13974	41.327	3.509	4.01	0.26392	$\checkmark$
$\rightarrow 1518.40 .028678$								
1.05000 .05000 .0	79.06	13895	13974	122.64	3.8196	4.01	0.027983	$\checkmark$
$\hookrightarrow 2825.30 .0056577$								
all inf gup	13974	$-7.8694 e-09$	13974	4.01	NaN	4.01	292.72	47.
$\hookrightarrow 7371$								

### 2.6.6 Property Risk Exposure Rating

Property risk exposure rating differs from casualty in part because the severity distribution varies with each risk (location). Rather than a single ground-up severity curve per class, there is a size of loss distribution normalized by property total insured value (TIV).

We start by introducing the Swiss Re severity curves, Bernegger [1997] using a moments-matched beta distribution. The function G defines the MBBEFD distribution, parameterized by c .

```
In [45]: from aggregate import xsden_to_meancv
In [46]: import scipy.stats as ss
In [47]: import numpy as np
In [48]: import matplotlib.pyplot as plt
In [49]: def b.b(c):
 : return np.exp(3.1 - 0.15*c*(1+c))
 :
In [50]: def bg(c):
 : return np.exp((0.78 + 0.12*c)*c)
 :
In [51]: def G(x, c):
 : b = bb (c)
 : g = bg(c)
 ...: return np.log(((g - 1) * b + (1 - g * b) * b**x) / (1 - b)) / np.
\hookrightarrowlog(g * b)
```

Here are the base curves, compare Figure 4.2 in Bernegger [1997]. The curve $c=5$ is close to the Lloyd's curve (scale).

```
In [52]: fig, ax = plt.subplots(1, 1, figsize=(2.45, 2.55), constrained_
@layout=True)
In [53]: ans = []
In [54]: ps = np.linspace(0,1,101)
In [55]: for c in [0, 1, 2, 3, 4, 5]:
 \ldots..: gs = G(ps,c)
 : ax.plot(ps, gs, label=f'c={c}')
 : ans.append([c, *xsden_to_meancv(ps[1:], np.diff(gs))])
 :
In [56]: ax.legend(loc='lower right');
In [57]: ax.set(xlabel='Proportion of limit', ylabel='Proportion of expected loss',
 : title='Swiss Re property scales');
 :
```



Next, approximate these curves with a beta distribution to make them easier for us to use in aggregate. Here are the parameters and fit graphs for each curve.

```
In [58]: swiss = pd.DataFrame(ans, columns=['c', 'mean', 'cv'])
In [59]: def beta_ab(m, cv) :
 : v = (m * cv) ** 2
 : sev_a = m * (m * (1 - m) / v - 1)
 ...: sev_b = (1 - m) * (m * (1 - m) / v - 1)
 : return sev_a, sev_b
 :
In [60]: a, b = beta_ab(swiss['mean'], swiss.cv)
In [61]: swiss['a'] = a
In [62]: swiss['b'] = b
In [63]: swiss = swiss.set_index('c')
In [64]: qd(swiss)
 mean cv a b
C
0 0.505 0.57161 1.01 0.99
10.44108 0.67278 0.79375 1.0058
20.36415 0.81654 0.58953 1.0294
30.28003 1.0103 0.42538 1.0937
4 0.19858 1.2531 0.31176 1.2582
5 0.13101 1.5171 0.24654 1.6353
In [65]: fig, axs = plt.subplots(2, 3, figsize=(3 * 2.45, 2 * 2.45), constrained_
\hookrightarrowlayout=True)
In [66]: for ax, (c, r) in zip(axs.flat, swiss.iterrows()):
 : gs = G(ps,c)
 : fz = ss.beta(r.a, r.b)
 : ax.plot(ps, gs, label=f'c={c}')
 : ax.plot(ps, fz.cdf(ps), label=f'beta fit')
 : ans.append([c, *xsden_to_meancv(ps[1:], np.diff(gs))])
 : ax.legend(loc='lower right');
 :
In [67]: fig.suptitle('Beta approximations to Swiss Re property curves');
```



Work on a property schedule with the following TIVs and deductibles. The premium rate is 0.35 per 100 and the loss ratio is $55 \%$.

```
In [68]: schedule = pd.DataFrame({
 : 'locid': range(10),
 : 'tiv': [850, 950, 1250, 1500, 4500, 8000, 9000, 12000, 25000, 50000],
 : 'ded': [10, 10, 20, 20, 50, 100, 500, 1000, 5000, 5000]}
 :).set_index('locid')
 :
In [69]: schedule['premium'] = schedule.tiv / 100 * 0.35
In [70]: schedule['lr'] = 0.55
In [71]: qd(schedule)
\begin{tabular}{lrrrr}
& tiv & ded & premium & lr \\
locid & & & & \\
0 & 850 & 10 & 2.975 & 0.55 \\
1 & 950 & 10 & 3.325 & 0.55 \\
2 & 1250 & 20 & 4.375 & 0.55 \\
3 & 1500 & 20 & 5.25 & 0.55 \\
4 & 4500 & 50 & 15.75 & 0.55 \\
5 & 8000 & 100 & 28 & 0.55 \\
6 & 9000 & 500 & 31.5 & 0.55 \\
7 & 12000 & 1000 & 42 & 0.55 \\
8 & 25000 & 5000 & 87.5 & 0.55 \\
9 & 50000 & 5000 & 175 & 0.55
\end{tabular}
```

Build the stochastic model using a Swiss Re $\mathrm{C}=3$ scale. Use a gamma mixed Poisson frequency with a CV of 3 to reflect the potential for catastrophe losses. Use a tower clause to set up the analysis of a per risk tower. Increase bs to 2 based on high error with recommended $\mathrm{b} s=1$.

```
In [72]: beta_a, beta_b = swiss.loc[3, ['a', 'b']]
In [73]: a08 = build('agg Re:08 '
 f'{schedule.premium.values} premium at {schedule.lr.values} lr
 : f'{schedule.tiv.values} xs {schedule.ded.values} '
 ...: f'sev {schedule.tiv.values} * beta {beta_a} {beta_b} ! '
 ...: 'occurrence ceded to tower [0 1000 5000 10000 20000 inf] '
```

(continued from previous page)

```
....: 'mixed gamma 2 '
 ...: , bs=2)
 :
In [74]: qd(a08)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.081693 4.03 5.0226
Sev 2663.9 2663.9 -1.2094e-07 2.2311 2.2311 3.8455 3.8455
Agg 217.62 217.62 -1.3778e-07 8.7849 8.7849 14.303 14.303
log2 = 16, bandwidth = 2, validation: n/a, reinsurance.
```

The shared mixing increases the frequency and aggregate CV and skewness.

```
In [75]: qd(a08.report_df.loc[
 : ['freq_m', 'freq_cv', 'freq_skew', 'agg_cv', 'agg_skew'],
 : ['independent', 'mixed']])
 :
view independent mixed
statistic
freq_m 0.081693 0.081693
freq_cv 3.5576 4.03
freq_skew 3.6749 5.0226
agg_cv 8.6169 8.7849
agg_skew 14.248 14.303
```

Look at reinsurance_occ_layer_df to summarize the analysis.

```
In [76]: qd(a08.reinsurance_occ_layer_df, sparsify=False)
```



```
view ceded
share limit attach
1.0 1000.0 0.0 38.473 179.15 217.62 0.93539 2.612 2.2311 0.05879 654.
41 0.17679 1000.0-74.293 143.33 217.62-1.6859 2.7968-2311-0.027046
\hookrightarrow2658.4 0.34139
1.0 5000.0 5000.0 43.156 174.47 217.62 2.6872 2.2324 2.2311 0.012623 -
\hookrightarrow418.8 0.19831
1.0 10000.0 10000.0 37.782 179.84 217.62 4.1476 1.9578 2.2311 0.0059027
\hookrightarrow400.9 0.17362
1.0 inf 20000.0 23.917 193.7 217.62 7.2389 1.91 2.2311 0.0021465
@11143 0.1099
all inf gup 217.62 0 217.62 2.2311 NaN 2.2311 0.081693 -
\hookrightarrow663.9 1
```

Add plots of gross, ceded, and net severity with the placed program, 4000 xs 1000 and 5000 xs 5000. (The net is zero with the tower clause, so we have to recompute.) The left and right plots differ only in the x-axis scale.

```
In [77]: a09 = build('agg Re:09 '
 : f'{schedule.premium.values} premium at {schedule.lr.values} lr
 '
 ...: f'{schedule.tiv.values} xs {schedule.ded.values} '
 ...: f'sev {schedule.tiv.values} * beta {beta_a} {beta_b} ! '
 ...: 'occurrence ceded to 4000 xs 1000 and 5000 xs 5000 '
 ...: 'mixed gamma 2 ', bs=2)
```

.... :

In [78]: qd(a09)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
$\begin{array}{lrrrrrrr}\text { Freq } & 0.081693 & & 4.03 & & 5.0226 & \\ \text { Sev } & 2663.9 & 1437.7 & -0.46031 & 2.2311 & 1.9215 & 3.8455 & 1.8785\end{array}$
$\begin{array}{lllllll}\text { Agg } 217.62 & 117.45 & -0.46031 & 8.7849 & 7.838 & 14.303 & 9.4024\end{array}$
$\log 2=16$, bandwidth $=2$, validation: $n / a$, reinsurance.

In [79]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
$\hookrightarrow$ layout=True);
....: ax0, ax1 = axs.flat; \}
....: df = a09.reinsurance_df; \}
$\ldots: d f . f i l t e r\left(r e g e x=' s e v _[g c n]^{\prime}\right)$. plot (logy=True, xlim=[-50, 2000], ylim=[0.8e$\hookrightarrow 6,1], a x=a x 0) ; ~ \$
....: df.filter(regex='sev_[gcn]').plot(logy=True, xlim=[0, 50000], ylim=[0.8e$\hookrightarrow 6,1], \mathrm{ax}=\mathrm{ax} 1)$; $\backslash$
....: ax0.set(xlabel='loss (zoom)', ylabel='Log density');
.... :

In [80]: ax1.set(xlabel='loss', ylabel='');


And finally, plot the corresponding aggregate distributions.

```
In [81]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45), constrained_
@layout=True); \
 : ax0, ax1, ax2, ax3 = axs.flat; \
 : df.filter(regex='agg_.*_occ').plot(logy=True, xlim=[-50, 2000], ylim=[0.
\hookrightarrow8e-6, 1] , ax=ax0); \
 : (1 - df.filter(regex='agg_.*_occ').cumsum()).plot(logy=True, xlim=[-50,-
\hookrightarrow2000], ylim=[1e-3, 1], ax=ax2); \
 : df.filter(regex='agg_.*_occ').plot(logy=True, xlim=[0, 50000], ylim=[0.8e-
412, 1], ax=ax1); \
....: (1 - df.filter(regex='agg_.*_occ').cumsum()).plot(logy=True, xlim=[0,ь
40000], ylim=[1e-9, 1], ax=ax3); \
 : ax0.set(xlabel='', ylabel='Log density'); \
 : ax1.set(xlabel='', ylabel=''); \
 : ax2.set(xlabel='loss (zoom)', ylabel='Log survival');
 :
In [82]: ax3.set(xlabel='loss', ylabel='');
```



### 2.6.7 Variable Features

Reinsurance treaties can incorporate variable features that alter the contract cash flows. These can impact losses, premiums, or expenses (through the ceding commission). They can apply to quota share and excess treaties.

- Variable features altering Loss cash flows
- Aggregate limits and deductibles
- Loss corridor
- Limited reinstatements for excess treaties, by number of covered events or an aggregate limit
- Variable features altering Premium cash flows
- Swing or retro rating or margin-plus premium, where the premium equals losses times an expense factor subject to a maximum and minimum. See also Individual Risk Pricing.
- Variable features altering Expense cash flows
- Sliding scale commission
- Profit commission or profit share

A loss corridor and sliding scale commission have a similar impact; both concentrate the impact of the treaty on tail outcomes. Aggregate features have the opposite effect; concentrating the impact on body outcomes and lowering effectiveness on tail outcomes.

Premium and expense related features are substitutes, the former used on treaties without ceding commissions.

### 2.6.8 Inwards Analysis of Bear and Nemlick Variable Features

Bear and Nemlick [1990] analyze six treaties with variable features across four portfolios. These examples are included because they are realistic and show that aggregate produces the same answers as a published reference. The subject losses defined as follows.

- Treaty 1 and 4.
- Cover: 160 xs 40
- Subject business
* Two classes
* Subject premium 3000 and 6000
* Loss rate 4\% and 3\%
* Severity: single parameter Pareto with shape 0.9 and 0.95
- Treaty 2 and 5.
- Cover: 700 xs 300
- Subject business
* Three classes
* Subject premium 2000 each
* Loss rate $10 \%, 14 \%$, $21 \%$
* Severity: single parameter Pareto with shape 1.5, 1.3, 1.1
- Treaty 3.
- Cover: 400 xs 100
- Subject business
* Three classes
* Subject premium 4500, 4500, 1000
* Loss rate 3.2\%, 3.8\%, 3.5\%
* Severity: single parameter Pareto with shape 1.1.


## - Treaty 6.

- Cover: 900 xs 100
- Subject business
* Subject premium 25000
* Layer loss cost $10 \%$ of subject premium
* Portfolio CV 0.485

They include a variety of frequency assumptions, including Poisson, negative binomial with variance multiplier based on a gross multiplier of 2 or 3 adjusted for excess frequency, mixing variance 0.05 and 0.10 . Excess counts get closer to Poisson and so the difference between the two is slight.

The next table shows Bear and Nemlick's estimated premium rates.
Heckman and Meyers describe claim count contagion and frequency parameter uncertainty, which they model using a mixed-Poisson frequency distribution. Their parameter $c$ is the variance of the mixing distribution. The value $\mathrm{c}=0.05$ is replicated in DecL with the frequency clause mixed gamma $0.05 * * 0.5$, since DecL is based on the CV of the mixing distribution (the mean is always 1 ).

Heckman and Meyers also describe severity parameter uncertainty, which they model with an inverse gamma variable with mean 1 and variance $b$. There is no analog of severity uncertainty in DecL. For finite excess layers it has a muted impact on results. Heckman and Meyers call $c$ the contagion parameter and $b$ the mixing parameter, which is confusing in our context. To approximate these columns use

- $c=0, b=0$ corresponds to the DecL frequency clause poisson.
- $\mathrm{C}=0.05, \mathrm{~b}=\ldots$ is close to DecL frequency clause mixed gamma $0.05 * * 0.5$.
- $\mathrm{c}=0.1, \mathrm{~b}=\ldots$ is close to DecL frequency clause mixed gamma $0.1 * * 0.5$.

TABLE I

Comparison of Key Items

Example	UnadjustedRate	ItemCompared	LognormalModel	Collective Risk Model			
				$\begin{aligned} & c=0 \\ & b=0 \end{aligned}$	$\begin{aligned} & c=.05 \\ & b=05 \end{aligned}$	$\begin{aligned} & c=.05 \\ & b=.10 \end{aligned}$	$\begin{aligned} & c=.10 \\ & b=.10 \end{aligned}$
I) Aggregate Deductible	5.00\%	Adjusted Rate	1.47\%	1.58\%	1.68\%	1.73\%	1.77\%
II) Limited Reinstatement	25.00	Adjusted Rate	19.53	19.89	19.72	19.55	19.52
III) Loss Corridor	5.00	Adjusted Rate	4.02	3.67	3.71	3.74	3.73
IV) Retro Rating Plan	5.00	Expected Rate After Retro Adjustments	5.02	5.20	5.18	5.14	5.14
V) Profit Commission		Expected Profit Commission	8.37	8.24	8.50	8.69	8.75
VI) Sliding Scale Commission		Expected Sliding   Scale Commission	31.04	30.31	30.90	31.22	31.33

Fig. 1: Bear and Nemlick's estimated premium rates by program by numerical method. The Lognormal Model column uses a method of moments fit to the aggregate mean and CV. The Collective Risk Model columns uses the Heckman-Meyers continuous FFT method.

## Specifying the Single Parameter Pareto

Losses to an excess layer specified by a single parameter Pareto are the same as losses to a ground-up layer with a shifted Pareto.

## Example.

For 400 xs 100 and Pareto shape 1.1, these two DecL programs produce identical results:

```
4 \text { claims 400 xs 100 sev 100 * pareto 1.1 poisson}
4 claims 400 xs 0 sev 100 * pareto 1.1 - 100 poisson
```


## Treaty 1: Aggregate Deductible

Treaty 1 adds an aggregate deductible of 360 , equal to $3 \%$ of subject premium.
Setup the gross portfolio.

```
In [83]: import numpy as np
In [84]: from aggregate import build, mv, qd, xsden_to_meancvskew, \
 : mu_sigma_from_mean_cv, lognorm_lev
 :
In [85]: mix_cv = ((1.036-1)/5.154)**.5; mix_cv
Out[85]: 0.08357551150546018
In [86]: a10 = build('agg Re:BN1 '
```

(continues on next page)

```
...: '[9000 3000] exposure at [0.04 0.03] rate '
...: '160 xs 0 '
....: 'sev 40 * pareto [0.9 0.95] - 40 '
....: f'mixed gamma {mix_cv} ')
.... :
In [87]: qd(a10)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 6.4966 [.
Agg 450 450 -2.1418e-07 0.5285 0.5285 0.62441 0.62436
log2 = 16, bandwidth = 1/32, validation: fails agg mean error >> sev, possibleъ
\hookrightarrowaliasing; try larger bs.
```

The portfolio CV matches 0.528, reported in Bear and Nemlick Appendix F, Exhibit 1.
There are several ways to estimate the impact of the AAD on recovered losses.
By hand, adjust losses and use the distribution of outcomes from a.density_df. The last line computes the sum-product of losses net of AAD times probabilities, i.e., the expected loss cost.

```
In [88]: bit = a10.density_df[['loss', 'p_total']]
In [89]: bit['loss'] = np.maximum(0, bit.loss - 360)
In [90]: bit.prod(axis=1).sum()
Out[90]: 142.7571229766539
```

More in the spirit of aggregate: create a new Aggregate applying the AAD using a DecL aggregate net of reinsurance clause. Alternatively use aggregate ceded to inf xs 360 (not shown).

```
In [91]: a11 = build('agg Re:BN1a '
 ...: '[9000 3000] exposure at [0.04 0.03] rate'
 ...: '160 xs 0 '
 ...: 'sev 40 * pareto [0.9 0.95] - 40'
 : f'mixed gamma {mix_cv} '
 ...: 'aggregate net of 360 xs 0 ')
 :
In [92]: qd(a11)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 6.4966 0.40114 0.41855
Sev 69.267 69.267 -1.2751e-08 0.87703 0.87703 0.50056 0.50056
Agg 450 142.76 -0.68276 0.5285 1.2873 0.62441 1.5337
log2 = 16, bandwidth = 1/32, validation: n/a, reinsurance.
In [93]: gross = a11.agg_m; net = a11.est_m; ins_charge = net / gross
In [94]: net, ins_charge
Out[94]: (142.75888602897527, 0.3172419689532783)
```

Bear and Nemlick use a lognormal approximation to the aggregate.

```
In [95]: mu, sigma = mu_sigma_from_mean_cv(a10.agg_m, a10.agg_cv)
In [96]: elim_approx = lognorm_lev(mu, sigma, 1, 360)
```

```
In [97]: a11.agg_m - elim_approx, 1 - elim_approx / a11.agg_m
Out[97]: (132.06333218858032, 0.29347407153017846)
```

The lognormal overstates the value of the AAD, resulting in a lower net premium. This is because the approximating lognormal is much more skewed.

```
In [98]: fz = a11.approximate('lognorm')
In [99]: fz.stats('s'), a11.est_skew
Out[99]: (5.99543353838776, 1.5337492513585025)
```

Bear and Nemlick report the Poisson approximation and a Heckman-Meyers convolution with mixing and contagion equal 0.05 . We can compute the Poisson exactly and approximate Heckman-Meyers with contagion but no mixing. Changing 0.05 to 0.10 is close to the $\mathrm{b}=0.1$ column.

```
In [100]: a12 = build('agg Re:BN1p '
 : '[9000 3000] exposure at [0.04 0.03] rate '
 : '160 xs 0 '
 : 'sev 40 * pareto [0.9 0.95] - 40'
 : f'poisson
 : 'aggregate net of 360 xs 0 ')
 :
In [101]: qd(a12)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Agg 450 141.8 -0.68489 0.52185 1.2794 0.60775 1.5152
log2 = 16, bandwidth = 1/32, validation: n/a, reinsurance.
In [102]: a13 = build('agg Re:BN1c '
 : '[9000 3000] exposure at [0.04 0.03] rate '
 : '160 xs 0 '
 : 'sev 40* pareto [0.9 0.95] - 40'
 : 'mixed gamma 0.05**.5 '
 : 'aggregate net of 360 xs 0 ')
 :
In [103]: qd(a13)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 6.4966 0.45158 0.5623
Sev 69.267 69.267 -5.1006e-08 0.87703 0.87703 0.50056 0.50056
Agg 450 148.41 -0.6702 0.56774 1.3332 0.72251 1.6412
log2 = 16, bandwidth = 1/16, validation: n/a, reinsurance.
```

Here is a summary of the different methods, compare Bear and Nemlick Table 1, row 1, page 75.

```
In [104]: bit = pd.DataFrame([a10.agg_m,
 : a11.describe.iloc[-1, 1],
 : a12.describe.iloc[-1, 1],
 : a13.describe.iloc[-1, 1],
 : a11.agg_m - elim_approx],
 : columns=['Loss cost'],
 : index=pd.Index(['Gross', 'NB', 'Poisson', 'C=0.05', 'lognorm'],
 : name='Method'))
 :
```

```
In [105]: bit['Premium'] = bit['Loss cost'] * 100 / 75
In [106]: bit['Rate'] = bit.Premium / 12000
In [107]: qd(bit, accuracy=5)
 Loss cost Premium Rate
Method
Gross 450 600 0.05
NB 142.76 190.35 0.015862
Poisson 141.8 189.07 0.015755
c=0.05 148.41 197.88 0.01649
lognorm 132.06 176.08 0.014674
```


## Treaty 2: Aggregate Limit

Treaty 2 adds an aggregate limit of 2800, i.e., 3 full reinstatements plus the original limit.
Setup the gross portfolio.

```
In [108]: a14 = build('agg Re:BN2 '
 : '[2000 2000 2000] exposure at [.1 .14 .21] rate '
 : '700 xs 0 '
 : 'sev 300 * pareto [1.5 1.3 1.1] - 300''
 : 'mixed gamma 0.07 '
 : , bs=1/8)

In [109]: qd(a14)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lrreq 2.8949 0.5919
Agg 900 900 -8.4265e-09 0.76969 0.76969 0.90207 0.90207
log2 = 16, bandwidth = 1/8, validation: not unreasonable.
```

Specify $\mathrm{b} s=1 / 8$ since the error was too high with the default $\mathrm{b} s=1 / 16$. The portfolio CV matches 0.770 , reported in Bear and Nemlick Appendix G, Exhibit 1. The easiest way to value the aggregate limit to use an aggregate ceded to clause.

```
In [110]: a14n = build('agg Re:BN2a '
 : '[2000 2000 2000] exposure at [.1 . 14 .21] rate '
 : '700 xs 0 '
 : 'sev 300 * pareto [1.5 1.3 1.1] - 300 '
 : 'mixed gamma 0.07 '
 : 'aggregate ceded to 2800 xs 0'
 : , bs=1/8)
 :
In [111]: qd(a14n)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Agg 900 894.68 -0.0059104 0.76969 0.7544 0.90207 0.72143
log2 = 16, bandwidth = 1/8, validation: n/a, reinsurance.
```

Applying a 20\% coinsurance and grossing up by 100/60 produces the premium and rate. Using Poisson frequency,
or mixed gamma with mix $\sqrt{0.05}$ or $\sqrt{0.1}$ ties closely to Table I, row 2 .

```
In [112]: p = a14n.est_m * (1 - 0.2) * 100 / 60
In [113]: p, p / 6000
Out[113]: (1192.9075706627575, 0.19881792844379292)
```

aggregate induces correlation between the three classes because they share mixing variables. The report_df shows the details by line and compares with an independent sum.

```
In [114]: qd(a14.report_df.iloc[:, :-2])
\begin{tabular}{lrrrrr}
view & 0 & 1 & 2 & independent & mixed \\
statistic & & & & \\
name & Re:BN2 & Re:BN2 & Re:BN2 & Re:BN2 & Re:BN2 \\
limit & 700 & 700 & 700 & 700 & 700 \\
attachment & 0 & 0 & 0 & 0 & 0 \\
el & 200 & 280 & 420 & 900 & 900 \\
freq_m & 0.73701 & 0.92362 & 1.2342 & 2.8949 & 2.8949 \\
freq_cv & 1.1669 & 1.0429 & 0.90284 & 0.58919 & 0.5919 \\
freq_skew & 1.1711 & 1.0476 & 0.90827 & 0.59209 & 0.60017 \\
sev_m & 271.37 & 303.15 & 340.3 & 310.9 & 310.9 \\
sev_cv & 0.9087 & 0.84973 & 0.78339 & 0.83714 & 0.83714 \\
sev_skew & 0.72529 & 0.51332 & 0.27989 & 0.46335 & 0.46335 \\
agg_m & 200 & 280 & 420 & 900 & 900 \\
agg_cv & 1.5755 & 1.3672 & 1.1456 & 0.76767 & 0.76969 \\
agg_skew & 1.9025 & 1.6073 & 1.3121 & 0.89708 & 0.90207
\end{tabular}
```


## Treaty 3: Loss Corridor

Treaty 3 is a loss corridor from expected layer losses to twice expected. The reinsurance pays up to expected and beyond twice expected.

Setup the gross portfolio with CV 0.905 . Use a larger bs to reduce error.

```
In [115]: a15 = build('agg Re:BN3 '
 : '[4500 4500 1000] exposure at [.032 .038 .035] rate '
 : '400 xs 0 '
 : 'sev 100 * pareto 1.1 - 100'
 : 'poisson', bs=1/16)
 :
In [116]: qd(a15)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & E [X] & E [X] & Err E[X] & CV (X) & Est CV(X) & Skew (X) & Est Skew (X) \\
\hline \multicolumn{8}{|l|}{X} \\
\hline Freq & 2.3544 & & & 0.65172 & & 0.65172 & \\
\hline Sev & 148.66 & 148.66 & -1.1633e-08 & 0.96405 & 0.96405 & 0.79141 & 0.79141 \\
\hline Agg & 350 & 350 & -1.1694e-08 & 0.90526 & 0.90526 & 1.0937 & 1.0937 \\
\hline \multicolumn{8}{|l|}{\(\log 2=16\), bandwidth \(=1 / 16\), validation: not unreasonable.} \\
\hline
\end{tabular}
```

There are several ways to model a loss corridor, but the most natural is to use an aggregate net of 350 xs 350 clause; expected layer loss equals 350 .

```
In [117]: a15_lc = build('agg Re:BN3lc '
 : '[4500 4500 1000] exposure at [.032 .038 .035] rate '
 : '400 xs 0 '
 : 'sev 100 * pareto 1.1 - 100'
 : 'poisson '
 : 'aggregate net of 350 xs 350 ', bs=1/16)
 :
```

```
In [118]: qd(a15_lc)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2.3544 0.65172 0.65172
Sev 148.66 148.66 -1.1633e-08 0.96405 0.96405 0.79141 0.79141
Agg 350 256.88 -0.26607 0.90526 0.79669 1.0937 1.2854
log2 = 16, bandwidth = 1/16, validation: n/a, reinsurance.
```

Compare the results with the lognormal approximation, see Table 1 line 3 .

```
In [119]: mu, sigma = mu_sigma_from_mean_cv(1, 0.905)
In [120]: ler = lognorm_lev(mu, sigma, 1, 2) - lognorm_lev(mu, sigma, 1, 1)
In [121]: p = a15_lc.est_m * 100 / 70
In [122]: bit = pd.DataFrame(
 : [a15_lc.est_m, 1 - a15_lc.est_m / a15.est_m, ler, p, p/10000,
 : 350 * (1 - ler) * 100 / 70 / 10000, 350 * 100 / 70 / 10000],
 : index=pd.Index(['Loss cost', 'LER', 'Lognorm LER', 'Premium',
 : 'Rate', 'Lognorm rate', 'Unadjusted rate'],name='Item
\hookrightarrow'),
 : columns=['Value'])
 :
In [123]: qd(bit, accuracy=4)
 Value
Item
Loss cost 256.88
LER 0.26607
Lognorm LER 0.19535
Premium 366.97
Rate 0.036697
Lognorm rate 0.040233
Unadjusted rate 0.05
```


## Treaty 4: Retro Rated Program

Treaty 4 is a retro rated program on the same business as Treaty 1 . The flat rate is $5 \%$, given by a 100/75 load on the $3.75 \%$ loss cost. Subject premium equals 12000 . The retrospective rating plan has a one-year adjustment period. The adjusted treaty premium equals 100/75 times incurred losses and ALAE in the layer limited to a maximum of $10 \%$ of subject premium and a minimum of $3 \%$.

The gross portfolio is the same as Treaty 1. Use Poisson frequency.

```
In [124]: a16 = build('agg Re:BN4 '
 : '[9000 3000] exposure at [0.04 0.03] rate '
 : '160 xs 0 '
 : 'sev 40 * pareto [0.9 0.95] - 40 '
 : 'poisson ')
 :
In [125]: qd(a16)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 6.4966 0.39234 0.39234
```

							(continued from previo
Sev	69.267	69.267	-1.2751e-08	0.87703	0.87703	0.50056	0.50056
Agg	450	450	-1.3429e-07	0.52185	0.52185	0.60775	0.60771
$\begin{gathered} \log 2 \\ \hookrightarrow a \end{gathered}$	$=16$   asing;	dwidth   larg	$\begin{aligned} & =1 / 32 \text {, val } \\ & \text { er bs. } \end{aligned}$	dation:	ils agg	mean err	sev, possible,

The estimated retro premium (erp) and corresponding rate are easy to compute.

```
In [126]: bit = a16.density_df[['loss', 'p_total']]
In [127]: subject = 12000; min_rate = 0.03; max_rate = 0.10; lcf = 100 / 75
In [128]: bit['premium'] = np.minimum(max_rate * subject,
 : np.maximum(min_rate * subject, lcf * bit.
\hookrightarrowloss))
In [129]: erp = bit[['premium', 'p_total']].prod(1).sum()
In [130]: erp, erp / subject
Out[130]: (624.508953754649, 0.05204241281288742)
```

Bear and Nemlick also report the lognormal approximation.

```
In [131]: from scipy.integrate import quad
In [132]: fz = a16.approximate('lognorm')
In [133]: lognorm_approx = quad(lambda x: min(max_rate * subject,
 : max(min_rate * subject, lcf * x)) * fz.pdf(x),
 : 0, np.inf)
 :
In [134]: lognorm_approx[0], lognorm_approx[0] / subject
Out[134]: (602.6887696334271, 0.05022406413611893)
```


## Treaty 5: Profit Share

Treaty 5 models a three-year profit commission on the business underlying Treaty 2 . The three years are modeled independently with no change in exposure, giving 18 M subject premium. The terms of the profit commission are a $25 \%$ share after a $20 \%$ expense allowance (" $25 \%$ after $20 \%$ "), meaning a profit share payment equal to $25 \%$ of the "profit" to the reinsurer after losses and a $20 \%$ expense allowance.
The treaty rate equals $25 \%$ of subject premium. There is a $20 \%$ proportional coinsurance that does not correspond to an explicit share of the reinsurance premium (i.e., the $25 \%$ rate is for $80 \%$ cover). The analysis of Treaty 2 shows the loss cost equals 900 , or a $15 \%$ rate.

The ceded loss ratio equals (loss rate) $x$ (coinsurance) $/($ premium rate $)=0.15 * 0.8 / 0.25=0.48$.
The profit commission formula is:

```
pc = 0.25 * max(0, 1 - (loss ratio) - 0.2) * (subject premium)
 =0.25 * max(0, premium * 0.8 - loss).
```

The expected profit commission rate, ignoring Jensen's inequality, equals:

```
pc rate =0.25* (1-0.48-0.2) = 0.25* 0.32 = 0.08.
```

We can compute the expected value across the range of outcomes from the aggregate distribution.
Use a Portfolio object to aggregate the three years. It is convenient to create the single year distribution and then use the Underwriter to refer to it by name.

```
In [135]: a17 = build('agg Re:BN2p '
 : '[2000 2000 2000] exposure at [.1 . 14 .21] rate '
 : '700 xs 0 '
 : 'sev 300 * pareto [1.5 1.3 1.1] - 300 '
 : 'poisson')
 :
In [136]: p17 = build('port Treaty.5 '
 : 'agg Year.1 agg.Re:BN2p '
 : 'agg Year.2 agg.Re:BN2p '
 : 'agg Year.3 agg.Re:BN2p '
 : , bs=1/4)
 :
In [137]: qd(p17)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & E [X] & Est E[X] & Err E[X] & CV (X) & Est CV(X) & Skew (X) & Est & Skew (X) \\
\hline unit & X & & & & & & & & \\
\hline \multirow[t]{3}{*}{Year. 1} & Freq & 2.8949 & & & 0.58774 & & 0.58774 & & \\
\hline & Sev & 310.9 & 310.9 & \(-3.3041 \mathrm{e}-08\) & 0.83714 & 0.83714 & 0.46335 & & 0.46335 \\
\hline & Agg & 900 & 900 & -3.3041e-08 & 0.7665 & 0.7665 & 0.89409 & & 0.89409 \\
\hline \multirow[t]{3}{*}{Year. 2} & Freq & 2.8949 & & & 0.58774 & & 0.58774 & & \\
\hline & Sev & 310.9 & 310.9 & \(-3.3041 \mathrm{e}-08\) & 0.83714 & 0.83714 & 0.46335 & & 0.46335 \\
\hline & Agg & 900 & 900 & -3.3041e-08 & 0.7665 & 0.7665 & 0.89409 & & 0.89409 \\
\hline \multirow[t]{3}{*}{Year. 3} & Freq & 2.8949 & & & 0.58774 & & 0.58774 & & \\
\hline & Sev & 310.9 & 310.9 & -3.3041e-08 & 0.83714 & 0.83714 & 0.46335 & & 0.46335 \\
\hline & Agg & 900 & 900 & \(-3.3041 \mathrm{e}-08\) & 0.7665 & 0.7665 & 0.89409 & & 0.89409 \\
\hline \multirow[t]{3}{*}{total} & Freq & 8.6846 & & & 0.33933 & & 0.33933 & & \\
\hline & Sev & 310.9 & 310.9 & -3.3041e-08 & 0.83714 & & 0.46335 & & \\
\hline & Agg & 2700 & 2700 & -3.3043e-08 & 0.44254 & 0.44254 & 0.5162 & & 0.5162 \\
\hline \(\log 2=\) & 16, & andwidt & \(h=1 / 4\), & validation: & not unrea & asonable. & & & \\
\hline
\end{tabular}
```

The three-year total CV equals 0.443 with Poisson frequency. Bear and Nemlick Appendix J, Exhibit 2, shows 0.444 with negative binomial frequency.

Compute the estimated profit share payment by hand.

```
In [138]: subject_premium = 18000; coinsurance = 0.2; re_rate = 0.25
In [139]: pc_share = 0.25; pc_expense = 0.2
In [140]: bit = p17.density_df[['loss', 'p_total']]
In [141]: bit['lr'] = bit.loss * (1 - coinsurance) / (re_rate * subject_premium)
In [142]: bit['pc_rate'] = np.maximum(0, pc_share * (1 - pc_expense - bit.lr))
In [143]: pc_pmt = (bit.pc_rate * bit.p_total).sum()
In [144]: print(f'Estimated pc payment rate = {pc_pmt:.4g}')
Estimated pc payment rate = 0.08238
```

Table 1 shows a rate of $8.24 \%$ for Poisson frequency.
Exercise. Replicate the rate computed using a lognormal approximation and a negative binomial $\mathrm{C}=0.05$. Reconcile to Table 1.

Note. If the premium varies by year then the builtin object can be scaled. There are two ways to scale aggregate distributions.

1. Homogeneous scaling, using * to scale severity;
2. Inhomogeneous scaling, using @ to scale expected frequency and exposure.

See Mildenhall [2004] and Mildenhall [2017] for an explanation of why homogeneous scaling is appropriate for assets whereas inhomogeneous scaling applies to insurance. See Boonen et al. [2017] for an application.

Here is an extreme example to illustrate the differences. Homogeneous scaling does not change the aggregate CV or skewness (or any other scaled higher moment or the shape of the distribution). Inhomogeneous scaling changes the shape of the distribution; it becomes more symmetric, decreasing the CV and skewness.

```
In [145]: p17growing = build('port Treaty.5 '
 : 'agg Year.1 agg.Re:BN2p
 : 'agg Year.2 2 @ agg.Re:BN2p '
 : 'agg Year.3 2 * agg.Re:BN2p '
 : , bs=1/4)
 :
In [146]: qd(p17growing)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
```



```
 Agg 900 900 -3.3041e-08 0.7665 (r)
```



```
 Sev
Year.3 Freq 2.8949 [.
```



```
total Freq 11.579 0.29387 0.29387
```



```
log2 = 16, bandwidth = 1/4, validation: fails agg mean error >> sev, possibleь
\hookrightarrowaliasing; try larger bs.
```

Note. The following DecL program will produce the same answer as the Portfolio called p17 above. The exposure has been tripled.

```
In [147]: a17p= build('agg Re:BN6p '
 : '[6000 6000 6000] exposure at [.1 .14 .21] rate '
 : '700 xs 0 '
 : 'sev 300 * pareto [1.5 1.3 1.1] - 300 '
 : 'poisson'
 : , bs=1/4)
 :
In [148]: qd(a17p)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 8.6846 0.33933 0.33933
Agg 2700 2700 -3.3041e-08 0.44254 0.44254 0.5162 0.5162
log2 = 16, bandwidth = 1/4, validation: not unreasonable.
```

However, for a mixed frequency the answers are different, because mixing is shared mixing across class and year, producing a higher CV and skewness.

```
In [149]: a17nb = build('agg Re:BN6c '
 : '[6000 6000 6000] exposure at [.1 .14 .21] rate '
 : '700 xs 0 '
 : 'sev 300 * pareto [1.5 1.3 1.1] - 300 '
 : 'mixed gamma 0.1**.5'
 : , bs=1/4)
```

```
In [150]: qd(a17nb)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```




```
log2 = 16, bandwidth = 1/4, validation: not unreasonable.
```


## Treaty 6: Sliding Scale Commission

Treaty 6 models a one-year sliding scale commission plan. The details of the plan are:

- Minimum commission of $20 \%$ at or above a $65 \%$ loss ratio
- Slide $0.5: 1$ between $55 \%$ and $65 \%$ to a $25 \%$ commission
- Slide $0.75: 1$ between $35 \%$ and $55 \%$ to a $40 \%$ commission
- Maximum commission of $40 \%$ at or below a $35 \%$ loss ratio.

The underlying portfolio is specified only as a 900 xs 100 layer on 25 M premium with a $10 \%$ layer loss cost and a CV of 0.485 . No other details are provided. Based on trial and error and the other examples, model the portfolio using a single parameter Pareto with $q=1.05$ and a gamma mixed Poisson with mixing CV 0.095.

```
In [151]: a18 = build('agg Re:BN5 '
 : '25000 exposure at 0.1 rate '
 : '900 xs 0 '
 : 'sev 100 * pareto 1.05 - 100 '
 : 'mixed gamma 0.095')
 :
In [152]: qd(a18)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lrreq 11.494 0.30988 (
Agg 2500 2500 -1.246e-07 0.48516 0.48516 0.64857 0.64857
log2 = 16, bandwidth = 1/4, validation: not unreasonable.
```

We use the function make_ceder_netter to model the commission function. It takes a list of triples ( $\mathrm{s}, \mathrm{y}$, a) as argument, interpreted as a share $s$ of the layer y excess a. It returns two functions, a netter and a ceder, that map a subject loss to net or ceded. Multiple non-overlapping layers can be provided. They are combined into a single function. We will model the slide as the maximum $40 \%$ commission minus a cession to two layers with different shares. The required layer descriptions, in loss ratio points, are

- Layer $1(0.25,0.2,0.35)$ for the slide between $35 \%$ and $55 \%$ and
- Layer $2(0.5,0.1,0.55)$ for the slide between $55 \%$ and $65 \%$.

The function giving the slide payoff is easy to create, using a Python lambda function. The figure illustrates the ceder and netter functions and the function that computes the slide.

```
In [153]: from aggregate import make_ceder_netter
In [154]: import matplotlib.pyplot as plt
In [155]: from matplotlib import ticker
```

(continued from previous page)

```
In [156]: c, n = make_ceder_netter([(0.25, .2, .35), (0.5, .1, . 55)])
In [157]: f = lambda x: 0.4 - c(x);
 : lrs = np.linspace(0.2, 0.8, 61);
 : slide = f(lrs);
 : fig, axs = plt.subplots(1,3,figsize=(3*3.5, 2.45), constrained_
\hookrightarrowlayout=True); \
 : ax0, ax1, ax2 = axs.flat;
 : ax0.plot(lrs, c(lrs));
 : ax0.set(xlabel='Loss ratio', ylabel='"Ceded"'); \
 : ax1.plot(lrs, n(lrs));
 : ax1.set(xlabel='Loss ratio', ylabel='"Net"');
 : ax2.plot(lrs, slide);

In [158]: for ax in axs.flat:
 : ax.xaxis.set_major_locator(ticker.MultipleLocator(0.1))
 : ax.xaxis.set_minor_locator(ticker.MultipleLocator(0.05))
 : ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:.0%}'))
 : ax.yaxis.set_major_formatter(ticker.StrMethodFormatter('{x:.0%}'))
 : if ax is ax1:
 : ax.yaxis.set_major_locator(ticker.MultipleLocator(0.1))
 : ax.yaxis.set_minor_locator(ticker.MultipleLocator(0.05))
 : else:
 : ax.yaxis.set_major_locator(ticker.MultipleLocator(0.05))
 : ax.yaxis.set_minor_locator(ticker.MultipleLocator(0.025))
 : ax.grid(lw=.25, c='w')
 :
```

In [159]: ax2.set(xlabel='Loss ratio', ylabel='Slide commission');


The expected commission across the estimated aggregate distribution can be computed by hand.

```
In [160]: subject = 25000; re_rate = 0.2; re_premium = subject * re_rate
In [161]: bit = a18.density_df[['loss', 'p_total']]
In [162]: bit['lr'] = bit.loss / re_premium
In [163]: bit['slide'] = f(bit.lr)
In [164]: (bit.slide * bit.p_total).sum()
Out[164]: 0.3574273911759826
```

The same quantity can be estimated using a lognormal approximation and numerical integration. The second value returned by quad estimates the relative error of the answer.

```
In [165]: import scipy.stats as ss
In [166]: mu, sigma = mu_sigma_from_mean_cv(0.5, 0.485)
```

```
In [167]: fz = ss.lognorm(sigma, scale=np.exp(mu))
In [168]: quad(lambda x: (0.4 - c(x)) * fz.pdf(x), 0, np.inf)
Out[168]: (0.3613013481625082, 5.33305158633741e-09
```

Bear and Nemlick use a coarser lognormal approximation to estimate the slide commission, Appendix K Exhibit I.

```
In [169]: mu, sigma = mu_sigma_from_mean_cv(1, 0.485)
In [170]: lr = 0.5; max_slide = 0.4
In [171]: entry_ratios = [1.3, 1.1, 0.7, 0]
In [172]: ins_charge = [1 - lognorm_lev(mu, sigma, 1, i) for i in entry_ratios]
In [173]: lr_points = np.diff(np.array(ins_charge), prepend=0) * lr
In [174]: slide_scale = np.array([0, .5, . 75, 0])
In [175]: red_from_max = slide_scale * lr_points
In [176]: expected_slide = max_slide - np.sum(red_from_max)
In [177]: expected_slide
Out[177]: 0.3106485062930016
```

The lognormal distribution is not a great fit to the specified distribution.

```
In [178]: bit['logn'] = fz.pdf(bit.loss / re_premium)
In [179]: bit.logn = bit.logn / bit.logn.sum()
In [180]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
\hookrightarrowlayout=True)
In [181]: ax0, ax1 = axs.flat
In [182]: bit.index = bit.index / re_premium
In [183]: bit[['p_total', 'logn']].plot(ax=ax0);
In [184]: bit[['p_total', 'logn']].cumsum().plot(ax=ax1);
In [185]: for ax in axs.flat:
 : for lr in [.35, .55, .65]:
 : ax.axvline(lr, lw=.5, C='C7')
 :
In [186]: ax0.set(ylabel='Probability density or mass');
In [187]: ax1.set(ylabel='Probability distribution');
```




TODO: investigate differences!

### 2.6.9 Outwards Analysis

Bear and Nemlick's analysis starts with a description of the frequency and severity of ceded loss. They do not consider the gross portfolio from which the cession occurs. In this section, we model gross, ceded, and net portfolios, mimicking a ceded re or broker actuary evaluation. We use an example from Mata et al. [2002]. Our methods are similar in spirit to theirs, but the details are slightly different, and our estimates do not tie exactly to what they report.

## Subject business.

Lawyers and Errors and Omissions (E\&O).

- Lawyers
- Severity curve: lognormal $\mu=8, \sigma=2.5$
- Loss ratio 65\%
- Exposure
* 1 M premium written with a 750 K limit and 10 K deductible
* 2 M premium written with a 1 M limit and 25 K deductible
- E\&O
- Severity curve: lognormal $\mu=9, \sigma=3$
- Loss ratio 75\%
- Exposure
* 2 M premium written with a 1.5 M limit and 50 K deductible
* 3 M premium written with a 2 M limit and 50 K deductible

The total premium equals 8 M , assumed split 7.2 M for the first million and 800 K for the second.

## Cessions.

- Layer 1: 500 xs 500
- Margin plus (retro) rated with provisional rate $12.5 \%$ of the premium for the first million, a minimum of $7 \%$, maximum of $18 \%$, and a load (lcf) of $107.5 \%$.
- Profit commission of $15 \%$ after $20 \%$ expenses.
- Brokerage: $10 \%$ of provisional.
- Layer 2: 1 M xs 1 M
- Cessions rated, 800 K ceded premium
- $15 \%$ ceding commission
- Profit commission 15\% after 20\%
- Brokerage: $10 \%$ on gross.

Treaty pricing with these variable features follows the same pattern as Bear and Nemlick and is left as an exercise. This section works with the gross, ceded, and net severity distributions, accounting for the limit profile, and the gross, ceded, and net aggregate distributions.

## Stochastic Model

Mata et al. assume a negative binomial (gamma mixed Poisson) frequency distribution with a variance to mean ratio of 2.0. When there are relatively few excess claims the resulting mixing CV is close to 0 and the negative binomial is close to a Poisson. We start using a Poisson frequency and then show the impact of moving to a negative binomial.
The basic stochastic model is as follows. Work in 000s. Using $\mathrm{b} s=1 / 2$ results in a slightly better match to the mean and CV than the recommended $\mathrm{bs}=1 / 4$.

```
In [188]: a19 = build('agg Re:MFV41 '
 : '[1000 2000 2000 3000] premium at [.65 . 65 . 75 .75] lr '
 : '[750 1000 1500 2000] xs [10 25 50 50] '
 : 'sev [exp(8)/1000 exp(8)/1000 exp(9)/1000 exp(9)/1000] '
 : '* lognorm [l2.5 2.5 3 3]
 : 'poisson', bs=1/2)
 :
In [189]: qd(a19)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & E [X] & E [X] & Err E[X] & CV (X) & st CV(X) & Skew (X) & Est & Skew (X) \\
\hline \multicolumn{9}{|l|}{X} \\
\hline Freq & 22.51 & & & 0.21077 & & 0.21077 & & \\
\hline Sev & 253.23 & 253.23 & -9.8245e-07 & 1.7344 & 1.7344 & 2.5007 & & 2.5007 \\
\hline Agg & 5700 & 5700 & -9.8245e-07 & 0.42198 & 0.42198 & 0.60601 & & 0.60601 \\
\hline
\end{tabular}
log2 = 16, bandwidth = 1/2, validation: not unreasonable.
```

The report_df dataframe shows the theoretic and empirical (i.e., modeled) statistics for each unit.

In [190]: qd(a19.report_df.iloc[:, $[0,1,2,3,4,-2]])$						
view	0	1	2	3	independent empirical	
statistic						
name	Re:MFV41	Re:MFV41	Re:MFV41	Re:MFV41	Re:MFV41	
limit	750	1000	1500	2000	1202.5	
attachment	10	25	50	50	29.468	
el	650	1300	1500	2250	5700	
freq_m	6.4105	8.2296	3.416	4.4534	22.51	
freq_cv	0.39496	0.34859	0.54105	0.47386	0.21077	
freq_skew	0.39496	0.34859	0.54105	0.47386	0.21077	
sev_m	101.4	157.97	439.1	505.23	253.23	253.23
sev_cv	1.7775	1.6113	1.2123	1.3296	1.7344	1.7344
sev_skew	2.5869	2.3057	1.1514	1.4005	2.5007	2.5007
agg_m	650	1300	1500	2250	5700	5700
agg_cv	0.80551	0.66106	0.85026	0.78834	0.42198	0.42198
agg_skew	1.1642	0.94224	1.04	0.98741	0.60601	0.60601

Mata et al. pay careful attention to the implied severity in each ceded layer, accounting for probability masses. They do this by considering losses in small intervals and weighting the underlying severity curves. aggregate automatically performs the same calculations to estimate the total layer severity. In this example, it uses a smaller bucket size of 0.5 K compared to 2.5 K in the original paper. The next plots reproduce [TODO Differences?!] Figures 2 and 3. The masses (spikes in density; jumps in distribution) occur when the lower limit unit has only limit losses.

```
In [191]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45), constrained_
@layout=True)
In [192]: ax0, ax1, ax2, ax3 = axs.flat
In [193]: (a19.density_df.p_sev / a19.sev.sf(500)).plot(xlim=[500, 1005], U
\hookrightarrowlogy=True, ax=ax0);
In [194]: (a19.density_df.p_sev / a19.sev.sf(1000)).plot(xlim=[1000, 2005],七
\hookrightarrowlogy=True, ax=ax1);
```

(continues on next page)

```
In [195]: ((a19.density_df.F_sev - a19.sev.cdf(500)) / (a19.sev.cdf(1000) - a19.
\hookrightarrowsev.cdf(500))).plot(xlim=[500, 1005], ylim=[-0.05, 1.05], ax=ax2);
In [196]: ((a19.density_df.F_sev - a19.sev.cdf(1000)) / (a19.sev.cdf(2000) - a19.
\hookrightarrowsev.cdf(1000))).plot(xlim=[1000, 2005], ylim=[-0.05, 1.05], ax=ax3);
In [197]: for ax, y in zip(axs.flat, ['Log density', 'Log density', 'Density',
\hookrightarrow'Density']):
 : ax.set(ylabel=y);
 :
In [198]: fig.suptitle('Layer loss log density and distribution');
```



Use an occurrence net of clause to apply the two excess of loss reinsurance layers. The estimated statistics refer to the net portfolio and reflect a pure exposure rating approach. Gross, ceded, and net expected losses are reported last.

```
In [199]: a19n = build('agg Re:MFV41n '
 : '[1000 2000 2000 3000] premium at [.65 . 65 . 75 .75] lr '
 : '[750 1000 1500 2000] xs [10 25 50 50] '
 : 'sev [exp(8)/1000 exp(8)/1000 exp(9)/1000 exp(9)/1000] *-
\hookrightarrowlognorm [2.5 2.5 3 3]
 : 'occurrence net of 500 xs 500 and 1000 xs 1000 '
 : 'poisson', bs=1/2)
 :
In [200]: qd(a19n)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 22.51 rrrrerrerrern
Agg 5700 3456.7 -0.39356 0.42198 0.32507 0.60601 0.39439
log2 = 16, bandwidth = 1/2, validation: n/a, reinsurance.
In [201]: print(f'Gross expected loss {a19.est_m:,.1f}\n'
 : f'Ceded expected loss {a19.est_m - a19n.est_m:,.1f}\n'
 : f'Net expected loss {a19n.est_m:,.1f}')
 :
```

(continues on next page)

```
Gross expected loss 5,700.0
Ceded expected loss 2,243.3
Net expected loss 3,456.7
```

The reinsurance_audit_df dataframe summarizes ground-up (unconditional) layer loss statistics for occurrence covers. Thus, ex reports the layer severity per ground-up claim. The subject (gross) row is the same for all layers and replicates the gross severity statistics shown above for $a$.

```
In [202]: qd(a19n.reinsurance_audit_df.stack(0), sparsify=False)
```



The reinsurance_occ_layer_df dataframe summarizes aggregate losses.


The layer severities show above differ slightly from Mata et al. Table 3. The aggregate computation is closest to Method 3. The reported severities are 351.1 and 628.8.

The reinsurance_df dataframe provides the gross, ceded, and net severity and aggregate distributions:

- Severity distributions: p_sev_gross, p_sev_ceded, p_sev_net
- Aggregate distribution: p_agg_gross_occ, p_agg_ceded_occ, p_agg_net_occ show the aggregate distributions computed using gross, cede, and net severity (occurrence) distributions. These are the portfolio gross, ceded and net distributions.
- The columns p_agg_gross, p_agg_ceded, p_agg_net are relevant only when there is are occurrence and aggregate reinsurance clauses. They report gross, ceded and net of the aggregate covers, using the severity requested in the occurrence clause. In this case p_agg_gross is the same as p_agg_net_occ because the occurrence clause specified net of.

Here is an extract from the severity distributions. Ceded severity is at most 1500 . The masses at $250,500,1000$ and 1500 are evident.

```
In [204]: qd(a19n.reinsurance_df.loc[0:2000:250,
 : ['p_sev_gross', 'p_sev_ceded', 'p_sev_net']])
 :
```

(continued from previous page)

	P_sev_gross	P_sev_ceded	P_sev_net
loss	0.0059219	0.84369	0.0059219
0.0	0.00074474	$7.6472 \mathrm{e}-05$	0.00074474
125.0	0.012139	0.00029874	
250.0	0.00029874	$3.8634 \mathrm{e}-05$	0.00016663
375.0	0.00016663	0.018065	0.15642
500.0	0.00010806	$1.8367 e-05$	0
625.0	$7.6472 \mathrm{e}-05$	0	
750.0	0.012139	$1.5689 e-05$	0
875.0	$3.8634 e-05$	$1.3584 e-05$	0
1000.0	0.018065	0.022295	0
1125.0	$1.8367 e-05$	$5.9515 e-06$	0
1250.0	$1.5689 e-05$	$5.3056 e-06$	0
1375.0	$1.3584 e-05$	$4.7639 e-06$	0
1500.0	0.022295	0.023679	0
1625.0	$5.9515 e-06$	0	0
1750.0	$5.3056 e-06$	0	0
1875.0	$4.7639 e-06$	0	0
2000.0	0.023679		0

Here is an extract from the aggregate distributions, followed by the density and distribution plots. The masses are caused by outcomes involving only limit losses.

```
In [205]: qd(a19n.reinsurance_df.loc[3000:6000:500,
 : ['p_agg_gross_occ', 'p_agg_ceded_occ', 'p_agg_net_occ']])
 :
 p_agg_gross_occ p_agg_ceded_occ p_agg_net_occ
loss
3000.0 5.6326e-05 0.0090335 0.00017503
3250.0 6.2846e-05 0.0024374 0.00017886
3500.0 6.8727e-05 0.0050447 0.00017401
3750.0 7.3779e-05 0.0013535 0.00016174
4000.0 7.7914e-05 0.0037091 0.00014418
4250.0 8.1081e-05 0.0010054 0.00012359
4500.0 8.328e-05 0.002359 0.00010216
4750.0 8.4511e-05 0.00063735 8.1596e-05
5000.0 8.4787e-05 0.0012892 6.3111e-05
5250.0 8.4135e-05 0.00034824 4.735e-05
5500.0 8.2634e-05 0.00080992 3.4517e-05
5750.0 8.0373e-05 0.00022017 2.4482e-05
6000.0 7.7463e-05 0.00045425 1.6918e-05
In [206]: fig, axs = plt.subplots(1, 3, figsize=(3 * 3.5, 2.45), constrained_
@layout=True)
In [207]: ax0, ax1, ax2 = axs.flat
In [208]: bit = a19n.reinsurance_df[['p_agg_gross_occ', 'p_agg_ceded_occ', 'p_agg_
↔net_occ']]
In [209]: bit.plot(ax=ax0);
In [210]: bit.plot(logy=True, ax=ax1);
In [211]: bit.cumsum().plot(ax=ax2);
In [212]: for ax in axs.flat:
 : ax.set(xlim=[0, 12500]);
 :
```

```
In [213]: ax0.set(ylabel='Mixed density');
In [214]: ax1.set(ylabel='Log mixed density');
In [215]: ax2.set(ylabel='Distribution');
```



Any desired risk management evaluation can be computed from reinsurance_df, which contains the gross, ceded, and net distributions. For example, here is a tail return period plot and a dataframe of summary statistics.

```
In [216]: fig, axs = plt.subplots(1, 2, figsize=(2 * 2.45, 3.5), constrained_
@layout=True)
In [217]: ax0, ax1 = axs.flat
In [218]: for c in bit.columns:
 : ax0.plot(bit[c].cumsum(), bit.index, label=c.split('_')[2])
 : rp = 1/(1 - bit[c].cumsum())
 : ax1.plot(rp, bit.index, label=c)
 :
In [219]: ax0.xaxis.set_major_locator(ticker.MultipleLocator(0.25))
In [220]: ax0.set(ylim=[0, a19n.q(1-1e-10)], title='x vS $F(x)$', xlabel='$F(x)$
\hookrightarrow', ylabel='Outcome, x');
In [221]: ax1.set(xscale='log', xlim=[1, 1e10], ylim=[0, a19n.q(1-1e-10)], xlabel=
\hookrightarrow'Log return period');
In [222]: ax0.legend(loc='upper left');
In [223]: df = pd.DataFrame({c.split('_')[2]: xsden_to_meancvskew(bit.index,
\hookrightarrowbit[c]) for c in bit.columns},
 : index=['mean', 'cv', 'skew'])

In [224]: qd(df)
gross ceded net
cv 0.42198 0.67304 0.32507
skew 0.60601 0.8053 0.39439
```



Mata Figures 4, 5, 6 and 7 show the aggregate mixed density and distribution functions for each layer. These plots are replicated below. Our model uses a gamma mixed Poisson frequency with a variance multiplier of 2.0 , resulting in a lower variance multiplier for excess layers (see REF). The plots in Mata appear to use a variance multiplier of 2.0 for the excess layer, resulting in a more skewed distribution.

```
In [225]: from aggregate import lognorm_approx
In [226]: vm = 2.0; c = (vm - 1) / a19.n; cv = c**0.5
In [227]: a20 = build('agg Re:MFV41n1 '
 : '[1000 2000 2000 3000] premium at [.65 . 65 . 75 .75] lr '
 : '[750 1000 1500 2000] xs [10 25 50 50] '
 : 'sev [exp(8)/1000 exp(8)/1000 exp(9)/1000 exp(9)/1000] * *
\hookrightarrowlognorm [2.5 2.5 3 3]
 : 'occurrence net of 500 xs 500'
 : f'mixed gamma {cv}', bs=1/2)
 :
In [228]: a21 = build('agg Re:MFV41n2 '
 : '[1000 2000 2000 3000] premium at [.65 . 65 . 75 .75] lr '
 : '[750 1000 1500 2000] xs [10 25 50 50] '
 : 'sev [exp(8)/1000 exp(8)/1000 exp(9)/1000 exp(9)/1000] *-
Glognorm [2.5 2.5 3 3]
 : 'occurrence net of 1000 xs 1000'
 : f'mixed gamma {cv}', bs=1/2)
 :
In [229]: qd(a20)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Sev 253.23 195.93 -0.22626 1.7344
log2 = 16, bandwidth = 1/2, validation: n/a, reinsurance.
In [230]: qd(a21)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Sev rrrer.23 210.86
log2 = 16, bandwidth = 1/2, validation: n/a, reinsurance.
In [231]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45), constrained_
@layout=True); \
```

(continues on next page)

```
.....: ax0, ax1, ax2, ax3 = axs.flat; \
.....: a20.reinsurance_df.p_agg_ceded_occ.plot(ax=ax0); \
.....: a20.reinsurance_df.p_agg_ceded_occ.cumsum().plot(ax=ax2);
.....: a21.reinsurance_df.p_agg_ceded_occ.plot(ax=ax1); \
.....: a21.reinsurance_df.p_agg_ceded_occ.cumsum().plot(ax=ax3); \
.....: xs = np.linspace(0, 5000, 501); \
.....: fz = lognorm_approx(a20.reinsurance_df.p_agg_ceded_occ); \
.....: ax2.plot(xs, fz.cdf(xs), label='lognorm approx'); \
.....: fz = lognorm_approx(a21.reinsurance_df.p_agg_ceded_occ); \
.....: ax3.plot(xs, fz.cdf(xs), label='lognorm approx'); \
.....: ax2.legend(); \
.....: ax3.legend(); \
.....: ax0.set(xlim=[-50, 5000], xlabel=None, ylabel='500 xs 500 density'); \
.....: ax2.set(xlim=[-50, 5000], ylabel='500 xs 500 distribution'); \
.....: ax1.set(xlim=[-50, 5000], xlabel=None, ylabel='1M xs 1M density');
..... .:
```

In [232]: ax3.set(xlim=[-50, 5000], ylabel='1M xs 1M distribution');


### 2.6.10 Summary of Objects Created by DecL

Objects created by build() in this guide.

```
In [233]: from aggregate import pprint_ex
In [234]: for n, r in build.qlist('^(Re):').iterrows():
 : pprint_ex(r.program, split=20)

```


### 2.7 Reserving

Objectives: Applications of the Aggregate class to reserving, including models of loss emergence and determining ranges for IBNR and case reserves.

Audience: Reserving, capital modeling, ERM actuaries.
Prerequisites: DecL, the reserving process and terminology, aggregate distributions, risk measures.
See also:

## Contents:

1. Helpful References
2. Modeling the Current Accident Year, Case and IBRN Reserves
3. The Resolution of Reserve Uncertainty Over Time

### 2.7.1 Helpful References

- Meyers [2019]
- Mildenhall and Major [2022], chapter 17


### 2.7.2 Modeling the Current Accident Year, Case and IBRN Reserves

## Todo: Documentation to follow.

### 2.7.3 The Resolution of Reserve Uncertainty Over Time

Todo: Documentation to follow.

### 2.8 Catastrophe Modeling

Objectives: Applications of the Aggregate class to catastrophe risk evaluation and pricing using thick-tailed Poisson Pareto and lognormal models, including occurrence and aggregate PMLs (OEP, AEP) and layer loss costs. Covers material on CAS Parts 8 and 9.

Audience: Catastrophe modelers, reinsurance actuaries, and risk management professionals.
Prerequisites: Basics of catastrophe modeling, catastrophe insurance and reinsurance terminology, use of build.
See also: Capital Modeling and Risk Management, Strategy and Portfolio Management, Reinsurance Pricing, Individual Risk Pricing.

## Contents:

1. Helpful References
2. Jewson's US Wind PML Estimates
3. Jewson's US Wind Climate Change Estimates
4. ILW Pricing
5. Secondary Uncertainty
6. Summary of Objects Created by DecL

### 2.8.1 Helpful References

- Jewson [2022]
- Mitchell-Wallace et al. [2017]
- Anderson and Dong [1988]
- Woo [2002]


### 2.8.2 Jewson's US Wind PML Estimates

## Model Description

Stephen Jewson Projections of Changes in U.S. Hurricane Damage Due to Projected Changes in Hurricane Frequencies (submitted, under peer review), Jewson [2022] reports the following frequency and severity statistics for US hurricane losses.

Hurricane   Category	Number   of   Historical   Hurricanes	Average   Number   per year	Mean Loss Per   Storm (\$B)   $(\mathrm{W} 2018 / \mathrm{M} 2020)$	SD Loss Per   Storm (\$B)   $(\mathrm{W} 2018 / \mathrm{M} 2020)$	Average Annual   Loss (\$B)   $(\mathrm{W} 2018 / \mathrm{M} 2020)$			
$1-5$	197	1.67	10	15.9	24.4	47.2	16.7	26.5
1	84	0.71	2.28	2.96	8.63	9.62	1.63	2.11
2	47	0.40	4.46	6.39	6.17	7.83	1.78	2.55
3	43	0.36	13	17.9	21.9	29.9	4.73	6.52
4	20	0.17	43.8	82.3	50.9	119	7.42	13.9
5	3	0.025	46.5	55.2	51.5	60.1	1.18	1.4

Table 1 Historical hurricane loss statistics derived from the normalized hurricane losses created by Weinkle et al. (2018) (W2018) and Martinez (2020) (M2020) (the CL18 and CL18a versions, respectively). Monetary values are in 2018 U.S. dollars. Column 1 gives the hurricane intensity category. Column 2 gives the number of U.S. landfalling hurricanes during the period 1900-2017. Column 3 converts column 2 into an average number of storms per year. Columns 4, 5 and 6 split into two sub-columns, for results derived from the W2018 and the M2020 datasets. They give the mean loss per storm, standard deviation of loss per storm, and average annual loss.

The dataframe jewson recreates the table and adds severity CVs.

```
In [1]: from aggregate import build, qd, mv
In [2]: import pandas as pd
In [3]: import matplotlib.pyplot as plt
In [4]: jewson = pd.DataFrame(
 ...: {'Num': [197, 84, 47, 43, 20, 3],
 ...: 'EN': [1.67, 0.71, 0.4, 0.36, 0.17, 0.025],
```

(continued from previous page)

```
...: 'ES_W': [10.0, 2.28, 4.46, 13.0, 43.8, 46.5],
...: 'ES_M': [15.9, 2.96, 6.39, 17.9, 82.3, 55.2],
...: 'SD_W': [24.4, 8.63, 6.17, 21.9, 50.9, 51.5],
...: 'SD_M': [47.2, 9.62, 7.83, 29.9, 119.0, 60.1],
...: 'EX_W': [16.7, 1.63, 1.78, 4.73, 7.42, 1.18],
...: 'EX_M': [26.5, 2.11, 2.55, 6.52, 13.9, 1.4]},
...: index=pd.Index(['1-5', '1', '2', '3', '4', '5'],
...: dtype='object', name='Cat')
...:)
... :
```

In [5]: jewson['CV_W'] = jewson.SD_W / jewson.ES_W;
...: jewson['CV_M'] = jewson.SD_M / jewson.ES_M
. . . :
In [6]: qd(jewson)

Num	EN	ES_W	ES_M	SD_W	SD_M	EX_W	EX_M	CV_W	CV_M
				10	15.9	24.4	47.2	16.7	26.5
197	1.67	0.71	2.28	2.96	8.63	9.62	1.63	2.11	3.7851
84	0.7	2.9686							
47	0.4	4.46	6.39	6.17	7.83	1.78	2.55	1.3834	1.2254
43	0.36	13	17.9	21.9	29.9	4.73	6.52	1.6846	1.6704
20	0.17	43.8	82.3	50.9	119	7.42	13.9	1.1621	1.4459
3	0.025	46.5	55.2	51.5	60.1	1.18	1.4	1.1075	1.0888

Jewson models aggregate losses with Poisson frequency and lognormal severity assumptions. Use build to create Aggregate models of the two implied distributions. Adjust bs from recommended $1 / 16$ to $1 / 8$ for thick tailed distributions.

```
In [7]: w = build('agg Cat:USWind:W '
 ...: f'{jewson.loc["1":"5", "EN"].to_numpy()} claims
 ...: f'sev lognorm {jewson.loc["1":"5", "ES_W"].to_numpy()
 ...: f'CV {jewson.loc["1":"5", "CV_W"].to_numpy()}'
 ...: 'poisson'
 ...: , bs=1/8)
 ... :
In [8]: m = build('agg Cat:USWind:M:
 ...: f'{jewson.loc["1":"5", "EN"].to_numpy()} claims '
 ...: f'sev lognorm {jewson.loc["1":"5", "ES_M"].to_numpy()
 ...: f'CV {jewson.loc["1":"5", "CV_M"].to_numpy()}'
 ...: 'poisson'
 \ldots: , bs=1/8)
 ...:
In [9]: qd(w)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Frreq 1.665 0.77498 0.7.
Agg 16.691 16.691 -4.5361e-05 2.0756 2.0753 6.9539 6.8019
log2 = 16, bandwidth = 1/8, validation: fails sev skew, agg skew.
In [10]: mv(w)
mean = 16.6913
variance = 1200.188
std dev = 34.6437
In [11]: qd(m)
```

```
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Agg 26.473 26.471 -4.9871e-05 2.4699 2.4668 10.676 10.23
log2 = 16, bandwidth = 1/8, validation: fails sev cv, agg cv.
In [12]: mv(m)
mean = 26.4726
variance = 4275.28
std dev = 65.3856
```

Plots of the severity and aggregate distributions confirms they are very thick tailed.

```
In [13]: w.plot()
In [14]: m.plot()
```



## Aggregate PML Estimates

It is easy to compute aggregate PML points (aggregate quantiles). The next table shows values at a range of return periods. The return period corresponding to a $p$ quantile is $1 /(1-p)$. In a Poisson frequency model, the reciprocal of the frequency equals the average waiting time between events because of the relationship between the Poisson and exponential distributions. Amounts are in USD billions.

```
In [15]: agg_pmls = pd.DataFrame({'Return': [2, 5, 10, 20, 25, 50, 100, 200, 250, u
@1000, 10000]}, dtype=float)
In [16]: agg_pmls['p'] = 1 - 1/agg_pmls.Return
In [17]: agg_pmls['Weinkle'] = [w.q(i) for i in agg_pmls.p]
In [18]: agg_pmls['Martinez'] = [m.q(i) for i in agg_pmls.p]
In [19]: agg_pmls = agg_pmls.set_index(['Return'])
In [20]: qd(agg_pmls)
```

	$p$	Weinkle	Martinez
Return			
2.0	0.5	4.5	6.375
5.0	0.8	23.5	33
10.0	0.9	46	68.5
20.0	0.95	73.875	117.38
25.0	0.96	84.125	136.12
50.0	0.98	119.25	204.12
100.0	0.99	160.38	288.88
200.0	0.995	208.12	392.88
250.0	0.996	225.12	431
1000.0	0.999	350.5	727
10000.0	0.9999	657.88	1516

## Occurrence PML Estimates

Occurrence PMLs, called occurrence exceeding probability (OEP) points, can be computed for a compound Poisson model as adjusted severity quantiles. The $n$ year OEP is defined as the loss level $\operatorname{OEP}(n)$ so that
there is a $1 / n$ chance of one or more losses greater than $\operatorname{OEP}(n)$ per year.
The definition is valid only for $n \geq 1$ since $1 / n$ is interpreted as a probability. If $\lambda$ is the annual event frequency and $S$ the severity survival function, then the annual frequency of losses greater than $x$ equals $\lambda S(x)$ and therefore chance of one or more losses greater than $x$ equals $1-\exp (-\lambda S(x))$ with Poisson frequency (one minus chance of no events). Rearranging gives

$$
\operatorname{OEP}(n)=q\left(1+\frac{\log (1-1 / n)}{\lambda}\right)
$$

where $q$ is the severity distribution quantile function.
Jewson [2022] considers the related notion of event exceedance frequency (EEF). Here, the $n$ year EEF is defined as the loss level $\operatorname{EEF}(n)$ with a $1 / n$ annual frequency. Thus

$$
E E F(n)=q\left(1-\frac{1}{\lambda n}\right)
$$

This definition is valid for any $n>0$ since the result is a frequency rather than a probability. OEP and EEF are very similar for large $n$ because $\log (1+x) \approx x$ for small $x$, but they diverge significantly for small $n$ and only the latter makes sense for $0<n<1$. Jewson shows EEFs in his Figure 2. See Aggregate and Occurrence Probable Maximal Loss and Catastrophe Model Output.
Jewson comments that OEP is useful for validating the frequency of annual maximum loss, which is affected by clustering. Thus OEP estimates are important for validating models that include clustering. EEF is useful for validating whether a model captures the mean frequency of events, including events with frequency greater than 1 per year.

The following table shows OEP and EEF points, comparing the two statistics.

```
In [21]: oep = pd.DataFrame({'Return': [2, 5, 10, 20, 25, 50, 100, 200, 250, 1000,ь
\hookrightarrow10000]}, dtype=float); \
 : oep['p'] = 1 - 1/oep.Return;
 : oep['W OEP'] = [w.q_sev(1 + np.log(i) / w.n) for i in oep.p];
 : oep["W EEF"] = [w.q_sev(1 - 1 / i /w.n) for i in oep.Return];
 oep['M OEP'] = [m.q_sev(1 + np.log(i) / m.n) for i in oep.p];
 : oep["M EEF"] = [m.q_sev(1 - 1 / i /m.n) for i in oep.Return];
 : oep = oep.set_index(['Return']);
 : qd(oep)
 :
Return
```

2.0	0.5	3.625	6.375	5.125	8.875
5.0	0.8	18.75	21.125	26.125	29.75
10.0	0.9	37.75	39.375	56.75	59.375
20.0	0.95	62.125	63.125	100.5	102.38
25.0	0.96	71.25	72	117.62	119.25
50.0	0.98	103.12	103.62	181	182
100.0	0.99	141.62	141.88	261.75	262.38
200.0	0.995	187.38	187.62	362.75	363.12
250.0	0.996	203.88	204	400.12	400.38
1000.0	0.999	327.38	327.5	693.38	693.5
10000.0	0.9999	635.38	635.38	1482.8	1482.8

The next block of code shows the same information as Jewson's Figure 2. It includes OEP and EEF for comparison. The dashed line shows a third alternative aggregate implementation using the exact continuous weighted severity survival function m.sev.sf, rather than the discrete approximation in m.density_df.

```
In [22]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
@layout=True)
In [23]: for ax, mw, title, xmax in zip(axs.flat[::-1], [m, w], ['Martinezu
\hookrightarrowestimates', 'Weinkel estimates'], [550, 240]):
 : bit = np.exp(-(1-mw.density_df.F_sev.loc[:1000]) * m.n)
 : bit = 1 / (1 - bit)
 bit.plot(logy=True, ax=ax, label='OEP = Pr no events in year')
 : bit = 1 / ((1 - mw.density_df.F_sev.loc[:20000]) * m.n)
 : bit.plot(logy=True, ax=ax, label='EEF RP = 1/freq')
 : xs = np.linspace(0, 500, 501)
 : if title[0] == 'M':
 ...: rp = 1 (m.n * m.sev.sf(xs))
 : else:
 : rp = 1 / (m.n * w.sev.sf(xs))
 : ax.plot(xs, rp, c='r', ls='--', lw=2, alpha=0.25, label='From sev sf')
 : ax.legend()
 : ax.set(xlim=[-10, xmax], ylim=[400, .5], title=title)
 : ax.set_yscale('log', base=10)
 : ticks = [1, 3, 10, 30, 100, 300]
 : ax.set_yticks(ticks)
 : ax.set_yticklabels([f'{x}' for x in ticks]);
 :
In [24]: fig;
```



## Feller's Relationship between AEP and OEP

For thick tailed distributions, AEP and OEP points are closely related by Feller's theorem, which says that for $A \sim$ $\mathrm{CP}(\lambda, X)$ with severity $X$ subexponential,

$$
\lambda \operatorname{Pr}(X>x) \rightarrow \operatorname{Pr}(A>x)
$$

as $x \rightarrow \infty$, see REF. The next plot confirms that Feller's approximation is very good. Note the extreme return periods returned by aggregate that would be hard to estimate with simulation.

```
In [25]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.55), constrained_
\hookrightarrowlayout=True)
In [26]: for ax, mw, lim, title in zip(axs.flat[::-1], [m, w], [5000, 5000], [
\hookrightarrow'Martinez', 'Weinkle']):
 : bit = mw.density_df.loc[:5000, ['S', 'S_sev']]
 : bit['Feller'] = bit.S_sev * mw.n
 : bit = 1 / bit
 : bit.plot(xlim=[-10, lim], logy=True, ax=ax, ylim=[1000000, 0.5], lw=1)
 : ax.set_yscale('log', base=10)
 : ticks = [1,10,100,1000,10000, 1e5, 1e6]
 : ax.set_yticks(ticks)
 : ax.set_yticklabels([f'{x:.0g}' for x in ticks]);
 : ax.set(title=title);
 : if ax is axs[0]: ax.set(ylabel='Return period (years)');
 :
In [27]: fig.suptitle("Feller's approximation to aggregate PMLs")
Out[27]: Text(0.5, 0.98, "Feller's approximation to aggregate PMLs")
```



Note: These graphs demonstrate computational facility. I'm not suggesting one million year PML is a reliable estimate. But the figure is reliably computing what the specified statistical model implies. The losses shown range up to USD 5 trillion, about $20 \%$ of GDP.

### 2.8.3 Jewson's US Wind Climate Change Estimates

Jewson Table 2 provides estimates for the impact of a 2 degree Celcius increase in global mean surface temperature (GMST) on event frequency by Safir-Simpson category. He also provides the standard deviation of the impact. These are added in the next dataframe.

```
In [28]: jewson['Freq Chg'] = [None, 1.011, 1.095, 1.134, 1.179, 1.236]
In [29]: jewson['Freq Chg SD'] = [None, 0.3179, .4176, .4638, .5174, .5830]
In [30]: qd(jewson.loc["1":"5", ['Freq Chg', 'Freq Chg SD']])
 Freq Chg Freq Chg SD
```

Cat		
1	1.011	0.3179
2	1.095	0.4176
3	1.134	0.4638
4	1.179	0.5174
5	1.236	0.583

He models the impact of climate change on PMLs by assuming the frequency of each category is perturbed using a lognormal with mean and standard deviation given by the last two columns of the above table. He assumes that the perturbations across categories are comonotonic. In actuarial terms, he is using comonotonic frequency mixing variables, to create a mixed compound Poisson.

We can create a similar effect using aggregate first by adjusting the baseline event frequencies by the Freq Chg column and then by applying shared mixing across all events together (resulting in comonotonic perturbations). We select a mix CV equal to Jewson's estimate for Category 4 events. The categories are similar - in light of the overall uncertainty of the analysis.

```
In [31]: qd((jewson.iloc[1:, -1] / jewson.iloc[1:, -2]))
Cat
10.31444
20.38137
30.40899
40.43885
50.47168
In [32]: mix_cv = 0.5174 / 1.179
In [33]: mix_cv
Out[33]: 0.4388464800678541
```

The adjusted model is built using inverse Gaussian mixing variables (slightly thicker tail than gamma), rather than Jewson's lognormals. Note that the standard deviations increase but the CVs decrease.

```
In [34]: wcc = build('agg Cat:USWind:Wcc '
 ...: f'{jewson.loc["1":"5", "EN"].to_numpy() * jewson.loc["1":"5",
\hookrightarrow"Freq Chg"].to_numpy()} claims '
 : f'sev lognorm {jewson.loc["1":"5", "ES_W"].to_numpy()} '
 ...: f'CV {jewson.loc["1":"5", "CV_W"].to_numpy()}'
 : f'mixed ig {mix_cv}'
 \ldots..: , bs=1/8)
 :
In [35]: mcc = build('agg Cat:USWind:Mcc '
 : f'{jewson.loc["1":"5", "EN"].to_numpy() * jewson.loc["1":"5",
\hookrightarrow"Freq Chg"].to_numpy()} claims '
 : f'sev lognorm {jewson.loc["1":"5", "ES_M"].to_numpy()} '
 ...: f'CV {jewson.loc["1":"5", "CV_M"].to_numpy()}'
 : f'mixed ig {mix_Cv}'
 \ldots..: , bs=1/8)
 :
In [36]: qd(wcc)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
llllllll
Agg 19.113 19.112 -4.0062e-05 2.0062
log2 = 16, bandwidth = 1/8, validation: fails sev skew, agg skew.
```

(continued from previous page)

```
In [37]: mv (wcc)
mean = 19.1129
variance = 1470.276
std dev = 38.3442
In [38]: qd(mcc)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.7954
```



```
log2 = 16, bandwidth = 1/8, validation: fails sev cv, agg cv.
In [39]: mv(mcc)
mean = 30.4321
variance = 5193.212
std dev = 72.0639
```

The new models produce the following AALs, compare Jewson Figure 3.

```
In [40]: base = pd.concat((w.report_df.loc['agg_m'].T,
 ...: m.report_df.loc['agg_m'].T), axis=1,
 : keys=['Weinkle', 'Martinez']); \
 : cc = pd.concat((wcc.report_df.loc['agg_m'].T,
 ...: mcc.report_df.loc['agg_m'].T), axis=1,
 : keys=['Weinkle', 'Martinez']); \
 : df = pd.concat((base, cc), axis=1,
 : keys=[' Base', 'Adjusted']);
 : df[('Change', 'Martinez')] = (df[('Adjusted', 'Martinez')] - df[(' Base',
\hookrightarrow 'Martinez')]); \
 : df[('Change', 'Weinkle')] = (df[('Adjusted', 'Weinkle')] - df[(' Base',
\hookrightarrow'Weinkle')]); \
 : df[('Pct Change', 'Martinez')] = (df[('Adjusted', 'Martinez')]
 ...: df[(' Base', 'Martinez')]) / jewson.iloc[0]['EX_M']; \
 : df[('Pct Change', 'Weinkle')] = (df[('Adjusted', 'Weinkle')] -
 ...: df[(' Base', 'Weinkle')]) / jewson.iloc[0]['EX_W']; \
 : df = df.iloc[[0,1,2,3,4,6]]; \
 : df.index = [1,2,3,4,5, 'Total'];
 : df.index.name = 'Category'; \
 : df = df.swaplevel(axis=1); \
 : df = df.sort_index(axis=1, ascending=[False, True]); \
 : qd(df.stack(0).swaplevel(0).sort_index(ascending=[False,True]))
 :
 Base Adjusted Change Pct Change
\begin{tabular}{llrrrr}
& Category & & & \\
Weinkle \\
1 & 1.6188 & 1.6366 & 0.017807 & 0.0010663 \\
2 & 1.784 & 1.9535 & 0.16948 & 0.010149 \\
3 & 4.68 & 5.3071 & 0.62712 & 0.037552 \\
Martinez & 7.446 & 8.7788 & 1.3328 & 0.07981 \\
Total & 16.691 & 19.113 & 2.4216 & 0.14501 \\
1 & 2.1016 & 2.1247 & 0.023118 & 0.00087236 \\
2 & 2.556 & 2.7988 & 0.24282 & 0.009163 \\
3 & 6.444 & 7.3075 & 0.8635 & 0.032585 \\
4 & 13.991 & 16.495 & 2.5044 & 0.094505 \\
& 1.38 & 1.7057 & 0.32568 & 0.01229 \\
& & 26.473 & 30.432 & 3.9595 & 0.14942
\end{tabular}
```

Here are plots of the base and adjusted AEP and OEP curves. Compare Jewson Figure 5 (a) and (b) for aggregate and Figure 6 (a) and (b) for occurrence.

```
In [41]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.5), constrained_
@layout=True)
In [42]: axs = axs.flat[::-1]
In [43]: for axo, axa, (mw, mwcc), title in zip(axs.flat[0::2], axs.flat[1::2],
\hookrightarrow[(m, mcc), (w, wcc)], ['Martinez', 'Weinkle']):
 : bit = 1 / ((1 - mw.density_df.F_sev.loc[:2000]) * mw.n)
 : bit.plot(logy=True, ax=axo, label='OEP');
 : bit = 1 / ((1 - mwcc.density_df.F_sev.loc[:2000]) * mw.n)
 : bit.plot(logy=True, ax=axo, label='OEP, climate chanage');
 : bit = 1 / (1 - mw.density_df.F.loc[:2000])
 : bit.plot(logy=True, ax=axa, label='AEP');
 : bit = 1 / (1 - mwcc.density_df.F.loc[:2000])
 : bit.plot(logy=True, ax=axa, label='AEP, climate change');
 : axo.set(title=f'{title} OEP');
 : axa.set(title=f'{title} AEP');
 :
In [44]: for ax in axs.flat:
 : ax.set(xlim=[-10, 325], ylim=[130, .5], xlabel='Loss');
 : if ax in [axs.flat[1], axs.flat[3]]:
 : ax.set(ylabel='Return period');
 : ax.set_yscale('log', base=10);
 : ticks = [1, 2, 5, 10, 20, 50, 100]
 : ax.set_yticks(ticks);
 : ax.set_yticklabels([f'{x}' for x in ticks]);
 : ax.legend()
 :
In [45]: fig.suptitle('Impact of climate change on AEP and OEP curves');
```



### 2.8.4 ILW Pricing

Industry Loss Warranties (ILW) are securities that pay an agreed amount if losses from a named peril exceed a threshold during the contract term. They are usually written on an occurrence basis and are triggered by losses from a single event. For example, a US hurricane $\$ 20$ billion ILW pays 1 if there is a US hurricane causing $\$ 20$ billion or more losses during the contract period. They are used by insurers to provide cat capacity. Because they are not written on an indemnity basis there is no underwriting, which simplifies their pricing.

Brokers publish price sheets for ILWs to give a view of market pricing. Price is expressed as a percentage of the face value. A recent sheet quoted prices for US hurricane as follows.

Attachment	Price (Pct)
$15 B$	47.0
$20 B$	38.0
$25 B$	33.0
$30 B$	27.5
$40 B$	17.5
$50 B$	13.0
$60 B$	10.75

The next dataframe adds expected losses and compares them to the ILW pricing. The expected loss is given by the occurrence survival function - it is simply the probability of attaching the layer. The EL columns show Jewson's expected losses across the four views discussed above. The impact on EL is only caused by greater event frequency. Its effect increases with attachment.

```
In [46]: views = ['Weinkle', 'Weinkle Adj', 'Martinez', 'Martinez Adj']
In [47]: ilw = pd.concat((x.density_df.loc[[15, 20, 25, 30, 40, 50, 60],
 ['S_sev']].rename(columns={'S_sev': 'EL'})
 ...: ['S_sev']].rename(columns={
 ...: axis=1, keys=views,
 ...: names=['View', 'Stat']); \
 : ilw['Price'] = [.47, .38, .33, .275, .175, .13, .1075]; \
 : ilw.index.name = 'Trigger'; \
 : ilw = ilw.iloc[:, [-1,0,1,2,3]]; \
 : qd(ilw, float_format=lambda x: f'{x:.4f}')
 :
View Price Weinkle Weinkle Adj Martinez Martinez Adj
Stat EL EL EL EL
Trigger
\begin{tabular}{llllll}
15.0 & 0.4700 & 0.1622 & 0.1733 & 0.2075 & 0.2207
\end{tabular}
\begin{tabular}{llllll}
20.0 & 0.3800 & 0.1261 & 0.1353 & 0.1666 & 0.1782
\end{tabular}
25.0 0.3300 0.1013 0.1091 0.1390 0.1492
30.0 0.2750 0.0832 0.0898 0.1188 0.1279
40.0 0.1750 0.0586 0.0634 0.0910 0.0983
50.0 0.1300 0.0431 0.0.0467 0.0725 0.0785
60.0 0.1075 0.0326 0.0354 0.0593 0.0643
```

Cat pricing is often expressed in terms of the implied multiple: the ratio of premium to EL (reciprocal of the loss ratio).
Cat pricing multiples are usually in the range of 2 to 5 times the standard commercial models' estimates of expected loss. The base model pricing multiples, shown below, fall into this range. The climate adjusted multiples fall outside, which is not unexpected, since the pricing is for the coming period and not a future climate-impacted period.

```
In [48]: ilw[[(v, 'Multiple') for v in views]] = ilw[['Price']].values / ilw[[(v,
\hookrightarrow'EL') for v in views]]; \
 : qd(ilw.iloc[:, [0,5,6,7,8]])
 :
View Price Weinkle Weinkle Adj Martinez Martinez Adj
```

Stat		Multiple	Multiple Multiple	Multiple	
Trigger					
15.0	0.47	2.8979	2.7117	2.2652	2.1299
20.0	0.38	3.0142	2.8079	2.2803	2.1327
25.0	0.33	3.2578	3.0257	2.3739	2.2117
30.0	0.275	3.3058	3.0637	2.3144	2.1502
40.0	0.175	2.9845	2.7581	1.9239	1.7806
50.0	0.13	3.0188	2.7849	1.7938	1.6562
60.0	0.1075	3.3001	3.0409	1.8132	1.6714

The next table shows implied distortion parameters calibrated to market pricing for the dual

$$
g(s)=1-(1-s)^{p}, p>1
$$

and proportional hazard ( PH )

$$
g(s)=s^{p}, p<1
$$

parametric families (see Mildenhall and Major [2022]). In both cases, a higher parameter corresponds to a higher risk load. The dual is body-risk centric and the PH is tail-risk centric. The indicated parameters are quite high, consistent with the expense of bearing cat risk. (The parameters are incomparable between distortions.)

```
In [49]: params = pd.concat((np.log(1 - ilw[['Price']]).values / np.log(1 - ilw.xs(
 \hookrightarrow'EL', axis=1, level=1)),
 : np.log(ilw[['Price']].values) / np.log(ilw.xs('EL',七
\hookrightarrowaxis=1, level=1))),
 ...: axis=1, keys=['Dual', 'PH'])
 :
In [50]: qd(params.xs('Dual', axis=1, level=0))
View Weinkle Weinkle Adj Martinez Martinez Adj
Trigger
\begin{tabular}{rrrrr}
15.0 & 3.5877 & 3.3355 & 2.7301 & 2.5465 \\
20.0 & 3.5474 & 3.2875 & 2.6224 & 2.436 \\
25.0 & 3.7497 & 3.4678 & 2.6757 & 2.4785 \\
30.0 & 3.7027 & 3.4194 & 2.5422 & 2.3499 \\
40.0 & 3.1837 & 2.9347 & 2.0172 & 1.8596 \\
50.0 & 3.1637 & 2.9131 & 1.8511 & 1.7036 \\
60.0 & 3.4341 & 3.1598 & 1.8608 & 1.7107
\end{tabular}
In [51]: qd(params.xs('PH', axis=1, level=0))
View Weinkle Weinkle Adj Martinez Martinez Adj
Trigger
15.0 0.41507 0.4308 0.48009 0.49965
20.0 0.46722 0.48378 0.53997 0.56093
25.0 0.4842 0.50034 0.56186 0.58276
30.0 0.51916 0.53554 0.60606 0.62775
40.0 0.6145 0.63208 0.72704 0.7513
50.0 0.6487 0.66578 0.77736 0.80174
60.0 0.65132 0.66726 0.78937 0.8128
```


### 2.8.5 Secondary Uncertainty

Secondary uncertainty is the practice of expanding cat model simulated output by assuming that the results from each event form a distribution. It is usual to assume the distribution is a beta. The model output provides the beta's mean and standard deviation. Given this output, modelers often need to compute statistics, such as a layer expected loss, reflecting the secondary uncertainty. This calculation can be performed in aggergate as follows.

Assumptions: Assume one location with a TIV of 2500 and simple cat model output with only three equally-likely events with mean losses 100, 200, and 1100 and secondary uncertainty standard deviation 100,150 , and 600 . The overall event frequency is 1.6 with a Poisson distribution.
Question: What is the expected loss to a 1000 xs 1000 per risk cover with and without secondary uncertainty?
Solution: Start by building the answer without secondary uncertainty. It is convenient to put the assumptions in a dataframe.

```
In [52]: df = pd.DataFrame({'GroundUpLoss': [100, 200, 1100],
 : 'GroundUpSD': [100, 150, 600]})
 :
```

The model with no secondary uncertainty is a simple mixed severity.

```
In [53]: base = build('agg Cat:Base
 ...: '1.6 claims '
 : f'dsev {df.GroundUpLoss.values} '
 ...: 'occurrence ceded to 1000 xs 1000'
 ...: 'poisson'
 ...: , bs=1)
 :
In [54]: qd(base)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq
Agg 746.67 53.333 -0.92857 1.0979 1.3693 1.2973 1.3693
log2 = 15, bandwidth = 1, validation: n/a, reinsurance.
```

To incorporate the secondary uncertainty, we first compute the beta parameters using the method of moments. Then build the Aggregate model incorporating secondary uncertainty in each loss.

```
In [55]: tiv = 2500;
 : m = df['GroundUpLoss'] / tiv;
 : v = (df['GroundUpSD'] / tiv) ** 2;
 : sev_a = m * (m * (1 - m) / v - 1); \
 : sev_b = (1 - m) * (m * (1 - m) / v - 1); \
 : sec = build(f'agg Cat:Secondary '
 : '1.6 claims '
 ...: f'sev {tiv} * beta {sev_a.values} {sev_b.values} wts=3 '
 ...: 'occurrence ceded to 1000 xs 1000'
 : 'poisson')
 :
In [56]: qd(sec)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.6 0.79057 0.79057
Sev 466.67 96.384 -0.79346 1.2367 2.5758 1.5399 2.6259
Agg 746.67 154.21 -0.79346 1.2573 2.1844 1.6706 2.4651
log2 = 16, bandwidth = 1/2, validation: n/a, reinsurance.
```

Including secondary uncertainty nearly triples the expected loss to the layer, from 53 to 154 . Had the third loss been only 1000 , there would be no loss at all to the layer without secondary uncertainty.

The next plot compares the gross severity and aggregate distributions.

```
In [57]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
\hookrightarrowlayout=True); \
 : ax0, ax1 = axs.flat
 :
In [58]: base.reinsurance_df['p_sev_gross'].cumsum().plot(xlim=[0, 2500], ax=ax0,v
\hookrightarrowlabel='Base'); \
 : sec.reinsurance_df['p_sev_gross'].cumsum().plot(xlim=[0, 2500], ax=ax0,
@label='Secondary'); \
 : base.reinsurance_df['p_agg_gross_occ'].cumsum().plot(xlim=[0, 2500],4
\hookrightarrowax=ax1, label='Base'); \
 : sec.reinsurance_df['p_agg_gross_occ'].cumsum().plot(xlim=[0, 2500],七
\hookrightarrowax=ax1, label='Secondary'); \
 : ax0.set(title='Occurrence', xlabel='Loss', ylabel='Distribution'); \
 : ax1.set(title='Aggregate', xlabel='Loss', ylabel='Distribution'); \
 : ax0.legend();
 :
In [59]: ax1.legend();
```




### 2.8.6 Summary of Objects Created by DecL

The following objects are created by build() in this guide.

```
In [60]: from aggregate import pprint_ex
In [61]: for n, r in build.qlist('^Cat:').iterrows():
 : pprint_ex(r.program, split=20)
.... :
```


### 2.9 Capital Modeling and Risk Management

Objectives: Application of the Port folio class to capital modeling, including VaR, TVaR, and risk visualization and quantification. Covers material on CAS Part 9.

Audience: ERM, capital modeling, risk management actuaries.
Prerequisites: DecL, aggregate distributions, risk measures.
See also: Catastrophe Modeling, Strategy and Portfolio Management, Case Studies.
Contents:

1. Helpful References
2. Conditional Expectation as a Risk Management and Visualization Device

### 2.9.1 Helpful References

- Mildenhall and Major [2022], especially chapter 14.


### 2.9.2 Conditional Expectation as a Risk Management and Visualization Device

Todo: Documentation to follow. In the meantime, see examples in Case Studies.

### 2.10 Strategy and Portfolio Management

Objectives: Use spectral risk measures to allocate total margin by unit.Application of the Portfolio and and Distortion classes to strategy and portfolio management, including margin (capital) allocation, determining benchmark pricing within a portfolio using alternative pricing methodologies, and the evaluation of reinsurance.

Audience: Planning and strategy, ERM, capital modeling, risk management actuaries.
Prerequisites: DecL, aggregate distributions, risk measures.
See also: Catastrophe Modeling, Capital Modeling and Risk Management, Case Studies.

## Contents:

1. Helpful References
2. strat margin alloc

### 2.10.1 Helpful References

- Mildenhall and Major [2022] chapters 14 and 15 and references therein.


### 2.10.2 Margin Allocation Using Spectral Risk Measures

Todo: Documentation to follow. In the meantime, see examples in Case Studies.

### 2.11 Case Studies

Objectives: Using aggregate to reproduce the case study exhibits from the book Pricing Insurance Risk and build similar exhibits for your own cases.

Audience: Capital modeling and corporate strategy actuaries; anyone reading PIR.
Prerequisites: Intermediate to advanced users with a sold understanding of aggregate. Familiar with PIR.
See also: Capital Modeling and Risk Management, Strategy and Portfolio Management.

## Contents:

1. PIR Case Studies
2. Creating a Case Study
3. Case Study Factory Arguments
4. Defining a Custom Case Study

## 5. Standard Case Study Exhibits

Confession: Some of the case_studies code is sub-optimal.

### 2.11.1 PIR Case Studies

The book Pricing Insurance Risk (PIR) presents four Case Studies that show how different methods price business. This section shows how to reproduce all the book's exhibits for each case and how to create new cases.

Each case describes business written by Ins Co., a one-period de novo insurer that comes into existence at time zero, raises capital and writes business, and pays all losses at time one. A case models two units (line, region, operating unit, or other division) with one more risky than the other. Usually, the riskier one is reinsured. Case exhibits compare unit statistics and pricing on a gross and net basis, showing results from over a dozen different methods.

## Simple Discrete Example

In the Simple Discrete Example Case Study, $X_{1}$ takes values 0 , 8 , or 10 , and $X_{2}$ values 0 , 1 , or 90 . The units are independent and sum to the portfolio loss $X$. The outcome probabilities are $1 / 2,1 / 4$, and $1 / 4$ respectively for each marginal. There are 9 possible outcomes. This type of output is typical of that produced by a catastrophe, capital, or pricing simulation model-albeit much simpler.

## Tame Case Study

In the Tame Case Study, Ins Co. writes two predictable units with no catastrophe exposure. It is an idealized, bestcase risk-pool. It proxies a portfolio of personal and commercial auto liability. It uses a straightforward stochastic model with gamma distributions.

Aggregate reinsurance applies to the more volatile unit, with an attachment probability 0.2 (56) and detachment probability 0.01 (69).

## Catastrophe and Non-Catastrophe (CNC) Case Study

In the Cat/Non-Cat Case Study, Ins Co. has catastrophe and non-catastrophe exposures. The non-catastrophe unit proxies a small commercial lines portfolio. Balancing the relative benefits of units considered to be more stable against more volatile ones is a very common strategic problem for insurers and reinsurers. It arises in many different guises:

- Should a US Midwestern company expand to the East coast (and pick up hurricane exposure)?
- Should an auto insurer start writing homeowners?
- What is the appropriate mix between property catastrophe and non-catastrophe exposed business for a reinsurer?

The two units are independent and have gamma and lognormal distributions.
Aggregate reinsurance applies to the Cat unit, with an attachment probability 0.1 (41) and detachment probability 0.005 (121).

## Hurricane/Severe Convective Storm (HuSCS) Case Study

In the $\mathrm{Hu} / \mathrm{SCS}$ Case Study, Ins Co. has catastrophe exposures from severe convective storms (SCS) and, independently, hurricanes (Hu). In practice, hurricane exposure is modeled using a catastrophe model. The Case proxies that by using a very severe severity in place of the gross catastrophe model event-level output. Both units are modeled using an aggregate distribution with a Poisson frequency and lognormal severity.

Aggregate reinsurance applies to the HU unit with an occurrence attachment probability $0.05(40)$ and detachment probability 0.005 (413). (PIR incorrectly states the reinsurance is occurrence.)

### 2.11.2 Creating a Case Study

Case Study exhibits are managed by the class CaseStudy in aggregate.extensions.case_studies, see Extensions. Here are the steps needed to create a case study. The computations take a few minutes. The output is a set of HTML files that can be viewed in a browser. The code blocks below are provided in executable scripts described below.

1. Import case_studies:
```
from aggregate import build, qd
from aggregate.extensions import case_studies as cs
```

2. Create a new CaseStudy object. It is a generic container, the options are set in the next step:
```
my_case = cs.CaseStudy()
```

3. Set the case study options. Here are the options for the PIR Tame case. The arguments are described later:
```
my_case.factory(case_id='my_tame',
 case_name='My version of PIR Tame Case',
 case_description='Tame Case to demonstrate capabilities.',
 a_distribution='agg A 1 claim sev gamma 50 cv 0.10 fixed',
 b_distribution_gross='agg B 1 claim sev gamma 50 cv 0.15 fixed
 b_distribution_net='agg B 1 claim sev gamma 50 cv 0.15 fixed '
 'aggregate net of 12.90625 xs 56.171875',
 reg_p=0.999,
 roe=0.10,
 d2tc=0.3,
 f_discrete=False,
 s_values=[.005, 0.01, 0.03],
 gs_values=[0.029126, 0.047619, 0.074074],
 bs=1/64,
 log2=16,
 padding=1)
```

4. Execute:
```
my_case.full_monty()
```

to create all figures and tables. The code can take several minutes to execute.
5. To browse the exhibits execute:

```
my_case.browse_exhibits()
```

which opens two new browser tabs, one for the standard book exhibits and one for a set of extended exhibits.

## Details.

Exhibit output files are stored in build.case_dir, which by default is the subdirectory aggregate/cases of your home directory ( $\sim$ on Linux, \users $\backslash$ <user name> on Windows, and who knows on an Apple). The
book exhibits are marshaled in $\mathrm{f}^{\prime}\left\{m y _c a s e . c a s e _i d\right\} _b o o k . h t m l '$ and a set of extended exhibits are in $\mathrm{f}^{\prime}\{$ my_case.case_id\}_extended.html'. The detailed files are in a subdirectory called my_case. case_id.

### 2.11.3 Case Study Factory Arguments

cs.CaseStudy ().factory () takes the following arguments.

- case_id is a single word label that uniquely identifies the Case. It determines the output directory for the Case exhibits and so must be acceptable to your operating system as a directory name.
- case_name such as "Cat/Non-Cat".
- case_description is a brief description of the Case.
- a_distribution, b_distribution_gross and b_distribution_net are DecL programs defining the aggregate distributions for each unit, including reinsurance on unit B. Unit names should be upper case and ideally in alphabetical order, the more volatile unit second. For example A and B.
- reg_p gives the regulatory capital standard, entered as a probability of non-exceedance level. Solvency II operates at 0.995 (one in 200 years). In the US, rating agencies consider companies at 0.99 ( 100 years), 0.996 ( 250 years), 0.999 ( 1000 years), or higher. Corporate bond default rates impose even tighter capital standards.
- roe sets the target cost of capital. All pricing methods are calibrated to produce a return on capital of roe at the selected capital standard level. This makes them comparable.
- d 2 tc is the maximum allowable debt to total capital level (used for enhanced exhibits only). It is used to tranche capital into debt and equity.
- f_discrete indicates whether the distributions are discrete (Simple Discrete Example) or mixed (all others). Usually f_discrete=False.
- s_values and gs_values define cat bond pricing and are used to create a blended distortion, see below.
- bs, $\log 2$, and padding are the usual update parameters.


### 2.11.4 PIR Case Specifications

This section provides the arguments needed to recreate each PIR Case Study. Some of the code is used to determine the details of reinsurance. See PIR Chapter REF for more details and explanation.

The current version of aggregate uses an improved blend distortion over that shown in PIR. It is calibrated to cat bond pricing for high return periods using the following values:
-s_values: [.005, 0.01, 0.03]

- gs_values: [0.029126, 0.047619, 0.074074]
meaning bonds with a $0.5 \%$ EL have a discount spread of $2.9 \%, 1 \%$ EL a discount spread of $4.76 \%$ and so forth. They define the left-hand (small $s$ ) end of a distortion function.

All Cases assume that debt to total capital limited at $30 \%$, $\mathrm{d} 2 \mathrm{tc}: 0.3$. This factor is only used in the extended exhibits.

## Simple Discrete Example Specification

There are two flavors, one with distinct outcomes and one with two ways of obtaining the outcome 10. The latter is used in PIR to illustrate the linear natural allocation. Here are the specifications.

```
make the discrete case study
from aggregate.extensions import case_studies as cs
if
```

$\qquad$

``` \(==1\)
``` \(\qquad\)
``` main
``` \(\qquad\)
``` ':
discrete = cs.CaseStudy()
discrete.factory(case_id='discrete', case_name='Discrete', case_description='PIR Discrete Case Study (no equal points).', a_distribution='agg X1 1 claim dsev [0 8 10] [1/2 1/4 1/4]」
\(\hookrightarrow\) fixed', b_distribution_gross='agg X2 1 claim dsev [0 1 90] [1/2 1/4 1/
\hookrightarrow4] fixed',
 b_distribution_net=f'agg X2 1 claim dsev [0 1 90] [1/2 1/4 1/
\hookrightarrow4] fixed aggregate net of 70 xs 20',
 reg_p=1,
 roe=0.10,
 d2tc=0.3,
 f_discrete=True,
 s_values=[.005,0.01, 0.03],
 gs_values=[0.029126, 0.047619, 0.074074],
 bs=1,
 log2=8,
 padding=1)
 discrete.full_monty()
 discrete.to_json()
 discrete.browse_exhibits()
 discrete_eq = cs.CaseStudy()
 discrete_eq.factory(case_id='discrete_equal',
 case_name='Discrete (equal points)',
 case_description='PIR Discrete Case Study with equal`
\hookrightarrowpoints.',
 a_distribution='agg X1 1 claim dsev [0 9 10] [1/2 1/4 1/4]^
@fixed',
 b_distribution_gross='agg X2 1 claim dsev [0 1 90] [1/2 1/
\hookrightarrow4 1/4] fixed',
 b_distribution_net=f'agg X2 1 claim dsev [0 1 90] [1/2 1/4u
\hookrightarrow1/4] fixed aggregate net of 70 xs 20',
 reg_p=1,
 roe=0.10,
 d2tc=0.3,
 f_discrete=True,
 s_values=[.005, 0.01, 0.03],
 gs_values=[0.029126, 0.047619, 0.074074],
 bs=1,
 log2=8,
 padding=1)
 discrete_eq.full_monty()
 discrete_eq.to_json()
 discrete_eq.browse_exhibits()
```


## Tame Specification

The first few lines calibrate the reinsurance to probability levels.

```
make the tame case study
from aggregate.extensions import case_studies as cs
from aggregate import build
if ___name___ == '___main___':
 # calibrate reinsurance
 recalc = build('agg B 1 claim sev gamma 50 cv 0.15 fixed',
 log2=16, bs=1/64)
 a, d = recalc.q(0.8), recalc.q(0.99)
 y = d - a
 # create exhibits
 tame = cs.CaseStudy()
 tame.factory(case_id='tame',
 case_name='Tame',
 case_description='Tame Case in the new syntax.',
 a_distribution='agg A 1 claim sev gamma 50 cv 0.10 fixed',
 b_distribution_gross='agg B 1 claim sev gamma 50 cv 0.15 fixed',
 b_distribution_net=f'agg B 1 claim sev gamma 50 Cv 0.15 fixedu
\hookrightarrowaggregate net of {y} xs {a}',
 reg_p=0.9999,
 roe=0.10,
 d2tc=0.3,
 f_discrete=False,
 s_values=[.005, 0.01, 0.03],
 gs_values=[0.029126, 0.047619, 0.074074],
 bs=1/64,
 log2=16,
 padding=1)
 tame.full_monty()
 tame.to_json()
 tame.browse_exhibits()
```


## Catastrophe and Non-Catastrophe Specification

The first few lines calibrate the reinsurance to probability levels.

```
make the cat non-cat case study
from aggregate.extensions import case_studies as cs
from aggregate import build
import warnings
warnings.filterwarnings('ignore')
if ___name___ == '___main___':
 # be more informative
 build.logger_level(20)
 # calibrate reinsurance
 recalc = build('agg Cat 1 claim sev lognorm 20 cv 1.00 fixed'
 , log2=16, bs=1/64)
 a, d = recalc.q(0.9), recalc.q(0.995)
 y = d - a
 # create exhibits
```

(continued from previous page)

```
 cnc = cs.CaseStudy()
 cnc.factory(case_id='cnc'
 case_name='Cat/Non-Cat',
 case_description='Cat/Non-Cat in the new syntax.',
 a_distribution='agg NonCat 1 claim sev gamma 80 cv 0.15 fixed',
 b_distribution_gross='agg Cat 1 claim sev lognorm 20 cv 1.00 fixed
`',
 b_distribution_net=f'agg Cat 1 claim sev lognorm 20 cv 1.00 fixed.
\hookrightarrowaggregate net of {y} xs {a}',
 reg_p=0.999,
 roe=0.10,
 d2tc=0.3,
 f_discrete=False,
 s_values=[.005, 0.01, 0.03],
 gs_values=[0.029126, 0.047619, 0.074074],
 bs=1/64,
 log2=16,
 padding=1)
 cnc.full_monty()
 cnc.to_json()
 cnc.browse_exhibits()
```


## Hurricane/Severe Convective Storm Specification

The first few lines set up the parameters from PIR. Then the reinsurance is calibrated to probability levels. The second version has occurrence reinsurance on the Cat line with the same limit and attachment.

```
make the hu-scs case study
from aggregate.extensions import case_studies as cs
from aggregate import build
import numpy as np
if
 __name___ == '___main__''
 # parameters from PIR
 freq1, sigma1 = 70, 1.9
 freq2, sigma2 = 2, 2.5
 mu1 = -sigma1**2 / 2
 mu2 = -sigma2**2 / 2
 sev1, sev2 = 1, 15
 print(mu1, sigma1, mu2, sigma2,
 freq1, np.exp(mu1), sigma1,
 freq2, np.exp(mu2), sigma2)
 recalc = build(f'sev Husev {15 * np.exp(mu2)} * lognorm {sigma2}')
 a, d = recalc.isf(0.05), recalc.isf(0.005)
 y = d - a
 print(y, a, d)
 # create exhibits
 hs = cs.CaseStudy()
 hs.factory(case_id='hs',
 case_name='Hu/SCS Case',
 case_description='Hu/SCS Case in the new syntax.',
 a_distribution=f'agg SCS {freq1} claims sev {sev1 * np.exp(mu1)}\smile
\hookrightarrow* lognorm {sigma1} poisson',
 b_distribution_gross=f'agg Hu {freq2} claims sev {sev2 * np.
\hookrightarrowexp(mu2)} * lognorm {sigma2} poisson',
```

(continues on next page)
(continued from previous page)

```
 b_distribution_net=f'agg Hu {freq2} claims sev {sev2 * np.
\hookrightarrowexp(mu2)} * lognorm {sigma2} poisson ' \
 f'aggregate net of {y} xs {a}',
 reg_p=0.999,
 roe=0.10,
 d2tc=0.3,
 f_discrete=False,
 s_values=[.005, 0.01, 0.03],
 gs_values=[0.029126, 0.047619, 0.074074],
 bs=1/4,
 log2=19,
 padding=1)
 hs.full_monty()
 hs.to_json()
 hs.browse_exhibits()
 hs2 = cs.CaseStudy()
 hs2.factory(case_id='hs_per_occ',
 case_name='Hu/SCS',
 case_description='Hu/SCS Case in the new syntax with peru
\hookrightarrowoccurrence reinsurance .',
 a_distribution=f'agg SCS {freq1} claims sev {sev1 * np.exp(mu1) }七
\hookrightarrow * lognorm {sigma1} poisson',
 b_distribution_gross=f'agg Hu {freq2} claims sev {sev2 * np.
\hookrightarrowexp(mu2)} * lognorm {sigma2} poisson',
 b_distribution_net=f'agg Hu {freq2} claims sev {sev2 * np.
\hookrightarrowexp(mu2)} * lognorm {sigma2} '
 f'occurrence net of {y} xs {a} poisson',
 reg_p=0.999,
 roe=0.10,
 d2tc=0.3,
 f_discrete=False,
 s_values=[.005, 0.01, 0.03],
 gs_values=[0.029126, 0.047619, 0.074074],
 bs=1/4,
 log2=19,
 padding=1)
 hs2.full_monty()
 hs2.to_json()
```

These snippets are provided in Python scripts in aggregate.extensions called discrete.py, tame.py, cnc.py and hs. py. They can be run from the command line:

```
python -m aggregate.extensions.tame
```

Precomputed versions are available at https://www.pricinginsurancerisk.com/results.

### 2.11.5 Defining a Custom Case Study

It should be obvious how to create a custom case study. The key is the DecL for the two units. Here are ideas for some custom Case Studies illustrating different behaviors.

### 2.11.6 Standard Case Study Exhibits

The next table provides a list of all the PIR exhibits and figures showing the Chapter in which they occur and the figure numbers. Not all exhibits are down for the Simple Discrete Example.

Rf	Kind	Ch.	Number(s)	Description
A	$\begin{aligned} & \text { Ta- } \\ & \text { ble } \end{aligned}$	2	2.3, 2.5, 2.6, 2.7	Estimated mean, CV, skewness and kurtosis by line and in total, gross and net.
B	Figure	2	2.2, 2.4, 2.6	Gross and net densities on a linear and log scale.
C	Figure	2	2.3, 2.5, 2.7	Bivariate densities: gross and net with gross sample.
D	Figure	4	$\begin{aligned} & 4.9,4.10,4.11, \\ & 4.12 \end{aligned}$	TVaR, and VaR for unlimited and limited variables, gross and net.
E	$\begin{aligned} & \text { Ta- } \\ & \text { ble } \end{aligned}$	4	4.6, 4.7, 4.8	Estimated VaR, TVaR, and EPD by line and in total, gross, and net.
F	$\begin{aligned} & \text { Ta- } \\ & \text { ble } \end{aligned}$	7	7.2	Pricing summary.
G	Table	7	7.3	Details of reinsurance.
H	$\begin{aligned} & \text { Ta- } \\ & \text { ble } \end{aligned}$	9	9.2, 9.5, 9.8	Classical pricing by method.
I	$\begin{aligned} & \text { Ta- } \\ & \text { ble } \end{aligned}$	9	9.3, 9.6, 9.9	Sum of parts (SoP) stand-alone vs. diversified classical pricing by method.
J	Table	9	9.4, 9.7, 9.10	Implied loss ratios from classical pricing by method.
K	$\begin{aligned} & \text { Ta- } \\ & \text { ble } \end{aligned}$	9	9.11	Comparison of stand-alone and sum of parts premium.
L	$\begin{aligned} & \text { Ta- } \\ & \text { ble } \end{aligned}$	9	9.12, 9.13, 9.14	Constant CoC pricing by unit for Case Study.
M	Figure	11	$\begin{array}{lr} \hline 11.2, & 11.3, \\ 11.4,11.5 & \end{array}$	Distortion envelope for Case Study, gross.
N	$\begin{aligned} & \text { Ta- } \\ & \text { ble } \end{aligned}$	11	11.5	Parameters for the six SRMs and associated distortions.
O	Figure	11	11.6, 11.7, 11.8	Variation in insurance statistics for six distortions as $s$ varies.
P	Figure	11	11.9, 11.10,   11.11	Variation in insurance statistics as the asset limit is varied.
Q	Table	11	11.7, 11.8, 11.9	Pricing by unit and distortion for Case Study.
R	Table	13	13.1 missing	Comparison of gross expected losses by Case, catastrophe-prone lines.
S	$\begin{aligned} & \text { Ta- } \\ & \text { ble } \end{aligned}$	13	13.2, 13.3, 13.4	Constant 0.10 ROE pricing for Case Study, classical PCP methods.
T	Figure	15	15.2-15.7 (G/N)	Twelve plot.
U	Figure	15	15.8, 15.9, 15.10	Capital density by layer.
V	Table	15	$\begin{array}{ll} 15.35, & 15.36 \\ 15.37 & \\ \hline \end{array}$	Constant 0.10 ROE pricing for Cat/Non-Cat Case Study, distortion, SRM methods.
W	Figure	15	15.11	Loss and loss spectrums.
X	Figure	15	15.12,   15.14$\quad 13$,	Percentile layer of capital allocations by asset level.
Y	Table	15	$\begin{array}{ll} 15.38, & 15.39 \\ 15.40 & \end{array}$	Percentile layer of capital allocations compared to distortion allocations.

### 2.12 Working With Samples

Objectives: How to sample from aggregate and how to a build a Portfolio from a sample. Inducing correlation in a sample using the Iman-Conover algorithm and determining the worst-VaR rearrangement using the rearrangement algorithm.
Audience: Planning and strategy, ERM, capital modeling, risk management actuaries.
Prerequisites: DecL, aggregate distributions, risk measures.
See also: ../5_technical_guides/5_x_samples, ../5_technical_guides/5_x_iman_conover, ../5_technical_guides/5_x_rearrangement_algorithm.

## Contents:

1. Helpful References
2. Samples from aggregate Object
3. Applying the Iman-Conover Algorithm
4. Applying the Re-Arrangement Algorithm
5. Summary of Objects Created by DecL

### 2.12.1 Helpful References

- Mildenhall and Major [2022] chapter 14 and 15
- Puccetti and Ruschendorf [2012]
- Conover [1999]
- Mildenhall [2005]
- Vitale IC proof in dependency book


### 2.12.2 Samples and Densities

Use case: make realistic marginal distributions with aggregate that reflect the underlying frequency and severity (rather than defaulting to a lognormal determined by a CV assumption) and then use a sample in your simulation model.

### 2.12.3 Samples from aggregate Object

The method sample () draws a sample from an Aggregate or Portfolio class object. Both cases work by applying pandas.DataFrame.sample to the object's density_df dataframe.

## Examples.

1. A sample from an Aggregate. Set up a simple lognormal distribution, modeled as an aggregate with trivial frequency.
```
In [1]: from aggregate import build, qd, set_seed
In [2]: a01 = build('agg Samp:01 '
 ...: '1 claim '
 ...: 'sev lognorm 10 cv . 4 '
 ...: 'fixed'
 ...: , bs=1/512)
 . . . :
```

(continued from previous page)

```
In [3]: qd(a01)
```

    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
    X
Freq 1 0

Sev	10	10	$-6.1087 e-11$	0.4	0.4	1.264	1.264


| Agg 10 | 10 | $-6.1087 e-11$ | 0.4 | 0.4 | 1.264 | 1.264 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\log 2=16$, bandwidth $=1 / 512$, validation: not unreasonable.

Apply sample() and display the results.

```
In [4]: set_seed(102)
In [5]: df = a01.sample(10**5)
In [6]: fc = lambda x: f'{x:8.2f }'
In [7]: qd(df.head(), float_format=fc)
 loss
 6.33
 10.10
 13.29
 7.56
 11.18
```

The sample histogram and the computed pmf are close. The pmf is adjusted to the resolution of the histogram.

```
In [8]: fig, ax = plt.subplots(1, 1, figsize=(3.5, 2.45), constrained_
\hookrightarrowlayout=True)
In [9]: xm = a01.q(0.999)
In [10]: df.hist(bins=np.arange(xm), ec='w', lw=.25, density=True,
 : ax=ax, grid=False);
 :
In [11]: (a01.density_df.loc[:xm, 'p_total'] / a01.bs).plot(ax=ax);
In [12]: ax.set(title='Sample and aggregate pmf', ylabel='pmf');
```


2. A sample from a Portfolio produces a multivariate distribution. Setup a simple Portfolio with three lognormal marginals.

```
In [13]: from aggregate.utilities import qdp
In [14]: from pandas.plotting import scatter_matrix
In [15]: p02 = build('port Samp:02
```

(continued from previous page)


Apply sample () to produce a sample with no correlation. Here are the first few values.

```
In [17]: df = p02.sample(10**4)
In [18]: qd(df.head(), float_format=fc)
```

A	B	C	total
9.45	21.07	4.86	35.38
11.73	20.10	8.34	40.16
10.93	12.06	3.05	26.05
7.24	6.34	1.79	15.37
8.28	13.30	13.87	35.45

qdp () prints the pandas describe statistics dataframe for a dataframe, and adds the CV.

```
In [19]: qdp(df)
```

Out [19]:

	A	B	C	total
count	10000.000000	10000.000000	10000.000000	10000.000000
mean	9.966709	15.052769	5.058216	30.077694
std	2.002445	7.583697	4.047945	8.889127
min	3.664062	2.117188	0.250000	11.726562
$25 \%$	8.539062	9.773438	2.484375	23.781250

(continues on next page)
(continued from previous page)

$50 \%$	9.789062	13.351562	4.000000	28.507812
$75 \%$	11.187500	18.609375	6.257812	34.640625
max	21.078125	81.070312	45.562500	115.281250
Cv	0.200913	0.503807	0.800271	0.295539

The sample is independent, with correlations close to zero, as expected.

```
In [20]: abc = ['A', 'B', 'C']
In [21]: qd(df[abc].corr())
\begin{tabular}{rrrr}
& A & B & C \\
A & 1 & 0.0058516 & -0.0021565 \\
B & 0.0058516 & 1 & 0.015729 \\
C & -0.0021565 & 0.015729 & 1
\end{tabular}
```

The scatterplot is consistent with independent marginals.

```
In [22]: scatter_matrix(df[abc], grid=False,
 : figsize=(6, 6), diagonal='hist',
 : hist_kwds={'density': True, 'bins': 25, 'lw': . 25, 'ec': 'w'}
\hookrightarrow
 : s=1, marker='.');
```


3. Pass a correlation matrix to sample () to draw a correlated sample. Correlation is induced using the ImanConover algorithm.

The function random_corr_matrix() creates a random correlation matrix using vines. The second parameter controls the average correlation. This example includes high positive correlation.

```
In [23]: from aggregate import random_corr_matrix
In [24]: rcm = random_corr_matrix(3, .6, True)
In [25]: rcm
```

```
Out[25]:
matrix([[1. , 0.80331094, 0.24377874],
 [0.80331094, 1. , 0.35448898],
 [0.24377874, 0.35448898, 1.]])
```

Re-sample with target correlation rcm . The achieved correlation is reasonably close to the requested rcm.

```
In [26]: df2 = p02.sample(10**4, desired_correlation=rcm)
In [27]: qd(df2.iloc[:, :3].corr('pearson'))
M
B 0.78513 1 0.31656
C 0.22481 0.31656 1
```

The scatterplot now shows correlated marginals. The histograms are unchanged.

```
In [28]: df2['total'] = df2.sum(1)
In [29]: scatter_matrix(df2[abc], grid=False, figsize=(6, 6), diagonal=
\hookrightarrow'hist',
 : hist_kwds={'density': True, 'bins': 25, 'lw': . 25, 'ec': 'w'}
\hookrightarrow
 s=1, marker='.');
```



The sample uses a different random state and produces a different draw. Comparing qdp output is one way to see if 10000 simulations is adequate. In this case there is good agreement.

```
In [30]: qdp(df2)
Out [30]:
```

	A	B	C	total
count	10000.000000	10000.000000	10000.000000	10000.000000
mean	9.991469	14.969470	4.987341	29.948280
				(continues on next page)


			(continued from previous page)	
std	1.997495	7.389115	3.910557	10.902512
min	4.070312	1.984375	0.304688	8.242188
25\%	8.570312	9.742188	2.414062	22.304688
$50 \%$	9.789062	13.406250	3.906250	27.867188
$75 \%$	11.179688	18.351562	6.273438	35.460938
max	19.398438	79.468750	45.937500	111.164062
Cv	0.199920	0.493612	0.784097	0.364045

### 2.12.4 Applying the Iman-Conover Algorithm

The method sample() automatically applies the Iman-Conover algorithm (described in ../5_technical_guides/5_x_iman_conover). It is also easy to apply Iman-Conover to a dataframe using the method aggregate.utilities.iman_conover(). It reorders the input dataframe to have the same rank correlation as a multivariate normal reference sample with the desired linear correlation. Optionally, a multivariate t -distribution can be used as the reference.

## Examples.

Apply Iman-Conover to the sample $d f$ with target the correlation $r \mathrm{~cm}$, reusing the variables created in the previous section. The achieved correlation is close to that requested, as shown in the last two blocks.

```
In [31]: from aggregate import iman_conover
In [32]: import pandas as pd
In [33]: ans = iman_conover(df[abc], rcm, add_total=False)
In [34]: qd(pd.DataFrame(rcm, index=abc, columns=abc))
 A B C
A 1 0.80331 0.24378
B 0.80331 1 0.35449
C 0.24378 0.35449 1
In [35]: qd(ans.corr())
\begin{tabular}{lrrr}
& A & B & C \\
A & 1 & 0.78111 & 0.22247 \\
B & 0.78111 & 1 & 0.31237 \\
C & 0.22247 & 0.31237 & 1
\end{tabular}
```

Setting the argument dof uses a t-copula reference with dof degrees of freedom. The t-copula with low degrees of freedom can produce pinched multivariate distributions. Use with caution.

```
In [36]: ans = iman_conover(df[abc], rcm, dof=2, add_total=False)
In [37]: qd(ans.corr())
M
B 0.69018 1 0.36267
C 0.18008 0.36267 1
In [38]: scatter_matrix(ans, grid=False, figsize=(6, 6), diagonal='hist',
 : hist_kwds={'density': True, 'bins': 25, 'lw': . 25, 'ec': 'w'},
 : s=1, marker='.');
 :
```



See WP REF for ways to apply Iman-Conover with different reference distributions.
Details. Creating the independent scores for Iman-Conover is quite time consuming. They are cached for a given sample size. Second and subsequent calls are far quicker (an order of magnitude) than the first call.

### 2.12.5 Applying the Re-Arrangement Algorithm

The method rearrangement_algorithm_max_VaR() implements the re-arrangement algorithm described in ../5_technical_guides/5_x_rearrangement_algorithm. It returns only the tail of the re-arrangement, since values below the requested percentile are irrelevant.

Apply to df and request $0.999-\mathrm{VaR}$. The marginals are the 10 largest values. The algorithm permutes them to balance large and small observations.

```
In [39]: from aggregate import rearrangement_algorithm_max_VaR
In [40]: ans = rearrangement_algorithm_max_VaR(df.iloc[:, :3], .999)
In [41]: qd(ans, float_format=fc)
\begin{tabular}{rrrr}
A & B & C & total \\
21.08 & 63.78 & 38.59 & 123.45 \\
20.22 & 65.18 & 38.40 & 123.80 \\
20.63 & 62.50 & 40.80 & 123.93 \\
18.93 & 65.02 & 40.24 & 124.20 \\
17.98 & 60.66 & 45.56 & 124.20 \\
18.02 & 68.88 & 37.33 & 124.23 \\
17.75 & 61.75 & 44.91 & 124.41 \\
19.99 & 66.28 & 38.22 & 124.49 \\
17.69 & 73.03 & 37.12 & 127.84 \\
17.59 & 81.07 & 37.03 & 135.70
\end{tabular}
```

Here are the stand-alone sa VaRs by marginal, in total for $\mathrm{d} f$, in total for the correlated df 2 , and the re-arrangement solutions ra for a range of different percentiles. The column comon total shows VaR for the comonotonic sum of the marginals (which equals the largest TVaR and variance re-arrangement).

```
In [42]: ps = [9000, 9500, 9900, 9960, 9990, 9999]
In [43]: sa = pd.concat([df[c].sort_values().reset_index(drop=True).iloc[ps] for C&
Gin df]
\hookrightarrow'].
 ...: sort_values().reset_index(drop=True).iloc[ps]], axis=1)
 :
In [44]: sa['comon total'] = sa[abc].sum(1)
In [45]: ra = pd.concat([rearrangement_algorithm_max_VaR(df.iloc[:, :3], p/10000).
Giloc[0] for p in ps],
 ...: axis=1, keys=ps).T
 :
In [46]: exhibit = pd.concat([sa, ra], axis=1, keys=['stand-alone', 're-arrangement
@'])
In [47]: exhibit.index = [f'{x/10000:.2%}' for x in exhibit.index]
In [48]: exhibit.index.name = 'percentile'
In [49]: qd(exhibit, float_format=fc)
 stand-alone re-
\hookrightarrowarrangement
\(\hookrightarrow\) A B
percentile
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 90.00\% & & 12.59 & 24.75 & 9.73 & 41.48 & 44.22 & 47.06 & - \\
\hline \(\rightarrow 14.66\) & 29.73 & & & & & & & \\
\hline 95.00\% & & 13.55 & 29.21 & 12.68 & 46.48 & 50.43 & 55.44 & - \\
\hline \(\rightarrow 16.42\) & 32.19 & & & & & & & \\
\hline 99.00\% & & 15.45 & 39.98 & 20.55 & 58.15 & 65.26 & 75.98 & \(\checkmark\) \\
\hline \(\rightarrow 17.75\) & 44.51 & & & & & & & \\
\hline 99.60\% & & 16.36 & 47.62 & 26.58 & 68.00 & 73.50 & 90.56 & \(\checkmark\) \\
\hline \(\rightarrow 17.59\) & 59.56 & & & & & & & \\
\hline 99.90\% & & 17.59 & 60.66 & 37.03 & 80.20 & 93.51 & 115.28 & \(\checkmark\) \\
\hline \(\hookrightarrow 21.08\) & 63.78 & & & & & & & \\
\hline 99.99\% & & 21.08 & 81.07 & 45.56 & 115.28 & 111.16 & 147.71 & \(\checkmark\) \\
\hline \(\hookrightarrow 21.08\) & 81.07 & & & & & & & \\
\hline
\end{tabular}
percentile
90.00% 12.62 57.02
95.00% 16.98 65.59
99.00% 26.37 88.62
99.60% 28.77 105.92
99.90% 38.59 123.45
99.99% 45.56 147.71
```

See also Worked Example.

### 2.12.6 Creating a Portfolio From a Sample

A Portfolio can be created from an existing sample by passing in a dataframe rather than a list of aggregates. This approach is useful when another model has created the sample, but the user wants to access other aggregate functionality. Each marginal in the sample is created as a dsev with the sampled outcomes. The p_total column used to set scenario probabilities if its is input, otherwise each scenario is treated as equally likely. The Portfolio ignores any the correlation structure of the sample; the marginals are treated as independent, but see Using Samples and the Switcheroo Trick for a way around this assumption.

## Example.

Create a simple discrete sample from a three unit portfolio.

```
In [50]: sample = pd.DataFrame(
 : {'A': [20, 22, 24, 6, 5, 6, 7, 8, 21, 3],
 : 'B': [20, 18, 16, 14, 12, 10, 8, 6, 4, 2],
 : 'C': [0, 0, 0, 0, 0, 0, 0, 0, 20, 40]})
 :
In [51]: qd(sample)
\begin{tabular}{rrrr}
& A & B & C \\
0 & 20 & 20 & 0 \\
1 & 22 & 18 & 0 \\
2 & 24 & 16 & 0 \\
3 & 6 & 14 & 0 \\
4 & 5 & 12 & 0 \\
5 & 6 & 10 & 0 \\
6 & 7 & 8 & 0 \\
7 & 8 & 6 & 0 \\
8 & 21 & 4 & 20 \\
9 & 3 & 2 & 40
\end{tabular}
```

Pass to Portfolio to create with these marginals. In this case, treat the marginals as discrete and update with $b s=1$.

```
In [52]: from aggregate import Portfolio
In [53]: p03 = Portfolio('Samp:03', sample)
In [54]: p03.update(bs=1, log2=8)
In [55]: qd(p03)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
A Freq 1 0
```



The univariate statistics for each marginal are the same as the sample input, but because they added independently, the totals differ. The sample has negative correlation and a lower CV.

```
In [56]: sample['total'] = sample.sum(1)
In [57]: qdp(sample)
Out[57]:
\begin{tabular}{lrrrrr}
& A & B & C & total \\
count & 10.000000 & 10.000000 & 10.000000 & 10.000000 \\
mean & 12.200000 & 11.000000 & 6.000000 & 29.200000 \\
std & 7.947327 & 5.744563 & 12.806248 & 12.998461 \\
min & 3.000000 & 2.000000 & 0.000000 & 14.000000 \\
\(25 \%\) & 6.000000 & 6.500000 & 0.000000 & 16.250000 \\
\(50 \%\) & 7.500000 & 11.000000 & 0.000000 & 30.000000 \\
\(75 \%\) & 20.750000 & 15.500000 & 0.000000 & 40.000000 \\
\(\max\) & 24.000000 & 20.000000 & 40.000000 & 45.000000 \\
Cv & 0.651420 & 0.522233 & 2.134375 & 0.445153
\end{tabular}
```

The Portfolio total is a convolution of the input marginals and includes all possible combinations added independently. The figure plots the distribution functions.

```
In [58]: ax = p03.density_df.filter(regex='p_[ABCt]').cumsum().plot(
 : drawstyle='steps-post', lw=1, figsize=(3.5, 2.45))
 :
In [59]: ax.plot(np.hstack((0, sample.total.sort_values())), np.linspace(0, 1, 11),
 : drawstyle='steps-post', lw=2, label='dependent');
 :
In [60]: ax.set(xlim=[-2, 90]);
In [61]: ax.legend(loc='lower right');
```



### 2.12.7 Using Samples and the Switcheroo Trick

Portfolio objects created from a sample ignore the dependency structure; the aggregate convolution algorithm always assumes independence. It is highly desirable to retain the sample's dependency structure. Many calculations rely only on $\mathrm{E}\left[X_{i} \mid X\right]$ and not the input densities per se. Thus, we reflect dependency if we alter the values $\mathrm{E}\left[X_{i} \mid X\right]$ based on a sample and recompute everything that depends on them. The method Portfolio. add_exa_sample() implements this idea.

## Example.

sample was chosen to have lots of ties - different ways of obtaining the same total outcome.

In [62]:	qd(sample)			
	A	B	C	total
0	20	20	0	40
1	22	18	0	40
2	24	16	0	40
3	6	14	0	20
4	5	12	0	17


5	6	10	0	16
6	7	8	0	15
7	8	6	0	14
8	21	4	20	45
9	3	2	40	45

Apply add_exa_sample to the sample dataframe and look at the outcomes with positive probability. When a total outcome can occur in multiple ways, exeqa_i gives the average value of unit $i$. The function is applied to a copy of the original Portfolio object because it invalidates various internal states. The output dataframe is indexed by total loss. Notice that rows sum to the correct total.

```
In [63]: p03sw = Portfolio('Samp:03sw', sample)
In [64]: p03sw.update(bs=1, log2=8)
In [65]: df = p03sw.add_exa_sample(sample)
In [66]: qd(df.query('p_total > 0').filter(regex='p_total|exeqa_[ABC]'))
\begin{tabular}{lrrrr}
& P_total & exeqa_A & exeqa_B & exeqa_C \\
14.0 & 0.1 & 8 & 6 & 0 \\
15.0 & 0.1 & 7 & 8 & 0 \\
16.0 & 0.1 & 6 & 10 & 0 \\
17.0 & 0.1 & 5 & 12 & 0 \\
20.0 & 0.1 & 6 & 14 & 0 \\
40.0 & 0.3 & 22 & 18 & 0 \\
45.0 & 0.2 & 12 & 3 & 30
\end{tabular}
```

Swap the density_df dataframe - the switcheroo trick.

```
In [67]: p03sw.density_df = df
```

See the function Portfolio.create_from_sample for a single step create from sample, update, add exa calc, and switcheroo.

Most Portfolio spectral functions depend only on marginal conditional expectations. Applying these functions through p03sw reflects dependencies. Calibrate some distortions to a $15 \%$ return. The maximum loss is only 45 , so use a $1-\mathrm{VaR}$, no default capital standard.

```
In [68]: p03sw.calibrate_distortions(ROEs=[0.15], Ps=[1], strict='ordered');
In [69]: qd(p03sw.distortion_df)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
45 .
\]} & & & S & L & P & \(P Q\) & Q & COC & param & error \\
\hline & LR & method & & & & & & & & \\
\hline & \multirow[t]{5}{*}{0.934075} & ccoc & 0 & 29.2 & 31.261 & 2.2753 & 13.739 & 0.15 & 0.15 & 0 \\
\hline & & ph & 0 & 29.2 & 31.261 & 2.2753 & 13.739 & 0.15 & 0.80913 & \(4.1444 \mathrm{e}-09\) \\
\hline & & wang & 0 & 29.2 & 31.261 & 2.2753 & 13.739 & 0.15 & 0.18223 & -1.6102e-07 \\
\hline & & dual & 0 & 29.2 & 31.261 & 2.2753 & 13.739 & 0.15 & 1.228 & -9.8354e-08 \\
\hline & & tvar & 0 & 29.2 & 31.261 & 2.2753 & 13.739 & 0.15 & 0.12059 & \(5.935 \mathrm{e}-06\) \\
\hline
\end{tabular}
```

Apply the PH and dual to the independent and dependent portfolios. Asset level 45 is the 0.861 percentile of the independent.

```
In [70]: d1 = p03sw.dists['ph']; d2 = p03sw.dists['dual']
In [71]: for d in [d1, d2]:
 : print(d.name)
 : print('='*74)
 : pr = p03.price(1, d)
 : pr45 = p03.price(.861, d)
```

(continued from previous page)

(continued from previous page)

	C	6.000	7.171	1.171	25.645	32.816	0.837	0 .
$\hookrightarrow 280 \quad 0.046$								
	total	29.200	31.754	2.554	52.246	84.000	0.920	0 .
$\hookrightarrow 608 \quad 0.049$								
pr45 Dual Moment, 1.228	A	11.675	12.422	0.747	5.480	17.902	0.940	2.
$\hookrightarrow 2670.136$								
	B	10.578	11.009	0.432	4.186	15.195	0.961	2.
$\hookrightarrow 630 \quad 0.103$								
	C	4.803	5.716	0.914	6.187	11.903	0.840	0 .
$\hookrightarrow 924 \quad 0.148$								
	total	27.055	29.148	2.093	15.852	45.000	0.928	1.
$\hookrightarrow 8390.132$								
prsw Dual Moment, 1.228	A	12.200	12.874	0.674	4.947	17.821	0.948	2.
$\leftrightarrow 602 \quad 0.136$								
	B	11.000	11.197	0.197	2.644	13.840	0.982	4.
$\hookrightarrow 2350.074$								
	C	6.000	7.191	1.191	6.148	13.339	0.834	1.
$\hookrightarrow 170 \quad 0.194$								
	total	29.200	31.261	2.061	13.739	45.000	0.934	2.
$\hookrightarrow 2750.150$								

### 2.12.8 Summary of Objects Created by DecL

Objects created by build() in this guide. Objects created directly by class constructors are not entered into the knowledge database.

```
In [72]: from aggregate import pprint_ex
In [73]: for n, r in build.qlist('^Samp:').iterrows():
 : pprint_ex(r.program, split=20)
 :
```


### 2.13 Published Problems and Examples

Objectives: aggregate solutions to a wide selection of problems and examples from books (Loss Models, Loss Data Analytics), actuarial exam study notes, and academic papers. Demonstrates the method of solution and verifies the correctness of aggregate calculations.

Audience: Academics and researchers and actuarial students reading the cited works.
Prerequisites: aggregate programming; risk theory.
See also: Examples in Reinsurance Pricing.

## Contents:

### 2.13.1 Grübel and Hermesmeier (1999)

## Poisson/Levy Example

Here is an example from Grübel and Hermesmeier [1999]. The Levy distribution is a zero parameter distribution in scipy. stats. The paper considers an aggregate with Poisson(20) claim count. The Panjer recursion column can be replicated using more buckets and padding with $b s=1$. The function exact uses conditional probability to compute the aggregate probability of $x-1 / 2<X<x+1 / 2$ exactly. The Levy is stable with index $\alpha=1 / 2$, which means that

$$
X_{1}+\cdots+X_{n}={ }_{d} n^{2} X
$$

for iid Levy variables.
The other models use $\log 2=10$, no padding, and varying amounts of tilting.

```
In [1]: from aggregate import build, qd
In [2]: from scipy.stats import levy
In [3]: a = build('agg L 20 claim sev levy poisson', update=False)
In [4]: bs = 1
In [5]: a.update(log2=16, bs=bs, padding=2, normalize=False, tilt_vector=None)
In [6]: df = a.density_df.loc[[1, 10, 100, 1000], ['p_total']] / a.bs
In [7]: df.columns = ['accurate']
In [8]: def exact(x):
 ...: lam = 20
 \ldots.: n = 100
 ...: p = np.zeros(n)
 ...: a = np.zeros(n)
 ...: p[0] = np.exp(-lam)
 ...: fz = levy()
 ...: for i in range(1, n):
 ...: p[i] = p[i-1] * lam / i
 ...: a[i]= fz.cdf((x+0.5)/i**2) - fz.cdf((x-0.5)/i**2)
 ...: return np.sum(p * a)
 ... :
In [9]: df['exact'] = [exact(i) for i in df.index]
other models
In [10]: log2 = 10
In [11]: for tilt in [None, 1/1024, 5/1024, 25/1024]:
 : a.update(log2=log2, bs=bs, padding=0, normalize=False, tilt_
\hookrightarrowvector=tilt)
 : if tilt is None:
 ...: tilt = 0
 : df[f'tilt {tilt:.4f}'] = a.density_df.loc[[1, 10, 100, 1000], ['p_
->total']]/a.bs
 :
In [12]: qd(df.iloc[:, [1,0,2,3,4, 5]], accuracy=3)
exact accurate tilt 0.0000 tilt 0.0010 tilt 0.0049 tilt 0.0244
loss
1.0 1.0778e-07 2.4616e-07 0.00020645 7.3458e-05 1.5602e-06 2.4616e-07
10.0 3.0754e-05 3.4324e-05 0.00023799 0.00010668 3.5624e-05 3.4324e-05
100.0 0.0011555 0.0011559 0.0013212 0.0012148 0.0011569 0.0011559
1000.0 0.00020129 0.00020121 0.00021341 0.00020561 0.00020129 0.00020121
```

This table is identical to the table shown in the paper.

TABLE 1

## COMPOUND PROBABILITIES AND APPROXIMATIONS

$\boldsymbol{x}$	rrue	Panjer	AlgI	Alg $\boldsymbol{a} \boldsymbol{a}$	Alg $5 \boldsymbol{b}$	Alg5c
1	$1.078 \mathrm{E}-07$	$2.462 \mathrm{E}-07$	$2.064 \mathrm{E}-04$	$7.346 \mathrm{E}-05$	$1.560 \mathrm{E}-06$	$2.462 \mathrm{E}-07$
10	$3.075 \mathrm{E}-05$	$3.432 \mathrm{E}-05$	$2.380 \mathrm{E}-04$	$1.067 \mathrm{E}-04$	$3.562 \mathrm{E}-05$	$3.432 \mathrm{E}-05$
100	$1.156 \mathrm{E}-03$	$1.156 \mathrm{E}-03$	$1.321 \mathrm{E}-03$	$1.215 \mathrm{E}-03$	$1.157 \mathrm{E}-03$	$1.156 \mathrm{E}-03$
1000	$2.013 \mathrm{E}-04$	$2.012 \mathrm{E}-04$	$2.134 \mathrm{E}-04$	$2.056 \mathrm{E}-04$	$2.013 \mathrm{E}-04$	$2.012 \mathrm{E}-04$

### 2.13.2 Embrechts and Frei (2009)

## Poisson/Pareto Example

Embrechts and Frei [2009], Panjer recursion versus FFT for compound distributions.
Consider a $\operatorname{Po}(\lambda) \vee \operatorname{Pareto}(\alpha, \beta), \alpha$ is shape and $\beta$ is scale.

```
In [1]: from aggregate import build, qd
In [2]: from pandas import option_context
In [3]: import matplotlib.pyplot as plt
In [4]: alpha = 4
In [5]: beta = 3
In [6]: freq = 20
In [7]: a = build(f'agg EF.1 {freq} claims '
 ...: f'sev {beta} * pareto {alpha} - {beta} '
 ...: 'poisson', bs=1/8, log2=8, padding=0, normalize=False)
 ... :
In [8]: qd(a)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lrreq
Agg 20 17.704 -0.11481 0.3873 0.38559 1.1619 -0.21402
log2 = 8, bandwidth = 1/8, validation: fails sev mean, agg mean, agg mean error >>
\hookrightarrowsev, possible aliasing; try larger bs.
```

The last dataframe shows poor accuracy. Try different ways to compute the aggregate: padding, tilting, and more buckets.

```
In [9]: from pandas import option_context
In [10]: df = a.density_df[['p_total']].rename(columns={'p_total': 'Pad 0, tilt 0'}
\hookrightarrow)
In [11]: a.update(bs=1/8, log2=8, padding=1, normalize=False)
In [12]: df['Pad 1, tilt 0'] = a.density_df.p_total
```

```
In [13]: a.update(bs=1/8, log2=8, padding=2, normalize=False)
In [14]: df['Pad 2, tilt 0'] = a.density_df.p_total
In [15]: a.update(bs=1/8, log2=8, padding=0, tilt_vector=0.01, normalize=False)
In [16]: df['Pad 0, tilt 0.01'] = a.density_df.p_total
In [17]: a.update(bs=1/32, log2=16, padding=1, normalize=False)
In [18]: bit = a.density_df[['p_total']].rename(columns={'p_total': 'log2 16, pad_
\hookrightarrow1, tilt 0'})
In [19]: qd(a)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 20 0.22361 0.22361
Sev 1 0.99995 -5.4251e-05 1.4142 1.4144 7.0711 7.0284
Agg 20 19.999 -5.4252e-05 0.3873 0.38732 1.1619 1.1567
log2 = 16, bandwidth = 1/32, validation: not unreasonable.
```

The last dataframe shows a good approximation.
The next figure (compare Figure 1 in the paper, shown below) shows that padding, as recommended in Wang [1998], removes aliasing as effectively as padding, albeit at the expense of a longer FFT computation. The log density shows the aliasing is completely removed.

```
In [20]: f, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
@layout=True, squeeze=True)
In [21]: ax0, ax1 = axs.flat
In [22]: df.plot(ax=ax0, logy=False)
Out[22]: <Axes: xlabel='loss'>
In [23]: df.plot(ax=ax1, logy=True)
Out[23]: <Axes: xlabel='loss'>
In [24]: ax0.legend(loc='upper left')
Out[24]: <matplotlib.legend.Legend at 0x7fe3e65c4340>
In [25]: ax1.legend(loc='lower right');
```



Fig. 1 Approximate densities for Pois (20) $\vee \operatorname{Pareto}(4,3)$


Clearly there is not enough space with only $2^{* *} 8$ buckets. Expanding to $2 * * 16$ and using a finer bucket covers a more realistic range. The log density plot shows a change in regime from Poisson body to Pareto tail. The extreme tail can be approximated by differentiating Feller's theorem, which says the survival function is converges to $20 \operatorname{Pr}(X>x)$ where $X$ is the Pareto severity (right hand plot). The multiplication by four accounts for the different bs values.

```
In [26]: f, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
\hookrightarrowlayout=True, squeeze=True)
In [27]: ax0, ax1 = axs.flat
In [28]: df.plot(ax=ax0, logy=False)
Out[28]: <Axes: xlabel='loss'>
In [29]: (bit * 4).plot (ax=ax0, lw=3, alpha=.5);
In [30]: bit.plot(ax=ax1, logy=True);
density from tail, need to divide by bs
In [31]: ax1.plot(bit.index, (20*4/3*a.bs)*(3/(3+bit.index))**5, label='Felleru
\hookrightarrowapproximation');
In [32]: ax0.set(xlim=[-5, a.q(0.99999)]);
In [33]: ax0.legend(loc='upper right');
In [34]: ax1.legend(loc='upper right');
```




## Choice of Bandwidth (Bucket Size)

This example replicates parts of Table 1. As well as the $99.9 \%$ ile it shows the $99.9999 \%$ ile.

```
In [35]: import pandas as pd
In [36]: a = build('agg EF.2 50 claims sev expon poisson', update=False)
In [37]: ans = []
In [38]: for log2, bs in zip([10, 10, 10, 16, 16, 16, 16], [1, 1/2, 1/8, 1/8, 1/16,
\hookrightarrow 1/64, 1/512]):
 : a.update(}\operatorname{log}2=\operatorname{log}2, bs=bs, padding=1
 : ans.append([log2, 1/bs, a.q(0.999), a.q(1-1e-6)])
 :
In [39]: df = pd.DataFrame(ans, columns=['log2', '1/bs', 'p999', 'p999999'])
In [40]: qd(df, accuracy=4)
 log2 1/bs p999 p999999
0
1 10 2 84.5 108
2 10 8 85.125 108.25
3 16 8 85.125 108.25
416 16 85.125 108.25
5 16 64 85.109 108.23
6 16 512 85.105 108.23
```


### 2.13.3 Denuit (2019 and 2022)

## Poisson/Discrete Example (6.1)

Example from Denuit [2019], Size-biased transform and conditional mean risk sharing, with application to p2p insurance and tontines.

```
In [1]: from aggregate import build, qd
In [2]: p = build('''
 ...: port Denuit6.1
 ...: agg P1 0.08 claims dsev [1 2 3 4] [.1 .2 .4 .3] poisson
 ...: agg P2 0.08 claims dsev [1 2 3 4] [.15 .25 . 3 . 3] poisson
 ...: agg P3 0.10 claims dsev [1 2 3 4] [.1 .2 .4 .3] poisson
 ...: agg P4 0.10 claims dsev [1 2 3 4] [.15 .25 . 3 . 3] poisson
 ...: ''', bs=1, log2=10)
 ... :
```

In [3]: qd(p)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew (X)
unit X
P1 Freq 0.08
$3.5355 \quad 3.5355$
Sev $2.9 \quad 2.9-1.1102 \mathrm{e}-16 \quad 0.32531 \quad 0.32531-0.51452 \quad-0.51452$
$\begin{array}{llllllll}\text { Agg } & 0.232 & 0.232 & 4.0856 e-13 & 3.7179 & 3.7179 & 3.9518 & 3.9518\end{array}$
P2 Freq 0.08
$\begin{array}{lllllll}\text { Sev } 2.75 & 2.75 & 0 & 0.37921 & 0.37921 & -0.28106 & -0.28106\end{array}$
$\begin{array}{llllllll}\text { Agg } & 0.22 & 0.22 & 3.7326 e-13 & 3.7812 & 3.7812 & 4.0928 & 4.0928\end{array}$
P3 Freq 0.1
Sev $2.9 \quad 2.9-1.1102 e-160.32531 \quad 0.32531-0.51452 \quad-0.51452$
$\begin{array}{lllllll}\text { Agg } & 0.29 & 0.29 & -4.5741 e-14 & 3.3254 & 3.3254 & 3.5346\end{array}$
(continues on next page)
(continued from previous page)

P4	Freq	0.1			3.1623		3.1623

Computation of $\mathrm{E}\left[X_{i} \mid X=x\right]$ and $\mathrm{E}\left[X_{i} \mid X=x\right] / x$ as a function of $x$. The first function, called $\kappa_{i}(x)$ in PIR, is computed automatically by the portfolio class as exeqa_line (expectation given $X$ equals $x$ ). The original figure is shown below.

```
In [4]: bit = p.density_df.query('p_total > 0').iloc[1:]
In [5]: rat = bit.filter(regex='exeqa_P').apply(
 ...: lambda x: x / bit.loss.to_numpy(), axis=0)
 ...:
In [6]: ax = rat.plot.bar(ylim=[-0.05,1.05], stacked=True, figsize=(3.5, 2.45))
In [7]: ax.set(xlim=[-0.5, 15.5], ylim=[0,1]);
In [8]: ax.legend().set(visible=False);
```




Figure 1: Respective shares $\mathrm{E}\left[X_{i} \mid S=s\right] / s$ of the total realized loss $s$ contributed by each participant $i$ in Case 1 (left panel) and Case 2 (right panel). From bottom to top, shares of participants 1 to 4 .

All the values are available as a table. These are consistent with numbers mentioned in the text.

```
In [9]: from pandas import option_context
In [10]: b = bit.filter(regex='exeqa_P').apply(
 : lambda x: x / bit.loss.to_numpy(), axis=0)
 :
In [11]: b.index = b.index.astype(int)
In [12]: b.index.name = 'a'
In [13]: qd(b)
 exeqa_P1 exeqa_P2 exeqa_P3 exeqa_P4
a
10.17778 0.26667 0.22222 0.33333
0.19729 0.24716 0.24661 0.30895
0.25219 0.19226 0.31523 0.24032
40.22212 0.22232 0.27765 0.2779
0.22524 0.21921 0.28155 0.27401
60.23238 0.21207 0.29047 0.26508
7 0.23486 0.20958 0.29358 0.26198
80.22365 0.2208 0.27956 0.276
9 0.23064 0.2138
10 0.23224 0.2122 0.2903
11 0.23056 0.21388 0.2882 0.26735
12 0.22551 0.21893 0.28189 0.27366
30-0.22858 0.21586 0.28573 0.26982
31 0.22829 0.21615 0.28537 0.27017
32 0.22872 0.21571 0.2859 0.26963
33 0.22893 0.21549 0.28617 0.26937
34 0.22839 0.216 0.28551 0.26999
35 0.22829 0.2161 0.28537 0.27006
36 0.22865 0.21576 0.28577 0.26966
37 0.22863 0.21571 0.28579}00.26959
38 0.22816 0.21601 0.28522 0.2699
39 0.22816 0.21599 0.28513 0.26976
40 0.22849 0.21582 0.28545 0.26962
```

Proportion of expected loss by unit.

```
In [14]: b.b = p.describe.xs('Agg', axis=0, level=1)[['E[X]']]
In [15]: qd(bb / bb.iloc[-1,0])
 E [X]
unit
P1 0.22812
P2 0.21632
P3 0.28515
P4 0.2704
total 1
```


## Mortality Example and Figure

Example from Denuit et al. [2022], Mortality Credits with Large Survivor Funds. Reproducing Figure 4.5.

```
In [16]: import matplotlib.pyplot as plt; import pandas as pd
In [17]: wl = 0.6; wh = 1 - wl; ql = .1; qh = .2; al = 1; ah = 3
In [18]: ports = {}
In [19]: for n in (10, 20, 50, 100):
 : ports[n] = build(f'port DR.4.3 '
 ...: f'agg Low.q {wl * n * ql} claims dsev [{al}] binomial {ql}'
 : f'agg High.q {wh * n * qh} claims dsev [{ah}] binomial {qh }'
 ...: , bs=1, log2=8)
 :
In [20]: audit = pd.concat([i.describe for i in ports.values()], keys=ports.keys(),
\hookrightarrow names=['n', 'unit', 'X'])
In [21]: qd(audit.xs('Agg', axis=0, level=2)['E[X]'].unstack(1))
unit Low.q High.q total
n
10 0.6 2.4 3
20 1.2 4.8 6
50 3 12 15
100 6 24 30
In [22]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 3.5), constrained_
\hookrightarrowlayout=True, squeeze=True)
In [23]: for ax, (n, port), mx, t in zip(axs.flat, ports.items(), [20, 25, 40, 60],
\hookrightarrow [2, 5, 10, 10]):
 : lm = [-1, mx]
 : port.density_df.query('p_total > 0').filter(regex='exeqa_[LHt]').
\hookrightarrowplot(ax=ax, xlim=lm, ylim=lm)
 : ax.set_xticks(range(0, mx, t))
 : ax.set_yticks(range(0, mx, t))
 : ax.grid(lw=.25, c='w')
 : ax.set(title=f'{n} risks')
 :
In [24]: fig.suptitle('Denuit Figure 4.5')
Out[24]: Text(0.5, 0.98, 'Denuit Figure 4.5')
```



### 2.13.4 Loss Data Analytics Book

Examples from Jed Frees' open source actuarial software. Text and github source available on-line.

## Contents

- Distribution examples
- Gamma
- Pareto
- Weibull
- Mixture examples
- Coverage modifications: deductibles and limits
- Deductible
- Limit
- Limit and deductible
- Reinsurance
- Aggregate loss distributions
- Poisson-discrete
- Discrete
- Geometric-discrete
- Moments
- Poisson-uniform
- Geometric-discrete
- Zero-modified Poisson-Burr
- Negative binomial
- Poisson-exponential
- Portfolio management
- Discrete example
- Telecom example


## Distribution Examples

## Gamma distribution

```
In [1]: import scipy.stats as ss
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt
In [4]: xs = np.linspace(0, 1000, 1001)
In [5]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
\hookrightarrowlayout=True, squeeze=True)
In [6]: ax0, ax1 = axs.flat
In [7]: for scale in [100, 150, 200, 250]:
 ax0.plot(xs, ss.gamma(2, scale=scale).pdf(xs), label=f'scale = {scale}
\hookrightarrow')
 ...:
In [8]: for shape in [2, 3, 4, 5]:
 ...: ax1.plot(xs, ss.gamma(shape, scale=100).pdf(xs), label=f'shape =
\hookrightarrow{shape }')
In [9]: for ax in axs.flat:
 ...: ax.legend(loc='upper right')
 ...: ax.set(ylabel='gamma density', xlabel='x')
 ... :
```




## Pareto distribution

```
In [10]: xs = np.linspace(0, 3000, 3001)
In [11]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
\hookrightarrowlayout=True, squeeze=True)
In [12]: ax0, ax1 = axs.flat
In [13]: for scale in [2000, 2500, 3000, 3500]:
 : ax0.plot(xs, ss.pareto(3, scale=scale, loc=-scale).pdf(xs), label=f
\hookrightarrow'scale = {scale}')

In [14]: for shape in [1,2,3,4]:
 : ax1.plot(xs, ss.pareto(shape, scale=2000, loc=-2000).pdf(xs), label=f
\hookrightarrow'shape = {shape}')
 :
In [15]: for ax in axs.flat:
 : ax.legend(loc='upper right')
 : ax.set(ylabel='Pareto density', xlabel='x')
 :
```




## Weibull distribution

scipy. stats includes Weibull min (for positive $x$ ) and Weibull max (for negative $x$ ) distributions. We want the min version.

```
In [16]: xs = np.linspace(0, 400, 401)
In [17]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
\hookrightarrowlayout=True, squeeze=True)
In [18]: ax0, ax1 = axs.flat
In [19]: for scale in [50, 100, 150, 200]:
 : ax0.plot(xs, ss.weibull_min(3, scale=scale).pdf(xs), label=f'scale=
\hookrightarrow{scale}')
 :
In [20]: for shape in [1.5, 2, 2.5, 3]:
 ax1.plot(xs, ss.weibull_min(shape, scale=100).pdf(xs), label=f'shapeч
\hookrightarrow= {shape }')
 :
In [21]: for ax in axs.flat:
 : ax.legend(loc='upper right')
 : ax.set(ylabel='Weibull_min density', xlabel='x')
```



## Mixture Example (3.3.5)

A collection of insurance policies consists of two types. $25 \%$ of policies are Type 1 and $75 \%$ of policies are Type 2 . For a policy of Type 1, the loss amount per year follows an exponential distribution with mean 200, and for a policy of Type 2, the loss amount per year follows a Pareto distribution with parameters $\alpha=3$ and $\theta=200$. For a policy chosen at random from the entire collection of both types of policies, find the probability that the annual loss will be less than 100 , and find the average loss.

Solution. The function pmv (print mean and variance) is a convenience.

```
In [22]: from aggregate import build, qd, mv
In [23]: def pmv(m, v):
 : print(f'mean = {m:.6g}\n'
 ...: f'variance = {v:.7g}')
 :
```

Create the Aggregate object, display its describe dataframe and compare the cdf with the exact computation.

```
In [24]: a = build('agg lda.3.3.5 '
 : '1 claim '
 ...: 'sev [200 200] * [expon pareto][1 3] + [0 -200] wts [.25 .75] '
 : 'fixed',
 : normalize=False)
 :
In [25]: qd(a)
E[\mp@code{Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)}
```

This example has a very thick tailed severity and it is best to specify normalized=False for the most accurate severity estimates. With default settings, aggregate suffers considerable discretization error, with an estimated mean well below the actual 125 . The sev.cdf method exposes the actual underlying severity distribution cdf functions and reproduces the requested probability exactly. The object cdf function relies on the discretization and so is shifted by half a bucket size. (Also available: sev. sf and sev.pdf.)

```
In [27]: a.cdf(100), a.sev.cdf(100 + a.bs/2)
Out[27]: (0.626889166181137, 0.6268891661811365)
```


## Coverage Modifications

## Deductible Example (3.4.1)

A claim severity distribution is exponential with mean 1000. An insurance company will pay the amount of each claim in excess of a deductible of 100 . Calculate the variance of the amount paid by the insurance company for one claim, including the possibility that the amount paid is 0 .

Solution. In this case we must use unconditional severity to include the possibility that the amount paid is 0 . This is done by adding! at the end of the severity specification. The moments are computed exactly without updating.

```
In [28]: import numpy as np
In [29]: a = build('agg lda.3.4.1 1 claim '
 ...: 'inf xs 100 sev 1000 * expon 1 ! '
 : 'fixed', update=False)
 :
In [30]: qd(a)
 E[X] CV(X) Skew(X)
X
Freq 1 0
Sev 904.84 1.1002 2.0257
Agg 904.84 1.1002 2.0257
log2 = 0, bandwidth = na, validation: n/a, not updated.
In [31]: m = 1000 * np.exp(-0.1)
In [32]: mv(a)
mean = 904.837
variance = 990944.1
std dev = 995.462
In [33]: pmv(m, (2 * 1000**2 * np.exp (-0.1)) - m**2)
mean = 904.837
variance = 990944.1
```


## Deductible Example (3.4.2)

For an insurance:

- Losses have a density function

$$
f_{X}(x)=\left\{\begin{array}{cc}
0.02 x & 0<x<10 \\
0 & \text { elsewhere }
\end{array}\right.
$$

- The insurance has an ordinary deductible of 4 per loss.
- $Y^{P}$ is the claim payment per payment random variable.

Solution. The trick here is to realize that $X$ is a beta variable with $\alpha=2$ and $\beta=1$.

```
In [34]: a = build('agg lda.3.4.2 1 claim 6 xs 4 sev 10 * beta 2 1 fixed')
In [35]: qd(a)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 3.4286 3.4286 1.0348e-10 0.48947 0.48947 -0.29313 -0.29313
Agg 3.4286 3.4286 1.0348e-10 0.48947 0.48947 -0.29313 -0.29313
log2 = 16, bandwidth = 1/4096, validation: not unreasonable.
```

(continued from previous page)

```
In [36]: mv(a)
mean = 3.42857
variance = 2.816327
std dev = 1.67819
```


## Limit Example (3.4.4)

Under a group insurance policy, an insurer agrees to pay $100 \%$ of the medical bills incurred during the year by employees of a small company, up to a maximum total of one million dollars. The total amount of bills incurred, $X$, has $p d f$

$$
f_{X}(x)=\left\{\begin{array}{cl}
\frac{x(4-x)}{9} & 0<x<3 \\
0 & \text { elsewhere }
\end{array}\right.
$$

where $x$ is measured in millions. Calculate the total amount, in millions of dollars, the insurer would expect to pay under this policy.

Solution. In this case the distribution has no obvious parametric form-though it is related to a beta. We can solve it in aggregate by using a custom empirical distribution.

```
In [37]: xs = np.linspace(0, 4, 2**13, endpoint=False)
In [38]: F = np.where(xs<3,(xs * xs * (2 - xs / 3)) / 9, 1)
In [39]: ps = np.diff(F, append=1)
In [40]: fig, ax = plt.subplots(1, 1, figsize=(3.5, 2.45), constrained_layout=True,
s squeeze=True)
In [41]: ax.plot(xs, ps);
```



When the empirical distribution has many entries it is faster to build the Aggregate object directly, rather than use DecL. The moments of the severity and aggregate distribution are computed from the numerical approximation during creation. There is no need to update the object.

```
In [42]: from aggregate import Aggregate
In [43]: a = Aggregate('Example', exp_en=1, sev_name='dhistogram', sev_xs=xs, sev_
4ps=ps,
 ...: exp_attachment=0, exp_limit=1, freq_name='fixed')
 :
In [44]: print(a)
aggregate object name Example
claim count 1.00
frequency distribution fixed
severity distribution dhistogram, 1 xs 0.
 E[X] CV(X) Skew(X)
X
Freq 1 0 NaN
Sev 0.93514 0.1826 -2.9018
Agg 0.93514 0.1826 -2.9018
```


## Limit and Deductible Example (3.4.5)

The ground up loss random variable for a health insurance policy in 2006 is modeled with $X$, a random variable with an exponential distribution having mean 1000. An insurance policy pays the loss above an ordinary deductible of 100 , with a maximum annual payment of 500 . The ground up loss random variable is expected to be $5 \%$ larger in 2007, but the insurance in 2007 has the same deductible and maximum payment as in 2006 . Find the percentage increase in the expected cost per payment from 2006 to 2007.

Solution. Trend increases the ground-up severity distribution but not the limit and attachment. The calculation is performed exactly on creation; again, there is no need to update the Aggregate object.

```
In [45]: import pandas as pd
In [46]: a06 = build('agg X06 1 claim 500 xs 100 sev 1000 * expon fixed',
update=False)
In [47]: a07 = build('agg X07 1 claim 500 xs 100 sev 1050 * expon fixed',七
update=False)
In [48]: ans = pd.concat((a06.describe, a07.describe), keys=['2006', '2007'])
In [49]: qd(ans)
N E[X]
 Sev 393.47 0.40656 -1.1717
 Agg 393.47 0.40656 -1.1717
2007 Freq 1 NaN
 Sev 397.8 0.39691 -1.2342
 Agg 397.8 0.39691 -1.2342
In [50]: ans.iloc[5, 0] / ans.iloc[2, 0] - 1
Out[50]: 0.011000207063778467
```


## Reinsurance Example (3.4.6, modified)

Losses arising in a certain portfolio have a two-parameter Pareto distribution with $\alpha=5$ and $\theta=3,600$. A reinsurance arrangement has been made, under which (a) the reinsurer accepts $15 \%$ of losses up to $u=5,000$ and all amounts in excess of 5,000 and (b) the insurer pays for the remaining losses.

1. Express the random variables for the reinsurer's and the insurer's payments as a function of $X$, the portfolio losses.
2. Calculate the mean amount paid on a single claim by the insurer.
3. Calculate the standard deviation of the amount paid on a single claim by the insurer (retaining the $15 \%$ copayment).

Solution. The net position can be modeled as:

```
agg insurer.net 1 claim
sev 3600 * pareto 5 - 3600
occurrence net of 0.15 so 5000 xs 0 and inf xs 5000
fixed
```

but this involves the thick-tailed Pareto across its entire range. It is better to recognize the severity is limited by the second excess layer and proceed as follows.

```
In [51]: a = build('agg insurer.net 1 claim '
 ...: '5000 xs 0 sev 3600 * pareto 5 - 3600'
 : 'occurrence net of 0.15 so 5000 xs 0 '
 : 'fixed')
 :
```

```
In [52]: qd(a)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 872.37 741.53-0.14998 1.1256 1.1256 2.0952 2.0952
Agg 872.37 741.53-0.14998 1.1256 1.1256 2.0952 2.0952
log2 = 16, bandwidth = 1/4, validation: n/a, reinsurance.
In [53]: print('\n', a.agg_m, a.agg_sd)
 872.3650484486672 981.9314221673877
```


## Aggregate Loss Distributions

## Poisson/Discrete Example (5.3.1)

The number of accidents follows a Poisson distribution with mean 12. Each accident generates 1, 2, or 3 claimants with probabilities $1 / 2,1 / 3$, and $1 / 6$ respectively.

Calculate the variance in the total number of claimants.
Solution.

```
In [54]: a = build('agg QU 12 claims dsev [1 2 3] [1/2 1/3 1/6] poisson')
In [55]: qd(a)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 12 0.28868 0.28868
Sev 1.6667 1.6667 -1.1102e-16 0.44721 0.44721 0.6261 0.6261
Agg 20 20 -7.9936e-15 0.31623 0.31623 0.36366 0.36366
log2 = 10, bandwidth = 1, validation: not unreasonable.
In [56]: mv (a)
mean = 20
variance = 40
std dev = 6.32456
```

As always, a contains the (exact) full distribution of outcomes. We could answer any question about it.

## Discrete Example (5.3.2)

You are the producer of a television quiz show that gives cash prizes. The number of prizes, $N$, and prize amount, $X$, have the following distributions:

$n$	$\operatorname{Pr}(N=n)$	$x$	$\operatorname{Pr}(X=x)$
1	0.8	0	0.2
2	0.2	100	0.7
		1000	0.1

Your budget for prizes equals the expected aggregate cash prizes plus the standard deviation of aggregate cash prizes. Calculate your budget.

Solution. Just a matter of translating into DecL. No need to update the object.

```
In [57]: a = build('agg lda.5.3.2 dfreq [1 2] [.8 . 2] '
 ...: 'dsev [0 100 1000] [.2 .7 .1]', update=False)
 :
```

```
In [58]: display(a)
lda.5.3.2, <aggregate.distributions.Aggregate object at 0x7fe3e66ea140>
In [59]: mv(a)
mean = 204
variance = 98344
std dev = 313.598
In [60]: a.agg_m + a.agg_sd
Out[60]: 517.5984693840198
```


## Geometric/Discrete Example (5.3.3 and 5.4.1)

The number of claims in a period has a geometric distribution with mean 4. The amount of each claim $X$ follows $\operatorname{Pr}(X=x)=0.25, x=1,2,3,4$, i.e. a discrete uniform distribution on $\{1,2,3,4\}$. The number of claims and the claim amounts are independent. Let $S_{N}$ denote the aggregate claim amount in the period. Calculate $F_{S_{N}}(3)$.

Solution. We can compute the entire distribution. Here we show up to the 99th percentile. If the probability clause in dsev is omitted then all outcomes are treated as equally likely.

```
In [61]: a = build('agg lda.5.3.3 4 claims dsev [1:4] geometric')
In [62]: qd(a, accuracy=4)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Frreq
Agg 10 10-1.9499e-10 1.1402 1.1402 2.024 2.024
log2 = 8, bandwidth = 1, validation: not unreasonable.
In [63]: b = a.density_df.loc[0:a.q(0.99), ['p_total', 'F']]
In [64]: b.index = b.index.astype(int)
In [65]: qd(b, accuracy=4)
 p_total F
loss
0 0.2 0.2
 0.04 0.24
 0.048 0.288
 0.0576 0.3456
 0.06912 0.41472
 0.042944 0.45766
 0.043533 0.5012
 0.042639 0.54384
 0.039647 0.58348
 0.033753 0.61724
 0.031914 0.64915
 0.029591 0.67874
 0.0023287 0.97449
 0.0021339 0.97662
 0.0019554 0.97858
 0.0017918 0.98037
 0.001642 0.98201
 0.0015046 0.98352
 0.0013788 0.9849
 0.0012634 0.98616
 0.0011577 0.98732
 0.0010609 0.98838
```

```
50 0.00097217 0.98935
510.00089085 0.99024
```


## Moments Example (5.3.4)

You are given:

	Mean	Standard Deviation
Number of Claims	8	3
Individual Losses	10,000	3,937

As a benchmark, use the normal approximation to determine the probability that the aggregate loss will exceed $150 \%$ of the expected loss.

Solution. Use the MomentAggregator class to compute the moments of an aggregate from those of frequency and severity.

```
In [66]: import scipy.stats as ss
In [67]: from aggregate import MomentAggregator
In [68]: mom = MomentAggregator.agg_from_fs2(8, 9, 10000, 3937**2)
In [69]: fz = ss.norm(loc=mom.ex, scale=mom.sd)
In [70]: mom['prob'] = fz.sf(1.5*mom.ex)
In [71]: qd(mom)
ex 80000
var 1.024e+09
sd 32000
cv 0.4
prob 0.10565
```


## Poisson/Uniform Example (5.3.5 and 5.4.2)

For an individual over 65:

1. The number of pharmacy claims is a Poisson random variable with mean 25.
2. The amount of each pharmacy claim is uniformly distributed between 5 and 95 .
3. The amounts of the claims and the number of claims are mutually independent.

Estimate the probability that aggregate claims for this individual will exceed 2000 using the normal approximation.
Solution. Here is a close-to exact solution in addition to the normal approximation. Note that the uniform distribution has no shape parameter. The severity is made by shifting and scaling the base. Scaling is like multiplication and is applied before the location (addition) shift.

```
In [72]: a = build('agg Pharma 25 claims sev 90 * uniform + 5 poisson')
In [73]: qd(a)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 25 0.2 0.2 0.2
Sev rrrrerrrrer
log2 = 16, bandwidth = 1/16, validation: not unreasonable.
```

Here are the moments for the approximation. The approximate function returns a scipy . st at s frozen normal object, which yields the approximation.

```
In [74]: print(a.sf(2000), a.agg_m, a.agg_var)
0.00698200305408303 1250.0 79375.0
In [75]: fz = a.approximate('norm')
In [76]: fz.sf(2000), a.sf(2000)
Out[76]: (0.0038830948902722645, 0.00698200305408303)
```

approximate will also provide (shifted) gamma and lognormal fits.

```
In [77]: approx = a.approximate('all')
In [78]: b = pd.DataFrame([[k, v.sf(2000)] for k, v in approx.items()],
 : columns=['approx', 'prob']).set_index('approx')
 :
In [79]: b.loc['exact'] = a.sf(2000)
In [80]: b.sort_values('prob')
Out [80]:
 prob
approx
norm 0.003883
exact 0.006982
sgamma 0.007101
slognorm 0.007175
gamma 0.009789
lognorm 0.013118
```

Here is a comparison of the FFT model with the normal approximation. Example 5.4.2 derives a similar probability using simulation.

```
In [81]: fig, ax = plt.subplots(1, 1, figsize=(3.5, 2.45), constrained_layout=True,
@ squeeze=True)
In [82]: (a.density_df.p / a.bs).plot(label='Exact', ax=ax);
In [83]: ax.plot(a.xs, fz.pdf(a.xs), label='Normal approx');
In [84]: ax.set(xlim=[0, 3000], title='Normal approximation');
In [85]: ax.legend(loc='upper right');
```



## Geometric/Discrete Example (5.3.6 and 5.3.7)

In a given week, the number of projects that require you to work overtime has a geometric distribution with $\beta=2$. For each project, the distribution of the number of overtime hours in the week, $X$, is as follows:

$x$	$f(x)$
5	0.2
10	0.3
20	0.5

The number of projects and the number of overtime hours are independent. You will get paid for overtime hours in
excess of 15 hours in the week. Calculate the expected number of overtime hours for which you will get paid in the week.

Solution. This is a one-liner in aggregate. Remember that aggregate reinsurance is specified after the frequency clause. The first column in the describe dataframe shows the analytic gross answer and the second the FFT-computed net.

```
In [86]: a = build('agg Projects 2 claims '
 ...: 'dsev [5 10 20] [.2 .3 .5] geometric '
 : 'aggregate net of 15 xs 0')
 :
In [87]: qd(a)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 1.2247 2.0412
Sev 14 14 0 0.44607 0.44607 -0.23403 -0.23403
Agg 28 18.807 -0.32831 1.2647 1.6713 2.0725 2.6373
log2 = 9, bandwidth = 1, validation: n/a, reinsurance.
```

Example 5.3.7 uses a recursive calculation in steps of 5. We can replicate that using an aggregate tower. The reinsurance_audit_df provides ceded and net statistics by layer. Here we extract just the ceded part to get the excess (overtime).

```
In [88]: a1 = build('agg Projects.1 2 claims '
 : 'dsev [5 10 20] [.2 .3 .5] geometric '
 ...: 'aggregate net of tower [0 5 10 15 inf]')
 :
In [89]: b = a1.reinsurance_audit_df.xs('ceded', axis=1, level=0)
In [90]: b['cumul ex'] = b.ex[::-1].cumsum() - a.agg_m
In [91]: qd(b, accuracy=4)
kind share limit attach
agg 1.0 5.0 0.0 3.3333 5.5556 2.357 0.70711 -0.70711 28
 5.0 3.1111 5.8765 2.4242 0.77919 -0.50418 24.666
 10.0
```



## Zero-Modified Poisson/Burr Example (5.5.4)

Aggregate losses are modeled as follows:

1. The number of losses follows a zero-modified Poisson distribution with $\lambda=3$ and $p_{0}^{M}=0.5$.
2. The amount of each loss has a Burr distribution with $\alpha=3, \theta=50, \gamma=1$.
3. There is a deductible of $d=30$ on each loss.
4. The number of losses and the amounts of the losses are mutually independent.

Calculate $\mathrm{E}\left(N^{P}\right)$ and $\operatorname{Var}\left(N^{P}\right)$.

## Solution.

Todo: Implement ZT and ZM!

Negative Binomial Example (5.5.5 and 5.5.6 modified)

A group dental policy has a negative binomial claim count distribution with mean 300 and variance 800 . Ground-up severity is given by the following table:

Severity	Probability
40	0.25
80	0.25
120	0.25
200	0.25

You expect severity to increase $50 \%$ with no change in frequency. You decide to impose a per claim deductible of 100. Calculate the expected total claim payment $S$ after these changes. What is the variance of the total claim payment, $\operatorname{Var}(S)$ ? (Modified:) Compare the aggregate distributions before and after the policy change.

Solution. A negative binomial with mean 300 and variance 800 has $8 / 3=1+300 c$ and giving a mixing cv of $\sqrt{c}=(5 / 900)^{0.5}=0.0745$. Hence the aggregate program is

TODO: why is the answer not exact?

```
In [92]: cv = ((8/3-1) / 300)**0.5
In [93]: a0 = build(f'agg Original 300 claims dsev [4 8 12 20] mixed gamma {cv}')
In [94]: a1 = build(f'agg Revised 300 claims inf xs 10 '
 : f'sev dhistogram xps [{4*1.5} {8*1.5} {12*1.5} {20*1.5}] !u
\hookrightarrowmixed gamma {cv}')
 :
In [95]: qd(a0)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Agg 3300 3300-3.3207e-13 0.099263 0.099263 0.15833 0.15832
log2 = 20, bandwidth = 1, validation: not unreasonable.
In [96]: qd(a1)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lrreq 0.094281
Agg 2250 2250 4.4878e-11 0.11175 0.11175 0.16722 0.16669
log2 = 20, bandwidth = 1, validation: not unreasonable.
In [97]: mv(a0)
mean = 3300
variance = 107300
std dev = 327.567
In [98]: mv(a1)
mean = 2250
variance = 63225
std dev = 251.446
```

Here is a comparison of the two densities.

```
In [99]: fig, ax = plt.subplots(1, 1, figsize=(3.5, 2.45), constrained_layout=True,
s squeeze=True)
In [100]: a0.density_df.p_total.plot(ax=ax, label='Original');
In [101]: a1.density_df.p_total.plot(ax=ax, label='Adjusted');
```

```
In [102]: ax.set(xlim=[-10, 1.25 * a0.q(0.9999)]);
In [103]: ax.legend(loc='upper right');
```



```
Poisson/Exponential Coverage and Underwriting Modification (Ex-
ample 5.5.7)
```

A company insures a fleet of vehicles. Aggregate losses have a compound Poisson distribution. The expected number of losses is 20. Loss amounts, regardless of vehicle type, have exponential distribution with $\theta=200$. To reduce the cost of the insurance, two modifications are to be made:

1. A certain type of vehicle will not be insured. It is estimated that this will reduce loss frequency by $20 \%$.
2. A deductible of 100 per loss will be imposed.

Calculate the expected aggregate amount paid by the insurer after the modifications.
Solution. The ! at the end of the severity clause indicates unconditional severity (including zero claims that fail to meet the deductible).

```
In [104]: a = build(f'agg Auto {20 * 0.8} claims inf xs 100 sev 200 * expon !v
↔poisson')
In [105]: qd(a)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq
Agg 1940.9 1940.9 -6.5104e-08 0.45397 0.45397 0.68096 0.68096
log2 = 16, bandwidth = 1/4, validation: not unreasonable.
```

If severity is conditional there are 16 claims in excess of the deductible, giving a much higher number. The mean severity is still 200 because of the exponential's memoryless property.

```
In [106]: a = build(f'agg Auto {20 * 0.8} claims inf xs 100 sev 200 * expon poisson
G')
In [107]: qd(a)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq
Agg 3200 3200 -6.5104e-08 0.35355 0.35355 0.53033 0.53033
log2 = 16, bandwidth = 1/4, validation: not unreasonable.
```


## Portfolio Management

## VaR for a Discrete Variable Example (10.3.4)

Consider an insurance loss random variable with the following probability distribution:

$$
\operatorname{Pr}[X=x]= \begin{cases}0.75, & \text { for } x=1 \\ 0.20, & \text { for } x=3 \\ 0.05, & \text { for } x=4\end{cases}
$$

Determine the VaR at $q=0.6,0.9,0.95,0.95001$.

## Solution.

```
In [108]: a = build('agg VaR 1 claim dsev [1 3 4] [.75 . 2 .05] fixed')
In [109]: [a.q(i) for i in [.6, .9, .95, .9501]]
Out[109]: [1.0, 3.0, 3.0, 4.0]
```


## Multi-Unit Telecom Management Example (10.4.3.3)

You are the Chief Risk Officer of a telecommunications firm. Your firm has several property and liability risks. We will consider:

- $X_{1}$, buildings, modeled using a gamma distribution with mean 200 and scale parameter 100.
- $X_{2}$, motor vehicles, modeled using a gamma distribution with mean 400 and scale parameter 200.
- $X_{3}$, directors and executive officers risk, modeled using a Pareto distribution with mean 1000 and scale parameter 1000.
- $X_{4}$, cyber risks, modeled using a Pareto distribution with mean 1000 and scale parameter 2000.

Denote the total risk as $X=X_{1}+X_{2}+X_{3}+X_{4}$. For simplicity, you assume that these risks are independent. (Later, we will consider the more complex case of dependence.)

To manage the risk, you seek some insurance protection. You wish to manage internally small building and motor vehicles amounts, up to $M_{1}$ and $M_{2}$, respectively. You seek insurance to cover all other risks. Specifically, the insurer's portion is

$$
Y_{\text {insurer }}=\left(X_{1}-M_{1}\right)_{+}+\left(X_{2}-M_{2}\right)_{+}+X_{3}+X_{4},
$$

so that your retained risk is $Y_{\text {retained }}=X-Y_{\text {insurer }}=\min \left(X_{1}, M_{1}\right)+\min \left(X_{2}, M_{2}\right)$. Using deductibles $M_{1}=$ 100 and $M_{2}=200$ :

1. Determine the expected claim amount of (i) that retained, (ii) that accepted by the insurer, and (iii) the total overall amount.
2. Determine the 80th, 90th, 95 th, and 99th percentiles for (i) that retained, (ii) that accepted by the insurer, and (iii) the total overall amount.
3. Compare the distributions by plotting the densities for (i) that retained, (ii) that accepted by the insurer, and (iii) the total overall amount.

Solution. Begin by figuring the gamma and Pareto parameters. For a gamma, the mean equals shape times scale, so shape equals 2 for building and motor. For a Pareto, the mean equals scale / (shape - 1), so shape equals 2 (no variance) for $\mathrm{D} \& \mathrm{O}$ and 3 for cyber (no third moment). We model the results using three Portfolio objects, one for the retention, one for the insured amount, and one total. In each case the distribution gives total losses; the frequency component is trivial.

Since the insured and total aggregates have no variance it is hard to estimate an appropriate bucket size. The default method uses the standard deviation as a scale factor. We must use judgement (or trial and error), and select log $2=18$ and $\mathrm{bs}=1$ to ensure there is enough "space". Checking the describe dataframe shows these values match the means well by unit and in total. The insured severity must be made unconditional.

```
In [110]: from aggregate import build
In [111]: retained = build('''port retained
 : agg building 1 claim 100 xs 0 sev 100 * gamma 2 fixed
 : agg motor 1 claim 200 xs 0 sev 200 * gamma 2 fixed
 : ''')
 :
```

In [112]: qd(retained)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
building Freq 1 0
Sev $89.63689 .6361 .0437 e-10 \quad 0.23985 \quad 0.23985-2.1029 \quad-2.1029$
Agg 89.636 89.636 1.0437e-10 0.23985 0.23985 -2.1029 $\quad$-2.1029


Agg 179.27	179.27	$2.6093 e-11$	0.23985	0.23985	-2.1029	-2.1029

total Freq 2 0

Sev	134.45	134.45	$5.2187 e-11$	0.41837		-0.0046	
Agg	268.91	268.91	$5.2187 e-11$	0.17878	0.17878	-1.6928	-1.6928

$\log 2=16$, bandwidth $=1 / 128$, validation: not unreasonable.
In [113]: insured = build('''port insured
....: agg building 1 claim inf xs 100 sev 100 * gamma 2 ! fixed
..... agg motor 1 claim inf xs 200 sev 200 * gamma 2 ! fixed
....: agg d.and.o 1 claim sev 1000 * pareto 2 - 1000 fixed
....: agg cyber 1 claim sev 2000 * pareto 3 - 2000 fixed
.....: ''', $\log 2=18, \quad \mathrm{~b} s=1$ )
. . . . :

In [114]: qd(insured)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew (X)
unit X
building Freq 1 0

| Sev 110.36 | 110.36 | $-1.3889 e-06$ | 1.1901 | 1.1901 | 1.757 | 1.757 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllll}\text { Agg 110.36 110.36-1.3889e-06 1.1901 } & 1.1957\end{array}$

motor 110.36 110.36-1.3889e-061.1901
$1.1901 \quad 1.757 \quad 1.757$
$1.1901 \quad 1.757 \quad 1.757$ Sev $220.73 \quad 220.73-3.4722 \mathrm{e}-071.1901$
d.and.o Freq 1 0
Sev 1000 inf 292.43 -0.0075717 24.633
Agg 1000 inf $292.43-0.0075717$ 24.633
cyber Freq 1 0
1.7062 inf 12.894

Sev	1000	999.83	-0.00017075	1.7321	1.7062	inf	12.894
Agg	1000	999.83	-0.00017075	1.7321	1.7062	inf	12.894

total
Freq 4 0.

Sev 582.77 580.84 -0.0033215 inf
Agg 2331.1 2323.3-0.0033392 inf 1.3721 16.508
$\log 2=18$, bandwidth $=1$, validation: fails sev mean, agg mean.

In [115]: total = build('''port total
..... agg building 1 claim sev 100 * gamma 2 fixed
....: agg motor 1 claim sev 200 * gamma 2 fixed
.....: agg d.and.o 1 claim sev 1000 * pareto 2 - 1000 fixed
....: agg cyber 1 claim sev 2000 * pareto $3-2000$ fixed
$\ldots.)^{\prime}$ ', $\log 2=18, \quad \mathrm{bs}=1$ )
. . . . . :

In [116]: qd(total)
(continued from previous page)

		E[X] Est E[X]		Err E[X]	CV (X)	Est CV(X)	Skew (X)	Est Skew (X)	
unit	X								
building	Freq	1				0			
	Sev	200	200	-1.2153e-11	0.70711	0.70711	1.4142	1.4142	
	Agg	200	200	-1.2153e-11	0.70711	0.70711	1.4142	1.4142	
motor	Freq	1			0				
	Sev	400	400	-7.5939e-13	0.70711	0.70711	1.4142	1.4142	
	Agg	400	400	-7.5939e-13	0.70711	0.70711	1.4142	1.4142	
d. and.o	Freq	1			0				
	Sev	1000	992.43	-0.0075717	inf	2.6992		24.633	
	Agg	1000	992.43	-0.0075717	inf	2.6992		24.633	
cyber	Freq	1			0				
	Sev	1000	999.83	-0.00017075	1.7321	1.7062	inf	12.894	
	Agg	1000	999.83	-0.00017075	1.7321	1.7062	inf	12.894	
total	Freq	4			0				
	Sev	650	648.06	-0.0029779	inf				
	Agg	2600	2592.2	-0.0029969	inf	1.2304		16.463	
$\log 2=18$, bandwidth $=1$, validation: fails sev mean, agg mean.									

The spacing in the agg programs is for clarity. We could also program using dfreq as agg motor dfreq [1] 100 xs 0 sev.... Next, assemble the requested data elements.

```
In [117]: pfs = [retained, insured, total]
In [118]: answers = pd.DataFrame(columns=['retained', 'insured', 'total'])
In [119]: answers.index.name = 'statistic'
In [120]: answers.loc['expected claim amount'] = [x.agg_m for x in pfs]
In [121]: for p in [.8, .9, .95, .99]:
 : answers.loc[f'claim p_{p:.2f}'] = [x.q(p) for x in pfs]
 :
In [122]: qd(answers)
 retained insured total
statistic
expected claim amount 268.91 2331.1 2600
claim p_0.80 300 3090 3364
claim p_0.90 300 4483 4756
claim p_0.95 300 6244 6516
claim p_0.99 300 12706 12977
```

Finally, plot the densities. Compared to the text plot, the FFT reveals a discontinuous distribution for retained loss, with a large mass at 300 . This is clearer on the lower plots, which show the distribution functions.

```
In [123]: fig, axs = plt.subplots(2, 3, figsize=(7.5, 3.5), constrained_
\hookrightarrowlayout=True, squeeze=True)
In [124]: xl = {}
In [125]: for ax, pf in zip(axs.flat, pfs):
 : pf.density_df.p_total.plot(ax=ax)
 : q = pf.q(0.99) * 1.1
 : xl[hash(pf)] = [-q/ 50, q]
 : ax.set(xlim=xl[hash(pf)], title=pf.name.title() + ' density')
 : if pf is retained:
 : ax.set(ylabel='density')
 :
```

```
In [126]: for ax, pf in zip(axs.flat[3:], pfs):
 pf.density_df.F.plot(ax=ax)
 ax.set(xlim=xl[hash(pf)], title=pf.name.title() + ' distribution',
\hookrightarrowxlabel='loss')
 : if pf is retained:
 : ax.set(ylabel='density')

```




Insured distribution




### 2.13.5 Loss Models Book

Examples from the text Klugman et al. [2019], Loss Models: from data to decisions. The Loss models book is used as a text for several actuarial society exams and many college courses. KPW is shorthand for Loss Models.

## Contents

- Example 9.3 and 4
- Example 9.5 and 6
- Exercise 9.19
- Exercise 9.23
- Exercise 9.24
- Exercise 9.31
- Exercise 9.34
- Exercise 9.35
- Exercise 9.36
- Example 9.9 and 10
- Exercise 9.39
- Exercise 9.40
- Example 9.11
- Example 9.12
- Exercise 9.45
- Exercise 9.57 and 58
- Exercise 9.59
- Exercise 9.60
- Example 9.14
- Exercise 9.63
- Example 9.15 and 18
- Example 9.16 and 17
- Exercise 9.73
- Exercise 9.74


## Method of Moments Approximations, Examples 9.3 and 9.4

The observed mean (and standard deviation) of the number of claims and the individual losses over the past 10 months are 6.7 (2.3) and $179,247(52,141)$, respectively. Determine the mean and standard deviation of aggregate claims per month.

```
In [1]: from aggregate import build, qd, mv, MomentAggregator, round_bucket
In [2]: import scipy.stats as ss
In [3]: import pandas as pd
In [4]: import numpy as np
In [5]: import matplotlib.pyplot as plt
In [6]: moms = MomentAggregator.agg_from_fs2(6.7, 2.3**2, 179247, 52141**2)
In [7]: moms
Out[7]:
ex 1.200955e+06
var 1.881802e+11
sd 4.337974e+05
cv 3.612104e-01
dtype: float64
```

Using normal and lognormal distributions as approximating distributions for aggregate claims, calculate the probability that claims will exceed $140 \%$ of expected costs.

```
In [8]: fzn = ss.norm(loc=moms.ex, scale=moms.sd)
In [9]: sigma = np.sqrt(np.log(moms.cv**2 + 1))
In [10]: fzl = ss.lognorm(sigma, scale=moms.ex*np.exp(-sigma**2/2))
In [11]: fzn.sf(1.4 * moms.ex), fzl.sf(1.4 * moms.ex)
Out[11]: (0.1340631332467369, 0.1279965072394511)
```


## Notes.

1. How to make the lognormal...

## Group Dental Insurance, Examples 9.5, 9.6

Under a group dental insurance plan covering employees and their families, the premium for each married employee is the same regardless of the number of family members. The insurance company has compiled statistics showing that the annual cost of dental care per person for the benefits provided by the plan has the distribution (given in units of 25 ) on the left.

Furthermore, the distribution of the number of persons per insurance certificate (i.e. per employee) receiving dental care in any year has the distribution on the right.

Determine the mean and standard deviation of total payments per employee.

$x$	$f(x)$	$n$	$\operatorname{Pr}(N=n)$
1	0.150	0	0.05
2	0.200	1	0.10
3	0.250	2	0.15
4	0.125	3	0.20
5	0.075	4	0.25
6	0.050	5	0.15
7	0.050	6	0.06
8	0.050	7	0.03
9	0.025	8	0.01
10	0.025		

```
In [12]: kpw_9_5 = build('agg KPW.95
 ...: 'dfreq [0:8] [0.05, 0.1, 0.15, 0.2, 0.25, 0.15, 0.06, 0.
\hookrightarrow03, 0.01] '
 ...: 'dsev [1:10] [0.15, 0.2, 0.25, 0.125, 0.075, 0.05, 0.05, -
\hookrightarrow0.05, 0.025, 0.025]')
 :
In [13]: qd(kpw_9_5)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lllllll
Agg 12.58 12.58 -4.4409e-16 0.60927 0.60927 0.52196 0.52196
log2 = 8, bandwidth = 1, validation: not unreasonable.
In [14]: mv(kpw_9_5)
mean = 12.58
variance = 58.7464
std dev = 7.66462
```

The probability distributions are in the density_df dataframe.

```
In [15]: with pd.option_context('display.max_rows', 360, 'display.max_columns', 10,
 : 'display.width', 150,
 ...: 'display.float_format', lambda x: f'{x:.5g}'):
 : print(kpw_9_5.density_df.query('p > 0')[['p', 'F', 'S']])
 :
\begin{tabular}{lrrr}
& \(p\) & \(F\) & \(S\) \\
loss & & & \\
0 & 0.05 & 0.05 & 0.95 \\
1 & 0.015 & 0.065 & 0.935 \\
2 & 0.023375 & 0.088375 & 0.91163 \\
3 & 0.034675 & 0.12305 & 0.87695 \\
4 & 0.032577 & 0.15563 & 0.84437 \\
5 & 0.035786 & 0.19141 & 0.80859 \\
6 & 0.039808 & 0.23122 & 0.76878 \\
7 & 0.043562 & 0.27478 & 0.72522
\end{tabular}
```

0.047518	0.3223	0.6777
0.049034	0.37133	0.62867
0.051898	0.42323	0.57677
0.051379	0.47461	0.52539
0.051187	0.5258	0.4742
0.050305	0.5761	0.4239
0.048182	0.62429	0.37571
0.045759	0.67004	0.32996
0.042809	0.71285	0.28715
0.039378	0.75223	0.24777
0.035746	0.78798	0.21202
0.031968	0.81995	0.18005
0.028324	0.84827	0.15173
0.024788	0.87306	0.12694
0.021491	0.89455	0.10545
0.018458	0.91301	0.086993
0.015692	0.9287	0.0713
0.013234	0.94193	0.058066
0.011076	0.95301	0.04699
0.0092013	0.96221	0.037789
0.0075941	0.96981	0.030195
0.0062231	0.97603	0.023972
0.0050662	0.98109	0.018906
0.0040954	0.98519	0.01481
0.003288	0.98848	0.011522
0.0026221	0.9911	0.0089001
0.002076	0.99318	0.0068241
0.001632	0.99481	0.0051921
0.0012732	0.99608	0.0039189
0.00098531	0.99707	0.0029336
0.00075628	0.99782	0.0021773
0.00057544	0.9984	0.0016019
0.000434	0.99883	0.0011679
0.00032431	0.99916	0.00084357
0.00024008	0.9994	0.00060349
0.000176	0.99957	0.00042749
0.00012773	0.9997	0.00029976
$9.1748 \mathrm{e}-05$	0.99979	0.00020801
$6.52 e-05$	0.99986	0.00014281
4.5831e-05	0.9999	9.6977e-05
$3.1858 \mathrm{e}-05$	0.99993	$6.5119 \mathrm{e}-05$
$2.1894 \mathrm{e}-05$	0.99996	$4.3225 e-05$
$1.4871 \mathrm{e}-05$	0.99997	$2.8353 \mathrm{e}-05$
$9.9806 \mathrm{e}-06$	0.99998	$1.8373 \mathrm{e}-05$
6.6161e-06	0.99999	$1.1757 e-05$
$4.3305 e-06$	0.99999	$7.4261 e-06$
$2.7976 e-06$	1	$4.6285 \mathrm{e}-06$
$1.7833 \mathrm{e}-06$	1	$2.8452 \mathrm{e}-06$
$1.1211 \mathrm{e}-06$	1	$1.7241 \mathrm{e}-06$
$6.9482 \mathrm{e}-07$	1	$1.0292 \mathrm{e}-06$
$4.2428 \mathrm{e}-07$	1	$6.0496 \mathrm{e}-07$
$2.5511 \mathrm{e}-07$	1	$3.4985 \mathrm{e}-07$
$1.5095 e-07$	1	$1.989 \mathrm{e}-07$
$8.7827 e-08$	1	$1.1107 e-07$
$5.0209 \mathrm{e}-08$	1	$6.086 \mathrm{e}-08$
$2.8179 \mathrm{e}-08$	1	$3.2681 \mathrm{e}-08$
$1.5508 \mathrm{e}-08$	1	$1.7173 \mathrm{e}-08$
$8.3573 e-09$	1	8.8161e-09
$4.4032 \mathrm{e}-09$	1	$4.4129 \mathrm{e}-09$
$2.2637 e-09$	1	$2.1492 e-09$
$1.1334 \mathrm{e}-09$	1	$1.0158 \mathrm{e}-09$

```
4.6435e-10
2.0433e-10
```

$1.1836 \mathrm{e}-10 \quad 18.5974 \mathrm{e}-11$
$5.1711 e-11 \quad 13.4264 e-11$
$2.1497 e-11 \quad 11.2767 e-11$
$8.3923 e-1214.3749 e-12$
$3.0273 e-12 \quad 11.3476 e-12$
$9.8572 \mathrm{e}-13 \quad 13.6182 \mathrm{e}-13$
$2.8076 e-1318.1046 e-14$
$6.7141 e-14 \quad 11.3878 e-14$
$1.221 \mathrm{e}-14 \quad 11.6653 \mathrm{e}-15$
$1.5255 e-15 \quad 11.1102 e-16$

Aggregate stop loss premiums can be computed as tail integrals of the survival function. Multiply by the units, 25 .

```
In [16]: (kpw_9_5.density_df.S[::-1].cumsum()[::-1] * 25)[:8]
Out[16]:
loss
0.0 314.500000
1.0 290.750000
2.0 267.375000
3.0 244.584375
4.0 222.660625
5.0 201.551289
6.0 181.336613
7.0 162.117133
8.0 143.986712
Name: S, dtype: float64
```

Exercise 9.19. An insurance portfolio produces $\mathrm{N}=0,1,3$ claims with probabilities $0.5,0.4,0.1$. Individual claim amounts are 1 or 10 with probability $0.9,0.1$. Individual claim amounts and N are mutually independent. Calculate the probability that the ratio of aggregate claims to expected claims will exceed 3.0.

```
In [17]: kpw_9_19 = build('agg KPW.9.19 dfreq [0 1 3] [.5 . 4 . 1] '
 : 'dsev [1 10] [.9 .1]')
 :
In [18]: qd(kpw_9_19)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lllllll
Agg 1.33 1.33-9.992e-16 2.1302 2.1302 3.414 3.414
log2 = 6, bandwidth = 1, validation: not unreasonable.
In [19]: m = kpw_9_19.agg_m
In [20]: print(f'mean {m:.5g}\nprobability {kpw_9_19.sf(3 * m):.4g}')
mean 1.33
probability 0.0671
```

Exercise 9.23. An individual loss distribution is normal with mean $=100$ and variance $=9$. The distribution for the number of claims has outcomes $0,1,2,3$ with probabilities $0.5,0.2,0.2,0.1$. Determine the probability that aggregate claims exceed 100.

```
In [21]: kpw_9_23 = build('agg KPW.9.23 dfreq [0:3] [1/2 1/5 1/5 1/10] '
 ...: 'sev 3 * norm + 100')
 :
In [22]: qd(kpw_9_23)
```

(continued from previous page)

```
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Sev
log2 = 16, bandwidth = 1/32, validation: fails sev skew.
In [23]: qd(kpw_9_23.density_df.loc[90:110:64, ['p', 'F', 'S']])
 p F S
loss
90.0 3.2132e-06 0.50009 0.49991
92.0 2.3742e-05 0.50078 0.49922
94.0 0.00011248 0.50461 0.49539
96.0 0.00034169 0.51841 0.48159
98.0 0.00066552 0.55083 0.44917
100.0 0.00083113 0.60042 0.39958
102.0 0.00066552 0.64983 0.35017
104.0 0.00034169 0.68193 0.31807
106.0 0.00011248 0.69551 0.30449
108.0 2.3742e-05 0.69925 0.30075
110.0 3.2132e-06 0.69992 0.30008
```

Exercise 9.24. An employer self-insures a life insurance program with the following two characteristics:

1. Given that a claim has occurred, the claim amount is 2,000 with probability 0.4 and 3,000 with probability 0.6 .
2. The number of claims has outcomes $0,1,2,3,4$ with probabilities $1 / 16,1 / 4,3 / 8,1 / 4,1 / 16$.

The employer purchases aggregate stop-loss coverage that limits the employer's annual claims cost to 5,000 . The aggregate stop-loss coverage costs 1,472 . Determine the employer's expected annual cost of the program, including the cost of stop-loss coverage.

```
In [24]: kpw_9_24 = build('agg KPW.9.24 dfreq [0:4] [1/16 1/4 3/8 1/4 1/16] '
 ...: 'dsev [2 3] [0.4 0.6] '
 : 'aggregate net of inf xs 5')
 :
In [25]: qd(kpw_9_24)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0.5 0
Sev 2.6 2.6 0 0.18842 0.18842 -0.40825 -0.40825
Agg 5.2 4.0275 -0.22548 0.51745 0.36633 0.091166 -1.4019
log2 = 5, bandwidth = 1, validation: n/a, reinsurance.
In [26]: net = kpw_9_24.describe.iloc[-1, 1]
In [27]: print(f'\ngross loss {kpw_9_24.agg_m:.5g}\nretained loss {net:.5g}\n'
 : f'premium {net + 1.472:.5g}')
 :
gross loss 5.2
retained loss 4.0275
premium 5.4995
```

Working in thousands.
Exercise 9.31. Medical and dental claims are assumed to be independent with compound Poisson distributions as follows:

- Medical claims 2 expected claims, amounts uniform ( 0,1000 )
- Dental claims 3 expected claims, amounts uniform ( 0,200 )

Let X be the amount of a given claim under a policy that covers both medical and dental claims. Determine $\mathrm{E}[(\mathrm{X}-$ $100)+]$, the expected cost (in excess of 100) of any given claim.

```
In [28]: kpw_9_31 = build('agg KPW.9.31 [2 3] claims
 ...: 'sev [1000 200] * uniform '
 ...: 'occurrence ceded to inf xs 100 '
 : 'poisson')
 :
```

In [29]: qd(kpw_9_31)

	E [X]	Est E[X]	Err E[X]	CV (X)	Est CV(X)	Skew (X)	Est	Skew (X)
X								
Freq	5			0.44721		0.44721		
Sev	260	177	-0.31923	1.0444	1.461	1.3042		1.4244
Agg	1300	885	-0.31923	0.64664	0.79177	0.85178		0.95458
$\log 2=16$, bandwidth $=1 / 4$, validation: $n / a$, reinsurance.								


					ex	var	sd	cv	skew
kind share limit attach									
occ	1.0	inf	100.0	ceded	177	66871	258.59	1.461	1.4244
				net	83	844.34	29.057	0.35009	-1.5092
				subje	260	73733	271.54	1.0444	1.3042

Could also compute impact of aggregate reinsurance structures.
Exercise 9.34. A compound Poisson distribution has 5 expected claim and claim amount distribution $p(100)=0.80$, $p(500)=0.16$, and $p(1,000)=0.04$. Determine the probability that aggregate claims will be exactly 600 .

```
In [31]: kpw_9_34 = build('agg KPW.9.34 5 claims '
 : 'dsev [1 5 10] [.8 . 16 .04] '
 'poisson')
 :
In [32]: qd(kpw_9_34)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
lrreq 5 0.44721
Agg 10 10 4.6629e-15 0.66332 0.66332 1.0416 1.0416
log2 = 10, bandwidth = 1, validation: not unreasonable.
In [33]: print(f'{kpw_9_34.pmf(6):.6g}')
0.0598929
In [34]: kpw_9_34.density_df.index = kpw_9_34.density_df.index.astype(int)
In [35]: qd(kpw_9_34.density_df.query('p > 0.001')[['p', 'F', 'S']], accuracy=5)
 p F S
loss
0 0.0067379 0.0067379 0.99326
10.026952 0.03369 0.96631
0.053904 0.087593 0.91241
3 0.071871 0.15946 0.84054
40.071871 0.23134 0.76866
```

0.062888	0.29422	0.70578
0.059893	0.35412	0.64588
0.065027	0.41914	0.58086
0.068449	0.48759	0.51241
0.062365	0.54996	0.45004
0.051448	0.60141	0.39859
0.045388	0.64679	0.35321
$\ldots$	$\ldots$	$\ldots$
0.0099885	0.95791	0.042093
0.0084688	0.96638	0.033624
0.0065328	0.97291	0.027091
0.0050132	0.97792	0.022078
0.0042014	0.98212	0.017877
0.0036975	0.98582	0.014179
0.0030698	0.98889	0.011109
0.0023339	0.99122	0.0087753
0.0017543	0.99298	0.007021
0.0014285	0.99441	0.0055925
0.0012267	0.99563	0.0043658
0.0010036	0.99664	0.0033621

Work in hundreds. Convert index to integer to improve display. Show all outcomes with probability greater than 0.001 .

Exercise 9.35. Aggregate payments have a compound distribution. The frequency distribution is negative binomial with $r=16$ and $\beta=6$, and the severity distribution is uniform on the interval $(0,8)$. Use the normal approximation to determine the premium such that the probability is $5 \%$ that aggregate payments will exceed the premium.

The negative binomial has mean $r \beta$ and variance $r \beta(1+\beta)$. Therefore the gamma mixing variance equals $c=1 / r$ (since $r \beta(1+\beta)=n(1+c n)$.) Hence the mixing cv equals 0.25 . The premium is the $95 \%$ ile of the aggregate distribution.

```
In [36]: kpw_9_35 = build('agg KPW.9.35 96 claims '
 ...: 'sev 8 * uniform '
 ...: 'mixed gamma 0.25')
 :
In [37]: qd(kpw_9_35)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Frreq
Agg 384 384 3.3307e-15 0.27639 0.27639 0.50366 0.50366
log2 = 16, bandwidth = 1/32, validation: not unreasonable.
In [38]: mv(kpw_9_35)
mean = 384
variance = 11264
std dev = 106.132
In [39]: appx = kpw_9_35.approximate('all')
In [40]: ans = {k: v.isf(0.05) for k, v in appx.items()}
In [41]: ans['FFT'] = kpw_9_35.q(0.95)
In [42]: qd(pd.DataFrame(ans.values(),
 index=pd.Index(ans.keys(), name='method'),
 ...: columns=['premium']).sort_values('premium'),
 : accuracy=4)
```



The approximate method returns a dictionary with key the method, for normal and shifted and unshifted gamma and lognormal.

Exercise 9.36. The number of losses is Poisson with mean 3. Loss amounts have a Burr distribution with $\alpha=3$, $\theta=2$, and $\gamma=1$. Determine the variance of aggregate losses.

A matter of converting parameterizations. This is the scipy. stats burr12 distribution. The shape parameters are $c=g a m m a$ and $d=a l p h a$. thet $a$ is a scale parameter.

```
In [43]: kpw_9_36 = build('agg KPW.9.36 3 claims '
 : 'sev 2 * burr12 1 3 '
 : 'poisson')
 :
In [44]: qd(kpw_9_36)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Agg 3 2.9999-4.9063e-05 1.1547 1.148 inf 6.5701
log2 = 16, bandwidth = 1/128, validation: fails sev cv, agg cv.
In [45]: mv(kpw_9_36)
mean = 3
variance = 12
std dev = 3.4641
In [46]: kpw_9_36.plot()
```



## Compound Poisson, Example 9.9, 9.10

Policy A has a compound Poisson distribution with 2 expected claims and severity probabilities 0.6 on a payment of 1 and 0.4 on a payment of 2 . Policy B has a compound Poisson distribution with 1 expected claim and probabilities 0.7 on a payment of 1 and 0.3 on a payment of 3 .

Determine the probability that the total payment on the two policies will be 2 .
Figure the weighted severity by hand.

```
In [47]: kpw_9_9 = build('agg KPW.9.9 3 claims
 ...: 'dsev [1 2 3] [1.9/3 .8/3 .3/3] '
 ...: 'poisson')
 :
In [48]: qd(kpw_9_9)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3 0.57735 0.57735
Sev 1.4667 1.4667 -1.1102e-16 0.45681 0.45681 1.1192 1.1192
Agg 4.4 4.4 0 0.63474 0.63474 0.75284 0.75284
log2 = 7, bandwidth = 1, validation: not unreasonable.
In [49]: print(f'{kpw_9_9.pmf(2):.6g}')
0.129695
In [50]: kpw_9_9.density_df.index = kpw_9_9.density_df.index.astype(int)
In [51]: bit = kpw_9_9.density_df.query('p > 0.001')[['p', 'F', 'S']]
In [52]: bit['p*exp(3)'] = bit.p * np.exp(3)
In [53]: qd(bit, accuracy=5)
```

	p	F	S	p *exp(3)
loss				
0	0.049787	0.049787	0.95021	1
1	0.094595	0.14438	0.85562	1.9
2	0.1297	0.27408	0.72592	2.605
3	0.14753	0.42161	0.57839	2.9632
4	0.14324	0.56484	0.43516	2.877
5	0.12498	0.68983	0.31017	2.5104
6	0.099904	0.78973	0.21027	2.0066
7	0.074101	0.86383	0.13617	1.4884
8	0.051641	0.91547	0.084527	1.0372
9	0.034066	0.94954	0.050462	0.68423
10	0.021404	0.97094	0.029058	0.42991
11	0.012877	0.98382	0.01618	0.25865
12	0.0074477	0.99127	0.0087326	0.14959
13	0.0041552	0.99542	0.0045774	0.08346
14	0.0022429	0.99767	0.0023345	0.04505
15	0.0011742	0.99884	0.0011603	0.023584

The last column answers Example 9.10.
Alternatively, use the Portfolio class.

```
In [54]: p = build('port KPW.9.9.p '
 ...: 'agg A 2 claims dsev [1 2] [.6 .4] poisson '
 ...: 'agg B 1 claims dsev [1 3] [.7 . 3] poisson')
 :
```

(continued from previous page)
In [55]: $q d(p)$
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X

A	Freq	2			0.70711		0.70711	
	Sev	1.4	1.4	0	0.34993	0.34993	0.40825	0.40825
	Agg	2.8	2.8	$6.6613 e-16$	0.74915	0.74915	0.82344	0.82344
B	Freq	1			1		1	
	Sev	1.6	1.6	$2.2204 \mathrm{e}-16$	0.57282	0.57282	0.87287	0.87287
	Agg	1.6	1.6	$8.8818 \mathrm{e}-16$	1.1524	1.1524	1.4037	1.4037
total	Freq	3			0.57735		0.57735	
	Sev	1.4667	1.4667	$2.2204 \mathrm{e}-16$	0.45681		1.1192	
	Agg	4.4	4.4	-1.6653e-15	0.63474	0.63474	0.75284	0.75284

$\log 2=16$, bandwidth $=1 / 1024$, validation: not unreasonable.
Exercise 9.39. For a compound distribution, frequency has a binomial distribution with parameters $\mathrm{m}=3$ and $\mathrm{q}=$ 0.4 and severity has an exponential distribution with a mean of 100 . Calculate $\operatorname{Pr}(A \leq 300)$.

Assume 1.2 expected claims. Work in hundreds.

```
In [56]: kpw_9_39 = build('agg KPW.9.39 1.2 claims '
 ...: 'sev expon binomial 0.4')
 :
In [57]: qd(kpw_9_39)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Agg 1.2 1.2 -3.9736e-08 1.1547 1.1547 1.7681 1.7681
log2 = 16, bandwidth = 1/1024, validation: not unreasonable.
In [58]: print(f'probability = {kpw_9_39.cdf(3):.6g}')
probability = 0.894092
```

Exercise 9.40. A company sells three policies. For policy A, all claim payments are 10,000 and a single policy has a Poisson number of claims with mean 0.01 . For policy B, all claim payments are 20,000 and a single policy has a Poisson number of claims with mean 0.02 . For policy C, all claim payments are 40,000 and a single policy has a Poisson number of claims with mean 0.03. All policies are independent. For the coming year, there are 5,000, 3,000, and 1,000 of policies A, B, and C, respectively. Calculate the expected total payment, the standard deviation of total payment, and the probability that total payments will exceed 30,000 .

Must use a Portfolio. Work in thousands.

```
In [59]: kpw_9_40 = build('port kpw_9_40\n'
 ...: '\tagg A 50 claims dsev [10] poisson\n'
 ...: '\tagg B 60 claims dsev [20] poisson\n'
 ...: '\tagg C 30 claims dsev [40] poisson\n')
 :
In [60]: qd(kpw_9_40)
 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
\(\left.\begin{array}{llrrrrrrr}\text { A } & \text { Freq } & 50 & & & 0.14142 & 0 & 0.14142 & \\ & \text { Sev } & 10 & 10 & 0 & 0 & 0 & & 0.14142 \\ & \text { Agg } & 500 & 500 & 1.9984 \mathrm{e}-15 & 0.14142 & 0.14142 & 0.14142 & 0.1291\end{array}\right]\)
(continued from previous page)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C & Freq & 30 & & 0.18257 & & \multicolumn{2}{|l|}{0.18257} \\
\hline & Sev & 40 & 40 & 0 & \multicolumn{2}{|r|}{0} & \\
\hline & Agg & 1200 & 1200 & 0.18257 & 0.18257 & 0.18257 & 0.18257 \\
\hline total & Freq & 140 & & 0.084515 & & \multicolumn{2}{|l|}{0.084515} \\
\hline & Sev & 20.714 & 20.714 & 0.53086 & & \multicolumn{2}{|l|}{0.82553} \\
\hline & Agg & 2900 & 2899.9 & 0.095686 & 0.095811 & 0.11466 & 0.08019 \\
\hline \multicolumn{8}{|l|}{\(\log 2=16\), bandwidth \(=1 / 16\), validation: fails agg cv.} \\
\hline \multicolumn{8}{|l|}{```
In [61]: qd(pd.Series({'expected payment': kpw_9_40.agg_m,
 : 'sd payment': kpw_9_40.agg_sd,
 ...: 'Pr > 3000': kpw_9_40.sf(3000)}).to_frame('value'),
 ...: accuracy=5)
```} \\
\hline \multicolumn{8}{|c|}{value} \\
\hline \multicolumn{8}{|l|}{expected payment 2900} \\
\hline \multicolumn{8}{|l|}{sd payment 277.49} \\
\hline \multicolumn{8}{|l|}{Pr > 3000 0.34658} \\
\hline
\end{tabular}

\section*{ZM Binomial, Example 9.11}

A compound distribution has a zero-modified binomial distribution with \(m=3, q=0.3\), and \(p_{0}^{M}=0.4\). Individual payments are 0,50 , and 150 , with probabilities \(0.3,0.5\), and 0.2 , respectively. Use the recursive formula to determine the probability distribution of \(S\).

\section*{Todo: Implement ZM and ZT.}

\section*{ETNB, Example 9.12}

The number of claims has a Poisson-ETNB distribution with Poisson parameter \(\lambda=2\) and ETNB parameters \(\beta=3\) and \(r=0.2\). The claim size distribution has probabilities \(0.3,0.5\), and 0.2 at 0,10 , and 20 , respectively. Determine the total claims distribution recursively.

Todo: Implement ZM and ZT.

Exercise 9.45. For a compound Poisson distribution, has 6 expected claims and individual losses take values 1, 2, 4 with equal probabilities. Determine the distribution of the aggregate.
```

In [62]: kpw_9_45 = build('agg KPW.9.45 6 claims '
....: 'dsev [1 2 4] poisson')
.... :
In [63]: qd(kpw_9_45)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq
Agg 14 14 4.6629e-15 0.46291 0.46291 0.53639 0.53639
log2 = 9, bandwidth = 1, validation: not unreasonable.
In [64]: qd(kpw_9_45.density_df.query('p > 0.001')[['p', 'F', 'S']], accuracy=5)

```
    P F S
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{loss} \\
\hline 0.0 & 0.0024788 & 0.0024788 & 0.99752 \\
\hline 1.0 & 0.0049575 & 0.0074363 & 0.99256 \\
\hline 2.0 & 0.009915 & 0.017351 & 0.98265 \\
\hline 3.0 & 0.01322 & 0.030571 & 0.96943 \\
\hline 4.0 & 0.021483 & 0.052054 & 0.94795 \\
\hline 5.0 & 0.027101 & 0.079155 & 0.92085 \\
\hline 6.0 & 0.036575 & 0.11573 & 0.88427 \\
\hline 7.0 & 0.041045 & 0.15678 & 0.84322 \\
\hline 8.0 & 0.050031 & 0.20681 & 0.79319 \\
\hline 9.0 & 0.05345 & 0.26026 & 0.73974 \\
\hline 10.0 & 0.059963 & 0.32022 & 0.67978 \\
\hline 11.0 & 0.06019 & 0.38041 & 0.61959 \\
\hline & & & \\
\hline 24.0 & 0.017373 & 0.93502 & 0.064978 \\
\hline 25.0 & 0.014016 & 0.94904 & 0.050962 \\
\hline 26.0 & 0.011474 & 0.96051 & 0.039488 \\
\hline 27.0 & 0.0090615 & 0.96957 & 0.030427 \\
\hline 28.0 & 0.0072502 & 0.97682 & 0.023176 \\
\hline 29.0 & 0.0056163 & 0.98244 & 0.01756 \\
\hline 30.0 & 0.0044008 & 0.98684 & 0.013159 \\
\hline 31.0 & 0.0033471 & 0.99019 & 0.0098123 \\
\hline 32.0 & 0.0025718 & 0.99276 & 0.0072405 \\
\hline 33.0 & 0.0019231 & 0.99468 & 0.0053174 \\
\hline 34.0 & 0.0014512 & 0.99613 & 0.0038662 \\
\hline 35.0 & 0.0010677 & 0.9972 & 0.0027985 \\
\hline
\end{tabular}

Exercise 9.47. Aggregate claims are compound Poisson with 2 expected claims and severity outcomes 1,2 with probability \(1 / 4\) and \(3 / 4\). For a premium of 6 , an insurer covers aggregate claims and agrees to pay a dividend (a refund of premium) equal to the excess, if any, of \(75 \%\) of the premium over \(100 \%\) of the claims. Determine the excess of premium over expected claims and dividends.
```

In [65]: kpw_9_47 = build('agg KPW.9.47 2 claims '
...: 'dsev [1 2] [1/4 3/4] poisson')
.... :
In [66]: qd(kpw_9_47)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0.70711 0.70711
Sev 1.75 1.75 0 0.24744 0.24744 -1.1547 -1.1547
Agg 3.5 3.5 2.2204e-16 0.72843 0.72843 0.75429 0.75429
log2 = 6, bandwidth = 1, validation: not unreasonable.
In [67]: bit = kpw_9_47.density_df.query('p > 0')[['p', 'F', 'S']]
In [68]: bit['dividend'] = np.maximum(0.75 * 6 - bit.index, 0)
In [69]: qd(bit.head(10), accuracy=4)
p F S dividend
loss
0.0 0.13534 0.13534 0.86466 4.5
1.0 0.067668 0.203 0.797 3.5
2.0 0.21992 0.42292 0.57708 2.5
3.0 0.10432 0.52724 0.47276 1.5
4.0 0.17798 0.70522 0.29478 0.5
5.0 0.080391 0.78561 0.21439 0
6.0 0.095689 0.8813 0.1187 0
7.0 0.041288 0.92259 0.077408 0

```
```

8.0 0.038464 0.96106 0.038945 0
9.0 0.0159 0.97696 0.023045 0
In [70]: exp_div = (bit.dividend * bit.p).sum()
In [71]: print(f'prem = {6:.5g}\n'
....: f'exp loss = {kpw_9_47.agg_m:.5g}\n'
....: f'dividend = {exp_div:.5g}\n'
....: f'excess = {6 - kpw_9_47.agg_m - exp_div:.5g}')
.... :
prem = 6
exp loss = 3.5
dividend = 1.6411
excess = 0.85888

```

Exercise 9.57, 9.58. Aggregate losses have a compound Poisson claim distribution with 3 expected claims and individual claim amount distribution \(p(1)=0.4, p(2)=0.3, p(3)=0.2\), and \(p(4)=0.1\). Determine the probability that aggregate losses do not exceed 3 .

Repeat the Exercise with a negative binomial frequency distribution with \(\mathrm{r}=6\) and \(\beta=0.5\).
```

In [72]: kpw_9_57 = build('agg KPW.9.57 3 claims '
...: 'dsev [1:4] [.4 .3 .2 .1] poisson')
.... :
In [73]: qd(kpw_9_57)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

```

```

Agg 6 6 -1.1102e-16 0.6455 0.6455 0.75394 0.75394
log2 = 8, bandwidth = 1, validation: not unreasonable.
In [74]: kpw_9_58 = build('agg KPW.9.58 3 claims '
...: 'dsev [1:4] [.4 .3 .2 .1] mixed gamma 6**-0.5')
.... :
In [75]: qd(kpw_9_58)

| | E[X] | Est E[X] | Err E[X] | CV(X) | Est CV(X) | Skew (X) | Est Skew (X) |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| X | | | | 0.70711 | | | |
| Freq | 3 | | | | 0.94281 | | |
| Sev | 2 | 2 | $-3.3307 e-16$ | 0.5 | 0.5 | 0.6 | 0.6 |
| Agg | 6 | 6 | $-7.6605 e-15$ | 0.76376 | 0.76376 | 1.0474 | 1.0474 |

log2 = 8, bandwidth = 1, validation: not unreasonable.
In [76]: bit = pd.concat((kpw_9_57.density_df[['p', 'F', 'S']],
....: kpw_9_58.density_df[['p', 'F', 'S']]),
...: keys=('Po', 'NB'), axis=1)
.... :
In [77]: qd(bit.head(16), accuracy=5)
Po NB
P F S S P F
loss
0.0 0.049787 0.049787 0.95021 0.087791 0.087791 0.91221
1.0 0.059744 0.10953 0.89047 0.070233 0.15802 0.84198
2.0 0.080655 0.19019 0.80981
3.0 0.097981 0.28817 0.71183 0.095933

```
(continues on next page)
\begin{tabular}{lrrrrrr}
4.0 & 0.10751 & 0.39568 & 0.60432 & 0.098486 & 0.43789 & 0.56211 \\
5.0 & 0.10445 & 0.50013 & 0.49987 & 0.089535 & 0.52743 & 0.47257 \\
6.0 & 0.098668 & 0.5988 & 0.4012 & 0.082877 & 0.61031 & 0.38969 \\
7.0 & 0.088215 & 0.68701 & 0.31299 & 0.073657 & 0.68396 & 0.31604 \\
8.0 & 0.07506 & 0.76207 & 0.23793 & 0.063257 & 0.74722 & 0.25278 \\
9.0 & 0.061311 & 0.82338 & 0.17662 & 0.05302 & 0.80024 & 0.19976 \\
10.0 & 0.048587 & 0.87197 & 0.12803 & 0.043819 & 0.84406 & 0.15594 \\
11.0 & 0.037239 & 0.90921 & 0.09079 & 0.035507 & 0.87957 & 0.12043 \\
12.0 & 0.027715 & 0.93692 & 0.063075 & 0.028316 & 0.90789 & 0.092115 \\
13.0 & 0.020101 & 0.95703 & 0.042974 & 0.022288 & 0.93017 & 0.069827 \\
14.0 & 0.014239 & 0.97127 & 0.028735 & 0.017338 & 0.94751 & 0.052489 \\
15.0 & 0.0098562 & 0.98112 & 0.018879 & 0.013334 & 0.96085 & 0.039155
\end{tabular}

Exercise 9.59. A policy covers physical damage incurred by the trucks in a company's fleet. The number of losses in a year has a Poisson distribution with expectation 5 . The amount of a single loss has a gamma distribution with shape 0.5 and scale 2,500 . The insurance contract pays a maximum annual benefit of 20,000 . Determine the probability that the maximum benefit will be paid. Use a span of 100 and the method of rounding.
```

In [78]: kpw_9_59 = build('agg KPW.9.59 5 claims '
...: 'sev 2500 * gamma 0.5 '
...: 'poisson')
.... :
In [79]: qd(kpw_9_59)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 5 0.44721 0.44721
Sev 1250 1250 -3.109e-06 1.4142 1.4142 2.8284 2.8284
Agg 6250 6250 -3.109e-06 0.7746 0.7746 1.291 1.291
log2 = 16, bandwidth = 2, validation: not unreasonable.
In [80]: print(f'pr(loss >= 20000) = {kpw_9_59.sf(20000):.6g}')
pr(loss >= 20000) = 0.015939

```

Repeated at the requested span of 100 .
```

In [81]: kpw_9_59.update(log2=10, bs=100)
In [82]: print(f'pr(loss >= 20000) = {kpw_9_59.sf(20000):.6g}')
pr(loss >= 20000) = 0.0157042

```

Exercise 9.60. An individual has purchased health insurance, for which they pay 10 for each physician visit and 5 for each prescription. The probability that a payment will be 10 is 0.25 , and the probability that it will be 5 is 0.75 . The total number of payments per year has the Poisson-Poisson (Neyman Type A) distribution with primary mean 10 and secondary mean 4 . Determine the probability that total payments in one year will exceed 400 . Compare your answer to a normal approximation.
```

In [83]: kpw_9_60 = build('agg KPW.9.60 40 claims '
...: 'dsev [5 10] [3/4 1/4] '
....: 'neyman 4')
. . . . :
In [84]: qd(kpw_9_60)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 40 0.35355 0.41012
Sev 6.25 6.25 0
Agg 250 250 -9.1038e-14 0.35777 0.35777 0.42101 0.42101

```
(continues on next page)
```

log2 = 14, bandwidth = 1, validation: not unreasonable.
In [85]: fz = kpw_9_60.approximate('norm')
In [86]: print(f'FFT {kpw_9_60.sf(400):.5g}\n'
....: f'Normal approx {fz.sf(400):.5g}')
.... :
FFT 0.054616
Normal approx 0.046766

```

\section*{Poisson Pareto, Example 9.14}

The number of ground-up losses is Poisson distributed with mean 3. The individual loss distribution is Pareto with shape parameter :math:alpha \(=4\) and scale parameter 10 . An individual ordinary deductible of 6 , coinsurance of \(75 \%\), and an individual loss limit of 24 (before application of the deductible and coinsurance) are all applied. Determine the mean, variance, and distribution of aggregate payments.
The covered layer is 18 xs 6 , in which the insured pays \(25 \%\) because of the coinsurance clause. The severity is unconditional.
```

In [87]: kpw_9_14 = build('agg KPW.9.14 3 claims '
....: '18 xs 6 '
...: 'sev 10 * pareto 4 - 10 ! '
...: 'occurrence net of 0.25 so inf xs 0 '
...: 'poisson')
.... :
In [88]: qd(kpw_9_14)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq
Agg 2.187 1.6403-0.24995 2.108 2.1079 2.8396 2.8395
log2 = 16, bandwidth = 1/512, validation: n/a, reinsurance.
In [89]: print(f'variance = {kpw_9_14.describe.iloc[-1,[1, 4]].prod()**2:.6g}\
\hookrightarrowncomputed with bs=1/{1/kpw_9_14.bs:.0f} and log2={kpw_9_14.log2}')
variance = 11.9552
computed with bs=1/512 and log2=16
In [90]: qd(kpw_9_14.density_df.loc[[0, 1, 2, 3], ['p', 'F', 'S']])
p F S
loss
0.0 0.63277 0.63277 0.36723
1.0 0.00013621 0.71496 0.28504
2.0 0.00010097 0.7751 0.2249
3.0 7.6416e-05 0.82013 0.17987
In [91]: kpw_9_14.plot()

```

describe returns gross under \(\mathrm{E}[\mathrm{X}]\) and the requested net or ceded under Est \(\mathrm{E}[\mathrm{X}]\). The print statement computes net variance from the product of estimated mean and cv. The spikes on the density corresponds to the possibility of only limit claims. Exercise 9.63. A ground-up model of individual losses has a gamma distribution with shape parameter 2 and scale 100. The number of losses has a negative binomial distribution with \(r=2\) and \(\beta=1.5\). An ordinary deductible of 50 and a loss limit of 175 (before imposition of the deductible) are applied to each individual loss.
- Determine the mean and variance of the aggregate payments on a per-loss basis.
- Determine the distribution of the number of payments.
- Determine the cumulative distribution function of the amount of a payment, given that a payment is made.
- Discretize the severity distribution using the method of rounding and a span of 40 .
- Calculate the discretized distribution of aggregate payments up to a discretized amount paid of 120.

Negative binomial \(c=1 / 2\) and hence mixing cv \(\sqrt{c}\), and the mean equals \(r \beta /(1+\beta)=1.4\). The cover is 125 xs 50. The severity is unconditional. First, the default calculation using \(\mathrm{b} s=1 / 64\).
```

In [92]: kpw_9_63 = build('agg KPW.9.63 1.4 claims '
...: '125 xs 50 '
...: 'sev 100 * gamma 2 !'
...: 'mixed gamma 2**-0.5')
....:
In [93]: qd(kpw_9_63)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.4 1.1019 1.5557
Sev 86.467 86.467 3.9488e-12 0.54006 0.54006 -0.74977 -0.74977
Agg 121.05 121.05 -3.9543e-08 1.1927 1.1927 1.6385 1.6385
log2 = 16, bandwidth = 1/32, validation: fails agg mean error >> sev, possible\smile
\hookrightarrowaliasing; try larger bs.
In [94]: mv(kpw_9_63)
mean = 121.054
variance = 20847.33
std dev = 144.386
In [95]: qd(kpw_9_63.density_df.loc[:400:40*64,
....: ['p', 'F', 'S', 'p_sev', 'F_sev', 'S_sev']],
....: accuracy=5)
.... :

loss	0.37325	0.37325	0.62675	0.090251	0.090251	0.90975
0.0	$4.2253 e-05$	0.47185	0.52815	0.00011072	0.37323	0.62677
80.0	4.0	0	1	0		
160.0	$3.327 e-05$	0.72045	0.27955	0	1	0
240.0	$3.0211 e-05$	0.80373	0.19627	0	1	0
320.0	$1.7591 e-05$	0.9016	0.098397	0	1	0
400.0	$9.0878 e-06$	0.94991	0.050095	0	0	

```

Next, calculations performed with the requested broader \(\mathrm{b} s=40\).
```

In [96]: kpw_9_63.update(log2=8, bs=40)
In [97]: qd(kpw_9_63)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

```

```

Agg 121.05 117.66 -0.02805 1.1927 1.1947 1.6385 1.636
log2 = 8, bandwidth = 40, validation: fails sev mean, agg mean.
In [98]: qd(kpw_9_63.density_df.loc[:400,
....: ['p', 'E', 'S', 'p_sev', 'F_sev', 'S_sev']],
....: accuracy=5)
.... :

	p	F	S	p_sev	F_sev	S_sev
loss						
0.0	0.39509	0.39509	0.60491	0.1558	0.1558	0.8442
40.0	0.05047	0.44556	0.55444	0.14517	0.30097	0.69903
80.0	0.053928	0.49949	0.50051	0.1412	0.44217	0.55783
120.0	0.20376	0.70325	0.29675	0.55783	1	0
160.0	0.042972	0.74622	0.25378	0	1	0
200.0	0.042194	0.78841	0.21159	0	1	0
240.0	0.081719	0.87013	0.12987	0	1	0
280.0	0.024403	0.89453	0.10547	0	1	0
320.0	0.02234	0.91687	0.083127	0	1	0
360.0	0.030181	0.94705	0.052946	0	1	0
400.0	0.011572	0.95863	0.041374	0	1	0

```

The apparent difference in the severity distribution is caused by the rounding method. In the first case \(\mathrm{F}(40)\) is almost exact whereas in the second it is actually \(\mathrm{F}(60)\).

\section*{Group Life Individual Risk Model, Example 9.15, 9.18}

Consider a group life insurance contract with an accidental death benefit. Assume that for all members the probability of death in the next year is 0.01 and that \(30 \%\) of deaths are accidental. For 50 employees, the benefit for an ordinary death is 50,000 and for an accidental death it is 100,000 . For the remaining 25 employees, the benefits are 75,000 and 150,000 , respectively. Develop an individual risk model and determine its mean and variance.

The Portfolio solution, working in thousands.
```

In [99]: kpw_9_15p = build('port KPW.9.15.p '
...: 'agg A 0.5 claims '
...: 'dsev [50 100] [0.7 0.3] '
....: 'binomial 0.01 '
...: 'agg B 0.25 claims
...: 'dsev [75 150] [0.7 0.3] '
....: 'binomial 0.01 ')
.... :
In [100]: qd(kpw_9_15p)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
$\left.\begin{array}{llrrrrrr}\text { A } & \text { Freq } & 0.5 & & & 1.4071 & & 1.3929 \\ & \text { Sev } & 65 & 65 & 0 & 0.35251 & 0.35251 & 0.87287 \\ & \text { Agg } & 32.5 & 32.5 & 2.82 e-14 & 1.4928 & 1.4928 & 1.6562\end{array}\right] 1.6562$

```
(continues on next page)
(continued from previous page)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sev & 97.5 & 97.5 & 0 & 0.35251 & 0.35251 & 0.87287 & 0.87287 \\
\hline Agg & 24.375 & 24.375 & \(1.1613 \mathrm{e}-13\) & 2.1112 & 2.1112 & 2.3423 & 2.3423 \\
\hline total Freq & 0.75 & & & 1.1489 & & 1.1373 & \\
\hline Sev & 75.833 & 75.833 & 0 & 0.41249 & & 1.1623 & \\
\hline Agg & 56.875 & 56.875 & -8.6597e-15 & 1.2435 & 1.2435 & 1.4369 & 1.4369 \\
\hline \multicolumn{8}{|l|}{\(\log 2=16\), bandwidth \(=1 / 16\), validation: not unreasonable.} \\
\hline \multicolumn{8}{|l|}{In [101]: mv (kpw_9_15p)} \\
\hline \multicolumn{8}{|l|}{mean \(\quad=56.875\)} \\
\hline \multicolumn{8}{|l|}{variance \(=5001.984\)} \\
\hline \multicolumn{8}{|l|}{std dev \(=70.7247\)} \\
\hline
\end{tabular}

The density_df dataframe contains the exact aggregate distribution, which is not easy to compute by other means. KPW says (emphasis added)

With regard to calculating the probabilities, there are at least three options. One is to do an exact calculation, which involves numerous convolutions and almost always requires more excessive computing time. Recursive formulas have been developed, but they are cumbersome and are not presented here. For one such method, see De Pril [27]. One alternative is a parametric approximation as discussed for the collective risk model. Another alternative is to replace the individual risk model with a similar collective risk model and then do the calculations with that model. These two approaches are presented here.

The following solution attempts to commute convolution through the mixture. This works for a compound Poisson. However, the sum of binomials is not binomial, and so the frequencies can't be independent binomial. They can be independent Poisson because it is additive.
```

In [102]: kpw_9_15w = build('agg KPW.9.15.w '
....: '0.75 claims '
....: 'dsev [$$
\begin{array}{llll}{50}&{75}&{100}&{150]}\end{array}
$$]
···..: '[0.35/0.75,0.175/0.75,0.15/0.75,0.075/0.75] '
....: 'binomial 0.01 ')
..... :
In [103]: qd(kpw_9_15w)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.75 1.1489 1.1373
Sev 75.833 75.833 2.2204e-16 0.41249 0.41249 1.1623 1.1623
Agg 56.875 56.875 -6.9356e-11 1.2437 1.2437 1.4389 1.4389
log2 = 10, bandwidth = 1, validation: fails agg mean error >> sev, possibleь
\hookrightarrowaliasing; try larger bs.
In [104]: mv(kpw_9_15w)
mean = 56.875
variance = 5003.745
std dev = 70.7372

```

The compound Poisson approximation matches the mean but its variance is slightly off.
```

In [105]: kpw_9_15cp = build('agg KPW.9.15.cp '
....: '0.75 claims '
....: 'dsev [[50 75 100 150] '
...: '[0.35/0.75,0.175/0.75,0.15/0.75, 0.075/0.75]'
....: 'poisson ')
..... :
In [106]: qd(kpw_9_15cp)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)

```
(continues on next page)
(continued from previous page)
```

X
Freq 0.75 1.1547 1.1547
Sev 75.833 75.833 2.2204e-16 0.41249 0.41249 1.1623 1.1623
Agg 56.875 56.875 -1.1396e-10 1.2491 1.2491 1.4523 1.4523
log2 = 10, bandwidth = 1, validation: fails agg mean error >> sev, possible\smile
\hookrightarrowaliasing; try larger bs.
In [107]: mv(kpw_9_15cp)
mean = 56.875
variance = 5046.875
std dev = 71.0414

```

Comparing probabilities shows that all three distributions are very close.
```

In [108]: bit = pd.concat((kpw_9_15p.density_df.loc[:400:128, ['p_total']].query(
\hookrightarrow'p_total > 1e-10'),
....: kpw_9_15cp.density_df.loc[:400, ['p_total']].query('p_
\hookrightarrowtotal > 0'),
..... kpw_9_15w.density_df.loc[:400, ['p_total']].query('p_
\hookrightarrowtotal > 0'),
.....:),
....: keys=('exact', 'compound Po', 'wrong'), axis=1).
\hookrightarrowrename(columns={'p_total': 'p'})
......:
In [109]: bit = bit.droplevel(1, axis=1)
In [110]: bit.index.name = 'loss'
In [111]: qd(bit, accuracy=5)
exact compound Po wrong
loss
0.0 0.47059
200.0 0.024856
0.024881 0.024823
400.0 0.00061615 0.00064447 0.00061581
50.0 NaN 0.16533 0.16637
75.0 NaN 0.082664 0.083185
100.0 NaN 0.099787 0.10032
125.0 NaN 0.028932 0.029017
150.0 NaN 0.070835 0.071104
175.0 NaN 0.017463 0.017428
225.0 NaN 0.011552 0.011478
250.0 NaN 0.011399 0.0113
275.0 NaN 0.0040587 0.0039712
300.0 NaN 0.0050707 0.004986
325.0 NaN 0.0018166 0.0017595
350.0 NaN 0.001694 0.0016392
375.0 NaN 0.00077117 0.00073805

```

\section*{Group Life Individual Risk Model, Example 9.16, 9.17}

A small manufacturing business has a group life insurance contract on its 14 permanent employees. The actuary for the insurer has selected a mortality table to represent the mortality of the group. Each employee is insured for the amount of his or her salary rounded up to the next 1,000 . The group's data are shown in the next table.
\begin{tabular}{cccrr}
\hline Employee & Age & Sex & Benefit & \(q\) \\
\hline 1 & 20 & \(M\) & 15,000 & 0.00149 \\
2 & 23 & \(M\) & 16,000 & 0.00142 \\
3 & 27 & \(M\) & 20,000 & 0.00128 \\
4 & 30 & \(M\) & 28,000 & 0.00122 \\
5 & 31 & \(M\) & 31,000 & 0.00123 \\
6 & 46 & \(M\) & 18,000 & 0.00353 \\
7 & 47 & \(M\) & 26,000 & 0.00394 \\
8 & 49 & \(M\) & 24,000 & 0.00484 \\
9 & 64 & \(M\) & 60,000 & 0.02182 \\
10 & 17 & \(F\) & 14,000 & 0.00050 \\
11 & 22 & \(F\) & 17,000 & 0.00050 \\
12 & 26 & \(F\) & 19,000 & 0.00054 \\
13 & 37 & \(F\) & 30,000 & 0.00103 \\
14 & 55 & \(F\) & 55,000 & 0.00479 \\
\hline
\end{tabular}

If the insurer adds a \(45 \%\) relative loading to the net (pure) premium, what are the chances that it will lose money in a given year? Use the normal and lognormal approximations.

In order to make the answer self-contained, the code below includes the data munging to re-create the table, pasted from a pdf.
```

In [112]: data = '''1
.....: 20
......: M
.....: 15,000
.....: 0.00149
.....: 2
.....: 23
.....: M
.....: 16,000
.....: 0.00142
.....: 3
.....: 27
.....: M
.....: 20,000
.....: 0.00128
.....: 4
.....: 30
.....: M
.....: 28,000
.....: 0.00122
.....: 5
.....: 31
.....: M
.....: 31,000
.....: 0.00123
.....: 6
.....: 46
.....: M
.....: 18,000
.....: 0.00353
.....: }
.....: 47
.....: M
.....: 26,000
.....: 0.00394

```
```

 : 8
 : 49
 : M
 : 24,000
 : 0.00484
 : 9
 : 64
 : M
 : 60,000
 : 0.02182
 : 10
 : 17
 : F
 : 14,000
 : 0.00050
 : 11
 : 22
 : F
 : 17,000
 : 0.00050
 : 12
 : 26
 : F
 : 19,000
 : 0.00054
 : 13
 : }3
 : E
 : 30,000
 : 0.00103
 : 14
 : 55
 : F
 : 55,000
 : 0.00479'''
 :
    ```
In [113]: sdata = data.split('\n')
In [114]: \(d f=p d . D a t a F r a m e(z i p(*[i t e r(s d a t a)] * 5)\),
                                    columns=['Employee', 'Age', 'Sex', 'Benefit', 'q'])
    . . . . .
In [115]: df.Benefit = df.Benefit.str.replace(',','').astype(float)
In [116]: \(d f . q=d f . q . a s t y p e(f l o a t)\)
In [117]: df = df.set_index('Employee')
In [118]: qd (df)
    Age Sex Benefit q
Employee
\(1 \quad 20 \quad\) M \(15000 \quad 0.00149\)
\(2 \quad 23 \quad \mathrm{M} \quad 16000 \quad 0.00142\)
\(3 \quad 27 \quad\) M \(20000 \quad 0.00128\)
\(4 \quad 30 \quad\) M \(28000 \quad 0.00122\)
\(5 \quad 31 \quad \mathrm{M} \quad 31000 \quad 0.00123\)
\(6 \quad 46 \quad\) M \(18000 \quad 0.00353\)
\(7 \quad 47 \quad\) M \(\quad 26000 \quad 0.00394\)
\(8 \quad 49 \quad \mathrm{M} \quad 24000 \quad 0.00484\)
\begin{tabular}{llllr}
9 & 64 & M & 60000 & 0.02182 \\
10 & 17 & F & 14000 & 0.0005 \\
11 & 22 & F & 17000 & 0.0005 \\
12 & 26 & F & 19000 & 0.00054 \\
13 & 37 & F & 30000 & 0.00103 \\
14 & 55 & F & 55000 & 0.00479 \\
In [119]: print(f'expected claim count \(=\{\) df.q.sum():.6g\}') \\
expected claim count \(=0.04813\)
\end{tabular}

Here are the FFT-exact, and various approximations to the required probability. Working in thousands. The dsev clauses enter the fixed benefit amount for each employee. Note the outsize impact of employee 9.
```

In [120]: from aggregate import Portfolio
In [121]: a = [build(f'agg ee.{i} {r.q} claims '
....: f'dsev [{r.Benefit / 1000}]
....: f'bernoulli')
....: for i, r in df.iterrows()]
..... :

```
In [122]: kpw_9_16p = Portfolio('KPW.9.16p', a)
In [123]: kpw_9_16p.update(log \(2=8\), bs=1, remove_fuzz=True)
In [124]: qd (kpw_9_16p)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
\(\begin{array}{llll}\text { ee. Freq } 0.00149 & 25.887 & 25.848\end{array}\)
    \(\begin{array}{lrrrrrrr}\text { Sev } & 15 & 15 & -1.1102 e-16 & 0 & 0 & & 25.848\end{array}\)
\(\begin{array}{llrrrrr}\text { ee. } 2 & \text { Freq } & 0.00142 & 16 & 26.518 & 26.481\end{array}\)
    \(\begin{array}{llllllll}\text { Agg } 0.02272 & 0.02272 & -1.481 e-13 & 26.518 & 26.518 & 26.481 & 26.481\end{array}\)
\(\begin{array}{lrrrrr}\text { ee. } 3 & & & 27.933 & 27.897\end{array}\)
    \(\begin{array}{lllllllll}\text { Agg } \quad 0.0256 & 0.0256 & -8.7597 e-14 & 27.933 & 27.933 & 27.897 & 27.897\end{array}\)
\(\begin{array}{llrrrrr}\text { ee. } 4 & \text { Freq } & 0.00122 & 28.612 & 28.577\end{array}\)
... ... ... ... .. .. . . . . .
ee. 12 Freq 0.0005443 .02242 .998
    \(\begin{array}{llllll}\text { Sev } & 19 & 19 & 0 & 0 & 0\end{array}\)
    \(\begin{array}{llllllll}\text { Agg } 0.01026 & 0.01026 & 1.35 e-13 & 43.022 & 43.022 & 42.998 & 42.998\end{array}\)
ee. 13 Freq 0.00103
    \(\begin{array}{lllll}\text { Sev } & 30 & 30 & 0 & 0\end{array}\)
    \(\begin{array}{llllllll}\text { Agg } 0.0309 & 0.0309 & -4.2188 e-15 & 31.143 & 31.143 & 31.111 & 311\end{array}\)
ee. 14 Freq 0.0047914 .41414 .345
    \(\begin{array}{lrrrr}55 & 55 & -1.1102 \mathrm{e}-16 & 0 & 0\end{array}\)
    \(\begin{array}{llllllll}\text { Agg } 0.26345 & 0.26345 & -2.1538 e-14 & 14.414 & 14.414 & 14.345 & 14.345\end{array}\)
\(\begin{array}{rrrrr}\text { total Freq } 0.04813 & & 4.5315 & 4.4789 \\ \text { Sev } & 42.685 & 42.685 & 0 & 0.43586\end{array}\)
\(\log 2=8\), bandwidth \(=1\), validation: not unreasonable.
In [125]: mv (kpw_9_16p)
mean \(=2.05441\)
variance \(=102.5336\)
std dev \(=10.1259\)
```

In [126]: appx = kpw_9_16p.approximate('all')
In [127]: premium = 1.45 * kpw_9_16p.agg_m
In [128]: ans = {k: v.sf(premium) for k, v in appx.items()}
In [129]: ans['FFT'] = kpw_9_16p.sf(premium)
In [130]: qd(pd.DataFrame(ans.values(),
....: index=pd.Index(ans.keys(), name='method'),
....: columns=['premium']).sort_values('premium'),
.....: accuracy=5)
..... :
premium
method
FFT 0.047261
gamma 0.091498
lognorm 0.13449
sgamma 0.18346
slognorm 0.28099
norm 0.46363

```

Here is a sample from the distribution and the mean-matched compound Poisson (for Exercise 9.18). The latter dsev clause works because all the benefit amounts are different. The temporary variable sev creates the severity curve. The log pmf graph reflects the irregular benefit amounts. Compare the cdf under comp Po with Table 9.17.
```

In [131]: sev = df[['Benefit', 'q']]
In [132]: sev.q = sev.q / sev.q.sum()
In [133]: sev = sev.sort_values('Benefit')
In [134]: kpw_9_16cp = build('agg kpw_9_16.po '
....: f'{df.q.sum()} claims '
....: f'dsev {sev.Benefit.values / 1000} {sev.q.values} '
....: 'poisson', bs=1, log2=10)
..... .
In [135]: qd(kpw_9_16cp)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

```

```

Agg 2.0544 2.0544 3.4417e-14 4.9723 4.9723 5.4286 5.4286
log2 = 10, bandwidth = 1, validation: not unreasonable.
In [136]: bit = pd.concat((kpw_9_16p.density_df.query('p_total > 0') [['p_total', 'F
@', 'S']],
kpw_9_16cp.density_df.query('p_total > 0')[['p_total',
G'F', 'S']]),
....: keys=['exact', 'comp Po'], axis=1)
..... :
In [137]: bit.index = [f'{i:.0f}' for i in bit.index]
In [138]: bit.index.name = 'loss'
In [139]: with pd.option_context('display.max_rows', 360, 'display.max_columns',
↔10,

```
(continued from previous page)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\[
\begin{array}{cc}
\hookrightarrow \text { lambda } \mathrm{x}: & \left.\mathrm{f}^{\prime}\{\mathrm{x}: .7 \mathrm{~g}\}^{\prime}\right): \\
& \ldots \mathrm{print}(\mathrm{bit})
\end{array}
\]} \\
\hline & & & & comp Po & & \\
\hline & p_total & F & S & p_total & F & S \\
\hline \multicolumn{7}{|l|}{loss} \\
\hline 0 & 0.952739 & 0.952739 & 0.04726095 & 0.9530099 & 0.9530099 & 0.04699011 \\
\hline 14 & 0.0004766078 & 0.9532157 & 0.04678434 & 0.0004765049 & 0.9534864 & 0.04651361 \\
\hline 15 & 0.0014217 & 0.9546374 & 0.04536264 & 0.001419985 & 0.9549064 & 0.04509362 \\
\hline 16 & 0.001354813 & 0.9559922 & 0.04400783 & 0.001353274 & 0.9562597 & 0.04374035 \\
\hline 17 & 0.0004766078 & 0.9564688 & 0.04353122 & 0.0004765049 & 0.9567362 & 0.04326384 \\
\hline 18 & 0.003375083 & 0.9598439 & 0.04015614 & 0.003364125 & 0.9601003 & 0.03989972 \\
\hline 19 & 0.0005147571 & 0.9603586 & 0.03964138 & 0.0005146252 & 0.9606149 & 0.03938509 \\
\hline 20 & 0.001221069 & 0.9615797 & 0.03842031 & 0.001219853 & 0.9618348 & 0.03816524 \\
\hline 24 & 0.004633684 & 0.9662134 & 0.03378663 & 0.004612568 & 0.9664473 & 0.03355267 \\
\hline 26 & 0.00376864 & 0.969982 & 0.03001799 & 0.003754859 & 0.9702022 & 0.02979781 \\
\hline 28 & 0.001163761 & 0.9711458 & 0.02885423 & 0.001162791 & 0.971365 & 0.02863502 \\
\hline 29 & \(7.112054 \mathrm{e}-07\) & 0.9711465 & 0.02885352 & \(7.099922 \mathrm{e}-07\) & 0.9713657 & 0.02863431 \\
\hline 30 & 0.0009830108 & 0.9721295 & 0.02787051 & 0.0009833345 & 0.972349 & 0.02765098 \\
\hline 31 & 0.001175572 & 0.9733051 & 0.02669493 & 0.001174457 & 0.9735235 & 0.02647652 \\
\hline 32 & \(2.399591 e-06\) & 0.9733075 & 0.02669253 & \(3.352879 \mathrm{e}-06\) & 0.9735268 & 0.02647317 \\
\hline 33 & \(5.971631 \mathrm{e}-06\) & 0.9733134 & 0.02668656 & 5.946495e-06 & 0.9735328 & 0.02646722 \\
\hline 34 & \(6.178405 \mathrm{e}-06\) & 0.9733196 & 0.02668038 & 6.272902e-06 & 0.9735391 & 0.02646095 \\
\hline 35 & \(4.242488 \mathrm{e}-06\) & 0.9733239 & 0.02667614 & \(4.23041 \mathrm{e}-06\) & 0.9735433 & 0.02645672 \\
\hline 36 & \(1.993891 \mathrm{e}-06\) & 0.9733259 & 0.02667415 & \(7.927184 e-06\) & 0.9735512 & 0.02644879 \\
\hline 37 & \(2.434369 \mathrm{e}-06\) & 0.9733283 & 0.02667171 & \(2.426553 e-06\) & 0.9735536 & 0.02644637 \\
\hline 38 & \(6.643644 e-06\) & 0.9733349 & 0.02666507 & \(6.751312 \mathrm{e}-06\) & 0.9735604 & 0.02643961 \\
\hline 39 & \(7.574225 e-06\) & 0.9733425 & 0.02665749 & \(7.531446 e-06\) & 0.9735679 & 0.02643208 \\
\hline 40 & 8.474451e-06 & 0.973351 & 0.02664902 & 9.207982e-06 & 0.9735771 & 0.02642287 \\
\hline 41 & \(7.941654 \mathrm{e}-06\) & 0.9733589 & 0.02664108 & \(7.901023 e-06\) & 0.973585 & 0.02641497 \\
\hline 42 & \(2.23561 \mathrm{e}-05\) & 0.9733813 & 0.02661872 & \(2.219562 e-05\) & 0.9736072 & 0.02639278 \\
\hline 43 & 6.125396e-06 & 0.9733874 & 0.0266126 & \(6.100774 \mathrm{e}-06\) & 0.9736133 & 0.02638668 \\
\hline 44 & \(2.143545 \mathrm{e}-05\) & 0.9734088 & 0.02659116 & \(2.130123 \mathrm{e}-05\) & 0.9736346 & 0.02636538 \\
\hline 45 & 4.672158e-06 & 0.9734135 & 0.02658649 & \(4.659237 e-06\) & 0.9736393 & 0.02636072 \\
\hline 46 & \(1.210077 \mathrm{e}-05\) & 0.9734256 & 0.02657439 & \(1.205366 \mathrm{e}-05\) & 0.9736513 & 0.02634866 \\
\hline 47 & \(2.791514 \mathrm{e}-06\) & 0.9734284 & 0.0265716 & \(2.78804 \mathrm{e}-06\) & 0.9736541 & 0.02634587 \\
\hline 48 & \(5.56219 \mathrm{e}-06\) & 0.973434 & 0.02656603 & \(1.670997 e-05\) & 0.9736708 & 0.02632916 \\
\hline 49 & \(4.696495 e-06\) & 0.9734387 & 0.02656134 & \(4.6784 \mathrm{e}-06\) & 0.9736755 & 0.02632449 \\
\hline 50 & \(2.022647 e-05\) & 0.9734589 & 0.02654111 & \(2.007543 e-05\) & 0.9736956 & 0.02630441 \\
\hline 51 & \(1.510358 \mathrm{e}-06\) & 0.9734604 & 0.0265396 & \(1.516371 \mathrm{e}-06\) & 0.9736971 & 0.02630289 \\
\hline 52 & 5.666162e-06 & 0.9734661 & 0.02653394 & \(1.304127 e-05\) & 0.9737101 & 0.02628985 \\
\hline 53 & \(1.370555 \mathrm{e}-08\) & 0.9734661 & 0.02653392 & \(1.686769 \mathrm{e}-08\) & 0.9737102 & 0.02628984 \\
\hline 54 & 9.392317e-06 & 0.9734755 & 0.02652453 & \(9.356468 \mathrm{e}-06\) & 0.9737195 & 0.02628048 \\
\hline 55 & 0.004591308 & 0.9780668 & 0.02193322 & 0.004570612 & 0.9782901 & 0.02170987 \\
\hline 56 & \(3.900383 \mathrm{e}-06\) & 0.9780707 & 0.02192932 & \(4.60947 e-06\) & 0.9782947 & 0.02170526 \\
\hline 57 & \(4.682325 \mathrm{e}-06\) & 0.9780754 & 0.02192464 & \(4.659748 \mathrm{e}-06\) & 0.9782994 & 0.0217006 \\
\hline 58 & \(1.240279 \mathrm{e}-06\) & 0.9780766 & 0.0219234 & \(1.246296 e-06\) & 0.9783006 & 0.02169935 \\
\hline 59 & \(1.480938 \mathrm{e}-06\) & 0.9780781 & 0.02192192 & \(1.478042 \mathrm{e}-06\) & 0.9783021 & 0.02169787 \\
\hline 60 & 0.02125253 & 0.9993306 & 0.000669383 & 0.02079525 & 0.9990974 & 0.0009026226 \\
\hline 61 & \(1.248838 \mathrm{e}-06\) & 0.9993319 & 0.0006681341 & \(1.247493 \mathrm{e}-06\) & 0.9990986 & 0.0009013751 \\
\hline 62 & \(4.172979 \mathrm{e}-08\) & 0.9993319 & 0.0006680924 & \(7.93117 e-07\) & 0.9990994 & 0.000900582 \\
\hline 63 & \(2.713599 \mathrm{e}-08\) & 0.9993319 & 0.0006680653 & 4.479884e-08 & 0.9990995 & 0.0009005372 \\
\hline 64 & \(4.244129 \mathrm{e}-08\) & 0.999332 & 0.0006680228 & \(6.96877 e-08\) & 0.9990995 & 0.0009004675 \\
\hline 65 & 4.491981e-08 & 0.999332 & 0.0006679779 & \(5.030504 \mathrm{e}-08\) & 0.9990996 & 0.0009004172 \\
\hline 66 & \(4.146533 \mathrm{e}-08\) & 0.9993321 & 0.0006679364 & 9.361181e-08 & 0.9990997 & 0.0009003236 \\
\hline 67 & \(2.339189 \mathrm{e}-08\) & 0.9993321 & 0.000667913 & \(4.760197 e-08\) & 0.9990997 & 0.000900276 \\
\hline 68 & 8.513895e-08 & 0.9993322 & 0.0006678279 & \(1.101497 e-07\) & 0.9990998 & 0.0009001659 \\
\hline 69 & \(2.329551 e-06\) & 0.9993345 & 0.0006654983 & \(2.321713 e-06\) & 0.9991022 & 0.0008978441 \\
\hline 70 & \(6.910878 \mathrm{e}-06\) & 0.9993414 & 0.0006585875 & \(6.89662 e-06\) & 0.9991091 & 0.0008909475 \\
\hline 71 & \(6.544798 e-06\) & 0.999348 & 0.0006520427 & \(6.512085 e-06\) & 0.9991156 & 0.0008844354 \\
\hline
\end{tabular}
(continues on next page)
(continued from previous page)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(2.350356 \mathrm{e}-06\) & & & & & \\
\hline 5 & 0.9993666 & & \(1.615066 \mathrm{e}-05\) & & \\
\hline \(1.314419 \mathrm{e}-05\) & & & & & \\
\hline & & & & & \\
\hline 3 & 0.9994476 & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline 3 & 0.9995673 & O. & 3 & & \\
\hline & & & & & \\
\hline & & & 1 & & \\
\hline 5 & 0 & 0.0003872369 & \(1.74019 \mathrm{e}-08\) & , & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \(8.972427 e-05\) & 0.9998162 & & \(8.756326 \mathrm{e}-05\) & 0.9995739 & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \(4.722525 e-08\) & 0.9998423 & & \(4.726622 \mathrm{e}-08\) & 0.9995994 & \\
\hline \(2.194831 \mathrm{e}-05\) & 0.9998642 & & & & \\
\hline & & & \(2.56655 \mathrm{e}-05\) & & \\
\hline & & & \(8.594597 e-08\) & & \\
\hline \(1.65287 e-07\) & - & 0.0001093263 & \(1.62614 \mathrm{e}-07\) & 0.9996468 & \\
\hline & 0.999 & & & & \\
\hline 1 & & & & & \\
\hline -.286137e 08 & & & & & \\
\hline 1 & 0.9998 & & & & \\
\hline & & & & & \\
\hline 2 & 0. & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline 5 & & & & & \\
\hline \(1.63469 \mathrm{e}-07\) & O & \[
0
\] & \(2.132647 \mathrm{e}-07\) & 0.9996491 & \\
\hline & & & & & \\
\hline 2 & & & \(1.979245 \mathrm{e}-07\) & 0.9996497 & \\
\hline 2. & 0.9998 & & 2 & & \\
\hline & 0. & & & & \\
\hline 1 & & & \(3.6475 \mathrm{e}-07\) & & \\
\hline 1 & & 0 & 1.469601e-07 & 0.9996506 & \\
\hline 4 & & & & & \\
\hline & & & & & \\
\hline \(1.489302 \mathrm{e}-07\) & & & & & \\
\hline 6.282775 & 0.9998 & & & & \\
\hline & & & & & \\
\hline 0.0001024173 & & \(2.53513 \mathrm{e}-06\) & & & \\
\hline 9 & & 2. & & & \\
\hline 1 & 0 & & \(1.054805 \mathrm{e}-07\) & & \\
\hline \(2.779748 \mathrm{e}-08\) & & 2. & & & \\
\hline 3. & & 2. & & & \\
\hline \(1.07834 \mathrm{e}-09\) & 0. & 2 & 0 & & \\
\hline & & 2 & & & \\
\hline 9 & 0. & 2 & & & \\
\hline 1 & 0. & & & & \\
\hline 1. & 0. & 2. & 7 & 0.9999896 & \\
\hline \(1.330164 e-09\) & 0.999 & 2.2 & \(1.78429 \mathrm{e}-08\) & 0.9999896 & \\
\hline \(1.040647 e\) & 0. & 2.241745 & 1. & 0.9999896 & \\
\hline \(7.934845 \mathrm{e}-10\) & 0.9999 & \(2.240952 e\) & \(6.910456 \mathrm{e}-09\) & 0.9999896 & 1.03 \\
\hline \(2.074415 \mathrm{e}-09\) & 0.9999978 & 2.238878 e & \(4.117227 e-08\) & 0.9999896 & 1.035 \\
\hline \(5.213364 \mathrm{e}-08\) & 0.9999978 & 2.186744 e & \(5.695507 \mathrm{e}-08\) & 0.9999897 & 1. \\
\hline 1.542995e-07 & 0.9 & \(2.032444 \mathrm{e}-0\) & \(1.646233 \mathrm{e}-07\) & 0.9999899 & \\
\hline 2e-07 & 0.9999981 & \(1.886382 \mathrm{e}-06\) & \(1.424089 \mathrm{e}-07\) & 0.99999 & \\
\hline . \(249366 \mathrm{e}-\) & 0.99999 & 33889 & 57 & 0.9999901 & \\
\hline
\end{tabular}
(continues on next page)
(continued from previous page)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 133 & \(3.632949 \mathrm{e}-07\) & 0.9999985 & \(1.470594 \mathrm{e}-06\) & \(3.526438 \mathrm{e}-07\) & 0.9999904 & 9.585304e-06 \\
\hline 134 & \(5.60785 \mathrm{e}-08\) & 0.9999986 & \(1.414515 \mathrm{e}-06\) & \(2.220186 \mathrm{e}-07\) & 0.9999906 & \(9.363285 e-06\) \\
\hline 135 & \(1.318434 \mathrm{e}-07\) & 0.9999987 & \(1.282672 \mathrm{e}-06\) & \(4.663595 \mathrm{e}-07\) & 0.9999911 & 8.896926e-06 \\
\hline 136 & \(4.358886 \mathrm{e}-10\) & 0.9999987 & \(1.282236 \mathrm{e}-06\) & \(3.667832 \mathrm{e}-07\) & 0.9999915 & 8.530142e-06 \\
\hline 137 & \(3.292504 \mathrm{e}-10\) & 0.9999987 & \(1.281907 e-06\) & \(1.138415 \mathrm{e}-07\) & 0.9999916 & 8.416301e-06 \\
\hline 138 & \(6.005527 \mathrm{e}-10\) & 0.9999987 & \(1.281306 \mathrm{e}-06\) & \(8.153441 \mathrm{e}-07\) & 0.9999924 & \(7.600957 e-06\) \\
\hline 139 & \(4.976509 \mathrm{e}-07\) & 0.9999992 & \(7.836552 \mathrm{e}-07\) & \(6.051008 \mathrm{e}-07\) & 0.999993 & \(6.995856 e-06\) \\
\hline 140 & \(4.940901 \mathrm{e}-10\) & 0.9999992 & \(7.831612 \mathrm{e}-07\) & \(3.024997 \mathrm{e}-07\) & 0.9999933 & \(6.693356 e-06\) \\
\hline 141 & \(4.051553 \mathrm{e}-07\) & 0.9999996 & \(3.780058 \mathrm{e}-07\) & \(4.064893 \mathrm{e}-07\) & 0.9999937 & \(6.286867 e-06\) \\
\hline 142 & \(1.556782 \mathrm{e}-10\) & 0.9999996 & \(3.778501 \mathrm{e}-07\) & \(4.463796 \mathrm{e}-10\) & 0.9999937 & 6.286421e-06 \\
\hline 143 & \(1.251058 \mathrm{e}-07\) & 0.9999997 & \(2.527444 \mathrm{e}-07\) & \(1.219742 \mathrm{e}-07\) & 0.9999938 & \(6.164447 e-06\) \\
\hline 144 & \(1.937367 \mathrm{e}-10\) & 0.9999997 & \(2.525506 \mathrm{e}-07\) & \(1.098375 \mathrm{e}-06\) & 0.9999949 & \(5.066072 \mathrm{e}-06\) \\
\hline 145 & \(1.058015 \mathrm{e}-07\) & 0.9999999 & \(1.467492 \mathrm{e}-07\) & \(1.030876 \mathrm{e}-07\) & 0.999995 & \(4.962984 \mathrm{e}-06\) \\
\hline 146 & \(1.262168 \mathrm{e}-07\) & 1 & \(2.053237 \mathrm{e}-08\) & \(1.016858 \mathrm{e}-06\) & 0.9999961 & \(3.946126 \mathrm{e}-06\) \\
\hline 147 & \(3.685373 \mathrm{e}-10\) & 1 & \(2.016383 \mathrm{e}-08\) & \(5.121882 \mathrm{e}-10\) & 0.9999961 & \(3.945614 \mathrm{e}-06\) \\
\hline 148 & \(6.46479 \mathrm{e}-10\) & 1 & \(1.951735 \mathrm{e}-08\) & \(2.77595 e-07\) & 0.9999963 & \(3.668019 \mathrm{e}-06\) \\
\hline 149 & \(6.999917 e-10\) & 1 & \(1.881736 \mathrm{e}-08\) & \(9.506666 \mathrm{e}-10\) & 0.9999963 & \(3.667068 e-06\) \\
\hline 150 & \(4.588675 \mathrm{e}-10\) & 1 & \(1.835849 \mathrm{e}-08\) & \(2.346692 e-07\) & 0.9999966 & \(3.432399 \mathrm{e}-06\) \\
\hline 151 & \(2.170583 \mathrm{e}-10\) & 1 & \(1.814144 \mathrm{e}-08\) & \(2.805268 \mathrm{e}-07\) & 0.9999968 & \(3.151872 \mathrm{e}-06\) \\
\hline 152 & \(2.643346 \mathrm{e}-10\) & 1 & \(1.78771 \mathrm{e}-08\) & \(1.33265 \mathrm{e}-09\) & 0.9999968 & \(3.15054 \mathrm{e}-06\) \\
\hline 153 & \(7.16224 \mathrm{e}-10\) & 1 & \(1.716088 \mathrm{e}-08\) & \(2.204159 \mathrm{e}-09\) & 0.9999969 & \(3.148335 e-06\) \\
\hline 154 & \(8.158174 \mathrm{e}-10\) & 1 & \(1.634506 \mathrm{e}-08\) & \(2.534458 \mathrm{e}-09\) & 0.9999969 & \(3.145801 e-06\) \\
\hline 155 & \(9.122321 \mathrm{e}-10\) & 1 & \(1.543283 e-08\) & \(2.028215 e-09\) & 0.9999969 & \(3.143773 e-06\) \\
\hline 156 & \(8.566022 \mathrm{e}-10\) & 1 & \(1.457623 \mathrm{e}-08\) & \(2.859701 \mathrm{e}-09\) & 0.9999969 & \(3.140913 \mathrm{e}-06\) \\
\hline 157 & \(2.40212 \mathrm{e}-09\) & 1 & \(1.217411 \mathrm{e}-08\) & \(2.93432 \mathrm{e}-09\) & 0.9999969 & \(3.137979 \mathrm{e}-06\) \\
\hline 158 & \(6.608837 \mathrm{e}-10\) & 1 & \(1.151322 \mathrm{e}-08\) & \(2.44401 \mathrm{e}-09\) & 0.9999969 & \(3.135535 e-06\) \\
\hline 159 & \(2.304181 \mathrm{e}-09\) & 1 & \(9.209041 \mathrm{e}-09\) & \(4.077408 \mathrm{e}-09\) & 0.9999969 & \(3.131457 e-06\) \\
\hline 160 & \(5.036921 \mathrm{e}-10\) & 1 & \(8.705349 \mathrm{e}-09\) & \(2.915487 e-09\) & 0.9999969 & \(3.128542 \mathrm{e}-06\) \\
\hline 161 & \(1.300943 e-09\) & 1 & \(7.404406 \mathrm{e}-09\) & \(3.161405 \mathrm{e}-09\) & 0.9999969 & \(3.12538 \mathrm{e}-06\) \\
\hline 162 & \(3.006818 \mathrm{e}-10\) & 1 & \(7.103724 \mathrm{e}-09\) & \(5.729582 \mathrm{e}-09\) & 0.9999969 & \(3.119651 \mathrm{e}-06\) \\
\hline 163 & \(5.986384 \mathrm{e}-10\) & 1 & \(6.505086 \mathrm{e}-09\) & \(3.201579 \mathrm{e}-09\) & 0.9999969 & \(3.116449 \mathrm{e}-06\) \\
\hline 164 & \(5.047601 \mathrm{e}-10\) & 1 & \(6.000326 \mathrm{e}-09\) & \(5.670897 \mathrm{e}-09\) & 0.9999969 & \(3.110778 e-06\) \\
\hline 165 & \(2.172347 \mathrm{e}-09\) & 1 & \(3.827979 \mathrm{e}-09\) & \(2.073139 \mathrm{e}-08\) & 0.9999969 & \(3.090047 e-06\) \\
\hline 166 & \(1.623502 \mathrm{e}-10\) & 1 & \(3.665628 \mathrm{e}-09\) & \(3.083291 \mathrm{e}-09\) & 0.9999969 & \(3.086964 e-06\) \\
\hline 167 & \(6.086006 \mathrm{e}-10\) & 1 & \(3.057028 \mathrm{e}-09\) & \(2.082057 \mathrm{e}-09\) & 0.9999969 & \(3.084882 e-06\) \\
\hline 168 & \(2.04573 \mathrm{e}-12\) & 1 & \(3.054982 \mathrm{e}-09\) & \(3.995334 \mathrm{e}-09\) & 0.9999969 & \(3.080886 \mathrm{e}-06\) \\
\hline 169 & \(1.009057 \mathrm{e}-09\) & 1 & \(2.045925 e-09\) & \(2.109975 \mathrm{e}-09\) & 0.9999969 & \(3.078776 e-06\) \\
\hline 170 & \(6.145147 e-10\) & 1 & \(1.431411 \mathrm{e}-09\) & \(2.439393 e-07\) & 0.9999972 & \(2.834837 e-06\) \\
\hline 171 & \(4.192868 \mathrm{e}-10\) & 1 & \(1.012124 \mathrm{e}-09\) & \(8.580199 \mathrm{e}-10\) & 0.9999972 & \(2.833979 \mathrm{e}-06\) \\
\hline 172 & \(5.027193 e-10\) & 1 & \(5.094045 \mathrm{e}-10\) & \(3.601279 \mathrm{e}-09\) & 0.9999972 & \(2.830378 \mathrm{e}-06\) \\
\hline 173 & \(1.333299 \mathrm{e}-10\) & 1 & \(3.760746 \mathrm{e}-10\) & \(1.352801 \mathrm{e}-10\) & 0.9999972 & \(2.830242 e-06\) \\
\hline 174 & \(1.590085 \mathrm{e}-10\) & 1 & \(2.170661 \mathrm{e}-10\) & \(2.382985 \mathrm{e}-09\) & 0.9999972 & \(2.827859 \mathrm{e}-06\) \\
\hline 175 & \(4.288268 \mathrm{e}-12\) & 1 & \(2.127779 \mathrm{e}-10\) & \(1.088124 \mathrm{e}-06\) & 0.9999983 & \(1.739736 \mathrm{e}-06\) \\
\hline 176 & \(1.340885 \mathrm{e}-10\) & 1 & \(7.868939 \mathrm{e}-11\) & \(1.228987 \mathrm{e}-09\) & 0.9999983 & \(1.738507 e-06\) \\
\hline 177 & \(4.486189 \mathrm{e}-12\) & 1 & \(7.42032 \mathrm{e}-11\) & \(1.192855 \mathrm{e}-09\) & 0.9999983 & \(1.737314 \mathrm{e}-06\) \\
\hline 178 & \(2.920835 \mathrm{e}-12\) & 1 & \(7.128231 \mathrm{e}-11\) & \(3.02749 \mathrm{e}-10\) & 0.9999983 & \(1.737011 \mathrm{e}-06\) \\
\hline 179 & \(4.562823 e-12\) & 1 & \(6.671952 \mathrm{e}-11\) & \(3.683841 \mathrm{e}-10\) & 0.9999983 & \(1.736643 e-06\) \\
\hline 180 & \(4.82662 \mathrm{e}-12\) & 1 & \(6.189294 \mathrm{e}-11\) & \(1.65027 \mathrm{e}-06\) & 0.9999999 & 8.637285e-08 \\
\hline 181 & \(4.454919 \mathrm{e}-12\) & 1 & \(5.743805 \mathrm{e}-11\) & \(3.319206 \mathrm{e}-10\) & 0.9999999 & \(8.604093 e-08\) \\
\hline 182 & \(2.514367 e-12\) & 1 & \(5.492373 \mathrm{e}-11\) & \(2.035136 \mathrm{e}-10\) & 0.9999999 & 8.583741e-08 \\
\hline 183 & \(9.143925 e-12\) & 1 & 4.577982e-11 & \(8.424069 \mathrm{e}-11\) & 0.9999999 & \(8.575317 e-08\) \\
\hline 184 & \(3.826298 e-12\) & 1 & \(4.195355 \mathrm{e}-11\) & \(1.503577 \mathrm{e}-10\) & 0.9999999 & \(8.560282 e-08\) \\
\hline 185 & \(7.320083 e-12\) & 1 & \(3.463352 \mathrm{e}-11\) & \(4.000487 e-10\) & 0.9999999 & \(8.520277 e-08\) \\
\hline 186 & \(2.580997 e-12\) & 1 & \(3.205247 \mathrm{e}-11\) & \(3.64933 \mathrm{e}-10\) & 0.9999999 & 8.483783e-08 \\
\hline 187 & \(6.060502 e-12\) & 1 & \(2.599199 \mathrm{e}-11\) & \(1.396254 \mathrm{e}-10\) & 0.9999999 & 8.469821e-08 \\
\hline 188 & \(3.909234 \mathrm{e}-12\) & 1 & \(2.208278 \mathrm{e}-11\) & \(8.727237 \mathrm{e}-10\) & 0.9999999 & \(8.382548 e-08\) \\
\hline 189 & \(3.768936 \mathrm{e}-12\) & 1 & \(1.831379 \mathrm{e}-11\) & \(7.747876 \mathrm{e}-10\) & 0.9999999 & \(8.30507 e-08\) \\
\hline 190 & \(3.132506 \mathrm{e}-12\) & 1 & \(1.51813 \mathrm{e}-11\) & \(1.950703 \mathrm{e}-09\) & 0.9999999 & \(8.109999 e-08\) \\
\hline 191 & \(1.538332 \mathrm{e}-12\) & 1 & \(1.364298 e-11\) & \(1.62618 \mathrm{e}-09\) & 0.9999999 & \(7.947381 e-08\) \\
\hline 192 & \(1.447886 \mathrm{e}-12\) & 1 & \(1.219513 \mathrm{e}-11\) & \(5.652266 \mathrm{e}-10\) & 0.9999999 & \(7.890859 \mathrm{e}-08\) \\
\hline 193 & \(2.725839 \mathrm{e}-12\) & 1 & \(9.469314 \mathrm{e}-12\) & \(3.871408 \mathrm{e}-09\) & 0.9999999 & \(7.503718 e-08\) \\
\hline
\end{tabular}
(continues on next page)
(continued from previous page)
\begin{tabular}{lrrrrrr}
194 & \(6.673824 e-13\) & 1 & \(8.801959 e-12\) & \(2.58819 e-09\) & 0.9999999 & \(7.244899 e-08\) \\
195 & \(2.106876 e-12\) & 1 & \(6.695089 e-12\) & \(3.878648 e-09\) & 0.9999999 & \(6.857034 e-08\) \\
196 & \(2.600251 e-12\) & 1 & \(4.094836 e-12\) & \(3.322862 e-09\) & 0.9999999 & \(6.524748 e-08\) \\
197 & \(6.347047 e-13\) & 1 & \(3.460121 e-12\) & \(8.305254 e-10\) & 0.9999999 & \(6.441695 e-08\) \\
198 & \(7.662416 e-13\) & 1 & \(2.693845 e-12\) & \(6.129516 e-09\) & 0.9999999 & \(5.828744 e-08\) \\
199 & \(5.279873 e-13\) & 1 & \(2.165823 e-12\) & \(6.156754 e-09\) & 0.9999999 & \(5.213068 e-08\) \\
200 & \(1.257773 e-12\) & 1 & \(9.080514 e-13\) & \(2.36799 e-09\) & 1 & \(4.976269 e-08\) \\
201 & \(1.318127 e-14\) & 1 & \(8.948398 e-13\) & \(4.582293 e-09\) & 1 & \(4.51804 e-08\) \\
202 & \(5.310998 e-13\) & \(N\) & 1 & \(3.637091 e-13\) & \(5.655193 e-12\) & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & (continued from previous page) \\
\hline 255 & NaN & NaN & NaN 2.401756e-11 & \(14.064912 \mathrm{e}-10\) \\
\hline 256 & NaN & NaN & NaN 2.364939e-11 & \(13.828418 \mathrm{e}-10\) \\
\hline 257 & NaN & NaN & NaN 4.549044e-12 & \(13.782927 e-10\) \\
\hline 258 & NaN & NaN & NaN 3.505759e-11 & \(13.432351 \mathrm{e}-10\) \\
\hline 259 & NaN & NaN & NaN 4.316564e-11 & \(13.000695 \mathrm{e}-10\) \\
\hline 260 & NaN & NaN & NaN 1.428383e-11 & \(12.857857 e-10\) \\
\hline 261 & NaN & NaN & NaN 3.440264e-11 & \(12.513831 \mathrm{e}-10\) \\
\hline 262 & NaN & NaN & NaN 4.775503e-14 & \(12.513354 \mathrm{e}-10\) \\
\hline 263 & NaN & NaN & NaN 9.695625e-12 & \(12.416398 \mathrm{e}-10\) \\
\hline 264 & NaN & NaN & NaN 4.360835e-11 & \(11.980315 \mathrm{e}-10\) \\
\hline 265 & NaN & NaN & NaN 8.192855e-12 & \(11.898386 \mathrm{e}-10\) \\
\hline 266 & NaN & NaN & NaN 4.524329e-11 & \(11.445953 \mathrm{e}-10\) \\
\hline 267 & NaN & NaN & NaN 5.492698e-14 & \(11.445404 \mathrm{e}-10\) \\
\hline 268 & NaN & NaN & NaN 1.10606e-11 & \(11.334798 \mathrm{e}-10\) \\
\hline 269 & NaN & NaN & NaN 9.141233e-14 & \(11.333884 \mathrm{e}-10\) \\
\hline 270 & NaN & NaN & NaN 9.353046e-12 & \(11.240353 \mathrm{e}-10\) \\
\hline 271 & NaN & NaN & NaN 1.118703e-11 & \(11.128483 \mathrm{e}-10\) \\
\hline 272 & NaN & NaN & NaN 1.160805e-13 & \(11.127322 \mathrm{e}-10\) \\
\hline 273 & NaN & NaN & NaN 1.367965e-13 & \(11.125954 \mathrm{e}-10\) \\
\hline 274 & NaN & NaN & NaN 1.828934e-13 & \(11.124125 \mathrm{e}-10\) \\
\hline 275 & NaN & NaN & NaN 1.578676e-13 & \(11.122547 e-10\) \\
\hline 276 & NaN & NaN & NaN 1.74829e-13 & \(11.120798 \mathrm{e}-10\) \\
\hline 277 & NaN & NaN & NaN 2.204896e-13 & \(11.118593 \mathrm{e}-10\) \\
\hline 278 & NaN & NaN & NaN 1.607224e-13 & \(11.116985 \mathrm{e}-10\) \\
\hline 279 & NaN & NaN & NaN 2.648382e-13 & \(11.114338 \mathrm{e}-10\) \\
\hline 280 & NaN & NaN & NaN 6.39425e-13 & \(11.107944 \mathrm{e}-10\) \\
\hline 281 & NaN & NaN & NaN 1.809595e-13 & \(11.106134 \mathrm{e}-10\) \\
\hline 282 & NaN & NaN & NaN 2.707045e-13 & \(11.103427 e-10\) \\
\hline 283 & NaN & NaN & NaN 1.970095e-13 & \(11.101457 e-10\) \\
\hline 284 & NaN & NaN & NaN 2.664828e-13 & \(11.098792 \mathrm{e}-10\) \\
\hline 285 & NaN & NaN & NaN 4.382094e-12 & \(11.054972 \mathrm{e}-10\) \\
\hline 286 & NaN & NaN & NaN 1.397449e-13 & \(11.053574 \mathrm{e}-10\) \\
\hline 287 & NaN & NaN & NaN 1.477025e-13 & \(11.052097 e-10\) \\
\hline 288 & NaN & NaN & NaN 1.615116e-13 & \(11.050482 \mathrm{e}-10\) \\
\hline 289 & NaN & NaN & NaN 1.259848e-13 & \(11.049222 \mathrm{e}-10\) \\
\hline 290 & NaN & NaN & NaN 1.916858e-11 & \(18.575363 \mathrm{e}-11\) \\
\hline 291 & NaN & NaN & NaN 5.610997e-14 & \(18.569756 \mathrm{e}-11\) \\
\hline 292 & NaN & NaN & NaN 1.640735e-13 & \(18.553347 e-11\) \\
\hline 293 & NaN & NaN & NaN 1.077555e-14 & \(18.55227 e-11\) \\
\hline 294 & NaN & NaN & NaN 1.011079e-13 & \(18.542156 \mathrm{e}-11\) \\
\hline 295 & NaN & NaN & NaN 4.317568e-11 & \(14.224587 e-11\) \\
\hline 296 & NaN & NaN & NaN 5.481826e-14 & \(14.219103 \mathrm{e}-11\) \\
\hline 297 & NaN & NaN & NaN 5.099189e-14 & \(14.214007 e-11\) \\
\hline 298 & NaN & NaN & NaN 1.407973e-14 & \(14.212597 e-11\) \\
\hline 299 & NaN & NaN & NaN 1.710537e-14 & \(14.210887 e-11\) \\
\hline 300 & NaN & NaN & NaN 3.929458e-11 & \(12.814304 \mathrm{e}-12\) \\
\hline 301 & NaN & NaN & NaN 1.865038e-14 & \(12.795653 \mathrm{e}-12\) \\
\hline 302 & NaN & NaN & NaN 1.020398e-14 & \(12.785439 \mathrm{e}-12\) \\
\hline 303 & NaN & NaN & NaN 1.61517e-14 & \(12.76934 \mathrm{e}-12\) \\
\hline 304 & NaN & NaN & NaN 1.513325e-14 & \(12.754241 \mathrm{e}-12\) \\
\hline 305 & NaN & NaN & NaN 3.490552e-14 & \(12.71938 \mathrm{e}-12\) \\
\hline 306 & NaN & NaN & NaN 3.002566e-14 & \(12.689404 \mathrm{e}-12\) \\
\hline 307 & NaN & NaN & NaN 1.066545e-14 & \(12.678746 \mathrm{e}-12\) \\
\hline 308 & NaN & NaN & NaN 6.886354e-14 & \(12.609912 \mathrm{e}-12\) \\
\hline 309 & NaN & NaN & NaN 5.300219e-14 & \(12.556955 \mathrm{e}-12\) \\
\hline 310 & NaN & NaN & NaN 9.01918e-14 & \(12.466805 \mathrm{e}-12\) \\
\hline 311 & NaN & NaN & NaN 7.905782e-14 & \(12.387757 e-12\) \\
\hline 312 & NaN & NaN & NaN 2.253344e-14 & \(12.365219 \mathrm{e}-12\) \\
\hline 313 & NaN & NaN & NaN 1.580737e-13 & \(12.207123 \mathrm{e}-12\) \\
\hline 314 & NaN & NaN & NaN 1.355182e-13 & \(12.071565 e-12\) \\
\hline 315 & NaN & NaN & NaN 1.186181e-13 & \(11.952993 \mathrm{e}-12\) \\
\hline
\end{tabular}
(continues on next page)

(continues on next page)
(continued from previous page)
```

In [140]: fig, axs = plt.subplots(1,2, figsize=(3.5*2, 2.45), constrained_
\hookrightarrowlayout=True, squeeze=True)
In [141]: ax0, ax1 = axs.flat
In [142]: bit[('exact', 'p_total')].plot(marker='.', lw=.25, logy=True, ax=ax0,
\hookrightarrowlabel='Portfolio');
In [143]: bit[('comp Po', 'p_total')].plot(marker='.', markerfacecolor='None', lw=.
\hookrightarrow25, logy=True, ax=ax0, label='compound Po');
In [144]: (1-bit[('exact', 'p_total')].cumsum()).plot(ax=ax1);
In [145]: (1-bit[('comp Po', 'p_total')].cumsum()).plot(ax=ax1);
In [146]: ax0.legend();
In [147]: ax0.set(ylabel='log pmf');
In [148]: ax1.set(ylabel='survival function');

```



\section*{Exercise 9.73.}

An insurance company sold one-year term life insurance on a group of 2,300 independent lives as given in the next table.
\begin{tabular}{lrrr}
\hline & Benefit & \(q\) & Number \\
Class & & & \\
\hline 1 & 100,000 & 0.1 & 500 \\
2 & 200,000 & 0.02 & 500 \\
3 & 300,000 & 0.02 & 500 \\
4 & 200,000 & 0.1 & 300 \\
5 & 200,000 & 0.1 & 500 \\
\hline
\end{tabular}

The insurance company reinsures amounts in excess of 100,000 on each life. The reinsurer wishes to charge a premium that is sufficient to guarantee that it will lose money \(5 \%\) of the time on such groups. Obtain the appropriate premium by each of the following ways:
1. Using a normal approximation to the aggregate claims distribution.
2. Using a lognormal approximation.
3. Using a gamma approximation.
4. Using the compound Poisson approximation that matches the means.

In order to make the answer self-contained, the code below includes the data munging to re-create the table, pasted from a pdf.
```

In [149]: data = '''1
.....: 100,000
.....: 0.10
.....: 500
.....: }
.....: 200,000
.....: 0.02
.....: 500
.....: 3
.....: 300,000
.....: 0.02
.....: }50
.....: 4
.....: 200,000
.....: 0.10
.....: 300
.....: 5
.....: 200,000
.....: 0.10
.....: 500'''
..... .
In [150]: sdata = data.split('\n')
In [151]: df = pd.DataFrame(zip(*[iter(sdata)]*4),
....: columns=['Class', 'Benefit', 'q', 'Number'])
.....:
In [152]: df.Benefit = df.Benefit.str.replace(',','').astype(float)
In [153]: df.q = df.q.astype(float)
In [154]: df.Number = df.Number.astype(int)
In [155]: df = df.set_index('Class')
In [156]: qd(df)
Benefit q Number
Class
1 1e+05 0.1 500
2 2e+05 0.02 500
3 3e+05 0.02 500
4 2e+05 0.1 300
5 2e+05 0.1 500

```

Next, build the exact solution for the gross book as a Portfolio (extra credit).
```

In [157]: a = [build(f'agg Class.{i} {r.q * r.Number} claims '
....: f'dsev [{r.Benefit / 100000}] '
....: f'binomial {r.q}')
....: for i, r in df.iterrows()]
..... .
In [158]: p = Portfolio('KPW.9.73p', a)
In [159]: p.update(log2=10, bs=1, remove_fuzz=True)
In [160]: qd(p)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X

```
(continued from previous page)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Class. 1} & Freq & 50 & & & 0.13416 & & 0.11926 & \\
\hline & Sev & 1 & 1 & 0 & 0 & 0 & & \\
\hline & Agg & 50 & 50 & -8.4155e-14 & 0.13416 & 0.13416 & 0.11926 & 0.11926 \\
\hline \multirow[t]{3}{*}{Class. 2} & Freq & 10 & & & 0.31305 & & 0.30666 & \\
\hline & Sev & 2 & 2 & 0 & 0 & 0 & & \\
\hline & Agg & 20 & 20 & \(5.7554 \mathrm{e}-13\) & 0.31305 & 0.31305 & 0.30666 & 0.30666 \\
\hline \multirow[t]{3}{*}{Class. 3} & Freq & 10 & & & 0.31305 & & 0.30666 & \\
\hline & Sev & 3 & 3 & 0 & 0 & 0 & & \\
\hline & Agg & 30 & 30 & \(2.9909 \mathrm{e}-13\) & 0.31305 & 0.31305 & 0.30666 & 0.30666 \\
\hline \multirow[t]{3}{*}{Class. 4} & Freq & 30 & & & 0.17321 & & 0.15396 & \\
\hline & Sev & 2 & 2 & 0 & 0 & 0 & & \\
\hline & Agg & 60 & 60 & \(-1.3123 e-13\) & 0.17321 & 0.17321 & 0.15396 & 0.15396 \\
\hline \multirow[t]{3}{*}{Class. 5} & Freq & 50 & & & 0.13416 & & 0.11926 & \\
\hline & Sev & 2 & 2 & 0 & 0 & 0 & & \\
\hline & Agg & 100 & 100 & \(-1.1879 \mathrm{e}-13\) & 0.13416 & 0.13416 & 0.11926 & 0.11926 \\
\hline \multirow[t]{3}{*}{total} & Freq & 150 & & & 0.077917 & & 0.070413 & \\
\hline & Sev & 1.7333 & 1.7333 & 0 & 0.33086 & & 0.081688 & \\
\hline & Agg & 260 & 260 & \(9.77 e-15\) & 0.082527 & 0.082527 & 0.083622 & 0.083622 \\
\hline \(\log 2=10\) & 10, b & ndwidth & 1, val & idation: no & unreaso & ble. & & \\
\hline
\end{tabular}

Build the reinsurer's loss distribution exactly, as p_ceded, a Portfolio, and the compound Poisson approximation cp_ceded, an Aggregate. The temporary variable bit is used to calculate the mixed severity distribution.
```

In [161]: a_ceded = [build(f'agg Class.{i}.c {r.q * r.Number} claims '
....: f'dsev [{r.Benefit / 100000 - 1}] '
....: f'binomial {r.q}')
....: for i, r in df.query('Benefit > 100000').iterrows()]
..... :
In [162]: p_ceded = Portfolio('KPW.9.73pc', a_ceded)
In [163]: p_ceded.update(log2=10, bs=1, remove_fuzz=True)
In [164]: qd(p_ceded)

```

\(\log 2=10\), bandwidth \(=1\), validation: not unreasonable.
In [165]: bit = df.query('Benefit > 100000')
In [166]: bit['Claims'] = bit.q * bit.Number
In [167]: bit.groupby('Benefit'). Claims.sum()
Out[167]:
Benefit
```

200000.0 90.0
300000.0 10.0
Name: Claims, dtype: float64
In [168]: cp_ceded = build('agg CP.Approx
....: f'{bit.Claims.sum()} claims '
....: f'dsev [1 2] [0.9 0.1] '
....: 'poisson')
..... .
In [169]: qd(cp_ceded)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 100 0.1 0.1
Sev 1.1 1.1 0 0.27273 0.27273 2.6667 2.6667
Agg 110 110 6.1506e-14 0.10365 0.10365 0.11469 0.11469
log2 = 14, bandwidth = 1, validation: not unreasonable.

```

Compute the various estimated premiums, the \(95 \%\) iles of the aggregate loss distribution.
```

In [170]: prem_confidence = 0.95
In [171]: appx = p_ceded.approximate('all')
In [172]: ans = {k: v.ppf(prem_confidence) for k, v in appx.items()}
In [173]: ans['FFT'] = p_ceded.q(prem_confidence)
In [174]: ans['Comp Po'] = cp_ceded.q(prem_confidence)
In [175]: qd(pd.DataFrame(ans.values(),
....: index=pd.Index(ans.keys(), name='method'),
....: columns=['premium']).sort_values('premium'),
....: accuracy=5)
......:
premium
method
FFT 128
norm 128.09
slognorm 128.42
sgamma 128.42
gamma 128.7
lognorm 128.97
Comp Po 129

```

Exercise 9.74. A group insurance contract covers 1,000 employees. An employee can have at most one claim per year. For 500 employees, there is a 0.02 probability of a claim, and when there is a claim, the amount has an exponential distribution with mean 500 . For 250 other employees, there is a 0.03 probability of a claim and amounts are exponential with mean 750 . For the remaining 250 employees, the probability is 0.04 and the mean is 1,000 . Determine the exact mean and variance of total claims payments. Next, construct a compound Poisson model with the same mean and determine the variance of this model.
```

In [176]: kpw_9_74p = build('port KPW.9.74p '
....: 'agg A 10. claims sev 500 * expon binomial 0.02 '
....: 'agg B 7.5 claims sev 750 * expon binomial 0.03 '
....: 'agg C 10. claims sev 1000 * expon binomial 0.04 ')
..... .
In [177]: qd(kpw_9_74p)

```
(continued from previous page)
```

 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
 unit X
A Freq 10
Sev 500
Agg 5000
B Freq 7.5
Sev 750
Agg 5625
C Freq 10
Sev 1000
Agg 10000
10000-1.6667e-07 0.44272 0.44272 0.66417 0.66417
total Freq 27.5
0.18781
750-3.2323e-07 1.0778
Sev 750
Agg 20625 20625 -3.2323e-07 0.27794 0.27794
log2 = 16, bandwidth = 2, validation: not unreasonable.
In [178]: mv(kpw_9_74p)
mean = 20625
variance = 3.286094e+07
std dev = 5732.45

```

Compound Poisson approximation is easy to construct as a mixture.
```

In [179]: kpw_9_74cp = build('agg KPW.9.74.cp [10 7.5 10] claims sev [500 750_
๑1000] * expon poisson')
In [180]: qd(kpw_9_74cp)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

```

```

Agg 20625 20625 -3.2323e-07 0.28036 0.28036 0.44729 0.44729
log2 = 16, bandwidth = 2, validation: not unreasonable.
In [181]: mv(kpw_9_74cp)
mean = 20625
variance = 3.34375e+07
std dev = 5782.52

```

\subsection*{2.13.6 Bahnemann Monograph}

Examples from the CAS published monograph Bahnemann [2015], Distributions for actuaries, which is a text for CAS Part 8. It is available for free on the [CAS Website](https://www.casact.org/monograph/cas-monograph-no-2).

\section*{Contents}

\section*{Chapter 4: Aggregate Claims}
- Example 4.1 Simple Discrete-Discrete Aggregate
- Example 4.2, Poisson-Gamma (Tweedie) Aggregate
- Example 4.3, Tweedie Approximations
- Example 4.4, Poisson-Discrete Approximation
- Example 4.5, Poisson-Gamma Approximation
- Example 4.15, Poisson-Lognormal With Policy Limit
- Problems 4.7 and 13, Poisson-Gamma Distribution and Approximations
- Example 5.13, Poisson-Lognormal Layer Statistics
- Example 6.3, Lognormal Increased Limits Factors (ILFs)
- Example 6.4, Layer Premium
- Example 6.5, Risk Loads
- Example 6.6, Aggregate Premiums
- Example 6.7, Deductible Credits
- Summary of Created aggregate objects

\section*{Simple Discrete Aggregate, Example 4.1}

Assume that \(\mathrm{n}=0,1,2\) are the only possible numbers of claims and they occur with probabilities \(0.6,0.3\) and 0.1 , and that there exist just three potential claim sizes: 1,2 , and 3 with probabilities \(0.4,0.5\) and 0.1 . (Note: the text uses claim sizes 100,200 and 300.) Compute the distribution of possible outcomes and its mean and variance.

Imports and convenience functions.
```

In [1]: from aggregate import build, qd, mv
In [2]: import matplotlib.pyplot as plt

```

Build the aggregate and display key statistics.
```

In [3]: a = build('agg Bahn.4.1 dfreq[0 1 2][.6 .3 .1] '
...: 'dsev[1 2 3][.4 .5 .1]')
... :
In [4]: qd(a)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
llllllll
Agg 0.85 0.85 -2.2204e-16 1.4435 1.4435 1.3333 1.3333
log2 = 4, bandwidth = 1, validation: not unreasonable.
In [5]: mv (a)
mean = 0.85
variance = 1.5055
std dev = 1.22699

```

Display all possible outcomes. Compare with the table on p. 107.
```

In [6]: qd(a.density_df.query('p_total > 0') [['p_total', 'F']])
p_total F
loss
0.0 0.6 0.6
1.0 0.12 0.72
2.0 0.166 0.886
3.0 0.07 0.956
4.0 0.033 0.989
5.0 0.01 0.999
6.0 0.001 1

```

\section*{Poisson-Gamma (Tweedie) Aggregate, Example 4.2}

The text considers a Tweedie with expected claim count \(\lambda=2.5\) and gammma shape 3 and scale 400 . It computes the mean, variance and skewness, and uses the series expansion for the distribution to compute the CDF at various points (Table 4.1). These results can be replicated as follows.
```

In [7]: a = build('agg Bahn.4.2 2.5 claims '
...: 'sev 400 * gamma 3 poisson')
... :
In [8]: qd(a)

| | E[X] | Est E[X] | Err E[X] | CV(X) | Est CV (X) | Skew (X) | Est Skew (X) | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| X | | | | | 0.63246 | | 0.63246 | |
| Freq | 2.5 | | | | | | | |
| Sev | 1200 | 1200 | $1.5543 e-15$ | 0.57735 | 0.57735 | 1.1547 | 1.1547 | |
| Agg | 3000 | 3000 | $-2.7578 e-13$ | 0.7303 | 0.7303 | 0.91287 | 0.91287 | |

log2 = 16, bandwidth = 1/2, validation: not unreasonable.
In [9]: mv(a)
mean = 3000
variance = 4800000
std dev = 2190.89

```

Extract various points of the pmf, cdf, and sf. The adjustment to the index is cosmetic. aggregate returns the entire distribution. The left plot shows the mixed density, with a mass at zero; right shows the cdf.
```

In [10]: bit = a.density_df.loc[
....: sorted(np.hstack((500, np.arange(0, 10000.5, 1000)))),
....: ['p', 'F', 'S']]
.... :
In [11]: qd(bit, accuracy=4)
p F S
loss
0.0 0.082085 0.082085 0.91792
500.0 5.9764e-05 0.10958 0.89042
1000.0 8.8058e-05 0.18677 0.81323
2000.0 9.6726e-05 0.37558 0.62442
3000.0 8.6514e-05 0.56132 0.43868
4000.0 6.6611e-05 0.71519 0.28481
5000.0 4.5895e-05 0.82731 0.17269
6000.0 2.8971e-05 0.90135 0.098646
7000.0 1.7022e-05 0.94653 0.053468
8000.0 9.4148e-06 0.97234 0.027662
9000.0 4.9432e-06 0.98627 0.013727
10000.0 2.4799e-06 0.99344 0.006561
In [12]: fig, axs = plt.subplots(1, 2, figsize=(3.5*2, 2.45), constrained_
\hookrightarrowlayout=True, squeeze=True)
In [13]: ax0, ax1 = axs.flat
In [14]: (a.density_df.p / a.bs).plot(ylim=[0, 0.0002], xlim=[-100, 10000], lw=2,v
\hookrightarrowax=ax0)
Out[14]: <Axes: xlabel='loss'>
In [15]: ax0.set(title='Density')
Out[15]: [Text(0.5, 1.0, 'Density')]
In [16]: a.density_df.F.plot(ylim=[-0.05, 1.05], xlim=[-100, 10000], lw=2, ax=ax1)
(continues on next page)

```
```

Out[16]: <Axes: xlabel='loss'>
In [17]: ax0.set(title='Mixed density');
In [18]: ax1.set(title='Distribution function');

```



\section*{Approximations to the Tweedie, Example 4.3}
aggregate largely circumvents the need for approximations, but it does support their creation. The following reproduces Table 4.3.
```

In [19]: fz = a.approximate('all')
In [20]: bit['Normal'] = fz['norm'].cdf(bit.index)
In [21]: bit['Norm err'] = bit.Normal / bit.F - 1
In [22]: bit['sGamma'] = fz['sgamma'].cdf(bit.index)
In [23]: bit['sGamma err'] = bit.sGamma / bit.F - 1
In [24]: qd(bit, accuracy=4)

```
P F S Normal Norm err sGamma sGamma err
loss
\begin{tabular}{lrrrrrrr}
0.0 & 0.082085 & 0.082085 & 0.91792 & 0.085452 & 0.041016 & 0.045932 & -0.44044 \\
500.0 & \(5.9764 \mathrm{e}-05\) & 0.10958 & 0.89042 & 0.12692 & 0.15821 & 0.10104 & -0.077947 \\
1000.0 & \(8.8058 \mathrm{e}-05\) & 0.18677 & 0.81323 & 0.18066 & -0.032733 & 0.17751 & -0.049594 \\
2000.0 & \(9.6726 \mathrm{e}-05\) & 0.37558 & 0.62442 & 0.32404 & -0.13723 & 0.36803 & -0.020087 \\
3000.0 & \(8.6514 \mathrm{e}-05\) & 0.56132 & 0.43868 & 0.5 & -0.10924 & 0.56073 & -0.0010453 \\
4000.0 & \(6.6611 \mathrm{e}-05\) & 0.71519 & 0.28481 & 0.67596 & -0.054848 & 0.71854 & 0.0046875 \\
5000.0 & \(4.5895 \mathrm{e}-05\) & 0.82731 & 0.17269 & 0.81934 & -0.0096235 & 0.83105 & 0.0045249 \\
6000.0 & \(2.8971 \mathrm{e}-05\) & 0.90135 & 0.098646 & 0.91455 & 0.014639 & 0.90379 & 0.0027037 \\
7000.0 & \(1.7022 \mathrm{e}-05\) & 0.94653 & 0.053468 & 0.96606 & 0.020626 & 0.94752 & 0.0010466 \\
8000.0 & \(9.4148 \mathrm{e}-06\) & 0.97234 & 0.027662 & 0.98876 & 0.01689 & 0.97238 & \(4.3133 e-05\) \\
9000.0 & \(4.9432 \mathrm{e}-06\) & 0.98627 & 0.013727 & 0.99692 & 0.01079 & 0.98589 & -0.00038586
\end{tabular}

Here is Table 4.4. The FFT overstates \(F(0)\) because of discretization error.
```

In [25]: a2 = build('agg Bahn.4.2b 10 claims '
...: 'sev 6000 * gamma 0.05 poisson')
.... :
In [26]: qd(a2)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 10 0.31623 0.31623

```


\section*{Poisson-Discrete Distribution, Example 4.4}

The claim-count random variable is Poisson distributed with mean 1.75. Severity has a discrete distribution with outcomes \(1,2,3,4,5\) occurring with probabilities \(0.2,0.4,0.2,0.15,0.05\) respectively. Compute the aggregate distribution.

Here is Table 4.5.
```

In [34]: a = build('agg Bahn.4.4 1.75 claims '
...: 'dsev [1 2 3 4 5] [.2 .4 .2 . 15 .05] '
...: 'poisson')
.... :
In [35]: qd(a)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.75 0.75593 0.75593
Sev 2.45 2.45 -2.2204e-16 0.45588 0.45588 0.55603 0.55603
Agg 4.2875 4.2875 2.2204e-16 0.83078 0.83078 0.95453 0.95453
log2 = 7, bandwidth = 1, validation: not unreasonable.
In [36]: qd(a.density_df.query('p > .001')[['p', 'F', 'S']], accuracy=4)

```
    p F
    S
```

loss
0.0 0.17377 0.17377 0.82623
1.0 0.060821 0.23459 0.76541
2.0 0.13229 0.36688 0.63312
3.0 0.10464 0.47152 0.52848
4.0 0.11704 0.58855 0.41145
5.0 0.093249 0.6818 0.3182
6.0 0.078644 0.76045 0.23955
7.0 0.064101 0.82455 0.17545
8.0 0.049889 0.87444 0.12556
9.0 0.037655 0.91209 0.087908
10.0 0.02737 0.93946 0.060537
11.0 0.019672 0.95913 0.040865
12.0 0.013764 0.9729 0.027101
13.0 0.0094201 0.98232 0.017681
14.0 0.0063168 0.98864 0.011364
15.0 0.0041654 0.9928 0.0071986
16.0 0.0027032 0.9955 0.0044954
17.0 0.0017249 0.99723 0.0027705
18.0 0.0010842 0.99831 0.0016863

```

\section*{Poisson-Gamma Distribution, Example 4.5}

Aggregate losses have Poisson frequency with mean 2.5 and gamma severity with shape 3 and scale 400 . Hence the aggregate mean equals 1,200 and variance equals 480,000 . Now approximate the distribution function using FFT with a fine bucket size and the midpoint method for assigning claim-size probabilities and then \(\mathrm{b} s=20\) and \(\mathrm{bs}=100\).

Here is Table 4.6, comparing the distributions. The update method re-runs the FFT computation with different options, here altering bs.
```

In [37]: import numpy as np
In [38]: import pandas as pd
In [39]: a = build('agg Bahn.4.5 2.5 claims '
....: 'sev 400 * gamma 3 poisson')
.... :
In [40]: qd(a)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2.5 0.63246 0.63246
Sev 1200 1200 1.5543e-15 0.57735 0.57735 1.1547 1.1547
Agg 3000 3000 -2.7578e-13 0.7303 0.7303 0.91287 0.91287
log2 = 16, bandwidth = 1/2, validation: not unreasonable.
In [41]: xs = sorted(np.hstack((500, np.arange(0, 10001, 1000))))
In [42]: bit = a.density_df.loc[xs, ['F']]
In [43]: a.update(bs=100)
In [44]: bit100 = a.density_df.loc[xs, ['F']]
In [45]: a.update(bs=20)
In [46]: bit20 = a.density_df.loc[xs, ['F']]
In [47]: bit = pd.concat((bit, bit100, bit20), axis=1, keys=['h0.25', 'h100', 'h20
(continued from previous page)

```
\hookrightarrow'])
In [48]: bit[('h100', 'Rel Error')] = bit[('h100', 'F')] / bit[('h0.25', 'F')] - 1
In [49]: bit[('h20', 'Rel Error')] = bit[('h20', 'F')] / bit[('h0.25', 'F')] - 1
In [50]: bit = bit.sort_index(axis=1)
In [51]: qd(bit, accuracy=4)
    h0.25 h100
            F F Rel Error
                h20
    F Rel Error
loss
0.0 0.082085 0.082146 0.00074147 0.082086 6.3895e-06
500.0 0.10958 0.11579 0.056708 0.11076 0.010735
1000.0 0.18677 0.19565 0.047526 0.18849 0.0092186
2000.0 0.37558 0.38525 0.025749 0.37747 0.0050273
3000.0 0.56132 0.56991 0.015294 0.56301 0.003004
4000.0 0.71519 0.72175 0.0091789 0.71648
5000.0 0.82731 0.8318 0.0054318 0.8282 0.0010783
6000.0 0.90135 0.90417 0.0031276 0.90192 0.00062395
7000.0 0.94653 0.94818}0.0017394 0.94686 0.00034868
8000.0 0.97234 0.97324 0.00093101 0.97252 0.0001875
9000.0 0.98627 0.98675 0.00047913 0.98637 9.6942e-05
10000.0 0.99344 0.99367 0.00023728 0.99349 4.8226e-05
```


Poisson-Lognormal Distribution With Limit, Example 4.15

Consider an aggregate distribution with mean 3 Poisson frequency and lognormal claim size with parameters $(\mu, \sigma)=$ $(6,1.5)$. Moreover, claim size is limited by a policy limit of 1,000 . Graph the aggregate distribution.

The log density (left) shows the probability masses at outcomes consisting of only limit losses. The distribution (right) shows the corresponding jumps. Compare with Figure 4.4.

```
In [52]: a = build('agg Bahn.4.15 '
    ....: '3 claims '
    ...: '1000 xs 0 '
    ...: 'sev exp(6) * lognorm 1.5 '
    ....: 'poisson')
    . . . . :
In [53]: qd(a)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 
Agg 1508.9 1508.9 1.1478e-09 0.72083 0.72083 0.82314 0.82314
log2 = 16, bandwidth = 1/4, validation: not unreasonable.
In [54]: fig, axs = plt.subplots(1, 2, figsize=(2*3.5, 2.45), constrained_
\hookrightarrowlayout=True)
In [55]: ax0, ax1 = axs.flat
In [56]: a.density_df.p.plot(ax=ax0, logy=True, label='FFT');
In [57]: a.density_df.F.plot(ax=ax1, label='FFT');
In [58]: ax0.set(ylabel='log density');
```

```
In [59]: ax0.set(ylabel='distribution', ylim=[0,1]);
In [60]: ax1.axvline(1000, c='C7', lw=.5);
In [61]: ax1.axvline(2000, c='C7', lw=.5);
In [62]: ax1.axvline(3000, c='C7', lw=.5);
```


Poisson-Gamma Distribution and Approximations, Problems 4.7 and 13

An aggregate distribution has mean 8 Poisson frequency and gamma severity with shape 0.2 and scale 3750 . Compute the distribution and compare with normal and shifted-gamma approximations.

```
In [63]: a = build('agg Bahn.4.7 '
    ....: '8 claims '
    ....: 'sev 3750 * gamma 0.2 '
    ....: 'poisson')
    ....:
In [64]: qd(a)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
```



```
Agg 6000 5999.8 -2.9119e-05 0.86603 0.86605 1.5877 1.5877
log2 = 16, bandwidth = 2, validation: not unreasonable.
In [65]: xs = np.arange(0, 30000,3000)
In [66]: qd(a.density_df.loc[xs, ['p', 'F','S']], accuracy=4)
    P F S
loss
0.0 0.0018002 0.0018002 0.9982
3000.0 0.00020926 0.34209 0.65791
6000.0 0.00014322 0.60704 0.39296
9000.0 8.7227e-05 0.7775 0.2225
12000.0 5.0019e-05 0.87823 0.12177
15000.0 2.7618e-05 0.93494 0.065065
18000.0 1.4853e-05 0.96586 0.034143
21000.0 7.8339e-06 0.98233 0.017666
24000.0 4.0696e-06 0.99096 0.0090364
27000.0 2.0885e-06 0.99542 0.0045787
```

aggregate readily computes approximations and returns frozen scipy. stats objects.

```
In [67]: fz = a.approximate('all')
In [68]: comp = pd.DataFrame({k: v.cdf(xs) for k, v in fz.items()}, index=xs)
In [69]: comp['agg'] = a.density_df.loc[xs, 'F',]
In [70]: comp.loc[:, [f'{k} err' for k in fz.keys()]] = comp.loc[:, fz.keys()].
\hookrightarrowvalues / comp.loc[:, ['agg']].values - 1
In [71]: comp = comp.sort_index(axis=1)
In [72]: qd(comp, accuracy=4)
```



```
\begin{tabular}{lrr} 
& slognorm & slognorm err \\
0 & 0.058626 & 31.567 \\
3000 & 0.31389 & -0.082441 \\
6000 & 0.59173 & -0.025232 \\
9000 & 0.77906 & 0.002005 \\
12000 & 0.88465 & 0.0073188 \\
15000 & 0.94022 & 0.0056501 \\
18000 & 0.96881 & 0.0030552 \\
21000 & 0.9835 & 0.001191 \\
24000 & 0.99113 & 0.0001684 \\
27000 & 0.99515 & -0.00027715
\end{tabular}
```


Poisson-Lognormal Layer Statistics, Example 5.13

Consider an aggregate distribution with mean 15 Poisson frequency and lognormal claim size with parameters $(\mu, \sigma)=(5.9809,1.8)$. What are the distribution characteristics for random variable S for claims in the layer 5,000 excess of 3,000 ?

The exact and FFT-estimated mean, cv, and skewness are reported in the describe dataframe, for frequency and severity. The values reported agree with the text, up to rounding.

```
In [73]: a = build('agg Bahn.5.13 '
    ....: '15 claims 5000 xs 3000 '
    ...: 'sev exp(5.9809) * lognorm 1.8 ! '
```

(continued from previous page)

```
    ....: 'poisson')
    .... :
In [74]: qd(a)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 15 0.2582 0.2582
Sev 385.68 385.68 -3.4957e-09 3.1319 3.1319 3.1942 
Agg 5785.3 5785.3 -3.4982e-09 0.84887 0.84887 0.93405 0.93405
log2 = 16, bandwidth = 1, validation: not unreasonable.
In [75]: mv(a)
mean = 5785.25
variance = 2.411727e+07
std dev = 4910.93
```

The exact severity can be accessed directly, as a.sevs [0].fz, allowing us to compute the expected layer claim count. The aggregate can then be written in conditional form, producing the same statistics. The distribution function shows probability masses at multiples of the limit.

```
In [76]: xs = 15 * a.sevs[0].fz.sf(3000)
In [77]: print(f'excess claim count = {xs:.5f}')
excess claim count = 1.95359
In [78]: a = build('agg Bahn.5.13b '
    ....: f'{xs} claims 5000 xs 3000 '
    ...: 'sev exp(5.9809) * lognorm 1.8 '
    ....: 'poisson')
    . . . . :
In [79]: qd(a)
        E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.9536 0.71546 0.71546
Sev 2961.3 2961.3 -3.4956e-09 0.63853 0.63853-0.16374 -0.16374
Agg 5785.3 5785.3-3.4982e-09 0.84887 0.84887 0.93405 0.93405
log2 = 16, bandwidth = 1, validation: not unreasonable.
In [80]: fig, ax = plt.subplots(1,1,figsize=(3.5, 2. 45))
In [81]: a.density_df.F.plot(ax=ax, label='FFT');
In [82]: fz = a.approximate('gamma')
In [83]: ax.plot(a.density_df.loss, fz.cdf(a.density_df.loss), c='C1',
\hookrightarrowlabel='gamma approx.');
In [84]: ax.axvline(5000, C='C7', lw=.5);
In [85]: ax.axvline(10000, c='C7', lw=.5);
In [86]: ax.axvline(15000, c='C7', lw=.5);
In [87]: ax.set(ylabel='cdf');
In [88]: ax.legend(loc='lower right');
```


Lognormal Increased Limits Factors (ILFs), Example 6.3

Indemnity losses for a portfolio of insurance policies have a lognormal claim-size distribution with parameters $(\mu, \sigma)=(7,2.4)$. The policy per-claim limit applies only to the indemnity portion of a claim, and the average per-claim loss adjustment expense is 2,200 . Claim frequency for these policies is 0.0005 per exposure unit, and variable expenses equal 35% of premium.

A lognormal with $\sigma=2.4$ has cv $\sqrt{\exp \left(2.4^{2}\right)-1}=17.78$ and is extremely thick-tailed, despite having moments of all orders. It is challenging to approximate numerically. Luckily, we only need to compute up to 5 M . The aggregate parameters deliberately select a range that is too narrow for the entire distribution, but adequate for our purposes. Use $\log 2=17$ and select bs greater than $5 \mathrm{e} 6 / / 2 * * 17=38$. We use $\mathrm{bs}=50$. It is important to set normalize=False to avoid rescaling bucket probabilities to sum to one. These parameters are not a good model for the entire distribution; the mean error is too high.

The density_df dataframe includes limited expected values. Here is a sample.

```
In [89]: a = build('agg Bahn.6.3 '
    ....: '1 claim '
    ...: 'sev exp(7) * lognorm 2.4 '
    ....: 'fixed',
    ...: bs=50, log2=17,
    .... normalize=False,
    ....: )
    .... :
In [90]: qd(a)
        E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 19536 18328 -0.061835 17.786 7.7935 5680 27.885
Agg 19536 18328 -0.061835 17.786 7.7935 5680 27.885
log2 = 17, bandwidth = 50, validation: fails sev mean, agg mean.
In [91]: xs = [1e5, 5e5, 7.5e5, 1e6, 2e6, 3e6, 4e6, 5e6]
In [92]: qd(a.density_df.loc[xs, ['F', 'S', 'lev']], accuracy=4)
\begin{tabular}{lrrr} 
& F & S & lev \\
loss & & & \\
100000.0 & 0.96998 & 0.030021 & 8895.8 \\
500000.0 & 0.99463 & 0.0053706 & 13625 \\
750000.0 & 0.99674 & 0.0032647 & 14668 \\
1000000.0 & 0.99774 & 0.002257 & 15345 \\
2000000.0 & 0.99912 & 0.00087817 & 16738 \\
3000000.0 & 0.99951 & 0.00048765 & 17390 \\
4000000.0 & 0.99968 & 0.00031609 & 17782 \\
5000000.0 & 0.99978 & 0.00022372 & 18048
\end{tabular}
```

The following reproduces Table 6.1. The ILF factors assume fixed (middle) and variable ALAE (right).

```
In [93]: alae = 2200
In [94]: bit = a.density_df.loc[xs, ['lev']]
In [95]: bit['Fixed ALAE'] = (bit.lev + alae) / (bit.lev.iloc[0] + alae)
In [96]: bit['Prop ALAE'] = bit.lev / bit.lev.iloc[0]
In [97]: qd(bit, accuracy=4)
    lev Fixed ALAE Prop ALAE
loss
100000.0 8895.8 1 1
500000.0 13625 1.4262 1.5317
750000.0 14668 1.5202 1.6488
1000000.0 15345 1.5812 1.725
2000000.0 16738 1.7067 1.8815
3000000.0 17390 1.7655 1.9549
4000000.0 17782 1.8009 1.9989
5000000.0 18048 1.8248 2.0288
```


Layer Premium, Example 6.4

(Continues Example 6.3.) Calculate the premium for successive excess layers of insurance for a policy with exposure equal 400 . Use the ILFs under the assumption that the average per-claim ALAE payment is 2,200 . Premium amounts for the successive million-dollar layers obtained from these layer factors applied to the basic-limit premium are displayed in Table 6.2 and reproduced below.

```
In [98]: exposure = 400
In [99]: var_exp = 0.35
In [100]: frequency = 0.0005
In [101]: bit['Premium'] = exposure * frequency * (bit['lev'] + alae) / (1 - var_
๑exp)
In [102]: bit['Layer Premium'] = np.diff(bit.Premium, prepend=0)
In [103]: qd(bit)
    lev Fixed ALAE Prop ALAE Premium Layer Premium
loss
100000.0 8895.8 1 1 3414.1 3414.1
500000.0 13625 1.4262 1.5317 4869.3 1455.2
750000.0 14668 1.5202 1.6488 5190.1 320.73
1000000.0 15345 1.5812 1.725 5398.4 208.38
2000000.0 16738 1.7067 1.8815 5 5 % 428.52
3000000.0 17390 1.7655 1.9549 6027.7 200.71
4000000.0 17782 1.8009 1.9989 6148.3 120.63
5000000.0 18048 1.8248 2.0288 6230.1 81.76
```


Risk Loads, Example 6.5

Example 6.5, computes risk loads as a percentage of standard deviation. aggregate can compute multiple limits at once, and the report_df dataframe returns individual severity and aggregate distribution statistics. The risk loads can be deduced from these. The risk load can be computed as k^{\prime} * ex2 or k * agg_cv (not shown).

The following code reproduces Table 6.3. First, define the controlling variables, and then set up the tower of limits within one object, using Vectorization: Limit Profiles and Mixed Severity.

```
In [104]: k_prime = 0.0277
In [105]: m = 400
In [106]: \phi = 0.0005
In [107]: u = 0.2
In [108]: k = k_prime / np.sqrt(m * \phi)
In [109]: limits = [1e5, 5e5, 1e6, 2e6, 3e6, 4e6, 5e6]
In [110]: bl = build('agg Bahn.6.5 '
    ....: f'{m * \phi} claims '
    ....: f'{limits} xs 0 '
    ....: 'sev exp(7) * lognorm 2.4 '
    ....: 'poisson'
    ....: , bs=50, log2=18)
    ..... :
```

In [111]: qd(bl.report_df.iloc[:, :-4], accuracy=4)

| view | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| statistic | | | | | | | |
| name | Bahn. 6.5 | Bahn.6.5 | Bahn. 6.5 | Bahn.6.5 | Bahn. 6.5 | Bahn. 6.5 | Bahn. 6.5 |
| limit | $1 e+05$ | $5 \mathrm{e}+05$ | $1 \mathrm{e}+06$ | $2 \mathrm{e}+06$ | $3 \mathrm{e}+06$ | $4 \mathrm{e}+06$ | $5 \mathrm{e}+06$ |
| attachment | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| el | 1779.2 | 2725.1 | 3069 | 3347.6 | 3478 | 3556.5 | 3609.6 |
| freq_m | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| freq_cv | 2.2361 | 2.2361 | 2.2361 | 2.2361 | 2.2361 | 2.2361 | 2.2361 |
| freq_skew | 2.2361 | 2.2361 | 2.2361 | 2.2361 | 2.2361 | 2.2361 | 2.2361 |
| sev_m | 8896 | 13626 | 15345 | 16738 | 17390 | 17782 | 18048 |
| sev_cv | 2.3401 | 3.7719 | 4.63 | 5.6565 | 6.3357 | 6.851 | 7.2685 |
| sev_skew | 3.3416 | 7.0585 | 9.9524 | 14.303 | 17.849 | 20.975 | 23.827 |
| agg_m | 1779.2 | 2725.1 | 3069 | 3347.6 | 3478 | 3556.5 | 3609.6 |
| agg_cv | 5.6903 | 8.7257 | 10.592 | 12.844 | 14.342 | 15.482 | 16.406 |
| agg_skew | 8.1747 | 15.898 | 22.157 | 31.683 | 39.494 | 46.396 | 52.704 |

Next, extract the required columns from report_df and manipulate to compute the ILFs.

```
In [112]: bit = bl.report_df.loc[['sev_m', 'sev_cv', 'agg_m', 'agg_cv']].iloc[:, :-
↔4].T
In [113]: bit.index = limits
In [114]: bit.index.name = 'limit'
In [115]: bit['vx'] = (bit.sev_m * bit.sev_cv) ** 2
In [116]: bit['ex2'] = bit.vx + bit.sev_m**2
In [117]: bit['risk load'] = k_prime * bit.ex2 ** 0.5
```

```
In [118]: bit['lev'] = (1+u) * bit.sev_m
In [119]: bit['ILF w/o risk'] = bit['lev'] / bit.loc[100000, 'lev']
In [120]: bit['ILF with risk'] = (bit['lev'] + bit['risk load']) / (bit.loc[100000,
\hookrightarrow 'lev'] + bit.loc[100000, 'risk load'])
In [121]: qd(bit, accuracy=4)
statistic sev_m sev_cv agg_m agg_cv vx ex2 risk load lev ILF w/o_
\hookrightarrowrisk \
limit
100000.0 8896 2.3401 1779.2 5.6903 4.3337e+08 5.1251e+08 627.09 10675
\hookrightarrow 1
500000.0 13626 3.7719 2725.1 8.7257 2.6414e+09 2.8271e+09 1472.8 16351 1.
\hookrightarrow5316
1000000.0 15345 4.63 3069 10.592 5.0478e+09 5.2833e+09 2013.4 18414 1.
\hookrightarrow7249
2000000.0 16738 5.6565 3347.6 12.844 8.964e+09 9.2441e+09 2663.3 20085 1.
\hookrightarrow815
3000000.0 17390 6.3357 3478 14.342 1.2139e+10 1.2442e+10 3089.7 20868 1.
\hookrightarrow9548
4000000.0 17782 6.851 3556.5 15.482 1.4842e+10 1.5158e+10 3410.4 21339 1.
\hookrightarrow9989
5000000.0 18048 7.2685 3609.6 16.406 1.7208e+10 1.7534e+10 3667.9 21658 2.
\hookrightarrow0288
statistic ILF with risk
limit
100000.0 1
500000.0 1.577
1000000.0 1.8074
2000000.0 2.0127
3000000.0 2.1197
4000000.0 2.1897
5000000.0 2.2407
```


Aggregate Premiums, Example 6.6

(Continues Example 6.3.) Compute expected losses across a variety of occurrence and aggregate limit combinations. Assume 20\% ALAE outside the limits, expected claim count 1.2 with contagion parameter 0.1 (cv of mixing $\sqrt{0.1}$), and lognormal severity $(\mu, \sigma)=(7.6,2.4)$ (see errata).

The following code calculates Table 6.4 using FFT aggregate distributions. The last column, showing unlimited aggregate losses, agrees, but the other columns are slightly different because Bahnemann uses a shifted gamma approximation.

First, we compute all the aggregates.

```
In [122]: b = {}
In [123]: for per_claim in [0.5e6, 1e6, 2e6, 3e6, 4e6, 5e6]:
    .....: tower = np.array([0] + [i for i in [0, 1e6, 2e6, 3e6, 4e6, 5e6, np.
\hookrightarrowinf]
    ....: if i >= per_claim])
    ....: b[per_claim] = build('agg Bahn.6.6 1.2 claims '
    ....: f'{per_claim} xs 0 '
    ....: 'sev exp(7.6) * lognorm 2.4 '
    ....: f'mixed gamma {0.1}**.5 '
```

(continued from previous page)

Next, manipulate the output to determine layer loss costs using the reinsurance_audit_df dataframe. It tracks statistics for gross, ceded, and net loss across all requested layers, separately for occurrence and aggregate. In this case there are no occurrence layers. This step takes longer than computing the aggregates!

```
In [125]: bit = pd.concat([i.reinsurance_audit_df['ceded'].iloc[:-1]
    ....: for i in b.values()], keys=b.keys(),
    .....
    ..... :
In [126]: bit['Agg limit'] = bit.index.get_level_values('limit') + bit.index.get_
\hookrightarrowlevel_values('attach')
In [127]: bit = bit.droplevel(['kind', 'share', 'limit', 'attach'])
In [128]: bit = bit.set_index('Agg limit', append=True)
In [129]: bit = bit.groupby(level='Occ limit')[['ex']].cumsum()
In [130]: el = bit.unstack('Agg limit').droplevel(0, axis=1)
In [131]: table = pd.concat((el, el / el.loc[500000, np.inf]),
    ....: keys=['Loss', 'ILF'])
    ..... :
In [132]: qd(table.fillna(' - '), accuracy=4)
Agg limit 1000000.0 2000000.0 3000000.0 4000000.0 5000000.0 inf
    Occ limit
```

| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Loss | | | | | | (continued from previous page) | |
| 100000.0 | 26088 | 26091 | 26091 | 26091 | 26091 | 26091 | |
| 2000000.0 | 30133 | 30334 | 30335 | 30335 | 30335 | 30335 | |
| 3000000.0 | - | 33910 | 33998 | 34006 | 34006 | 34006 | |
| 4000000.0 | - | - | 35761 | 35813 | 35819 | 35820 | |
| 5000000.0 | - | - | - | 36908 | 36942 | 36949 | |
| ILF | - | - | - | 37703 | 37733 | | |
| | 00000.0 | 0.99988 | 1 | 1 | 1 | 1 | 1 |
| 1000000.0 | 1.1549 | 1.1626 | 1.1627 | 1.1627 | 1.1627 | 1.1627 | |
| 2000000.0 | - | 1.2997 | 1.3031 | 1.3034 | 1.3034 | 1.3034 | |
| 3000000.0 | - | - | 1.3707 | 1.3726 | 1.3728 | 1.3729 | |
| 4000000.0 | - | - | - | 1.4146 | 1.4159 | 1.4162 | |
| 5000000.0 | - | - | - | - | 1.4451 | 1.4462 | |

Here is a reconciliation to Table 6.4 of the 2 M per claim and 2 M aggregate limit expected loss, using the shifted gamma approximation. The limited aggregate loss is computed using the integral of the survival function fz .sf. quad is a general purpose numerical integration routine. It returns the integral and estimated error.

```
In [133]: fz = b[2000000].approximate('sgamma')
In [134]: print(fz.stats())
(34005.90148815674, 22895161300.37269)
In [135]: mv (b[2000000])
mean = 34006.1
variance = 2.289516e+10
std dev = 151311
In [136]: from scipy.integrate import quad
In [137]: quad(fz.sf, 0, 2000000)
Out[137]: (33523.06658768903, 0.000447320519015193)
```


Deductible Credits, Example 6.7

(Continues Example 6.3.) Consider a portfolio of policies for which the ground-up indemnity claim size has a lognormal distribution with parameters $(\mu, \sigma)=(7.0,2.4)$ and allocated loss adjustment expense is 20% of the indemnity amount. The basic limit is 100,000 . Calculate the credit factors, as well as the resulting frequency and severity, for six straight deductible options: 1,$000 ; 2,000 ; 3,000 ; 4,000 ; 5,000 ;$ and 10,000 . Base frequency equals 0.0005 .
We can build all of the required distributions simultaneously using vectorization. Remember that the basic limit is ground up. The severity is unconditional, indicated by ! at the end of the severity clause. The limit is eroded by the deductible.

```
In [138]: deductibles = [0, 1e3, 2e3, 3e3, 4e3, 5e3, 10e3]
In [139]: limits = [100000 - i for i in deductibles]
In [140]: \phi = 0.0005
In [141]: alae = 1.2
In [142]: bl = build('agg Bahn.6.7 '
    ....: f'{\phi} claims '
    ....: f'{limits} xs {deductibles} '
    ....: 'sev exp(7) * lognorm 2.4 ! '
    ....: 'poisson'
    ....: , bs=50, log2=18)
    ..... . :
```

```
In [143]: qd(bl.report_df.iloc[:, :-4], accuracy=4)
```

| view | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| statistic | | | | | | | |
| name | Bahn. 6.7 | Bahn.6.7 | Bahn.6.7 | Bahn. 6.7 | Bahn. 6.7 | Bahn. 6.7 | Bahn. 6.7 |
| limit | 1 e+05 | 99000 | 98000 | 97000 | 96000 | 95000 | 90000 |
| attachment | 0 | 1000 | 2000 | 3000 | 4000 | 5000 | 10000 |
| el | 4.448 | 4.1183 | 3.8926 | 3.7092 | 3.5517 | 3.4124 | 2.8758 |
| freq_m | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 |
| freq_cv | 44.721 | 44.721 | 44.721 | 44.721 | 44.721 | 44.721 | 44.721 |
| freq_skew | 44.721 | 44.721 | 44.721 | 44.721 | 44.721 | 44.721 | 44.721 |
| sev_m | 8896 | 8236.6 | 7785.2 | 7418.4 | 7103.4 | 6824.9 | 5751.7 |
| sev_cv | 2.3401 | 2.5106 | 2.6287 | 2.7269 | 2.813 | 2.8907 | 3.2067 |
| sev_skew | 3.3416 | 3.3681 | 3.4054 | 3.4444 | 3.4833 | 3.5215 | 3.6997 |
| agg_m | 4.448 | 4.1183 | 3.8926 | 3.7092 | 3.5517 | 3.4124 | 2.8758 |
| agg_cv | 113.81 | 120.85 | 125.78 | 129.89 | 133.51 | 136.79 | 150.22 |
| agg_skew | 163.49 | 165.89 | 168.03 | 170.02 | 171.89 | 173.66 | 181.54 |

Next, manipulate the report_df dataframe to compute the required quantities. The final exhibit replicates Table 6.5 .

```
In [144]: bit = bl.report_df.iloc[:, :-4].loc[['attachment', 'freq_m', 'sev_m',
\hookrightarrow'agg_m']].T
In [145]: bit = bit.rename(columns={'attachment': 'deductible'}).set_index(
\hookrightarrow'deductible')
In [146]: bit['F(d)'] = np.array([bl.sevs[0].fz.cdf(i) for i in bit.index])
In [147]: bit['freq_m'] = bit.loc[0, 'freq_m'] * (1 - bit['F(d)'])
In [148]: bit['E[X;d]'] = (bit.sev_m[0] - bit.sev_m)
In [149]: bit['C(d)'] = bit['E[X;d]'] / bit.sev_m[0]
In [150]: bit['sev_m'] = bit['sev_m'] / (1 - bit['F(d)']) * alae
In [151]: bit = bit.iloc[:, [-2, 3, -1, 0, 1]]
In [152]: bit['pure prem'] = bit.freq_m * bit.sev_m
In [153]: qd(bit, accuracy=4)
statistic E[X;d] F(d) C(d) freq_m sev_m pure prem
deductible
0.0 0 0 0 0 0.0005 10675 5.3376
1000.0 659.42 0.48467 0.074125 0.00025766 19180 4.942
2000.0 1110.8 0.59885 0.12487 0.00020057 23289 4.6711
3000.0 1477.7 0.66251 0.16611 0.00016875 26377 4.451
4000.0 1792.7 0.70512 0.20151 0.00014744 28907 4.262
5000.0 2071.2 0.73636 0.23282 0.00013182 31064 4.0949
10000.0 3144.4 0.82147 0.35346 8.9266e-05 38660 3.451
```


Summary

Here is a summary of all the objects created in this section.

```
In [154]: from aggregate import pprint_ex
In [155]: for n, r in build.qlist('^Bahn').iterrows():
    .....: pprint_ex(r.program, split=20)
    .....:
```


2.13.7 Enterprise Risk Analysis

This section re-analyzes reinsurance structure alternatives introduced in Brehm et al. [2007], Enterprise Risk Analysis for Property \& Liability Insurance Companies. This book is the ERM text on the syllabus for CAS Exam Part 7.

Reinsurance Example

This section analyzes the example given in Section 2.5 of Enterprise Risk Analysis.
Assumptions. ABCD writes 33M excess property and casualty business.

- ABCD total gross
- Loss ratio: 69.36%
- Expense ratio: 23\%
- Combined ratio: 92.36%
- Margin 2.52M
- Casualty
- 14M premium
- 78\% expected loss ratio
- 5M limits
- 4 M xs 1 M reinsurance, ceded premium 4.41 M
- Property
- 19M premium
- 63% expected loss ratio
- 20M limits
- 17 M xs 3 M per risk reinsurance, ceded premium 2.36 M
- 95% share of 24 M xs 1 M cat reinsurance, ceded premium 1.53 M with $1 @ 100 \%$
- Cat program designed to cover to 250-year event.
- Reinsurance total
- Average recoveries 5.08 M
- Ceded premium 8.3M
- Net premium 24.7M
- Mythical alternative program
- Stop-loss, 20 xs 30, ceded premium 1.98

Additional assumptions. There are no details of the stochastic model, so we assume

- Frequency and severity models per DecL below,
- Split the property losses into cat and non-cat by assuming that cat premium equals 2 M , non-cat premium 17 M , at the same loss ratios (this is just a split of losses, the by line loss ratios are not used), and
- Cat, non-cat and casualty are independent.
- Free and unlimited reinstatements on the catastrophe protection. See REF for a discussion of reinstatements.

Stochastic Models and Baseline Analysis

Construct the gross and net portfolios. All amounts in millions.

Gross Portfolio

The 250 -year cat PML is printed last, to compare with the 25 M program.

```
In [1]: from aggregate import build, qd, mv
In [2]: import pandas as pd
In [3]: import matplotlib.pyplot as plt
In [4]: abcd = build('port ABCD '
    ...: 'agg Casualty 14.0 premium at 78% lr '
    ...: '5 xs 0 '
    ...: 'sev lognorm 0.1 cv 10 '
    ...: 'mixed gamma 0.3 '
    ...: 'agg PropertyNC 17.0 premium at 63% lr '
    ...: '25 xs 0'
    ...: 'sev lognorm [0.1 1] cv [5 10] wts [.7 .3] '
    ...: 'mixed gamma 0.1 '
    ...: 'agg PropertyC 2.0 premium at 63% Ir '
    ...: '150 xs 0'
    ...: 'sev 3 * pareto 2.375 - 3'
    ...: 'poisson ', bs=1/128, approximation='exact')
    ... :
In [5]: qd(abcd)
                    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Estu
GSkw (X)
unit X
Casualty Freq 125.93
    Sev 0.086717 0.086436 -0.0032438 4.0147 4.0286 9.5592
\hookrightarrow5552
    Agg 10.92 10.885 -0.0032438 0.47532 0.47626 0.88481 0.
\hookrightarrow88565
PropertyNC Freq 34.918
                                    0.19657
    Sev 0.30672 0.30659 -0.00041535 4.91 4.9121 11.569 11
\hookrightarrow69
    Agg 10.71 10.706 -0.00041535 0.85384 0.85419 1.9358 1
\hookrightarrow9358
PropertyC Freq 0.5801 1.3129
    Sev 2.172 2.172 -9.2692e-07 2.0207 2.0207 11.511 11.
\hookrightarrow511
    Agg 1.26 1.26 -9.2692e-07 2.9601 2.9601 12.398 12.
(continues on next page)
```

(continued from previous page)

```
\hookrightarrow998
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline total & Freq & 161.42 & & & 0.24785 & 0.57516 & - \\
\hline \multicolumn{8}{|l|}{\(\hookrightarrow\)} \\
\hline & Sev & 0.1418 & 0.14155 & -0.0017419 & 5.8043 & 23.386 & - \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{\(\hookrightarrow \quad 22.89 \quad 22.85 \quad-0.00174190 .48741 \quad 0.48813 \quad 1.6182\)}} \\
\hline & & & & & & & \\
\hline
\end{tabular}
\hookrightarrow6193
log2 = 16, bandwidth = 1/128, validation: fails sev mean, agg mean.
In [6]: mv(abcd)
mean = 22.89
variance = 124.4768
std dev = 11.1569
In [7]: print(abcd['PropertyC'].q(0.996))
22.859375
```


Net Portfolio

```
In [8]: abcd_net = build('port ABCD:Net
    ...: 'agg Casualty 14.0 premium at 78% lr '
    ...: '5 xs 0 '
    ...: 'sev lognorm 0.1 cv 10 '
    ...: 'occurrence net of 4 xs 1 '
    ...: 'mixed gamma 0.3 '
    ...: 'agg PropertyNC 17.0 premium at 63% lr '
    ...: '25 xs 0 '
    ...: 'sev lognorm [0.1 1] cv [5 10] wts [.7 .3] '
    ...: 'occurrence net of 17 xs 3'
    ...: 'mixed gamma 0.1 '
    ...: 'agg PropertyC 2.0 premium at 63% lr '
    ...: '150 xs 0 '
    ...: 'sev 3 * pareto 2.375-3'
    ...: 'occurrence net of 24 xs 1'
    ...: 'poisson ', bs=1/128, approximation='exact')
    ... :
```

In [9]: qd(abcd_net)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
$\begin{array}{llrrrrrrr}\text { Casualty } & \text { Freq } & 125.93 & & 0.31296 & & 0.60054 & 4.1714\end{array}$
$\begin{array}{lrrrrrrr}\text { Sev } & 0.086717 & 0.065564 & -0.24393 & 4.0147 & 2.5318 & 9.5592 & 4.1714 \\ \text { Agg } & 10.92 & 8.2563 & -0.24393 & 0.47532 & 0.3858 & 0.88481 & 0.65534\end{array}$
$\begin{array}{lrrrrrrr}\text { PropertyNC } & \text { Freq } & 34.918 & & 0.19657 & & 0.24744 \\ \text { Sev } & 0.30672 & 0.2098 & -0.31597 & 4.91 & 2.8604 & 11.569 & 6.1847\end{array}$
$\begin{array}{lrrrrrrr}\text { Sev } & 0.30672 & 0.2098 & -0.31597 & 4.91 & 2.8604 & 11.569 & 6.1847 \\ \text { Agg } & 10.71 & 7.3259 & -0.31597 & 0.85384 & 0.52244 & 1.9358 & 1.0361\end{array}$
$\begin{array}{llrllllll}\text { PropertyC } & \text { Freq } & 0.5801 & & 1.3129 & & 1.3129 & 36.228\end{array}$
$\begin{array}{lrrrrrrr}\text { Sev } & 2.172 & 0.80417 & -0.62976 & 2.0207 & 2.7345 & 11.511 & 36.228 \\ \text { Agg } & 1.26 & 0.4665 & -0.62976 & 2.9601 & 3.8228 & 12.398 & 40.649\end{array}$
$\begin{array}{llrrr}\text { Freq } & 161.42 & 0.24785 & 0.57516 \\ & \text { Sev } & 0.1418 & 0.099419 & -0.29888 \\ & 5.8043 & 23.386\end{array}$
$\log 2=16$, bandwidth $=1 / 128$, validation: n / a, reinsurance.
In [10]: qd(abcd_net.est_sd)
5.2892

Ceded Portfolio

```
In [11]: abcd_ceded = build('port ABCD:Ceded '
    ....: 'agg Casualty 14.0 premium at 78% lr '
    ...: '5 xs 0 '
    ...: 'sev lognorm 0.1 cv 10 '
    ...: 'occurrence ceded to 4 xs 1 '
    ...: 'mixed gamma 0.3 '
    ....: 'agg PropertyNC 17.0 premium at 63% lr '
    ...: '25 xs 0 '
    ...: 'sev lognorm [0.1 1] cv [5 10] wts [.7 .3] '
    ...: 'occurrence ceded to 17 xs 3 '
    ...: 'mixed gamma 0.1 '
    ...: 'agg PropertyC 2.0 premium at 63% Ir '
    ...: '150 xs 0 '
    ...: 'sev 3 * pareto 2.375 - 3 '
    ...: 'occurrence ceded to 24 xs 1 '
    ...: 'poisson ', bs=1/128, approximation='exact')
    .... :
```

In [12]: qd(abcd_ceded)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X

| Casualty | Freq | 125.93 | | 0.31296 | | 0.60054 | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | Sev | 0.086717 | 0.020872 | -0.75931 | 4.0147 | 11.205 | 9.5592 |$\quad 14.019$

| Agg | 10.92 | 2.6283 | -0.75931 | 0.47532 | 1.0464 | 0.88481 | 1.3572 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| PropertyNC Freq | 34.918 | 0.19657 | | 0.24744 | 13.51 | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Sev | 0.30672 | 0.096787 | -0.68444 | 4.91 | 10.657 | 11.569 |

| | Agg | 10.71 | 3.3796 | -0.68444 | 0.85384 | 1.8142 | 1.9358 | 2.3095 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| PropertyC | Freq | 0.5801 | | | 1.3129 | | 1.3129 | |
| | Sev | 2.172 | 1.3679 | -0.37024 | 2.0207 | 2.254 | 11.511 | 4.2512 |

| total | Freq | 161.42 | | 0.24785 | 0.57516 | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | Sev | 0.1418 | 0.042134 | -0.70286 | 5.8043 | 23.386 | |

$\log 2=16$, bandwidth $=1 / 128$, validation: n / a, reinsurance.

In [13]: qd(abcd_ceded.est_sd)
7.1941

Reinsurance Summary

The bottom table shows expected losses, counts, severity, loss ratios and margins implicit in the given reinsurance structure, pricing, and the gross stochastic model. The non-cat property reinsurance has the highest ceded loss ratio and the cat program the lowest.

```
In [14]: re_all = pd.concat((a.reinsurance_occ_layer_df for a in abcd_net),
    ....: keys=abcd_net.unit_names, names=['unit', 'share', 'limit', 'attach']);
\hookrightarrow
    ....: re_all = re_all.drop('gup', axis=0, level=3); \
    ....: qd(re_all, sparsify=False)
    .... :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline stat & & ex & ex & ex & CV & CV & CV & enь \\
\hline \(\hookrightarrow\) severity & pct & & & & & & & \\
\hline view & & ceded & net & subject & ceded & net & subject & ceded \\
\hline \(\hookrightarrow\) ceded & ceded & & & & & & & \\
\hline unit & share limit attach & & & & & & & \(\checkmark\) \\
\hline
\end{tabular}
```

(continued from previous page)

```
Casualty 1.0 4.0 1.0 2.6283 8.2563 10.885 11.205 2.5318 4.0286 2.007 -
@ 1.3096 0.24147
PropertyNC 1.0 17.0 3.0 3.3796 7.3259 10.706 10.657 2.8604 4.9121 0.65611 -
5.151 0.31569
PropertyC 1.0 24.0 1.0 0.7935 0.4665 1.26 2.254 2.7345 2.0207 0.29294 ~
    \hookrightarrow 2.7088 0.62976
In [15]: re_summary = re_all.iloc[:, [0, 3, 6, 7]]; \
    ....: re_summary.columns = ['ex', 'cv', 'en', 'severity']; \
    ....: re_summary['premium'] = [4.41, 2.36, 1.53]; \
    ....: re_summary['lr'] = re_summary.ex / re_summary.premium; \
    ....: re_summary['margin'] = re_summary.premium - re_summary.ex; \
    ....: qd(re_summary)
    .... :
\hookrightarrowmargin
unit share limit attach
\hookrightarrow
Casualty 1.0 4.0 1.0 2.6283 11.205 2.007 1.3096 1.4 4.41 0.59599 1.
\hookrightarrow7817
PropertyNC 1.0 17.0 3.0 3.3796 10.657 0.65611 
@0196 
\hookrightarrow7365
```


Underwriting Result Distributions

Make the underwriting result distributions, including the proposed stop loss reinsurance (computed by hand). The dataframe compare accumulates the gross, ceded, and net probability mass functions. We use these to determine statistics and to plot.

```
In [16]: compare = abcd.density_df[['loss', 'p_total']]; \
    ....: compare.columns = ['loss', 'gross']; \
    ....: compare['gross_uw'] = 33 - compare.loss; \
    ....: compare['net_current'] = abcd_net.density_df.p_total; \
    ....: compare['net_current_uw'] = 33 - 4.41 - 2.36 - 1.53 - compare.loss;
    .... :
In [17]: from aggregate import make_ceder_netter
In [18]: compare['net_stoploss'] = abcd.density_df.p_total; \
    ....: c, n = make_ceder_netter([(1, 20, 30)]); \
    ....: compare['nsll'] = n(compare.loss); \
    ....: g = compare.groupby('nsll').net_stoploss.sum(); \
    ....: compare['net_stoploss'] = 0.0; \
    ....: compare.loc[g.index, 'net_stoploss'] = g; \
    ....: compare['net_stoploss_uw'] = 33 - 1.98 - compare.loss;
    . . . .:
```


Comparison with ERA Book Figures

Statistics summary, compare Figure 2.5.2

```
In [19]: from aggregate import MomentWrangler
In [20]: from scipy.interpolate import interp1d
In [21]: ans = []; cdfs = []
In [22]: for xs, den in [(compare.gross_uw, compare.gross), (compare.net_current_
\hookrightarrowuw, compare.net_current),
    ...: (compare.net_stoploss_uw, compare.net_stoploss)]:
    ....: xd = xs * den
    ....: ex1 = np.sum(xd)
    ....: xd *= xs
    ....: ex2 = np.sum(xd)
    ....: ex3 = np.sum(xd * xs)
    ....: mw = MomentWrangler()
    ....: mw.noncentral = ex1, ex2, ex3
    ....: ans.append (mw)
    ....: cdfs.append(interp1d(den.cumsum(), xs))
    ....:
In [23]: fig_252 = pd.concat([i.stats for i in ans], keys=['Gross', 'Current',
\hookrightarrow'StopLoss'], axis=1)
In [24]: for p in [0.01, 0.99]:
    ....: fig_252.loc[f'q({p})'] = [float(i(p)) for i in cdfs]
    .... .
```

In [25]: qd(fig_252)

| | Gross | Current | StopLoss |
| :--- | ---: | ---: | ---: |
| ex | 10.15 | 8.6513 | 10.021 |
| var | 124.41 | 27.975 | 58.777 |
| sd | 11.154 | 5.2892 | 7.6666 |
| cv | 1.0989 | 0.61137 | 0.76502 |
| skew | -1.6193 | -2.0938 | -1.0088 |
| q(0.01) | 25.98 | 18.081 | 24 |
| q(0.99) | -25.76 | -5.6036 | -7.7399 |

Plot of densities and distributions, compare Figure 2.5.3 and 2.5.4.

```
In [26]: fig, axs = plt.subplots(1, 3, figsize=(3 * 3.5, 2.45), constrained_
@layout=True)
In [27]: ax0, ax1, ax2 = axs.flat
In [28]: for ax in [ax0, ax1]:
    ....: ax.plot(compare.gross_uw, compare.gross, label='Gross')
    ....: ax.plot(compare.net_current_uw, compare.net_current, label='Net,
↔current')
    ....: yl = ax.get_ylim()
    ....: ax.plot(compare.net_stoploss_uw, compare.net_stoploss, label='Net,\smile
\hookrightarrowstop loss')
    ....: ax.legend(loc='upper left')
    ....: ax.set(xlim=[-45, 30], ylim=yl)
    ....: ax.axvline(0, lw=.25, c='C7')
    .... :
In [29]: ax1.set(yscale='log', ylim=[1e-9, 1], title='Log density');
```

....: ax0.set(title='Mixed density/mass function');

```
.... :
In [30]: ax2.plot (compare.gross_uw, 1 - compare.gross.cumsum(), label='Gross'); \
    ....: ax2.plot (compare.net_current_uw, 1 - compare.net_current.cumsum(), label=
↔'Net, current'); \}
    ....: ax2.plot (compare.net_stoploss_uw, 1 - compare.net_stoploss.cumsum(),
↔label='Net, stop loss'); \}
    ....: ax2.legend(loc='upper left'); \}
    ....: ax2.set (xlim=[-45, 30], ylim=[-0.025, 1.025]);
    . . . . :
In [31]: ax2.axvline(0, lw=.25, \(\mathrm{c}=\mathrm{I}^{\prime} \mathrm{C} 7\) ');



Numerical distribution of underwriting results at various return points, compare Figure 2.5.5. Given there was no information about the stochastic model provided, and the model here is based on common benchmarks, the agreement between the two distributions is striking.
```

In [32]: fig_255 = pd.DataFrame(columns=['Gross', 'Current', 'StopLoss'],ь
@type=float)
In [33]: for p in [.0025, .005, 0.0075, .01, .0125, .015, .0175, .02,
...: .04, .06, .08, .1, .12, .14, .16, .18, .2, .22, .24,
...: . 25, .26, . 28, .3, .32, . 34, .36, .38, .4, . 42, .44,
....: .46, .48, .5]:
....: fig_255.loc[p] = [float(i(1-p)) for i in cdfs]
.... :
In [34]: fig_255.index.name = 'p'
In [35]: qd(fig_255, float_format=lambda x: f'{x:.3f}', max_rows=len(fig_255))

| | Gross | Current | StopLoss |
| :--- | ---: | ---: | ---: |
| p | | | |
| 0.0025 | -38.503 | -10.257 | -20.483 |
| 0.0050 | -32.113 | -7.826 | -14.093 |
| 0.0075 | -28.394 | -6.514 | -10.374 |
| 0.0100 | -25.760 | -5.604 | -7.740 |
| 0.0125 | -23.740 | -4.902 | -5.720 |
| 0.0150 | -22.114 | -4.328 | -4.094 |
| 0.0175 | -20.758 | -3.842 | -2.738 |
| 0.0200 | -19.595 | -3.420 | -1.575 |
| 0.0400 | -13.603 | -1.182 | 1.021 |
| 0.0600 | -9.962 | 0.182 | 1.021 |
| 0.0800 | -7.211 | 1.186 | 1.022 |
| 0.1000 | -4.936 | 1.991 | 1.023 |
| 0.1200 | -2.978 | 2.669 | 1.024 |
| 0.1400 | -1.263 | 3.259 | 1.025 |
| 0.1600 | 0.246 | 3.784 | 1.026 |
| 0.1800 | 1.575 | 4.259 | 1.027 |
| 0.2000 | 2.752 | 4.695 | 1.028 |

```
\begin{tabular}{rrrr}
0.2200 & 3.801 & 5.100 & 1.821 \\
0.2400 & 4.745 & 5.478 & 2.765 \\
0.2500 & 5.183 & 5.659 & 3.203 \\
0.2600 & 5.603 & 5.835 & 3.623 \\
0.2800 & 6.391 & 6.173 & 4.411 \\
0.3000 & 7.121 & 6.496 & 5.141 \\
0.3200 & 7.802 & 6.805 & 5.822 \\
0.3400 & 8.442 & 7.103 & 6.462 \\
0.3600 & 9.047 & 7.390 & 7.067 \\
0.3800 & 9.622 & 7.669 & 7.642 \\
0.4000 & 10.171 & 7.941 & 8.191 \\
0.4200 & 10.697 & 8.206 & 8.717 \\
0.4400 & 11.203 & 8.465 & 9.223 \\
0.4600 & 11.692 & 8.720 & 9.712 \\
0.4800 & 12.167 & 8.970 & 10.187 \\
0.5000 & 12.628 & 9.217 & 10.648
\end{tabular}

\section*{Modern Analysis}

The first step is to analyze the pricing in the context of needed capital. Strip expenses out (at \(23 \%\) across all units) to determine a net (of expenses) technical premium.
```

In [36]: er = 0.23
In [37]: df = pd.DataFrame({'unit': ['Casualty', 'PropertyNC', 'PropertyC'],
....: 'prem': [14, 17, 2],
...: 'gross_loss': [a.est_m for a in abcd]}).set_
\hookrightarrowindex('unit')
In [38]: df['ceded_prem'] = [4.41, 2.36, 1.53]; \
....: df['net_prem'] = df.prem - df.ceded_prem; \
....: df['tech_prem'] = df.prem * (1 - er); \
....: df['margin'] = df.tech_prem - df.gross_loss; \
....: df.loc['Total'] = df.sum(0); \
....: df['lr'] = df.gross_loss / df.prem; \
....: df['cr'] = df.lr + er; \
....: df['tech_lr'] = df.gross_loss / df.tech_prem;
. . . . :
In [39]: fp = lambda x: f'{x:. 1% }';
In [40]: fc = lambda x: f'{x:. 2f }'
In [41]: qd(df, float_format=fc, formatters={'lr':fp, 'cr': fp, 'tech_lr': fp})
\hookrightarrowtech_lr
unit
Casualty 14.00 10.88 4.41 10.59 10.78 -0.10 77.7% 100.7%
\hookrightarrow 101.0%
PropertyNC 17.00 10.71 2.36 14.64 13.09 2.38 63.0% 86.0%
@ 81.8%
PrrrereryC 2.00 1.26 1.53 0.47 1.54 0.28 63.0% 86.0%)
lllllllllll
@ 89.9%

```

The example does not specify a capital standard. Let's investigate the implied return on capital at different capital
standards. The capital standard is expressed as a loss percentile. The next calculation produces a table of returns expressed as a cost of capital ( coc ). It also shows the expected policyholder deficit.
```

In [42]: tech_prem = df.loc['Total', 'tech_prem']; \
....: ps = [.99, .995, .996, .999]; \
....: As = [abcd.q(p) for p in ps]; \
....: el = abcd.density_df.loc[As, 'exa_total']; \
....: margin = tech_prem - el; \
....: cocs = margin / (As - tech_prem); \
....: summary = pd.DataFrame({'p': ps, 'a': As, 'prem':tech_prem, 'el': el,
....: 'margin': margin, 'tech_lr': el / tech_prem, 'coc
\hookrightarrow': cocs,
...: 'epd': (abcd.est_m - el) / abcd.est_m}).set_index(
@'p')
....:
In [43]: summary.index = [fp(i) for i in summary.index]; \
....: summary.index.name = 'p'; \
....: qd(summary, float_format=fc, formatters={'coc': fp, 'tech_lr': fp, 'epd':\longleftarrow
@fp})
.... :

| 99.0\% | 58.77 | 25.41 | 22.75 | 2.66 | 89.5\% | 8.0\% | 0.5\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 99.5\% | 65.12 | 25.41 | 22.79 | 2.62 | 89.7\% | 6.6\% | 0.3\% |
| 99.6\% | 67.16 | 25.41 | 22.80 | 2.61 | 89.7\% | 6.2\% | 0.2\% |
| 99.9\% | 80.90 | 25.41 | 22.83 | 2.58 | 89.8\% | 4.6\% | 0.1% |

```

Based on this analysis, we assume a \(99.5 \%\) (200-year) capital standard, which gives a reasonable \(8 \%\) return on capital. 200-year capital is also the Solvency II standard.

From here, the analysis could proceed in many directions. The approach we select is
1. Calibrate a set of distortions to total pricing on a gross basis with the 200-year capital standard.
2. Analyze the pricing implied by these distortions on the net book and its natural allocation by unit.
3. Compare the model value (implied ceded premium) with market reinsurance price.

The model value is the maximum amount that is consistent with pricing according to each distortion. Reinsurance cheaper than the model value is efficient: replacing traditional capital with reinsurance capital lowers the economic cost of bearing risk.

\section*{Calibrate Distortions}

Extract the exact cost of capital implied by given gross pricing.
```

In [44]: coc = summary.loc['99.5%', 'coc']
In [45]: print(coc)
0.06591531668710866

```

Calibrate distortions to current pricing. Use five one-parameter distortion families
1. constant cost of capital ( CCoC ),
2. proportional hazard ( PH )
3. Wang,
4. dual, and
5. TVaR.

They are sorted from most tail-centric (expensive for tail risk) to cheapest. See Mildenhall and Major [2022].
The next dataframe shows the asset level and implied loss ratio, distortion name, survival probability ( \(0.5 \%\) ), expected loss, premium, premium to capital leverage ( PQ ), the cost of (return on) capital, the distortion family parameter, and the parameterization error. The calibrated premium matches the technical premium.


The plot show this effect: COC is fattest on the left for small exceedance probabilities (high losses), whereas TVaR is fattest on the right.
```

In [48]: fig, axs = plt.subplots(1, 5, figsize=(10.0, 2.1), constrained_
\hookrightarrowlayout=True)
In [49]: for ax, (k, v) in zip(axs.flat, abcd.dists.items()):
....: v.plot(ax=ax)
.... :
In [50]: fig.suptitle('Comparison of distortion functions giving current market.
\leftrightarrowpremium in total')
Out[50]: Text(0.5, 0.98, 'Comparison of distortion functions giving current market`
\hookrightarrowpremium in total')

```


\section*{Analyze Implied Pricing}

Apply the distortions to the net portfolio and analyze the resulting pricing using analyze_distortions(), which includes a by-unit margin allocation. The dataframe ans . comp_df contains a wealth of other information; we just focus on the premium. The last row, Technical, shows market reinsurance pricing.
```

In [51]: abcd_net.dists = abcd.dists
In [52]: ansn = abcd_net.analyze_distortions(p=0.996, add_comps=False); \
....: ans = abcd.analyze_distortions(p=0.996, add_comps=False); \
....: bit = pd.concat((ans.comp_df.xs('P', 0, 1), ansn.comp_df.xs('P', 0, 1),

```
(continued from previous page)


\section*{Compare Model Value and Market Price}

Focus on the last block above, under ceded. The rows Dist . . . show the model value of reinsurance according to each distortion. The row Technical shows the market price. The market suggests to buy when the value is greater than the price.

The analysis provides a clear answer only for casualty, where the model value of reinsurance is much lower than the market price for all distortions: don't buy the reinsurance.
For property cat, CCoC , the most tail-centric distortion, sees a lot of value in the reinsurance - hardly surprising. All the other less tail-centric distortions do not see it as adding value overall (lower value than market price). The order of the distortions and their assessment of the value of cat reinsurance are perfectly aligned, as they were for casualty albeit in the opposite order.

For property non-cat, the PH and Wang distortions see value, the others do not, though dual is close. This is the most interesting case because the ranking does not agree with the distortion ordering (as it does for the other two units). Property non-cat contributes to volatility and tail-risk, and so is more nuanced. Management often struggles with property risk reinsurance because tail-centric measures understate the value it provides. Actuaries stuggle to find analytic methods that capture its management-perceived value. The range of distortions considered covers the two views well.

In total the program is not seen as good value by any of the distortions. Since they span the reasonable range of risk preferences, this is a robust result.

Management often cares about more than just tail risk and they generally rejects the findings from CCoC . Whether or not they see value in reinsurance is sensitive to their exact risk appetite. These findings are consistent with the fact that each company tends to structure its reinsurance differently, tailored to their own risk appetite. Difference in risk appetite have a material impact on decision making.

\section*{Analysis for Stop Loss Reinsurance}

Here is the analysis for the stop loss reinsurance. This analysis is manual, because the net of stop loss distribution for a Portfolio is not currently built-in. We have to extract the relevant distributions and apply the distortions, estimate a_stoploss the net asset requirement at \(\mathrm{p}=0.995\) (rounded to be a multiple of bs), determine the net expected loss and the model value. Recall compare. net_stoploss is the density of the net of stop-loss loss outcome. S1 is used to create its survival function, to which the distortion is applied to determine pricing. exa and exag are the objective and risk adjusted losses (model value) given an asset level a, computed as \(\int_{0}^{a} S\) and \(\int_{0}^{a} g(S)\) respectively (see PIR REF). We then select the relevant row and assemble the answer.
```

In [53]: S0 = pd.Series(compare.net_stoploss, index=compare.loss); \
....: S0.name = 'S'; \
....: S1 = S0[::-1].shift(1, fill_value=0).cumsum(); \
....: a0 = float(interp1d(S0.cumsum(), S0.index)(0.995)); \
....: a_stoploss = abcd.snap(a0); \
....: print(f'Net of stoploss assets {a_stoploss:.3f}');
....:
Net of stoploss assets 45.109
In [54]: net_el_stoploss_unlim = (compare.loss * compare.net_stoploss).sum(); \
....: net_el_stoploss = (np.minimum(compare.loss, a_stoploss) * compare.net_
->stoploss).sum(); \
....: epd = 1 - net_el_stoploss / net_el_stoploss_unlim; \
....: qd(pd.Series([net_el_stoploss_unlim, net_el_stoploss, epd], index=[
\hookrightarrow'unlimited net loss', 'net loss limited by assets', 'epd']));
....:
lunlimited net loss }r\mathrm{ los limited by assets
In [55]: pricer = S1.to_frame().sort_index();
In [56]: for nm, dist in abcd.dists.items():
....: pricer[f'{nm}_exa'] = pricer['S'].shift(1, fill_value=0).cumsum() *`
\hookrightarrowabcd.bs
....: pricer[f'{nm}_gS'] = dist.g(pricer.S)
...: pricer[f'{nm}_exag'] = pricer[f'{nm}_gS'].shift(1, fill_value=0).
cumsum() * abcd.bs
....: pricer = pricer.sort_index()
.... :
In [57]: try:
....: pricer = pricer.loc[[a_stoploss]]; \
....: pricer.columns = pricer.columns.str.split('_', expand=True); \
....: comp = pricer.stack(0).droplevel(0,0); \
....: comp.loc['Technical'] = [net_el_stoploss, tech_prem - 1.98, np.nan]; \
....: comp['stoploss_value'] = tech_prem - comp.exag; \
....: comp = comp.sort_values('stoploss_value', ascending=False); \
....: qd (comp)
....: except:
....: print('Unspecfied error: TODO investigate.')

```
```

Unspecfied error: TODO investigate.

```

The output table reveals that the stop loss value is greater than its market price for the \(\mathrm{CCoC}, \mathrm{PH}\), and Wang distortions, but less for the dual and TVaR. Thus, management averse to tail risk regard it as beneficial, but those more concerned with volatility and body risk do not see it as worthwhile.

A note of caution is in order on this analysis. Stop loss structures are a broker favorite, but are generally not liked by reinsurers. Aggregate features are hard to underwrite and price, and the lower premium is not attractive. A treaty similar to the proposed stop loss would be very hard to find in the market.

\section*{Visualizing Risk}

The next figure shows the kappa functions, a handy way to visualize which units are contributing to total risk across the loss spectrum (see REF). Here the horizontal axis is total loss. The middle plot shows the reinsurance is quite effective at lowering the risk from Property NC (green line), but less effective at altering the risk profile of the other two lines. In particular, cat (red line) still dominates the tail risk.
```

In [58]: fig, axs = plt.subplots(1, 3, figsize=(3 * 3.5, 2.55), constrained_
@layout=True)
In [59]: for ax, a in zip(axs.flat, [abcd, abcd_net, abcd_ceded]):
....: mx = a.q(0.9999)
....: a.density_df.filter(regex='exeqa_[CPt]').plot(ax=ax,
...: xlim=[0, mx], ylim=[0, mx], title=a.name);
....: ax.set(xlabel='loss, x');
.... :
In [60]: axs.flat[0].set(ylabel='$E[X_unit | X=x]$');
In [61]: fig.suptitle('Conditional loss as a function of x for each unit');

```


Conditional loss as a function of x for each unit



\subsection*{2.13.8 Other Papers}

Miscellaneous short examples from various texts.

\section*{Contents}
- Wang on the Wang Transform
- Wang on Weather Derivatives
- Gerber: Stop Loss Premiums
- Richardson's Deferred Approach to the Limit

Wang on the Wang Transform

Source paper: Wang [2000].

\section*{Pricing by Layer}

Concepts: Layer expected loss and risk adjusted layer technical premium with Wang and proportional spectral risk measures.

Setup: Ground-up Pareto risk, shape 1.2, scale 2000. Layer and compare Wang(0.1) and \(\mathrm{PH}(0.9245)\) pricing.
Source Exhibits:
Table 1
Risk Load by Layer Under Distortion \(g_{\alpha}\) and PH-transform
\begin{tabular}{rccccc}
\hline \begin{tabular}{c} 
Layer \\
in 000's
\end{tabular} & \begin{tabular}{c} 
Expected \\
Loss
\end{tabular} & \begin{tabular}{c} 
PH \\
Premium
\end{tabular} & \begin{tabular}{c} 
Relative \\
Loading \%
\end{tabular} & \begin{tabular}{c}
\(\mathbf{H}[\boldsymbol{X} ; \boldsymbol{\alpha}]\) \\
Premium
\end{tabular} & \begin{tabular}{c} 
Relative \\
Loading \%
\end{tabular} \\
\hline\((0,50]\) & 4,793 & 5,487 & 14.5 & 5,487 & 14.5 \\
\((50,100]\) & 657 & 910 & 38.4 & 845 & 28.6 \\
\((100,200]\) & 582 & 857 & 47.2 & 769 & 32.2 \\
\((200,300]\) & 307 & 475 & 54.7 & 414 & 34.9 \\
\((300,400]\) & 204 & 325 & 59.6 & 278 & 36.6 \\
\((400,500]\) & 150 & 246 & 63.3 & 207 & 37.8 \\
\((500,1000]\) & 428 & 728 & 70.1 & 598 & 39.9 \\
\((1000,2000]\) & 373 & 675 & 81.1 & 533 & 43.0 \\
\((2000,5000]\) & 420 & 819 & 94.7 & 616 & 46.5 \\
\((5000,10000]\) & 271 & 567 & 109.5 & 406 & 49.9 \\
\hline
\end{tabular}

Thanks: Zach Eisenstein of Aon.
Code:
Build the portfolio.
```

In [1]: from aggregate import build, qd
In [2]: layers = [0, 50e3, 100e3, 200e3, 300e3, 400e3, 500e3, 1000e3, 2000e3,
45000e3, 10000e3]

```
(continued from previous page)
```

In [3]: a1 = build('agg Wang.t1 '
...: '1 claim '
...: '10000e3 xs 0 ' \# limit the severity to avoid infinite variance
...: 'sev 2000 * pareto 1.2 - 2000 '
...: f'occurrence ceded to tower {layers} '
...: 'fixed'
...:)
... :
In [4]: qd(a1)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 8179.5 8178.5 -0.00012201 11.595 11.596 70.841 70.841
Agg 8179.5 8178.5 -0.00012201 11.595 11.596 70.841 70.841
log2 = 16, bandwidth = 200, validation: n/a, reinsurance.

```

Expected loss and other ceded statistics by layer.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{```
In [5]: ff = lambda x: x if type(x)==str else (
    ...: f'{x/1e6:,.1f}M' if x >= 500000 else
    ...: (f'{x:,.3f}' if x < 100 else f'{x:,.0f}'))
```}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{In [6]: fp = lambda \(\mathrm{x}: \mathrm{f} \mathrm{f}^{\prime}\{\mathrm{x}: .10\}^{\prime}\)} \\
\hline \multicolumn{7}{|l|}{```
In [7]: qdl = lambda x: qd(x, index=False, line_width=200, formatters={'pct': fp},
 ...: float_format=ff, col_space=10)
```} \\
\hline \multicolumn{7}{|l|}{. . .} \\
\hline \multicolumn{7}{|l|}{In [8]: qdl(a1.reinsurance_occ_layer_df .xs('ceded', 1, 1).droplevel(0).reset_ \(\rightarrow\) index (drop=False))} \\
\hline limit & attach & ex & cv & en & severity & pct \\
\hline 50,000 & 0.000 & 4,787 & 1.908 & 1.000 & 4,787 & 58.5\% \\
\hline 50,000 & 50,000 & 657 & 8.058 & 0.020 & 32,776 & 8.0\% \\
\hline 100,000 & 100,000 & 582 & 12.148 & 0.009 & 65,143 & 7.1\% \\
\hline 100,000 & 200,000 & 307 & 17.279 & 0.004 & 78,055 & \(3.8 \%\) \\
\hline 100,000 & 300,000 & 204 & 21.484 & 0.002 & 83,955 & 2. 5\% \\
\hline 100,000 & 400,000 & 150 & 25.182 & 0.002 & 87,349 & 1.8\% \\
\hline 0.5M & 0.5 M & 428 & 31.751 & 0.001 & 324,046 & 5. 2 \% \\
\hline 1.0M & 1.0M & 373 & 48.091 & 0.001 & 0.6 M & 4.6\% \\
\hline 3.0 M & 2.0M & 420 & 76.476 & 0.000 & 1.7M & 5.1\% \\
\hline 5.0 M & 5.0M & 271 & 126 & \[
0.000
\] & \[
3.2 \mathrm{M}
\] & 3.3\% \\
\hline infM & gup & 8,179 & 11.596 & 1.000 & 8,179 & 100.0\% \\
\hline
\end{tabular}

ZE provided function to make the exhibit table. The column pct shows the relative loading.
```

In [9]: def make_table(agg, layers):
...: agg_df = agg.density_df
...: layer_df = agg_df.loc[layers, ['F', 'S', 'lev', 'gS', 'exag']]
...: layer_df['layer_el'] = np.diff(layer_df.lev, prepend = 0)
...: layer_df['premium'] = np.diff(layer_df.exag, prepend = 0)
...: layer_df['pct'] = layer_df['premium'] / layer_df['layer_el'] - 1
...: layer_df = layer_df.rename_axis("exhaust").reset_index()
...: layer_df['attach'] = layer_df['exhaust'].shift(1).fillna(0)
...: qdl(layer_df.loc[1:, ['attach', 'exhaust', 'layer_el', 'premium', 'pct
@']])

```

Make the distortions and apply. First, Wang.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{[11]: a1.apply_distortion(d1)} \\
\hline \multicolumn{5}{|l|}{In [12]: make_table(a1, layers)} \\
\hline attach & exhaust & layer_el & premium & pct \\
\hline 0.000 & 50,000 & 4,787 & 5,481 & 14.5\% \\
\hline 50,000 & 100,000 & 657 & 845 & 28.6\% \\
\hline 100,000 & 200,000 & 582 & 769 & 32.2\% \\
\hline 200,000 & 300,000 & 307 & 414 & 34.9\% \\
\hline 300,000 & 400,000 & 204 & 278 & 36.6\% \\
\hline 400,000 & 0.5 M & 150 & 207 & 37.8\% \\
\hline 0.5M & 1.0M & 428 & 598 & 39.9\% \\
\hline 1.0M & 2.0M & 373 & 533 & 43.0\% \\
\hline 2.0M & 5.0M & 420 & 616 & \(46.5 \%\) \\
\hline 5.0M & 10.0M & 271 & 406 & 49.9\% \\
\hline
\end{tabular}

Make the distortions and apply. Second, PH.
```

In [13]: d2 = build('distortion wang_d2 ph 0.9245')
In [14]: a1.apply_distortion(d2)
In [15]: make_table(a1, layers)

attach	exhaust	layer_el	premium	pct
0.000	50,000	4,787	5,480	14.5%
50,000	100,000	657	910	38.4%
100,000	200,000	582	856	47.2%
200,000	300,000	307	475	54.7%
300,000	400,000	204	325	59.6%
400,000	0.5 M	150	246	63.3%
0.5 M	1.0 M	428	727	70.1%
1.0 M	2.0 M	373	675	81.1%
2.0 M	5.0 M	420	818	94.7%
5.0 M	10.0 M	271	567	109.5%

```

It appears the layer 50000 xs 0 is reported incorrectly in the paper.

\section*{Satellite Pricing}

Concepts: The cost of a Bernoulli risk with a \(5 \%\) probability of a total loss of \(\$ 100 \mathrm{~m}\) using Wang(0.1) distortion.
Thanks: Zach Eisenstein of Aon.

\section*{Code:}

Build the portfolio. Illustrates how to set up a Bernoulli.
```

In [16]: a2 = build('agg wang2 0.05 claims dsev [100] bernoulli')
In [17]: qd(a2)

	E[X] Est E[X]	Err E[X]	CV (X)	Est CV(X)	Skew (X)	Est	Skew (X)
X							
Freq	0.05		4.3589		4.1295		
Sev	100100	0	0	0			
Agg	5 5	$8.8818 \mathrm{e}-16$	4.3589	4.3589	4.1295		4.1295
$\log 2=8, \mathrm{bandwidth}=1$, validation: not unreasonable							

```

Check the distribution output.
```

In [18]: qd(a2.density_df.query('p_total > 0')[['p_total', 'F', 'S']])
p_total F S
loss
0.0 0.95 0.95 0.05
100.0 0.05 1 0

```

Build and apply the distortion. Use the price () method. The first argument selects the \(100 \%\) quantile for pricing, i.e., the limit is fully collateralized. First with the Wang from above. The relative loading reported is the complement of the loss ratio.
```

In [19]: qd(a2.price(1, d1))
statistic L P M Q a LR PQ ROE
line
wang2 5 6.1191 1.1191 93.881 100 0.81712 0.065179 0.01192

```

Try with a more severe distortion.
```

In [20]: d3 = build('distortion wang_d2 wang 0.15')
In [21]: qd(a2.price(1, d2))

```

```

line
wang2 5 6.269 1.269 93.731 100 0.79758 0.066883 0.013539

```

\section*{Wang on Weather Derivatives}

Source paper: Wang [2002].
Concepts: Applying Wang transform to empirical distribution via an Aggregate object.

\section*{Source Exhibits:}

TABLE 2
Option Prices at Various Strike Levels
\begin{tabular}{lllllll}
\hline \hline Strike & \(\mathbf{1 2 5 0}\) & \(\mathbf{1 3 0 0}\) & \(\mathbf{1 3 5 0}\) & \(\mathbf{1 4 0 0}\) & \(\mathbf{1 4 5 0}\) & \(\mathbf{1 5 0 0}\) \\
\hline Exp. Payoff & \(\$ 47.86\) & \(\$ 38.77\) & \(\$ 29.68\) & \(\$ 20.59\) & \(\$ 11.50\) & \(\$ 4.11\) \\
Price & \(\$ 68.21\) & \(\$ 55.45\) & \(\$ 42.70\) & \(\$ 29.94\) & \(\$ 17.18\) & \(\$ 6.59\) \\
Loading & \(43 \%\) & \(43 \%\) & \(44 \%\) & \(45 \%\) & \(49 \%\) & \(60 \%\) \\
\hline \hline
\end{tabular}

\section*{Data:}

Create a dataframe from the heating degree days (HDD) history laid out in Table 1.
```

In [22]: d = '''Dec-79
....: 972.5
....: Dec-87
....: 1018.5
....: Dec-95
....: 1199.5
....: Dec-80
....: 1147.0
....: Dec-88

```
```

 : 1155.0
 : Dec-96
 : 1156.0
 : Dec-81
 : 1244.0
 : Dec-89
 : 1474.5
 : Dec-97
 : 1040.0
 : Dec-82
 : 901.0
 : Dec-90
 : 1129.5
 : Dec-98
 : 940.5
 : Dec-83
 : 1573.0
 : Dec-91
 : 1077.5
 : Dec-99
 : 1090.5
 : Dec-84
 : 1055.0
 : Dec-92
 : 1129.5
 : Dec-00
 : 1517.5
 : Dec-85
 : 1488.0
 : Dec-93
 : 1090.5
 : Dec-86
 : 1065.5
 : Dec-94
 : 938.5'''
 :
 In [23]: import pandas as pd
In [24]: d = d.split('\n')
In [25]: df = pd.DataFrame(zip(d[::2], d[1::2]), columns=['month', 'hdd'])
In [26]: df['hdd'] = df.hdd.astype(float)
In [27]: qd(df.head())
month hdd
D Dec-79 972.5
Dec-87 1018.5
Dec-95 1199.5
D Dec-80 1147
Dec-88 1155
In [28]: qd(df.describe())
hdd
count 22
mean 1154.7
std 193.37
min 901

```
\begin{tabular}{rr}
\(25 \%\) & 1043.8 \\
\(50 \%\) & 1110 \\
\(75 \%\) & 1188.6 \\
\(\max\) & 1573
\end{tabular}

\section*{Code:}

Create an empirical aggregate based on the HDD data.
```

In [29]: hdd = build(f'agg HDD 1 claim dsev {df.hdd.values} fixed'
...: , bs=1/32, log2=16)
.... .

```
In [30]: qd(hdd)
```

 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
 X
Freq 1 0
Sev 1154.7 1154.7 2.2204e-16 0.16362 0.16362 0.95984 0.95984
Agg 1154.7 1154.7 2.2204e-16 0.16362 0.16362 0.95984 0.95984
log2 = 16, bandwidth = 1/32, validation: not unreasonable.

```

Build the distortion and apply to call options at different strikes. Reproduces Table 2.
```

In [31]: from aggregate.extensions import Formatter
In [32]: d1 = build('distortion w25 wang . 25')
In [33]: ans = []
In [34]: strikes = np.arange(1250, 1501, 50)
In [35]: bit = hdd.density_df.query('p_total > 0')[['p_total']]
In [36]: for strike in strikes:
....: ser = bit.groupby(by= lambda x: np.maximum(0, x - strike)).p_total.
@um()
....: ans.append(d1.price(ser, kind='both'))
.... :
In [37]: df = pd.DataFrame(ans, index=strikes,
....: columns=['bid', 'el', 'ask'])
.... :
In [38]: df.index.name = 'strike'
In [39]: df['loading'] = (df.ask - df.el) / df.el
In [40]: qd(df.T, float_format=Formatter(dp=2, w=8))

strike	1250	1300	1350	1400	1450	1500
bid	32.01	25.84	19.67	13.51	7.34	2.44
el	47.86	38.77	29.68	20.59	11.50	4.11
ask	68.21	55.45	42.70	29.94	17.18	6.59
loading	42.5%	43.0%	43.8%	45.4%	49.4%	60.1%

```

\section*{Gerber: Stop Loss Premiums}

Source papers: Gerber [1982].
Concepts: Stop loss and survival functions for Poisson uniform(1,3) aggregate. Claim count 1, 10, and 100
Source Exhibits: Matches columns labeled exact in Tables 1-6.

\section*{Code:}

Expected claim count 1.
```

In [41]: gerber1 = build('agg Gerber1 1 claim sev 2 * uniform + 1 poisson'
....: bs=1/1024)
....:
In [42]: qd(gerber1)

```

```

log2 = 16, bandwidth = 1/1024, validation: fails sev skew.
In [43]: bit = gerber1.density_df.loc[0:21:2*1024, ['S', 'lev']]
In [44]: bit['stop_loss'] = gerber1.agg_m - bit.lev
In [45]: qd(bit)
S lev stop_loss
loss
0.000 0.63212 0 2
2.000 0.44809 1.1723 0.82773
4.000 0.17095 1.7311 0.26891
6.000 0.048993 1.9282 0.071838
8.000 0.012406 1.9837 0.016267
10.000 0.0027232 1.9967 0.0032535
12.000 0.00052133 1.9994 0.00058146
14.000 8.7627e-05 1.9999 9.3461e-05
16.000 1.3371e-05 2 1.3664e-05
18.000 1.8774e-06 2 1.84e-06
20.000 2.4358e-07 2 2.3017e-07

```

Expected claim count 10.
```

In [46]: gerber10 = build('agg Gerber10 10 claim sev 2 * uniform + 1 poisson'
...: , bs=1/128)
.... .
In [47]: qd(gerber10)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 10 0
Agg 20 20-8.8818e-16 0.32914 0.32914 0.35056 0.35056
log2 = 16, bandwidth = 1/128, validation: fails sev skew.
In [48]: bit = gerber10.density_df.loc[15:61:5*128, ['S', 'lev']]
In [49]: bit['stop_loss'] = gerber10.agg_m - bit.lev

```
\begin{tabular}{lrrr} 
In [50]: qd(bit) & & \\
& & \\
& S & lev & stop_loss \\
loss & & & \\
15.000 & 0.76769 & 14.243 & 5.7565 \\
20.000 & 0.47646 & 17.374 & 2.6255 \\
25.000 & 0.21683 & 19.068 & 0.93214 \\
30.000 & 0.072549 & 19.744 & 0.25632 \\
35.000 & 0.018223 & 19.945 & 0.055073 \\
40.000 & 0.0035238 & 19.991 & 0.0093834 \\
45.000 & 0.00053724 & 19.999 & 0.0012887 \\
50.000 & \(6.5977 e-05\) & 20 & 0.00014495 \\
55.000 & \(6.6491 e-06\) & 20 & \(1.3552 e-05\) \\
60.000 & \(5.5879 e-07\) & 20 & \(1.0673 e-06\)
\end{tabular}

Expected claim count 100.
```

In [51]: gerber100 = build('agg Gerber100 100 claim sev 2 * uniform + 1 poisson'
...: , bs=1/16)
.... . :
In [52]: qd(gerber100)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 100 0.1 0.1
Sev 2 2 0 0.28868 0.28896 -1.846e-14 0
Agg 200 200 -1.0658e-14 0.10408 0.10409 0.11086 0.11088
log2 = 16, bandwidth = 1/16, validation: fails sev skew.
In [53]: bit = gerber100.density_df.loc[180:301:20*16, ['S', 'lev']]
In [54]: bit['stop_loss'] = gerber100.agg_m - bit.lev
In [55]: qd(bit)
S lev stop_loss
loss
180.000 0.83089 178.23 21.774
200.000 0.49203 191.69 8.3051
220.000 0.16763 198.04 1.9595
240.000 0.030257 199.74 0.26481
260.000 0.0028586 199.98 0.019934
280.000 0.000144 200 0.00083749
300.000 3.982e-06 200 1.9972e-05

```

\section*{Richardson's Deferred Approach to the Limit}

Source papers: Embrechts et al. [1993], Grübel and Hermesmeier [2000].
Concepts: Given estimators of an unknown quantity \(A^{*}=A(h)+c h^{\alpha}+O\left(h^{\beta}\right)\) with \(\alpha<\beta\). Evaluate at \(h\) and \(h / t\). Multiply the estimate at \(h / t\) by \(t^{\alpha}\), subtract the original estimate, and rearrange to get
\[
A^{*}=\frac{t^{\alpha} A(h / t)-A(h)}{t^{\alpha}-1}+O\left(h^{\beta}\right) .
\]

The truncation error order of magnitude has decreased. The constant \(c\) need not be known. Applying this approach to estimate the density as pmf divided by bucket size, \(f_{h} / h\), Embrechts et al. [1993] report the following.

Setup: Poisson(20) exponential aggregate.
Source Exhibits: Figure 1.

The variable egp3 is treated as the exact answer. It could also be approximated using the series expansion, but this has been shown already, in REF. Set up basic portfolios evaluated at different bucket sizes.
```

In [56]: egp1 = build('agg EGP 20 claims sev expon 1 poisson',
...: bs=1/16, log2=10)
.... :
In [57]: qd(egp1)

```
```

 E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
    ```
        E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
X
Freq 20 0.22361 0.22361
Freq 20 0.22361 0.22361
Sev 1 0.99984 -0.00016274 1 1.0005 1.998
Sev 1 0.99984 -0.00016274 1 1.0005 1.998
Agg 20 19.997 -0.00016277 0.31623 0.3163 0.47434 0.47429
Agg 20 19.997 -0.00016277 0.31623 0.3163 0.47434 0.47429
log2 = 10, bandwidth = 1/16, validation: fails sev mean, agg mean.
log2 = 10, bandwidth = 1/16, validation: fails sev mean, agg mean.
In [58]: egp2 = build('agg EGP 20 claims sev expon 1 poisson',
In [58]: egp2 = build('agg EGP 20 claims sev expon 1 poisson',
    ...: bs=1/32, log2=11)
    ...: bs=1/32, log2=11)
    .... .
    .... .
In [59]: qd(egp2)
\begin{tabular}{lrrrrrrrr} 
& E[X] & Est E[X] & Err E[X] & CV (X) & Est CV (X) & Skew (X) & Est Skew (X) \\
X & & & & 0.22361 & & 0.22361 & \\
Freq & 20 & & & 1 & 1.0001 & 2 & 1.9995 \\
Sev & 1 & 0.99996 & \(-4.0689 e-05\) & 1 & & \\
Agg & 20 & 19.999 & \(-4.0713 e-05\) & 0.31623 & 0.31625 & 0.47434 & 0.47432
\end{tabular}
log2 = 11, bandwidth = 1/32, validation: not unreasonable.
In [60]: egp3 = build('agg EGP 20 claims sev expon 1 poisson',
    ...: log2=16)
    .... :
In [61]: qd(egp3)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 20 0.22361 0.22361
```



```
Agg 20 20 -1.5895e-07 0.31623 0.31623 0.47434 0.47434
log2 = 16, bandwidth = 1/512, validation: not unreasonable.
```

Concatenate and estimated densities from pmf. Compute errors to egp3. Compute the Richardson extrapolation. It is indistinguishable from egp3. The last table shows cases with the largest errors.

```
In [62]: import pandas as pd
In [63]: df = pd.concat((egp1.density_df.p_total, egp2.density_df.p_total, egp3.
\hookrightarrowdensity_df.p_total),
    ...: axis=1, join='inner', keys=[1, 2, 3])
    .... :
In [64]: df[1] = df[1] * 16;
    ....: df[2] = df[2] * 32;
    ....: df[3] = df[3] * (1<<10);
    ....: df['rich'] = (4 * df[2] - df[1]) / 3; \
    ....: df['diff_1'] = df[1] - df[3];
    ....: df['diff_2'] = df[2] - df[3];
    ....: m = df.diff_2.max() * .9;
    ....: ax = df[['diff_1', 'diff_2']].plot(figsize=(3.5, 2.45));
    ....: (df['rich'] - df[3]).plot(ax=ax, lw=.5, label='Richardson');
    . . . :
```

```
In [65]: ax.legend(loc='upper right')
Out[65]: <matplotlib.legend.Legend at 0x7fe3e92cfe80>
In [66]: qd(df.query(f'diff_2 > {m}').iloc[::10])
Empty DataFrame
Columns: [1, 2, 3, rich, diff_1, diff_2]
Index: []
```


API REFERENCE

3.1 Underwriter Module

3.1.1 Underwriter Class

class aggregate.underwriter. Underwriter (name='Rory', databases=None, update=False, $\log 2=10$, debug $=$ False)
The Underwriter class manages the creation of Aggregate and Portfolio objects, and maintains a database of standard Severity (curves) and Aggregate (unit or line level) objects called the knowledge base.

- Handles persistence to and from agg files
- Is interface into program parser
- Handles safe lookup from the knowledge for parser

Objects have a kind and a name. The kind is one of 'sev', 'agg' or 'port'. The name is a string. They have a representation as a program. When the program is interpreted it produces a dictionary spec that can be used to create the object. The static method factory can create any object from the (kind, name, spec, program) quartet, though, strictly, program is not needed.

The underwriter knowledge is stored in a dataframe indexed by kind and name with columns spec and program.

$$
\text { _init__(name='Rory', databases=None, update=False, } \log 2=10 \text {, debug=False })
$$

Create an underwriter object. The underwriter is the interface to the knowledge base of the aggregate system. It is the interface to the parser and the interpreter, and to the database of curves, portfolios and aggregates.

Parameters

- name - name of underwriter. Defaults to Rory, after Rory Cline, the best underwriter I know and a supporter of an analytic approach to underwriting.
- databases - name or list of database files to read in on creation. if None: nothing loaded; if 'default' (installed) or 'site' (user, in ~/aggregate/databases) database *.agg files in default or site directory are loaded. If 'all' both default and site databases loaded. A string refers to a single database; an interable of strings is also valid. See read_database for search path.
- update - if True, update database files with new objects.
- $\log 2-\log 2$ of number of buckets in discrete representation. 10 is 1024 buckets.
- debug - if True, print debug messages.

```
_interpreter_work(iterable,debug=False)
```

Do all the work for the test, allows input to be marshalled into the tester in different ways. Unlike production interpret_program, runs one line at a time. Each line is preprocessed and then run through a clean parser, and the output analyzed.

Last column, program as input is only changed if the preprocessor changes the program

Returns

DataFrame
build (program, update $=$ None, $\log 2=0, b s=0$, recommend_p $=0.99999$, logger_level $=$ None, $* * k w a r g s$)
Convenience function to make work easy for the user. Intelligent auto updating. Detects discrete distributions and sets bs $=1$.
build method sets loger level to 30 by default.
__call__ is set equal to build.

Parameters

- program -
- update - build's update
- $\log 2-0$ is default: Estimate $\log 2$ for discrete and self.log2 for all others. Inupt value over-rides and cancels discrete computation (good for large discrete outcomes where bucket happens to be 1.)
- bs -
- logger_level - temporary $\log (g e r)$ level for this build
- recommend_p - passed to recommend bucket functions. Increase (closer to 1) for thick tailed distributions.
- kwargs - passed to update, e.g., padding. Note force_severity=True is applied automatically

Returns

created object(s)
dir (pattern=")
List all agg databases in site and default directories. If entries is True then read them and return named objects.

Parameters

pattern - glob pattern for filename; .agg is added

factory (answer)

Create object of kind from spec, a dictionary. Creating from uw obviously needs the uw, so this is NOT a staticmethod!

Parameters

answer - an Answer class with members kind, name, spec, and program

Returns

creates answer.object

interpret_program (portfolio_program)

Preprocess and then parse a program one line at a time. Each output is stored in the Underwriter's knowledge database. No objects are created.

Error handling through parser.

Parameters

portfolio_program -

Returns

```
interpreter_file(*, filename=", where=")
```

Run a suite of test programs. For detailed analysis, run_one. filename is a string or Path. If a csv it is read into a dataframe, with the first column used as index. If it is an agg file (e.g. an agg database), it is
preprocessed to remove comments and replace nt agg with a space, then split on new lines and converted to a dataframe. Other file formats are rejected.

These methods are called interpreter_... rather than interpret_... because they are for testing and debugging the interpreter, not for actually interpreting anything!

```
interpreter_line (program, name='one off', debug=True)
```

Interpret single line of code in debug mode. name is index of output

```
interpreter_list (program_list)
```

Interpret elements in a list in debug mode.

```
static logger_level(level)
```

Convenience function.

Parameters

level -

Returns

more (regex)

More information about methods and properties matching regex

qlist (regex)

Wrapper for show to just list elements in knowledge that match regex. Returns a dataframe.

qshow (regex, tacit=True)

Wrapper for show to just show (display) elements in knowledge that match regex. No reutrn value if tacit, else returns a dataframe.

```
read_database (fn)
```

read database of curves, aggs and portfolios. These can live in the default directory that is part of the instalation or ~/aggregate/
fn can be a string filename, with or without extension. A .agg extension is added if there is no suffix. Search path:

- in the current dir
- in site_dir (user)
- in default_dir (installation)

Parameters

fn - database file name

```
run_test_suite()
```

Run interpreter on the test suite
safe_lookup (buildinid)
Lookup buildinid=kind.name in uw to find expected kind and merge safely into self.arg_dict.
Different from getitem because it splits the item into kind and name and double checks you get the expected kind.

Parameters

buildinid - a string in kind.name format

Returns

show (regex, kind=", plot=True, describe=True, logger_level=30, verbose=False, **kwargs)
Create from knowledge by name or match to name. Optionally plot. Returns the created object plus dataframe with more detailed information. Allows exploration of preloaded databases.

Eg regex = "A.*[234] to run examples named A...2, 3 and 4.

See qshow for a wrapper that just returns the matches, with no object creation or plotting.
Examples.

```
from aggregate.utilities import pprint
# pretty print all prgrams starting A; no object creation
build.show('^A.*', 'agg', False, False).program.apply(pprint);
# build and plot A..234
ans, df = build.show('^A.*')
```


Parameters

- regex - for filtering name
- kind - the kind of object, port, agg, etc.
- plot - if True, plot (default True)
- describe - if True, print the describe dataframe
- logger_level - work silently!
- verbose - if True, return the dataframe and objects; else no return value
- kwargs - passed to build for calculation instructions

Returns

dictionary of created objects and DataFrame with info about each.
property test_suite_file
Return the test_suite filename, or None if it does not exist
write (portfolio_program, $\log 2=0, b s=0$, update $=$ None, $* * k w a r g s$)
Write a natural language program. Write carries out the following steps.

1. Read in the program and cleans it (e.g. punctuation, parens etc. are removed and ignored, replace ; with new line etc.)
2. Parse line by line to create a dictionary definition of sev, agg or port objects.
3. Replace sev.name, agg.name and port.name references with their objects.
4. If update set, update all created objects.

Sample input:

```
port MY_PORTFOLIO
    agg Line1 20 loss 3 x 2 sev gamma 5 cv 0.30 mixed gamma 0.4
    agg Line2 10 claims 3 x 2 sevgamma 12 cv 0.30 mixed gamma 1.2
    agg Line 3100 premium at 0.4 3 x 2 sev 4 @ lognormal 3 cv 0.8 fixed 1
```

The indents are required if each agg item appears on a new line.
See parser for full language spec! See Aggregate class for many examples.

Parameters

- log2 -
- bs -
- portfolio_program-
- update - override class default
- kwargs - passed to object's update method if update==True

Returns

single created object or dictionary name: object
write_from_file (file_name, $\log 2=0, b s=0$, update=False, $* *$ kwargs)
Read program from file. Delegates to write.

Parameters

- file_name -
- $\log 2$ -
- bs -
- update -
- kwargs -

Returns

3.1.2 Other Underwriter functions

3.2 Parser Module

3.2.1 Lexer Class

class aggregate.parser.UnderwritingLexer

Implements the Lexer for the agg language.

static preprocess (program)

Separate preprocessor step, allowing it to be called separately. Preprocessing involves six steps:

1. Remove // comments, through end of line
2. Remove n in [] (vectors) that appear from using $f^{\prime}\{n p$. inspace (. . .) \}'
3. Backslash (line continuation) mapped to space
4. nt is replaced with space, supporting the tabbed indented Portfolio layout
5. Split on newlines

Parameters

program-

Returns

3.2.2 Parser Class

class aggregate.parser.UnderwritingParser (safe_lookup_function, debug=False)
Implements the Parser for the agg language.
Here are testers for the math expressions:

```
from aggregate import build
for t in ['-123', '-2%', '45%', '1e-3%', 'inf', '-inf', 'exp(1)', 'exp(1/2)',
->'exp(-1)', '-1/8',
            'exp(10)/exp(3**2/2)', '2**10', '50/exp(.3**2/2)', '1/exp(1.9**2 / 2)
\hookrightarrow']:
    a = build(t)
    print(a.name)
    assert float(a.name) == eval(t.replace('%', '/100').replace('exp', 'np.exp
\leftrightarrow').replace('inf', 'np.inf'))
```

To test on the test_suite:

```
df = build.run_test_suite()
assert len(df.query('error != 0')) == 0
static enhance_debugfile(f_out=")
```

Put links in the parser.out debug file, if DEBUGFILE !=".

Parameters

f_out - Path or filename of output. If "" then DEBUGFILE.html used.

Returns

error (p)
Default error handling function. This may be subclassed.

3.2.3 Remaining Functions

aggregate.parser.grammar (add_to_doc=False, save_to_fn=")

Write the grammar at the top of the file as a docstring
To work with multi-rules enter them on one line, like so:

```
@_('builtin_agg PLUS expr', 'builtin_agg MINUS expr')
```


Parameters

- add_to_doc - add the grammar to the docstring
- save_to_fn - save the grammar to a file

3.3 Distributions Module

3.3.1 Frequency Class

class aggregate.distributions.Frequency (freq_name, freq_a, freq_b, freq_zm, freq_p0)
Manages Frequency distributions: creates moment function and MGF.

- freq_moms(n): returns EN, EN^2 and EN^3 when EN=n
- freq_pgf(n, z): returns the moment generating function applied to z when $\mathrm{EN}=\mathrm{n}$

Frequency distributions are either non-mixture types or mixture types.

Non-Mixture Frequency Types

- fixed: no parameters
- bernoulli: exp_en interpreted as a probability, must be <1
- binomial: $\operatorname{Binomial}(\mathrm{n} / \mathrm{p}, \mathrm{p})$ where $\mathrm{p}=$ freq_a, and $\mathrm{n}=$ exp_en
- poisson: Poisson(n)
- geometric: geometric($(1 /(\mathrm{n}+1))$, supported on $0,1,2, \ldots$
- logarithmci: logarithmic(theta), supported on $1,2, \ldots$; theta solved numerically
- negymana: $\operatorname{Po}(\mathrm{n} /$ freq_a) stopped sum of $\operatorname{Po}($ freq_a) freq_a $=$ "eggs per cluster"
- negbin: freq_a is the variance multiplier, ratio of variance to mean
- pascal:
- pascal: (generalized) pascal-poisson distribution, a poisson stopped sum of negative binomial; exp_en gives the overall claim count. freq_a is the CV of the frequency distribution and freq_b is the number of claimants per claim (or claims per occurrence). Hence, the Poisson component has mean exp_en / freq_b and the number of claims per occurrence has mean freq_b. This parameterization may not be ideal(!).

Mixture Frequency Types

These distributions are G-mixed Poisson, so N I G ~ Poisson(n G). They are labelled by the name of the mixing distribution or the common name for the resulting frequency distribution. See Panjer and Willmot or JKK.

In all cases freq_a is the CV of the mixing distribution which corresponds to the asympototic CV of the frequency distribution and of any aggregate when the severity has a variance.

- gamma: negative binomial, freq_a $=\mathrm{cv}$ of gamma distribution
- delaporte: shifted gamma, freq_a $=\mathrm{cv}$ of mixing disitribution, freq_ $\mathrm{b}=$ proportion of certain claims $=$ shift. freq_b must be between 0 and 1 .
- ig: inverse gaussian, freq_a $=\mathrm{cv}$ of mixing distribution
- sig: shifted inverse gaussian, freq_a $=\mathrm{cv}$ of mixing disitribution, freq_b $=$ proportion of certain claims $=$ shift. freq_b must be between 0 and 1 .
- sichel: generalized inverse gaussian mixing distribution, freq_a $=\mathrm{cv}$ of mixing distribution and freq_b $=$ lambda value. The beta and mu parameters solved to match moments. Note lambda $=-0.5$ corresponds to inverse gaussian and 0.5 to reciprocal inverse gauusian. Other special cases are available.
- sichel.gamma: generalized inverse gaussian mixture where the parameters match the moments of a delaporte distribution with given freq_a and freq_b
- sichel.ig: generalized inverse gaussian mixture where the parameters match the moments of a shifted inverse gaussian distribution with given freq_a and freq_b. This parameterization has poor numerical stability and may fail.
- beta: beta mixing with freq_a $=\mathrm{Cv}$ where beta is supported on the interval [0, freq_b]. This method should be used carefully. It has poor numerical stability and can produce bizzare aggregates when the alpha or beta parameters are <1 (so there is a mode at 0 or freq_b).
Code proof for Neyman A:

```
from aggregate import build, qd
mean = 10
eggs_per_cluster = 4
neya = build(f'agg Neya {mean} claims dsev[1] neymana {eggs_per_cluster}')
qd(neya)
po = build(f'agg Po4 {eggs_per_cluster} claims dsev[1] poisson')
po_pmf = po.density_df.query('p_total > 1e-13').p_total
byhand = build(f'agg ByHand {mean / eggs_per_cluster} claims dsev {list(po_pmf.
\hookrightarrowindex)} {po_pmf.values} poisson')
qd (byhand)
df = pd.concat((neya.density_df.p_total, byhand.density_df.p_total), axis=1)
df.columns = ['neya', 'byhand']
df['err'] = df.neya - df.byhand
assert df.err.abs().max() < 1e-5
df.head(40)
```

Code proof for Pascal:

```
from aggregate import build, qd
mean = 10
claims_per_occ =1.24
overall_cv = 1.255
pascal = build(f'agg PascalEg {mean} claims dsev[1] pascal {overall_cv}
(continued from previous page)
```

\hookrightarrow{claims_per_occ}', log2=16)
qd(pascal)
c = (mean * overall_cv**2 - 1 - claims_per_occ) / claims_per_occ
th = claims_per_occ * c
a = 1 / c

from form of nb pgf identify r = a and beta = theta, mean is rb, var isu

\hookrightarrowrb(1+b)
nb = build(f'agg NB {claims_per_occ} claims dsev[1] negbin {th + 1}', log2=16)
nb_pmf = nb.density_df.query('p_total > 1e-13').p_total
qd(nb)
byhand = build(f'agg ByHand {mean / claims_per_occ} claims dsev {list(nb_pmf.
\hookrightarrowindex)} {nb_pmf.values} poisson', log2=16)
qd (byhand)
df = pd.concat((pascal.density_df.p_total, byhand.density_df.p_total), axis=1)
df.columns = ['pascal', 'byhand']
df['err'] = df.pascal - df.byhand
assert df.err.abs().max() < 1e-5
df.head(40)

```

\section*{Parameters}
- freq_name - name of the frequency distribution, poisson, geometric, etc.
- freq_a -
- freq_b -
init__(freq_name, freq_a, freq_b, freq_zm, freq_p0)
Creates the freq_pgf and moment function:
- moment function(n) returns \(\mathrm{EN}, \mathrm{EN}^{\wedge} 2, \mathrm{EN}^{\wedge} 3\) when \(\mathrm{EN}=\mathrm{n}\).
- freq_pgf(n, z) is the freq_pgf evaluated at \(\log (\mathrm{z})\) when \(\mathrm{EN}=\mathrm{n}\)

\section*{Parameters}
- freq_name - name of the frequency distribution, poisson, geometric, etc.
- freq_a -
- freq_b -
- freq_zm - freq_zm True if zero modified, default False
- freq_p0 - modified p0, probability of zero claims

\subsection*{3.3.2 Severity Class}
class aggregate.distributions.Severity (sev_name, exp_attachment=None, exp_limit=inf, sev_mean \(=0\), sev_cv=0, sev_a \(a=n a n, s e v _b=0\), sev_loc=0, sev_scale=0, sev_xs=None, sev_ps=None, \(s e v _w t=1, s e v _l b=0, s e v _u b=i n f\), sev_conditional=True, name=", note=")
__init__ (sev_name, exp_attachment=None, exp_limit=inf, sev_mean=0, sev_cv=0, sev_a=nan, sev_b=0, \(s e v _l o c=0\), sev_scale=0, sev_xs=None, sev_ps=None, sev_wt=1, sev_lb=0, sev_ub=inf, sev_conditional=True, name=", note=")

A continuous random variable, subclasses scipy.statistics_df.rv_continuous, adding layer and attachment functionality. It overrides
- cdf
- pdf
- isf
- ppf
- sf
- stats

See scipy.stats continuous rvs for more details about available distributions. The following distributions with two shape parameters are supported:
- Burr (burr)
- Generalized Pareto (genpareto)
- Generalized gamma (gengamma)

It is easy to add others in the code below. With two shape parameters the mean cv input format is not available.

See code in Problems and Solutions to extract distributions from scipy stats by introsepection.

\section*{Parameters}
- sev_name - scipy statistics_df continuous distribution I (cld)histogram cts or discerte I fixed
- exp_attachment - None if layer is missing, distinct from 0 ; if \(\mathrm{a}=0\) then losses are conditional on \(\mathrm{X}>\mathrm{a}\), if \(\mathrm{a}=\) None then losses are conditional on \(\mathrm{X}>=0\)
- exp_limit -
- sev_mean -
- sev_cv-
- sev_a - first shape parameter
- sev_b - second shape parameter (e.g., beta)
- sev_loc - scipy.stats location parameter
- sev_scale - scipy.stats scale parameter
- sev_xs - for fixed or histogram classes
- sev_ps -
- sev_wt - this is not used directly; but it is convenient to pass it in and ignore it because sevs are implicitly created with sev_wt=1.
- sev_conditional - conditional or unconditional; for severities use conditional
- name - name of the severity object
- note - optional note.
cv_to_shape ( \(c v\), hint=1)
Create a frozen object of type dist_name with given cv. The lognormal, gamma, inverse gamma and inverse gaussian distributions are solved analytically. Other distributions solved numerically and may be unstable.

\section*{Parameters}
- cv-
- hint -

\section*{Returns}
mean_to_scale (shape, mean, loc=0)
Adjust the scale to achieved desired mean. Return a frozen instance.

\section*{Parameters}
- shape -
- mean -
- loc - location parameter (note: location is added to the mean...)

\section*{Returns}

\section*{moms ()}

Revised moments for Severity class. Trying to compute moments of
\[
\begin{aligned}
& X(a, d)=\min (d,(X-a)+) \\
& ==>E\left[X(a, d)^{\wedge} n\right]=\operatorname{int} _a^{\wedge} d(x-a)^{\wedge} n f(x) d x+(d-a)^{\wedge} n S(d) .
\end{aligned}
\]

Let \(\mathrm{x}=\mathrm{q}(\mathrm{p}), \mathrm{F}(\mathrm{x})=\mathrm{p}, \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{dp}\). for \(1,2, \ldots \mathrm{n}(<=3)\).
\(\mathrm{E}\left[\mathrm{X}(\mathrm{a}, \mathrm{d})^{\wedge} \mathrm{n}\right]=\) int \(_{2}\{\mathrm{~F}(\mathrm{a})\}^{\wedge}\{\mathrm{F}(\mathrm{d})\}(\mathrm{q}(\mathrm{p})-\mathrm{a})^{\wedge} \mathrm{n} \mathrm{dp}+(\mathrm{d}-\mathrm{a})^{\wedge} \mathrm{n} \mathrm{S}(\mathrm{d})\)
The base is to compute int \(_\{\mathrm{F}(\mathrm{a})\}^{\wedge}\{\mathrm{F}(\mathrm{d})\} \mathrm{q}(\mathrm{p})^{\wedge} \mathrm{n} \mathrm{dp}\). These are exi below. They are then adjusted to create the moments needed.

Old moments tried to compute int \(\mathrm{S}(\mathrm{x}) \mathrm{dx}\), but that is over a large, non-compact domain and did not work so well. With 0.9.3 old_moms was removed. Old_moms code did this:
```

ex1 = safe_integrate(lambda x: self.fz.sf(x), 1)
ex2 = safe_integrate(lambda x: 2 * (x - self.attachment) * self.fz.sf(x),ص
↔2)
ex3 = safe_integrate(lambda x: 3 * (x - self.attachment) ** 2 * self.fz.
Gf(x), 3)

```

\section*{Test examples}
```

def test(mu, sigma, a, y):
global moms
import types
\# analytic with no layer attachment
fz = ss.lognorm(sigma, scale=np.exp(mu))
tv = np.array([np.exp(k*mu + k * k * sigma**2/2) for k in range(1,4)])
\# old method
s = agg.Severity('lognorm', sev_a=sigma, sev_scale=np.exp(mu),
exp_attachment=a, exp_limit=y)
est = np.array(s.old_moms())
\# swap out moment routine
setattr(s, moms.__name__, types.MethodType(moms, s))
ans = np.array(s.moms())
\# summarize and report
sg= f'Example: mu={mu} sigma={sigma} a={a} y={y}'
print(f'{sg}\n{"="*len(sg)}')
print(pd.DataFrame({'new_ans' : ans, 'old_ans': est,
'err': ans/est-1, 'no_la_analytic' : tv}))
test(8.7, .5, 0, np.inf)
test(8.7, 2.5, 0, np.inf)
test (8.7, 2.5, 10e6, 200e6)

```

Example: \(m u=8.7\), sigma=0.5, \(a=0, y=\inf\)
\begin{tabular}{rrrrr} 
& new_ans & old_ans & err & no_la_analytic \\
0 & \(6.802191 \mathrm{e}+03\) & \(6.802191 \mathrm{e}+03\) & \(3.918843 \mathrm{e}-11\) & \(6.802191 \mathrm{e}+03\) \\
1 & \(5.941160 \mathrm{e}+07\) & \(5.941160 \mathrm{e}+07\) & \(3.161149 \mathrm{e}-09\) & \(5.941160 \mathrm{e}+07\) \\
2 & \(6.662961 \mathrm{e}+11\) & \(6.662961 \mathrm{e}+11\) & \(2.377354 \mathrm{e}-08\) & \(6.662961 \mathrm{e}+11\)
\end{tabular}

Example: \(\mathrm{mu}=8.7\) sigma \(=2.5 \mathrm{a}=0 \mathrm{y}=\inf\) (here the old method failed)
\begin{tabular}{|rrrrr|} 
& new_ans & old_ans & err & no_la_analytic \\
& \(1.366256 \mathrm{e}+05\) & \(1.366257 \mathrm{e}+05\) & \(-6.942541 \mathrm{e}-08\) & \(1.366257 \mathrm{e}+05\) \\
1 & \(9.663487 \mathrm{e}+12\) & \(1.124575 \mathrm{e}+11\) & \(8.493016 \mathrm{e}+01\) & \(9.669522 \mathrm{e}+12\) \\
2 & \(2.720128 \mathrm{e}+23\) & \(7.597127 \mathrm{e}+19\) & \(3.579469 \mathrm{e}+03\) & \(3.545017 \mathrm{e}+23\) \\
\hline
\end{tabular}

Example: mu \(=8.7\) sigma \(=2.5 \mathrm{a}=10000000.0 \mathrm{y}=200000000.0\)
\begin{tabular}{rrrrr} 
& new_ans & old_ans & err & no_la_analytic \\
0 & \(1.692484 \mathrm{e}+07\) & \(1.692484 \mathrm{e}+07\) & \(2.620126 \mathrm{e}-14\) & \(1.366257 \mathrm{e}+05\) \\
1 & \(1.180294 \mathrm{e}+15\) & \(1.180294 \mathrm{e}+15\) & \(5.242473 \mathrm{e}-13\) & \(9.669522 \mathrm{e}+12\) \\
2 & \(1.538310 \mathrm{e}+23\) & \(1.538310 \mathrm{e}+23\) & \(9.814372 \mathrm{e}-14\) & \(3.545017 \mathrm{e}+23\)
\end{tabular}

The numerical issues are very sensitive. Goign for a compromise between speed and accuracy. Only an issue for very thick tailed distributions with no upper limit - not a realistic situation. Here is a tester program for two common cases:
```

logger_level(30) \# see what is going on
for sh, dist in zip([1,2,3,4, 3.5,2.5,1.5,.5], ['lognorm']*3 + ['pareto
G']*4):
s = Severity(dist, sev_a=sh, sev_scale=1, exp_attachment=0)
print(dist,sh, s.moms())
if dist == 'lognorm':
print('actual', [(n, np.exp(n*n*sh*sh/2)) for n in range(1,4)])

```

\section*{Returns}
vector of moments. np. nan signals unreliable but finite value. np.inf is correct, the moment does not exist.
plot ( \(n=100\), axd=None, figsize \(=\left(7.0,4.9\right.\) ), layout \(=\) ' \(A B \backslash n C D^{\prime}\) )
Quick plot, updated for 0.9 .3 with mosaic and no grid lines. ( \(\mathrm{F}(\mathrm{x}), \mathrm{x}\) ) plot replaced with \(\log\) density plot.

\section*{param \(n\)}
number of points to plot.
param axd
axis dictionary, if None, create new figure. Must have keys ' A ', ' B ', ' C ', ' D '.

\section*{param figsize}
(width, height) in inches.
param layout
the subplot_mosaic layout of the figure. Default is ' AB

\section*{CD'}
return

\subsection*{3.3.3 Aggregate Class}
class aggregate.distributions.Aggregate (name, exp_el=0, exp_premium =0, exp_lr=0, exp_en \(=0\), exp_attachment \(=\) None, exp_limit \(=i n f\), sev_name=", sev_a=nan, sev_b=0, sev_mean=0, \(s e v _c v=0\), sev_loc=0, sev_scale=0, sev_xs=None, \(s e v _p s=N o n e, s e v _w t=1, s e v _l b=0, s e v _u b=i n f\), sev_conditional=True, sev_pick_attachments=None, sev_pick_losses=None, occ_reins=None, occ_kind=", freq_name=", freq_a=0, freq_b=0, freq_zm=False, freq_p \(0=\) nan, agg_reins=None, agg_kind=", note=")
( \(n a m e\), exp_el \(=0\), exp_premium \(=0\), exp_lr=0, exp_en \(=0\), exp_attachment=None, exp_limit \(=i n f\), sev_name=", sev_a=nan, sev_b=0, sev_mean=0, sev_cv=0, sev_loc=0, sev_scale=0, \(s e v _x s=N o n e, s e v _p s=N o n e, s e v _w t=1, s e v _l b=0, s e v _u b=i n f\), sev_conditional=True, sev_pick_attachments=None, sev_pick_losses=None, occ_reins=None, occ_kind=", freq_name \(=\) ", freq_ \(a=0\), freq_b=0, freq_zm=False, freq_p \(0=\) nan, agg_reins \(=\) None, agg_kind=", note=")
The Aggregate distribution class manages creation and calculation of aggregate distributions. It allows for very flexible creation of Aggregate distributions. Severity can express a limit profile, a mixed severity or both. Mixed frequency types share a mixing distribution across all broadcast terms to ensure an appropriate inter- class correlation.

\section*{Parameters}
- name - name of the aggregate
- exp_el - expected loss or vector
- exp_premium - premium volume or vector (requires loss ratio)
- exp_lr - loss ratio or vector (requires premium)
- exp_en - expected claim count per segment (self.n = total claim count)
- exp_attachment - occurrence attachment; None indicates no limit clause, which is treated different from an attachment of zero.
- exp_limit - occurrence limit
- sev_name - severity name or sev.BUILTIN_SEV or meta.var agg or port or similar or vector or matrix
- sev_a - scipy stats shape parameter
- sev_b - scipy stats shape parameter
- sev_mean - average (unlimited) severity
- sev_cv - unlimited severity coefficient of variation
- sev_loc - scipy stats location parameter
- sev_scale - scipy stats scale parameter
- sev_xs - xs and ps must be provided if sev_name is (cld)histogram, xs are the bucket break points
- sev_ps - ps are the probability densities within each bucket; if buckets equal size no adjustments needed
- sev_wt - weight for mixed distribution
- sev_lb - lower bound for severity (length of sev_lb must equal length of sev_ub and weights)
- sev_ub - upper bound for severity
- sev_conditional - if True, severity is conditional, else unconditional.
- sev_pick_attachments - if not None, a list of attachment points to define picks
- sev_pick_losses - if not None, a list of losses by layer
- occ_reins - layers: share po layer xs attach or XXXX
- occ_kind - ceded to or net of
- freq_name - name of frequency distribution
- freq_a - cv of freq dist mixing distribution
- freq_b - claims per occurrence (delaporte or sig), scale of beta or lambda (Sichel)
- freq_zm - True/False zero modified flag
- freq_p0 - if freq_zm, provides the modified value of p0; default is nan
- agg_reins - layers
- agg_kind - ceded to or net of
- note - note, enclosed in \{ \}
_apply_reins_work (reins_list, base_density, debug=False)
Actually do the work. Called by apply_reins and reins_audit_df. Only needs self to get limits, which it must guess without \(q\) (not computed at this stage). Does not need to know if occ or agg reins, only that the correct base_density is supplied.

\section*{Parameters}
- reins_list-
- kind - occ or agg, for debug plotting
- debug -

\section*{Returns}
ceder, netter,
_reins_audit_df_work (kind='occ')
Apply each re layer separately and aggregate loss and other stats.
```

_repr_html_()

```

For IPython.display
```

aggregate_error_analysis(log2,bs2_from=None, **kwargs)

```

Analysis of aggregate error across a range of bucket sizes. If bs2_from is None use recommend_bucket plus/mins 3. Note: if distribution does not have a second moment, you must enter bs2_from.

\section*{Parameters}
- \(\log 2\) -
- bs2_from - lower bound on bs to use, in log2 terms; estimate using recommend_bucket if not input.
- kwargs - passed to update
apply_agg_reins (debug=False, padding=1, tilt_vector=None)
Apply the entire agg reins structure and save output. For by layer detail create reins_audit_df. Makes sev_density_gross, sev_density_net and sev_density_ceded, and updates sev_density to the requested view.

Not reflected in statistics df.

\section*{Returns}
```

apply_distortion(dist)

```

Apply distortion to the aggregate density and append as exag column to density_df. \# TODO check consistent with other implementations. :param dist: :return:
apply_occ_reins (debug=False)
Apply the entire occ reins structure and save output For by layer detail create reins_audit_df Makes sev_density_gross, sev_density_net and sev_density_ceded, and updates sev_density to the requested view.

Not reflected in statistics df.

\section*{Parameters}
debug - More verbose.

\section*{Returns}
approximate (approx_type='slognorm', output='scipy')
Create an approximation to self using method of moments matching.
Compare to Portfolio.approximate which returns a single sev fixed freq agg, this returns a scipy dist by default.

Use case: exam questions with the normal approacimation!

\section*{Parameters}
- approx_type - norm, lognorn, slognorm (shifted lognormal), gamma, sgamma. If 'all' then returns a dictionary of each approx.
- output - scipy - frozen scipy.stats continuous rv object; sev_decl - DecL program for severity (to substituate into an agg ; no name) sev_kwargs - dictionary of parameters to create Severity agg_decl - Decl program agg T 1 claim sev_decl fixed any other string created Aggregate object

\section*{Returns}
as above.
\(\operatorname{cdf}(x\), kind \(=\) 'previous')
Return cumulative probability distribution at x using kind interpolation.
2022-10 change: kind introduced; default was linear

\section*{Parameters}
\(\mathbf{x}\) - loss size

\section*{Returns}
cramer_lundberg (rho, cap=0, excess=0, stop_loss=0, kind='index', padding=1)
Return the Pollaczeck-Khinchine Capital function relating surplus to eventual probability of ruin. Assumes frequency is Poisson.

See Embrechts, Kluppelberg, Mikosch 1.2, page 28 Formula 1.11
TODO: Should return a named tuple.

\section*{Parameters}
- rho - rho \(=\) prem \(/\) loss -1 is the margin-to-loss ratio
- cap - cap = cap severity at cap, which replaces severity with \(X \mid X<=\) cap
- excess - excess \(=\) replace severity with \(X \mid X>c a p\) (i.e. no shifting)
- stop_loss - stop_loss = apply stop loss reinsurance to cap, so \(\mathrm{X}>\) stop_loss replaced with \(\operatorname{Pr}(\mathrm{X}>\) stop_loss) mass
- kind
- padding - for update (the frequency tends to be high, so more padding may be needed)

\section*{Returns}
ruin vector as pd.Series and function to lookup (no interpolation if kind==index; else interp) capitals

\section*{property density_df}

Create and return the density_df data frame. A read only property, though if you write \(\mathrm{d}=\) a.density_df you can obviously edit d. Some duplication of columns (p and p_total) to ensure consistency with Portfolio.

\section*{Returns}

DataFrame similar to Portfolio.density_df.

\section*{property describe}

Theoretic and empirical stats. Used in _repr_html_.

\section*{discretize (sev_calc, discretization_calc, normalize)}

Discretize the severity distributions and weight.
sev_calc describes how the severity is discretize, see `Discretizing the Severity Distribution`. The options are discrete=round, forward, backward or moment.
sev_calc='continuous' (same as forward, kept for backwards compatibility) is used when you think of the resulting distribution as continuous across the buckets (which we generally don't). The buckets are not shifted and so \(\operatorname{Pr}\left(X=b_{i}\right)=\operatorname{Pr}\left(b_{i-1}<X \leq b_{i}\right)\). Note that \(b_{i-1}=-b s / 2\) is prepended.
We use the discretized distribution as though it is fully discrete and only takes values at the bucket points. Hence, we should use sev_calc='discrete'. The buckets are shifted left by half a bucket, so \(\operatorname{Pr}(X=\) \(\left.b_{i}\right)=\operatorname{Pr}\left(b_{i}-b / 2<X \leq b_{i}+b / 2\right)\).

The other wrinkle is the righthand end of the range. If we extend to np.inf then we ensure we have probabilities that sum to 1 . But that method introduces a probability mass in the last bucket that is often not desirable (we expect to see a smooth continuous distribution, and we get a mass). The other alternative is to use endpoint \(=1\) bucket beyond the last, which avoids this problem but can leave the probabilities short. We opt here for the latter and normalize (rescale).
discretization_calc controls whether individual probabilities are computed using backwarddifferences of the survival function or forward differences of the distribution function, or both. The former is most accurate in the right-tail and the latter for the left-tail of the distribution. We are usually concerned with the right-tail, so prefer survival. Using both takes the greater of the two esimates giving the best of both worlds (underflow makes distribution zero in the right-tail and survival zero in the left tail, so the maximum gives the best estimate) at the expense of computing time.

Sensible defaults: sev_calc=discrete, discretization_calc=survival, normalize=True.

\section*{Parameters}
- sev_calc - discrete=round, forward, backward, or continuous and method becomes discrete otherwise
- discretization_calc-survival, distribution or both; in addition the method then becomes survival
- normalize - if True, normalize the severity so sum probs \(=1\). This is generally what you want; but when dealing with thick tailed distributions it can be helpful to turn it off.

\section*{Returns}
easy_update \(\left(\log 2=16, b s=0\right.\), recommend_ \(p=0.99999\), debug \(=\) False, \({ }^{* *}\) kwargs \()\)
Convenience function, delegates to update_work. Avoids having to pass xs. Also aliased as easy_update for backward compatibility.

\section*{Parameters}
- \(\log 2\) -
- bs -
- recommend_p-p value passed to recommend_bucket. If \(>1\) converted to \(1-10^{* *}\)-p in rec bucket.
- debug -
- kwargs - passed through to update

\section*{Returns}
```

entropy_fit (n_moments,tol=1e-10, verbose=False)

```

Find the max entropy fit to the aggregate based on n_moments fit. The constant is added (sum of probabilities constraint), for two moments there are \(n_{-}\)const \(=3\) constrains.

Based on discussions with, and R code from, Jon Evans
Run
```

ans = obj.entropy_fit(2)
ans['ans_df'].plot()

```
to compare the fits.

\section*{Parameters}
- n_moments - number of moments to match
- tol -
- verbose -

\section*{Returns}
```

explain_validation()

```

Explain validation result. Validation computed if needed.
```

freq_pmf(log2)

```

Return the frequency probability mass function (pmf) computed using \(2 * * \log 2\) buckets. Uses self.en to compute the expected frequency. The Frequency does not know the expected claim count, so this is a method of Aggregate.
```

html_info_blob()

```
    Text top of _repr_html_
json()

Write spec to json string.

\section*{Returns}
limits (stat='range', kind='linear', zero_mass='include')
Suggest sensible plotting limits for kind=range, density, etc., same as Portfolio.
Should optionally return a locator for plots?
Called by ploting routines. Single point of failure!
Must work without q function when not computed (apply_reins_work for occ reins; then use report_ser instead).

\section*{Parameters}
- stat - range or density (for y axis)
- kind - linear or \(\log\) (this is the y-axis, not \(\log\) of range...that is rarely plotted)
- zero_mass - include exclude, for densities

\section*{Returns}

\section*{more (regex)}

More information about methods and properties matching regex
\(\operatorname{pdf}(x)\)
Probability density function, assuming a continuous approximation of the bucketed density.

\section*{Parameters}
\(\mathbf{x}\) -

\section*{Returns}
picks (attachments, layer_loss_picks, debug=False)
Adjust the computed severity to hit picks targets in layers defined by a. Delegates work to utilities . picks_work. See that function for details.
plot (axd=None, xmax=0, **kwargs)
Basic plot with severity and aggregate, linear and log plots and Lee plot.

\section*{Parameters}
- xmax - Enter a "hint" for the xmax scale. E.g., if plotting gross and net you want all on the same scale. Only used on linear scales?
- axd -
- kwargs - passed to make_mosaic_figure

\section*{Returns}
pmf \((x)\)
Probability mass function, treating aggregate as discrete x must be in the index (?)
pollaczeck_khinchine (rho, cap=0, excess=0, stop_loss=0, kind='index', padding=1)
Return the Pollaczeck-Khinchine Capital function relating surplus to eventual probability of ruin. Assumes frequency is Poisson.
See Embrechts, Kluppelberg, Mikosch 1.2, page 28 Formula 1.11
TODO: Should return a named tuple.

\section*{Parameters}
- rho - rho \(=\) prem \(/\) loss -1 is the margin-to-loss ratio
- cap - cap = cap severity at cap, which replaces severity with X I X <= cap
- excess - excess \(=\) replace severity with \(X \mid X>c a p\) (i.e. no shifting)
- stop_loss - stop_loss = apply stop loss reinsurance to cap, so X > stop_loss replaced with \(\operatorname{Pr}(\mathrm{X}>\) stop_loss) mass
- kind -
- padding - for update (the frequency tends to be high, so more padding may be needed)

\section*{Returns}
ruin vector as pd.Series and function to lookup (no interpolation if kind==index; else interp) capitals
ppf ( \(p\), kind='lower )
Return quantile function of density_df.p_total.
Definition 2.1 (Quantiles) \(\mathrm{x}(\alpha)=\mathrm{q} \alpha(\mathrm{X})=\inf \{\mathrm{x} \in \mathrm{R}: \mathrm{P}[\mathrm{X} \leq \mathrm{x}] \geq \alpha\}\) is the lower \(\alpha\)-quantile of \(\mathrm{X} x(\alpha)=\) \(\mathrm{q} \alpha(\mathrm{X})=\inf \{\mathrm{x} \in \mathrm{R}: \mathrm{P}[\mathrm{X} \leq \mathrm{x}]>\alpha\}\) is the upper \(\alpha\)-quantile of X .
kind=='middle' has been removed.

\section*{Parameters}
- p -
- kind - 'lower' or 'upper'.

\section*{Returns}
property pprogram
pretty print the program
property pprogram_html
pretty print the program to html
price ( \(p, g\), kind='var')
Price using regulatory and pricing g functions, mirroring Portfolio.price. Unlike Portfolio, cannot calibrate. Applying specified Distortions only. If calibration is needed, embed Aggregate in a one-line Portfolio object.

Compute E_price (X wedge E_reg(X) ) where E_price uses the pricing distortion and E_reg uses the regulatory distortion.

Regulatory capital distortion is applied on unlimited basis: reg_g can be:
- if input \(<1\) it is a number interpreted as a \(p\) value and used to determine VaR capital
- if input \(>1\) it is a directly input capital number
- d dictionary: Distortion; spec \{ name = dist name I var, shape=p value a distortion used directly
pricing_g is \(\{\) name \(=\) phlwang and shape= , if shape (lr or roe not allowed; require calibration).
if ly, must include ro in spec

\section*{Parameters}
- \(\mathbf{p}\) - a distortion function spec or just a number; if \(>1\) assets, if \(<1\) a prob converted to quantile
- kind - var lower upper tvar
- \(\mathbf{g}-\) pricing distortion function

\section*{Returns}
\(\mathrm{q}\left(p\right.\), kind \(\left.={ }^{\prime} l o w e r{ }^{\prime}\right)\)
Return quantile function of density_df.p_total.
Definition 2.1 (Quantiles) \(\mathrm{x}(\alpha)=\mathrm{q} \alpha(\mathrm{X})=\inf \{\mathrm{x} \in \mathrm{R}: \mathrm{P}[\mathrm{X} \leq \mathrm{x}] \geq \alpha\}\) is the lower \(\alpha\)-quantile of \(\mathrm{X} \mathrm{x}(\alpha)=\) \(\mathrm{q} \alpha(\mathrm{X})=\inf \{\mathrm{x} \in \mathrm{R}: \mathrm{P}[\mathrm{X} \leq \mathrm{x}]>\alpha\}\) is the upper \(\alpha\)-quantile of X .
kind=='middle' has been removed.

\section*{Parameters}
- p -
- kind - 'lower' or 'upper'.

\section*{Returns}
q_sev \((p)\)
Compute quantile of severity distribution, returning element in the index. Very similar code to q, but only lower quantiles.

\section*{Parameters}
p-

\section*{Returns}
```

recommend_bucket ($\log 2=10, p=0.99999$, verbose $=$ False)

```

Recommend a bucket size given \(2^{* *} \mathrm{~N}\) buckets. Not rounded.
For thick tailed distributions need higher p , try \(\mathrm{p}=1-1 \mathrm{e}-8\).
If no second moment, throws a ValueError. You just can't guess in that situation.

\section*{Parameters}
- \(\log 2-\log 2\) of number of buckets. \(\log 2=10\) is default.
- \(\mathbf{p}\) - percentile to use to determine needed range. Default is RECOMMEND_P. if \(>1\) converted to \(1-10^{* *}\)-n.
- verbose - print out recommended bucket sizes for \(2^{* *} \mathrm{n}\) for n in \(\{\log 2,16,13,10\}\)

\section*{Returns}
```

property reinsurance_audit_df

```

Create and return the _reins_audit_df data frame. Read only property.

\section*{Returns}
```

reinsurance_description(kind='both', width=0)

```

Text description of the reinsurance.

\section*{Parameters}
- kind - both, occ, or agg
- width - width of text for textwrap.fill; omitted if width==0

\section*{property reinsurance_df}

Version of density_df tailored to reinsurance. Several cases
- occ program only: agg_density_.. is recomputed manually for all three outcomes
- agg program only: sev_density_... not set for gcn
- both programs: agg is gen for the agg program applied to the requested occ output
_apply_reins_work
reinsurance_kinds()
Text desciption of kinds of reinsurance applied: None, Occurrence, Aggergate, both.

\section*{Returns}
```

property reinsurance_occ_layer_df

```

How losses are layered by the occurrence reinsurance. Expected loss, CV layer loss, and expected counts to layers.
```

reinsurance_occ_plot (axs=None)

```

Plots for occurrence reinsurance: occurrence log density and aggregate quantile plot.
```

property reinsurance_report_df

```

Create and return a dataframe with the reinsurance report. TODO: sort out the overlap with reinsurance_audit_df (occ and agg) What this function adds is the ceded/net of occ aggregates before application of the agg reinsurance. The pure occ and agg parts are in reinsurance_audit_df.
```

property report_df

```

Created on the fly report to audit creation of object. There were some bad choices of columns in audit_df...but it [maybe] embedded in other code.... Eg the use of _1 vs _m for mean is inconsistent.

\section*{Returns}

\section*{rescale (scale, kind='homog')}

Return a rescaled Aggregate object - used to compute derivatives.
All need to be safe multiplies because of array specification there is an array that is not a numpy array TODO have parser return numpy arrays not lists!

\section*{Parameters}
- scale - amount of scale
- kind - homog of inhomog

\section*{Returns}
```

sample (}n\mathrm{ , replace=True)

```

Draw a sample of \(n\) items from the aggregate distribution. Wrapper around pd.DataFrame.sample.
```

property sev

```

Make exact sf, cdf and pdfs and store in namedtuple for use as sev.cdf etc.
```

severity_error_analysis (sev_calc='round', discretization_calc='survival', normalize=True)

```

Analysis of severity component errors, uses the current bs in self. Gives detailed, component by component, error analysis of severities. Includes discretization error (bs large relative to mean) and truncation error (tail integral large).

Total S shows the aggregate not severity. Generally about self.n * (1-sum_p) (per Feller).

\section*{\(\mathbf{s f}(x)\)}

Return survival function using linear interpolation.

\section*{Parameters \\ \(\mathbf{x}\) - loss size}

\section*{Returns}

\section*{\(\operatorname{snap}(x)\)}

Snap value x to the index of density_df, i.e., as a multiple of self.bs.

\section*{Parameters}
\(\mathbf{x}\) -

\section*{Returns}

\section*{property spec}

Get the dictionary specification, but treat as a read only property

\section*{Returns}
```

property spec_ex

```

All relevant info.

\section*{Returns}

\section*{property statistics}

Pandas series of theoretic frequency, severity, and aggregate 1st, 2nd, and 3rd moments. Mean, cv, and skewness.

\section*{Returns}
tvar ( \(p\), kind=")
Updated June 2023, 0.13.0
Compute the tail value at risk at threshold \(p\)
Definition 2.6 (Tail mean and Expected Shortfall) Assume E[X-] < \(\infty\). Then \(\mathrm{x}^{-}(\alpha)=\) TM_ \(\alpha(\mathrm{X})=\) \(\alpha^{\wedge}\{-1\} E[\mathrm{X} 1\{\mathrm{X} \leq \mathrm{x}(\alpha)\}]+\mathrm{x}(\alpha)(\alpha-\mathrm{P}[\mathrm{X} \leq \mathrm{x}(\alpha)])\) is \(\alpha\)-tail mean at level \(\alpha\) the of X . Acerbi and Tasche (2002)

We are interested in the right hand exceedence [?? note \(>\) vs \(\geq] \alpha^{\wedge}\{-1\} E[\mathrm{X} 1\{\mathrm{X}>\mathrm{x}(\alpha)\}]+\mathrm{x}(\alpha)(\mathrm{P}[\mathrm{X}\) \(\leq \mathrm{x}(\alpha)]-\alpha)\)
McNeil etc. p66-70 - this follows from def of ES as an integral of the quantile function
q is exact quantile (most of the time) q 1 is the smallest index element (bucket multiple) greater than or equal to q
tvar integral is int_p^1 \(q(s) d s=\) int_ \(q^{\wedge} \operatorname{infty} x f(x) d x=q+i n t _q^{\wedge} \operatorname{infty} S(x) d x\) we use the last approach. np.trapz approxes the integral. And the missing piece between q and q 1 approx as a trapezoid too.

\section*{Parameters}
- p-
- kind -

\section*{Returns}

\section*{tvar_sev ( \(p\) )}

TVaR of severity - now available for free!
added June 2023
update \((\log 2=16, b s=0\), recommend_p=0.99999, debug=False, **kwargs \()\)
Convenience function, delegates to update_work. Avoids having to pass xs. Also aliased as easy_update for backward compatibility.

\section*{Parameters}
- \(\log 2\) -
- bs -
- recommend_p-p value passed to recommend_bucket. If \(>1\) converted to \(1-10^{* *}\)-p in rec bucket.
- debug -
- kwargs - passed through to update

\section*{Returns}
update_work (xs, padding=1, tilt_vector=None, approximation='exact', sev_calc='discrete', discretization_calc='survival', normalize=True, force_severity \(=\) False, debug=False)
Compute a discrete approximation to the aggregate density.
See discretize for sev_calc, discretization_calc and normalize.
Quick simple test with \(\log 2=13\) update took 5.69 ms and _eff took 2.11 ms . So quicker but not an issue unless you are doing many buckets or aggs.

\section*{Parameters}
- xs - range of x values used to discretize
- padding - for FFT calculation
- tilt_vector - tilt_vector \(=n p . \exp (\) tilt_amount \(*\) np.arange \((\mathrm{N})), \mathrm{N}=2 * * \log 2\), and tilt_amount * \(\mathrm{N}<20\) recommended
- approximation - 'exact' = perform frequency / severity convolution using FFTs. 'slognorm' or 'sgamma' use a shifted lognormal or shifted gamma approximation.
- sev_calc - discrete=round, forward, backward, or continuous and method becomes discrete otherwise
- discretization_calc-survival, distribution or both; in addition the method then becomes survival
- normalize - if True, normalize the severity so sum probs \(=1\). This is generally what you want; but when dealing with thick tailed distributions it can be helpful to turn it off.
- force_severity - make severities even if using approximation, for plotting
- debug - run reinsurance in debug model if True.

\section*{Returns}

\section*{property valid}

Check if the model appears valid. An answer of True means the model is "not unreasonable". It does not guarantee the model is valid. On the other hand, False means it is definitely suspect. (The interpretation is similar to the null hypothesis in a statistical test). Called and reported automatically by qd for Aggregate objects.

Checks the relative errors (from self.describe) for:
- severity mean < eps
- severity cv \(<10\) * eps
- severity skew < 100 * eps (skewness is more difficult to estimate)
- aggregate mean <eps and \(<2 *\) severity mean relative error (larger values indicate possibility of aliasing and that bs is too small).
- aggregate cv < 10 * eps
- aggregate skew < \(100 *\) esp

The default uses eps \(=1 \mathrm{e}-4\) relative error. This can be changed by setting the validation_eps variable.
Test only applied for CV and skewness when they are \(>0\).
Run with logger level 20 (info) for more information on failures.
A Type 1 error (rejecting a valid model) is more likely than Type 2 (failing to reject an invalide one).

\section*{Returns}

True (interpreted as not unreasonable) if all tests are passed, else False.
var_dict ( \(p\), kind='lower', snap=False)
Make a dictionary of value at risks for the line, mirrors Portfolio.var_dict. Here is just marshals calls to the appropriate var or tvar function.

No epd. Allows the price function to run consistently with Portfolio version.
Example Use:
```

for p, arg in zip([.996, .996, .996, .985, .01], ['var', 'lower', 'upper',
\hookrightarrow'tvar', 'epd']):
print(port.var_dict(p, arg, snap=True))

```

\section*{Parameters}
- p-
- kind - var (defaults to lower), upper, lower, tvar
- snap - snap tvars to index

\section*{Returns}

\subsection*{3.4 Portfolio Module}

\subsection*{3.4.1 Portfolio Class}
```

class aggregate.portfolio.Portfolio(name, spec_list,uw=None)

```

Portfolio creates and manages a portfolio of Aggregate objects each modeling one unit of business. Applications include
- Model a book of insurance
- Model a large account with several sub lines
- Model a reinsurance portfolio or large treaty
\(\qquad\)
Create a new Portfolio object.

\section*{Parameters}
- name - The name of the portfolio. No spaces or underscores.
- spec_list - A list of
1. dictionary: Aggregate object dictionary specifications or
2. Aggregate: An actual aggregate objects or
3. tuple (type, dict) as returned by uw['name'] or
4. string: Names referencing objects in the optionally passed underwriter
5. a single DataFrame: empirical samples (the total column, if present, is ignored); a p_total column is used for probabilities if present

\section*{Returns}
new Portfolio object.
_make_var_tvar (ser)
There is no severity version here, so this knows where to store the answer, cf Aggregate version.
_repr_html_()
Updated to mimic Aggregate
accounting_economic_balance_sheet ( \(a=0, p=0\) )
story version assumes line \(0=\) reserves and \(1=\) prospective \(\ldots\)..other than that identical
usual a and \(p\) rules
add_exa (df, ft_nots=None)
Use fft to add exeqa_XXX \(=\mathrm{E}\left(\mathrm{X} _i \mid \mathrm{X}=\mathrm{a}\right)\) to each dist
also add exlea \(=E\left(X _i \quad \mid X<=a\right)=\operatorname{sum}\{x<=a\} \operatorname{exa}(x) * f(x)\) where f is for the total ie. self.density_df['exlea_attrit'] = np.cumsum( self.density_df.exa_attrit * self.density_df.p_total) / self.density_df.F
and add exgta \(=\mathrm{E}\left(\mathrm{X} _\mathrm{i} \mid \mathrm{X}>\mathrm{a}\right)\) since \(\mathrm{E}(\mathrm{X})=\mathrm{E}(\mathrm{X} \mid \mathrm{X}<=\mathrm{a}) \mathrm{F}(\mathrm{a})+\mathrm{E}(\mathrm{X} \mid \mathrm{X}>\mathrm{a}) \mathrm{S}(\mathrm{a})\) we have exgta \(=(\mathrm{ex}-\) exlea F) / S
and add the actual expected losses (not theoretical) the empirical amount: self.density_df['e_attrit'] = np.sum( self.density_df.p_attrit * self.density_df.loss)

Mid point adjustment is handled by the example creation routines self.density_df.loss = self.density_df.loss - bs/2

\section*{YOU CANNOT HAVE A LINE with a name starting t!!!}

See LCA_Examples for original code

Alternative approach to exa: use UC=unconditional versions of exlea and exi_xgta:
- exleaUC = np.cumsum(port.density_df['exeqa_' + col] * port.density_df.p_total) \# unconditional
- exixgtaUC \(=\) np.cumsum( self.density_df.loc[::-1, 'exeqa_' + col] / self.density_df.loc[::-1, 'loss’] * self.density_df.loc[::-1, 'p_total'] )
- exa \(=\) exleaUC + exixgtaUC \(*\) self.density_df.loss

\section*{Parameters}
- df - data frame to add to. Initially add_exa was only called by update and wrote to self.density_df. But now it is called by gradient too which writes to gradient_df, so we need to pass in this argument
- ft_nots - FFTs of the not lines (computed in gradients) so you don't round trip an FFT; gradients needs to recompute all the not lines each time around and it is stilly to do that twice
```

add_exa_details (df, eta_mu=False)

```

From add_exa, details for epd functions and eta_mu flavors.
Note eta_mu=True is required for epd_2 functions.
add_exa_sample (sample, S_calculation='forwards')
Computes a version of density_df using sample to compute \(\mathrm{E}[\mathrm{Xi} \mid \mathrm{X}]\). Then fill in the other ex.... variables using code from Portfolio.add_exa, stripped down to essentials.

If no p_total is given then samples are assumed equally likely. total is added if not given (sum across rows) total is then aligned to the bucket size self.bs using (total/bs).round(0)*bs. The other loss columns are then scaled so they sum to the adjusted total

Next, group by total, sum p_total and average the lines to create E[Xi|X]
This sample is merged into a stripped down density_df. Then the other ex... columns are added. Excludes eta mu columns.

Anticipated use: replace density_df with this, invalidate quantile function and then compute various allocation metrics.

The index on the input sample is ignored.
Formally extensions.samples.add_exa_sample.
analysis_collateral (line, \(c, a\), debug=False)
\(\mathrm{E}(\mathrm{C}(\mathrm{a}, \mathrm{c}))\) expected value of line against not line with collateral c and assets \(\mathrm{a}, \mathrm{c}<=\mathrm{a}\)

\section*{Parameters}
- line - line of business with collateral, analyzed against not line
- \(\mathbf{c}\) - collateral, \(\mathrm{c}<=\) a required; \(\mathrm{c}=0\) reproduces exa, \(\mathrm{c}=\mathrm{a}\) reproduces lev
- a - assets, assumed less than the max loss (i.e. within the square)
- debug -

\section*{Returns}
analysis_priority (asset_spec, output='df')
Create priority analysis report_ser. Can be called multiple times with different asset_specs asset_spec either a float used as an epd percentage or a dictionary. Entering an epd percentage generates the dictionary
```

base = {i: self.epd_2_assets[('not ` + i, 0)](asset_spec) for i in self.line_names}

```

\section*{Parameters}
```

- asset_spec - epd

```
- output \(-\mathrm{df}=\) pandas data frame; \(\mathrm{html}=\) nice report, markdown \(=\) raw markdown text

\section*{Returns}
analyze_distortion (dname, dshape \(=\) None, \(d r 0=0.025, d d f=5.5, L R=N o n e, R O E=N o n e, p=N o n e\), kind='lower', \(A=\) None, use_self \(=\) False, plot=False, \(a _\)max_p=0.99999999, add_comps=True, efficient=True)
Graphic and summary DataFrame for one distortion showing results that vary by asset level. such as increasing or decreasing cumulative premium.

Characterized by the need to know an asset level, vs. apply_distortion that produced values for all asset levels.

Returns DataFrame with values upto the input asset level...differentiates from apply_distortion graphics that cover the full range.
analyze_pricing will then zoom in and only look at one asset level for micro-dynamics...
Logic of arguments:
```

if data_in == 'self' use self.augmented_df; this implies a distortion self.
\hookrightarrowdistortion
else need to build the distortion and apply it
if dname is a distortion use it
else built one calibrated to input data
LR/ROE/a/p:
if p then a=q(p, kind) else p = MESSY
if LR then P and ROE; if ROE then Q to P to LR
these are used to calibrate distortion
A newly made distortion is run through apply_distortion with no plot

```

Logic to determine assets similar to calibrate_distortions.
Can pass in a pre-calibrated distortion in dname
Must pass LR or ROE to determine profit
Must pass p or A to determine assets
Output is an Answer class object containing
```

Answer(augmented_df=deets, trinity_df=df, distortion=dist, fig1=f1 if plot
Gelse None,
fig2=f2 if plot else None, pricing=pricing, exhibit=exhibit, roe_
\hookrightarrowcompare=exhibit2,
audit_df=audit_df)

```

Originally example_factory.
example_factory_exhibits included:
do the work to extract the pricing, exhibit and exhibit 2 DataFrames from deets Can also accept an ans object with an augmented_df element (how to call from outside) POINT: re-run exhibits at different p/a thresholds without recalibrating add relevant items to audit_df \(a=q(p)\) if both given; if not both given derived as usual

Figures show

\section*{Parameters}
- dname - name of distortion
- dshape - if input use dshape and dr0 to make the distortion
- dr0 -
- ddf - r0 and df params for distortion
- LR - otherwise use loss ratio and p or a loss ratio
- ROE -
- \(\mathrm{p}-\mathrm{p}\) value to determine capital.
- kind - type of VaR, upper or lower
- A -
- use_self - if true use self.augmented and self.distortion...else recompute
- plot
- a_max_p-percentile to use to set the right hand end of plots
- add_comps - add old-fashioned method comparables (included \(=\) True as default to make backwards comp.)
- efficient -

\section*{Returns}
various dataframes in an Answer class object
analyze_distortion_add_comps (ans, a_cal, p, kind, ROE)
make exhibit with comparison to old-fashioned methods: equal risk var/tvar, scaled var/tvar, stand-alone var/tvar, merton perold, co-TVaR. Not all of these methods is additive.
covar method \(=\) proportion of variance (additive)
Other methods could be added, e.g. a volatility method?

\section*{Note on calculation}

Each method computes allocated assets \(\mathrm{a}_{\mathrm{L}} \mathrm{i}\) (which it calls \(\mathrm{Q} _i\) ) \(=\mathrm{Li}+\mathrm{Mi}+\mathrm{Qi}\) All methods are constant ROEs for capital We have Li in exhibit. Hence:
\[
\mathrm{L}=\mathrm{Li} \mathrm{P}=(\mathrm{Li}+\mathrm{ROE} \text { ai) }) /(1+\mathrm{ROE})=\mathrm{vLi}+\mathrm{d} \text { ai } \mathrm{Q}=\mathrm{a}-\mathrm{P} \mathrm{M}=\mathrm{P}-\mathrm{L} \text { ratios }
\]

In most cases, ai is computed directly, e.g. as a scaled proportion of total assets etc.
The covariance method is slightly different.
\[
\mathrm{Mi}=\operatorname{vi} \mathrm{M}, \mathrm{vi}=\operatorname{Cov}(\mathrm{Xi}, \mathrm{X}) / \operatorname{Var}(\mathrm{X}) \mathrm{Pi}=\mathrm{Li}+\mathrm{Mi} \mathrm{Qi}=\mathrm{Mi} / \mathrm{ROE} \mathrm{ai}=\mathrm{Pi}+\mathrm{Qi}
\]
and sum ai \(=\operatorname{sum} \mathrm{Li}+\operatorname{sum} \mathrm{Mi}+\operatorname{sum} \mathrm{Qi}=\mathrm{L}+\mathrm{M}+\mathrm{M} / \mathrm{ROE}=\mathrm{L}+\mathrm{M}+\mathrm{Q}=\mathrm{a}\) as required. To fit it in the same scheme as all other methods we compute \(\mathrm{qi}=\mathrm{Li}+\mathrm{Mi}+\mathrm{Qi}=\mathrm{Li}+\) vi \(\mathrm{M}+\) vi \(\mathrm{M} / \mathrm{ROE}=\mathrm{li}+\) \(\operatorname{viM}(1+1 / \mathrm{ROE})=\mathrm{Li}+\) vi \(\mathrm{M} / \mathrm{d}, \mathrm{d}=\mathrm{ROE} /(1+\mathrm{ROE})\)

\section*{Parameters}
- ans - answer containing dist and augmented_df elements
- a_cal -
- p -
- kind-
- LR -
- ROE -

\section*{Returns}
ans Answer object with updated elements
analyze_distortion_plots (ans, dist, a_cal, p, a_max, ROE, LR)
Create plots from an analyze_distortion ans class note: this only looks at distortion related items...it doesn't use anything from the comps

\section*{Parameters}
- ans -
- dist-
- a_cal -
- p-
- a_max -
- ROE -
- LR -

\section*{Returns}
analyze_distortions ( \(a=0, p=0\), kind='lower', efficient=True, augmented_dfs \(=\) None, regex=", add_comps=True)
Run analyze_distortion on self.dists

\section*{Parameters}
- a -
- p - the percentile of capital that the distortions are calibrated to
- kind - var, upper var, tvar, epd
- efficient -
- augmented_dfs - input pre-computed augmented_dfs (distortions applied)
- regex - apply only distortion names matching regex
- add_comps - add traditional pricing comps to the answer

\section*{Returns}
apply_distortion (dist, view='ask', plots=None, df_in=None, create_augmented=True, S_calculation='forwards', efficient=True)

Apply the distortion, make a copy of density_df and append various columns to create augmented_df. augmented_df depends on the distortion but only includes variables that work for all asset levels, e.g.
1. marginal loss, lr, roe etc.
2. bottom up totals

Top down total depend on where the "top" is and do not work in general. They are handled in analyze_distortions where you explicitly provide a top.

Does not touch density_df: that is independent of distortions
Optionally produce graphics of results controlled by plots a list containing none or more of:
1. basic: exag_sumparts, exag_total df.exa_total
2. extended: the full original set

Per 0.11.0: no mass at 0 allowed. If you want to use a distortion with mass at 0 you must use a close approximation.

\section*{Parameters}
- dist - agg.Distortion
- view - bid or ask price
- plots - iterable of plot types
- df_in - when called from gradient you want to pass in gradient_df and use that; otherwise use self.density_df
- create_augmented (object) - store the output in self.augmented_df
- S_calculation - if forwards, recompute S summing p_total forwards...this gets the tail right; the old method was backwards, which does not change \(S\)
- efficient - just compute the bare minimum (T. series, not M. series) and return

\section*{Returns}
density_df with extra columns appended
apply_distortions (dist_dict, As=None, Ps=None, kind='lower', efficient=True)
Apply a list of distortions, summarize pricing and produce graphical output show loss values where \(s_{u} b>\) \(S(\) loss \()>s_{l} b\) by jump

\section*{Parameters}
- kind
- dist_dict - dictionary of Distortion objects
- As - input asset levels to consider OR
- Ps - input probs (near 1) converted to assets using self. \(q\) ()

\section*{Returns}
approximate (approx_type='slognorm', output='scipy')
Create an approximation to self using method of moments matching.
Returns a dictionary specification of the portfolio aggregate_project. If updated uses empirical moments, otherwise uses theoretic moments

\section*{Parameters}
- approx_type - slognorm | sgamma | normal
- output - return a dict or agg language specification

\section*{Returns}
as_severity (limit=inf, attachment=0, conditional=False)
Convert portfolio into a severity without recomputing.
Throws an error if self not updated.

\section*{Parameters}
- limit-
- attachment -
- conditional -

\section*{Returns}
```

audits (kind='all', **kwargs)

```
produce audit plots to assess accuracy of outputs.
Currently only exeqa available

\section*{Parameters}
- kind -
- kwargs - passed to pandas plot, e.g. set xlim

\section*{Returns}
best_bucket ( \(\log 2=16\), recommend_p=0.99999)
Recommend the best bucket. Rounded recommended bucket for \(\log 2\) points.
TODO: Is this really the best approach?!

\section*{Parameters}
- log2 -
- recommend_p-

\section*{Returns}
biv_contour_plot ( fig, ax, min_loss, max_loss, jump, log=True, cmap='Greys', min_density=1e-15, levels \(=30\), lines \(=\) None, linecolor \(=' w\) ', colorbar \(=\) False, normalize \(=\) False, \(* *\) kwargs)
Make contour plot of line A vs line B. Assumes port only has two lines.
Works with an extract density_df.loc[np.arange(min_loss, max_loss, jump), densities] (i.e., jump is the stride). Jump \(=100 *\) bs is not bad...just think about how big the outer product will get!

\section*{Parameters}
- fig -
- ax-
- min_loss - the density for each line is sampled at min_loss:max_loss:jump
- max_loss -
- jump -
- \(\log -\)
- cmap -
- min_density - smallest density to show on underlying log region; not used if log
- levels - number of contours or the actual contours if you like
- lines - iterable giving specific values of k to plot \(\mathrm{X}+\mathrm{Y}=\mathrm{k}\)
- linecolor-
- colorbar - show color bar
- normalize - if true replace Z with \(\mathrm{Z} / \operatorname{sum}(\mathrm{Z})\)
- kwargs - passed to contourf (e.g., use for corner_mask=False, vmin,vmax)

\section*{Returns}

\section*{bodoff ( \({ }^{*}, p=0.99, a=0\) )}

Determine Bodoff layer asset allocation at asset level a or VaR percentile p , one of which must be provided. Uses formula 14.42 on p. 284 of Pricing Insurance Risk.

\section*{Parameters}
- \(\mathrm{p}-\mathrm{VaR}\) percentile
- a - asset level

\section*{Returns}

Bodoff layer asset allocation by unit
calibrate_blends (a, premium, s_values, gs_values=None, spread_values=None, debug=False) Input \(s\) values and gs values or (market) yield or spread.

A bond with prob \(s\) (small) of default is quoted with a yield (to maturity) of \(r\) over risk free (e.g., a cat bond spread, or a corporate bond spread over the appropriate Treasury). As a discount bond, the price is \(\mathrm{v}=1-\mathrm{d}\).
\(\mathrm{B}(\mathrm{s})=\) bid price for \(1(\mathrm{U}<\mathrm{s})\) (bond residual value) \(\mathrm{A}(\mathrm{s})=\) ask price for \(1(\mathrm{U}<\mathrm{s})\) (insurance policy)
By no \(\operatorname{arb} \mathrm{A}(\mathrm{s})+\mathrm{B}(1-\mathrm{s})=1\). By definition \(\mathrm{g}(\mathrm{s})=\mathrm{A}(\mathrm{s})\) (using LI so the particular U doesn't matter. Applied to \(\mathrm{U}=\mathrm{F}(\mathrm{X})\) ).

Let \(\mathrm{v}=1 /(1+\mathrm{r})\) and \(\mathrm{d}=1-\mathrm{v}\) be the usual theory of interest quantities.
Hence \(\mathrm{B}(1-\mathrm{s})=\mathrm{v}=1-\mathrm{A}(\mathrm{s})=1-\mathrm{g}(\mathrm{s})\) and therefore \(\mathrm{g}(\mathrm{s})=1-\mathrm{v}=\mathrm{d}\).

The rate of risk discount \(\delta\) and risk discount factor (nu) \(v\) are defined so that \(\mathrm{B}(1-\mathrm{s})=v^{*}(1-\mathrm{s})\), it is the extra discount applied to the actuarial value that is bid for the bond. It is a function of s . Therefore \(v=\) \((1-d) /(1-s)=\) price of bond / actuarial value of payment.

Then, \(g(s)=1-B(1-s)=1-v(1-s)=v s+\delta\).
Thus, if return (i.e., market yield spreads) are input, they convert to discount factors to define \(g\) points.
Blend can be defined by extrapolating the last points in a credit curve. If that fails, increase the return on the highest s point and fill in with a constant return to 1 .

The ROE on the investment is not the promised return, because the latter does not allow for default.
Set up to be a function of the Portfolio = self. Calibrated to hit premium at asset level a. a must be in the index.
```

$\mathrm{a}=$ self.pricing_summary.at['a', kind] premium $=$ self.pricing_summary.at['P', kind]

```
method \(=\) extend or roe
Input
blend_d0 is the Book's blend, with roe above the equity point blend_d is calibrated to the same premium as the other distortions

\section*{method = extend if f_blend_extend or ccoc}
\(\operatorname{ccoc}=\) pick and equity point and back into its required roe. Results in a poor fit to the calibration data
extend \(=\) extrapolate out the last slope from calibrtion data
Initially tried interpolating the bond yield curve up, but that doesn't work. (The slope is too flat and it interpolates too far. Does not look like a blend distortion.) Now, adding the next point off the credit yield curve as the "equity" point and solving for ROE.

If debug, returns more output, for diagnostics.
calibrate_distortion (name, \(r 0=0.0, d f=[0.0,0.9]\), premium_target \(=0.0\), roe \(=0.0\), assets \(=0.0\), \(p=0.0\), kind='lower', S_column='S', S_calc='cumsum')

Find transform to hit a premium target given assets of assets. Fills in the values in g_spec and returns params and diagnostics...so you can use it either way...more convenient

\section*{Parameters}
- name - name of distortion
- r0 - fixed parameter if applicable
- df - t-distribution degrees of freedom
- premium_target - target premium
- roe - or ROE
- assets - asset level
- p-
- kind -
- S_column - column of density_df to use for calibration (allows routine to be used in other contexts; if so used must input a premium_target directly. If assets they are used; else max assets used

\section*{Returns}
calibrate_distortions (LRs=None, COCs=None, ROEs =None, As=None, Ps=None, kind='lower', \(r 0=0.03, d f=5.5\), strict='ordered', S_calc='cumsum')
Calibrate assets a to loss ratios LRs and asset levels As (iterables) ro for LY, it ro/ \((1+r o)\) corresponds to a minimum rate online

\section*{Parameters}
- LRs - LR or ROEs given
- ROEs - ROEs override LRs
- COCs - CoCs override LRs, preferred terms to ROE; ROE maintained for backwards compatibility.
- As - Assets or probs given
- Ps - probability levels for quantiles
- kind -
- r0 - for distortions that have a min ROL
- df - for tt
- strict - if=='ordered' then use the book nice ordering else if True only use distortions with no mass at zero, otherwise use anything reasonable for pricing
- S_calc-

\section*{Returns}
\(\operatorname{cdf}(x)\)
distribution function

\section*{Parameters}
\(\mathbf{x}\) -

\section*{Returns}

\section*{collapse (approx_type='slognorm')}

Returns new Portfolio with the fit
Deprecated...prefer uw.write(self.fit()) to go through the agg language approach.
```

Parameters
approx_type - slognorm I sgamma

```

\section*{Returns}

\section*{cotvar ( \(p\) )}

Compute the p co-tvar asset allocation using ISA. Asset alloc \(=\) exgta \(=\) tail expected value, treating TVaR like a pricing variable.
static create_from_sample (name, sample_df, bs, log2=16, **kwargs)
Create from a multivariate sample, update with bs, execute switcheroo, and return new Portfolio object.
OED: switcheroo, n. a change of position or an exchange, esp. one intended to surprise or deceive; a reversal or turn-about; spec. an unexpected change or 'twist' in a story. Also attributive, reversible, reversed.
```

density_sample (}n=20,reg='losslp_lexeqa_')

```
sample of equally likely points from density_df with interesting columns reg - regex to select the columns

\section*{property describe}

Theoretic and empirical stats. Used in _repr_html_. Leverage Aggregate object stats; same format
property distortion_df
Nicely formatted version of self.dist_ans (that exhibited several bad choices!).
ROE returned as COC in modern parlance.
property epd_2_assets
Make epd to assets and vice versa Note that the Merton Perold method requies the eta_mu fields, hence set True
```

equal_risk_epd(a)

```
determine the common epd threshold so sum sa equals a
```

equal_risk_var_tvar (p_v, p_t)

```
solve for equal risk var and tvar: find \(p v\) and \(p t\) such that sum of individual line \(\operatorname{VaR} / T V a R\) at \(p v / p t\) equals the \(\operatorname{VaR}(\mathrm{p})\) or \(\mathrm{TVaR}\left(\mathrm{p} \mathrm{_t}\right)\)
these won't return elements in the index because you have to interpolate hence using kind=middle
```

explain_validation()

```

Explain the validation result. Can pass in if already calculated.
static from_DataFrame (name, \(d f\) )
create portfolio from pandas dataframe uses columns with appropriate names
Can be fed the agg output of uw.write_test( agg_program )

\section*{Parameters}
- name -
- df -

\section*{Returns}
static from_Excel (name, ffn, sheet_name, **kwargs)
read in from Excel
works via a Pandas dataframe; kwargs passed through to pd.read_excel drops all blank columns (mostly for auditing purposes) delegates to from_dataFrame

\section*{Parameters}
- name -
- \(\mathbf{f f n}\) - full file name, including path
- sheet_name -
- kwargs -

\section*{Returns}
static from_dict_of_aggs (prefix, agg_dict, sub_ports=None, \(u w=N o n e, b s=0, \log 2=0\), padding \(=2, * * k w a r g s)\)
Create a portfolio from any iterable with values aggregate code snippets
e.g. agg_dict \(=\{\) label: agg_snippet \(\}\)
will create all the portfolios specified in subsets, or all if subsets=='all'
labels for subports are concat of keys in agg_dict, so recommend you use A:, B: etc. as the snippet names. Portfolio names are prefix_[concat element names]
agg_snippet is line agg blah without the tab or newline

\section*{Parameters}
- prefix
- agg_dict -
- sub_ports -
- kwargs (bs, log2, padding,) - passed through to update; update if bs * \(\log 2\) \(>0\)

\section*{Returns}

\section*{ft ( \(x\), tilt=None)}

FT of x with padding and tilt applied
gamma ( \(a=\) None, \(p=\) None, \(k i n d=' l o w e r '\) ', compute_stand_alone=False, axs=None, plot_mode='return')
Return the vector gamma_a(x), the conditional layer effectiveness given assets a. Assets specified by percentile level and type (you need a in the index) gamma can be created with no base and no calibration - it does not depend on a distortion. It only depends on total losses.

Returns the total and by layer versions, see "Main Result for Conditional Layer Effectiveness; Piano Diagram" in OneNote
In total gamma \(_\mathrm{a}(\mathrm{x})=\mathrm{E}\left[\left(\mathrm{a}^{\wedge} \mathrm{X}\right) / \mathrm{X} \mid \mathrm{X}>\mathrm{x}\right]\) is the average rate of reimbursement for losses above x given capital a. It satisfies int_0^infty gamma_a(x) \(\mathrm{S}(\mathrm{x}) \mathrm{dx}=\mathrm{E}\left[\mathrm{a}^{\wedge} \mathrm{X}\right]\). Notice the integral is to infinity, regardless of the amount of capital a.
By line gamma_\{a,i\}(x)=E[E[X_ilX]/X\{(X^a)/X\}1_\{X>x\}]/E[\{E[X_i|X]/X\}1_\{X>x\}].. (X).
The denominator equals total weights. It is the line-i recovery weighted layer effectiveness. It equals alpha_i(x) \(S(x)\).

Now we have
\(\mathrm{E}\left[\mathrm{X} _\mathrm{i}(\mathrm{a})\right]=\) int_0^\({ }^{\wedge}\) infty gamma_\{a,i\}(x) alpha_i(x) \(\mathrm{S}(\mathrm{x}) \mathrm{dx}\)
Note that you need upper and lower q's in aggs now too.
Nov 2020: added arguments for plots; revised axes, separate plots by line

\section*{Parameters}
- a - input a or p and kind as usual
- p - asset level percentile
- kind - lower or upper
- compute_stand_alone - add stand-alone evaluation of gamma
- axs - enough axes; only plot if not None
- plot_mode - return or linear scale for y axis

\section*{Returns}
gradient (epsilon=0.0078125, kind='homog', method='forward', distortion=None, remove_fuzz=True, extra_columns=None, do_swap=True)

Compute the gradient of various quantities relative to a change in the volume of each portfolio component.
Focus is on the quantities used in rate calculations: \(\mathrm{S}, \mathrm{gS}, \mathrm{p}\) _total, exa, exag, exi_xgta, exi_xeqq, exeqa, exgta etc.
homog:
inhomog:

\section*{Parameters}
- epsilon - the increment to use; scale is \(1+e \mathrm{epsilon}\)
- kind - homog[ogeneous] or inhomog: homog computes impact of \(f\left((1+e p s i l o n) X _i\right)-\) \(\mathrm{f}\left(\mathrm{X} _i\right)\). Inhomog scales the frequency and recomputes. Note inhomog will have a slight scale issues with \(\mathrm{E}[\) Severity]
- method - forward, central (using epsilon/2) or backwards
- distortion - if included derivatives of statistics using the distortion, such as exag are also computed
- extra_columns - extra columns to compute dervs of. Note there is virtually no overhead of adding additional columns
- do_swap - force the step to replace line with line+epsilon in all not line2's line2!=line 1; whether you need this or not depends on what variables you to be differentiated. E.g. if you ask for exa_total only you don't need to swap. But if you want exa_A, exa_B you do, otherwise the d/dA exa_B won't be correct. TODO: replace with code!

\section*{Returns}

DataFrame of gradients and audit_df in an Answer class
ift ( \(x\), tilt=None)
IFT of x with padding and tilt applied
json (stream=None)
write object as json

\section*{Parameters}
stream -

\section*{Returns}
stream or text
limits (stat='range', kind='linear', zero_mass='include')
Suggest sensible plotting limits for kind=range, density, .. (same as Aggregate).
Should optionally return a locator for plots?
Called by ploting routines. Single point of failure!
Must work without q function when not computed (apply_reins_work for occ reins... uses report_ser instead).

\section*{Parameters}
- stat - range or density or logy (for log density/survival function...ensure consistency)
- kind - linear or \(\log\) (this is the y-axis, not log of range...that is rarely plotted)
- zero_mass - include exclude, for densities

\section*{Returns}

\section*{property line_renamer}
plausible defaults for nicer looking names
replaces . or : with space and capitalizes (generally don't use . because it messes with analyze distortion....
leaves: alone
converts X1 to tex
converts XM1 to tex with minus (for reserves)

\section*{Returns}
make_all ( \(p=0, a=0\), As=None)
make all exhibits with sensible defaults if not entered, paid line is selected as the LAST line
```

make_audit_df (columns, theoretical_stats=None)

```

Add or update the audit_df.
```

merton_perold (}p,\mathrm{ kind='lower')

```

Compute Merton-Perold capital allocation at \(\operatorname{VaR}(p)\) capital using VaR as risk measure.
TODO TVaR version of Merton Perold

\section*{more (regex)}

More information about methods and properties matching regex
```

multi_premium_capital (As, keys=None)
concatenate multiple prem_capital exhibits
natural_profit_segment_plot (ax, p, line_names, colors, translations)

```

Plot the natural allocations between 1-p and p th percentiles and optionally translate line(s). Works with augmented_df, no input distortion. User must ensure the correct distortion has been applied.

\section*{Parameters}
- ax-
- p-
- line_names -
- colors -
- translations -

\section*{Returns}
```

nice_program(wrap_col=90)

```
    return wrapped version of port program :return:
pdf( \(x\) )
probability density function, assuming a continuous approximation of the bucketed density :param x : :return:
percentiles (pvalues=None)
report_ser on percentiles and large losses. Uses interpolation, audit_df uses nearest.

\section*{Parameters}
pvalues - optional vector of log values to use. If None sensible defaults provided

\section*{Returns}

DataFrame of percentiles indexed by line and log
plot (axd=None, figsize=(7.0, 2.45))
Defualt plot of density, survival functions (linear and log)

\section*{Parameters}
- axd - dictionary with plots A and B for density and log density
- figsize - arguments passed to make_mosaic_figure if no axd

\section*{Returns}
pmf \((x)\)
Probability mass function, treating aggregate as discrete x must be in the index (?)
property pprogram
pretty print the program to html
property pprogram_html
pretty print the program to html
premium_capital ( \(a=0, p=0\) )
at a if given else p level of capital
pricing story allows two asset levels...handle that with a concat
was premium_capital_detail
price ( \(p\), distortion=None, *, allocation='lifted', view='ask', efficient=True)
Price using regulatory capital and pricing distortion functions.
Compute E_price (X wedge E_reg(X) ) where E_price uses the pricing distortion and E_reg uses the regulatory distortion derived from p. p can be input as a probability level converted to assets using kind, a level of assets directly (snapped to index).

Regulatory capital distortion is applied on unlimited basis.
Do not attempt to use with a weight_df dataframe from Bounds. For that, use the bounds object logic directly which is much more efficient.

The argument kind has been dropped, it is always 'var'. If that is not the case, convert your asset level to a VaR threshold.

Updated: May 2023 Turns out, really awkward to return the dictionary. In most calls there is just one distortion passed in. The result of the last distortion are reported in ans.price, and there is a new price_dict for the price of each distortion. T

\section*{Parameters}
- p - float; if \(>1\) assets if \(<1\) a prob converted to quantile
- distortion - a distortion, list or dictionary (name: dist) of distortions. If None then self.dists dictionary is used.
- allocation - 'lifted’ (default for legacy reasons) or 'linear’: treatment in default scenarios. See PIR.
- view - bid or ask
- efficient - for apply_distortion, lifted only

\section*{Returns}

PricingResult namedtuple with 'price', 'assets', 'reg_p', 'distortion', 'df'
```

price_ccoc (}p,ccoc

```

Convenience function to price with a constant cost of captial equal ccoc at VaR level p. Does not invoke a Distortion. Returns standard DataFrame format.
pricing_bounds (premium, \(a=0, p=0, n _t p s=64\), kind='tail', slow=False, verbose=250)
Compute the natural allocation premium ranges by unit consistent with total premium at asset level a or p (one of which must be provided).

Unlike typical case with even s values, this is run at the actual \(S\) values of the Portfolio.
Visualize:
```

from pandas.plotting import scatter_matrix
ans = port.pricing_bounds(premium, p=0.98)
scatter_matrix(ans.allocs, marker='.', s=5, alpha=1,
figsize=(10, 10), diagonal='kde')

```
profit_segment_plot (ax, p, line_names, dist_name, colors=None, translations=None)

Lee diagram for each requested line on a stand-alone basis, loss and risk adj premium using the dist_name distortion. Optionally specify colors, using \(\mathrm{C}\{\mathrm{n}\}\). Optionally specify translations applied to each line. Generally, this applies to shift the cat line up by E[non cat] losses to show it overlays the total.

For a Portfolio with line names CAT and NC:
```

port.gross.profit_segment_plot(ax, 0.99999, ['total', 'CAT', 'NC'],
'wang', [2,0,1])

```
add translation to cat line:
```

port.gross.profit_segment_plot(ax, 0.99999, ['total', 'CAT', 'NC'],
'wang', [2,0,1], [0, E[NC], 0])

```

\section*{Parameters}
- \(\mathbf{a x}\) - axis on which to render
- p - probability level to set upper and lower y axis limits ( p and 1-p quantiles)
- line_names -
- dist_name -
- colors -
- translations -

\section*{Returns}

\section*{\(\mathbf{q}\left(p\right.\), kind \(\left.={ }^{\prime} l o w e r{ }^{\prime}\right)\)}

Return quantile function of density_df.p_total.
Definition 2.1 (Quantiles) \(\mathrm{x}(\alpha)=\mathrm{q} \alpha(\mathrm{X})=\inf \{\mathrm{x} \in \mathrm{R}: \mathrm{P}[\mathrm{X} \leq \mathrm{x}] \geq \alpha\}\) is the lower \(\alpha\)-quantile of \(\mathrm{X} \mathrm{x}(\alpha)=\) \(\mathrm{q} \alpha(\mathrm{X})=\inf \{\mathrm{x} \in \mathrm{R}: \mathrm{P}[\mathrm{X} \leq \mathrm{x}]>\alpha\}\) is the upper \(\alpha\)-quantile of X .
kind=='middle' has been removed.

\section*{Parameters}
- p-
- kind - 'lower' or 'upper'.

\section*{Returns}

\section*{recommend_bucket ()}

Data to help estimate a good bucket size.

\section*{Returns}
remove_fuzz ( \(d f=\) None, eps=0, force=False, log=")
remove fuzz at threshold eps. if not passed use np.finfo(float).eps.
Apply to self.density_df unless df is not None
Only apply if self.remove_fuzz or force :param eps: :param df: apply to dataframe df, default = self.density_df :param force: do regardless of self.remove_fuzz :return:

\section*{property renamer}
write a sensible renamer for the columns to use thusly
self.density_df.rename(columns=renamer)
write a tex version separately Create once per item...assume lines etc. never change

\section*{Returns}
dictionary that can be used to rename columns
```

report (report_list='quick')

```

\section*{Parameters}
report_list -

\section*{Returns}
sample ( \(n\), replace \(=\) True, desired_correlation=None, keep_total=True)
Pull multivariate sample. Apply Iman Conover to induce correlation if required.
```

sample_compare (ax=None)

```

Compare the sample sum to the independent sum of the marginals.
```

sample_density_compare (fuzz=0)

```

Compare from density_df
```

save (filename=', mode='a')

```
persist to json in filename; if none save to user.json

\section*{Parameters}
- filename-
- mode - for file open

\section*{Returns}
```

scatter (marker='.', s=5, alpha=1, figsize=(10, 10), diagonal='kde', **kwargs)

```

Create a scatter plot of marginals against one another, using pandas.plotting scatter_matrix.
Designed for use with samples. Plots exeqa columns
```

set_\mathbf{__p}(a,p)

```
sort out arguments for assets and prob level and make them consistent neither \(=>\) set defaults a only set \(p\) p only set a both do nothing
\(\mathbf{s f}(x)\)
survival function

\section*{Parameters}
x -

\section*{Returns}
```

show_enhanced_exhibits (fmt='{::5g\mp@subsup{]}{}{\prime})

```
show all the exhibits created by enhanced_portfolio methods

\section*{snap ( \(x\) )}
snap value x to the index of density_df

\section*{Parameters}
x -

\section*{Returns}

\section*{property spec}

Get the dictionary specification.

\section*{Returns}

\section*{property spec_ex}

All relevant info.

\section*{Returns}
stand_alone_pricing (dist, \(p=0\), kind='var', S_calc='cumsum')
Run distortion pricing, use it to determine and ROE and then compute traditional and default pricing, then consolidate the answer

\section*{Parameters}
- self -
- roe-
- p -
- kind -

\section*{Returns} from common_scripts.py
```

stand_alone_pricing_work (dist, p, kind,roe, S_calc='cumsum')

```

Apply dist to the individual lines of self, with capital standard determined by a, p, kind=VaR, TVaR, etc. Return usual data frame with L LR M P PQ Q ROE, and a

Dist can be a distortion, traditional, or defaut pricing modes. For latter two you have to input an ROE. ROE not required for a distortion.

\section*{Parameters}
- self - a portfolio object
- dist - "traditional", "default", or a distortion (already calibrated)
- p - probability level for assets
- kind - var (or lower, upper), tvar or epd (note, p should be small for EPD, to pander, if \(p\) is large we use \(1-p\) )
- roe - for traditional methods input roe

\section*{Returns}
exhibit is copied and augmented with the stand-alone statistics
from common_scripts.py
property statistics
Same as statistics df, to be consistent with Aggregate objects :return:
```

property tm_renamer

```
rename exa -> TL, exag -> TP etc. :return:

\section*{trim_df()}

Trim out unwanted columns from density_df
epd used in graphics

\section*{Returns}

\section*{tvar ( \(p\), kind=")}

Compute the tail value at risk at threshold p. Revised June 2023.
Really this function returns ES, CVaR, but in modern terminology this is called TVaR.
Definition 2.6 (Tail mean and Expected Shortfall) Assume E[X-] < \(\infty\). Then \(x^{-}(\alpha)=T M _\alpha(X)=\) \(\alpha^{\wedge}\{-1\} E[\mathrm{X} 1\{\mathrm{X} \leq \mathrm{x}(\alpha)\}]+\mathrm{x}(\alpha)(\alpha-\mathrm{P}[\mathrm{X} \leq \mathrm{x}(\alpha)])\) is \(\alpha\)-tail mean at level \(\alpha\) the of X . Acerbi and Tasche (2002)

McNeil etc. p66-70 - this follows from def of ES as an integral of the quantile function

\section*{Parameters}
- p-
- kind - No longer neeed as the new method is exact (equals the old
tail) and about 1000x faster. :return:
```

tvar_threshold (p, kind)

```

Find the value pt such that \(\operatorname{TVaR}(p t)=\operatorname{VaR}(p)\) using Bisection method. Will fail if \(p=0\) because signs are the same.
```

twelve_plot (fig,axs, p=0.999, p2=0.9999, xmax=0, ymax2=0, biv_log=True, legend_font=0,

```
    contour_scale \(=10\), sort_order \(=\) None, kind='two', cmap \(=\) 'viridis')

Twelve-up plot for ASTIN paper and book, by rc index:
Greys for grey color map
11 density \(12 \log\) density 13 biv density plot
21 kappa 22 alpha (from alpha beta plot 4) 23 beta (?with alpha)
row 3 = line \(A\), row 4 = line \(B\) from alpha beta four 2
\(1 \mathrm{~S}, \mathrm{gS}, \mathrm{aS}, \operatorname{bgS}\)
32 margin 33 shift margin 42 cumul margin 43 natural profit compare

\section*{Args}
self \(=\) portfolio or enhanced portfolio object p control xlim of plots via quantile; used if \(\mathrm{xmax}=0 \mathrm{p} 2\) controls ylim for 33 and 34: stand alone M and natural M ; used if ymax2=0 biv_log - bivariate plot on log scale legend_font - fine tune legend font size if necessary sort_order = plot sorts by column and then .iloc[:, sort_order], if None [1,2,0]
from common_scripts.py
uat ( \(A s=\) None, \(P s=[0.98], L R s=[0.965], r 0=0.03\), num_plots \(=1\), verbose \(=\) False )
Reconcile apply_distortion(s) with price and calibrate

\section*{Parameters}
- As - Asset levels
- Ps (object) - probability levels used to determine asset levels using quantile function
- LRs - loss ratios used to determine profitability
- r0 - r0 level for distortions
- verbose - controls level of output

\section*{Returns}
uat_differential (line)
Check the numerical and theoretical derivatives of exa agree for given line

\section*{Parameters \\ line-}

\section*{Returns}
```

uat_interpolation_functions(a0,e0)

```

Perform quick audit of interpolation functions

\section*{Parameters}
- a0 - base assets
- e0 - base epd

\section*{Returns}
update (log2, bs, approx_freq_ge=100, approx_type='slognorm', remove_fuzz=False, sev_calc='discrete', discretization_calc='survival', normalize \(=\) True, padding \(=1\), tilt_amount \(=0\), trim_df \(=\) False, add_exa=True, force_severity=True, recommend_p=0.99999, approximation=None, debug=False)
TODO: currently debug doesn't do anything...
Create density_df, performs convolution. optionally adds additional information if add_exa=True for allocation and priority analysis
tilting: [@Grubel1999]: Computation of Compound Distributions I: Aliasing Errors and Exponential Tilting (ASTIN 1999) tilt x numbuck \(<20\) is recommended log. 210 num buckets and max loss from bucket size

Aggregate reinsurance in parser has replaced the aggregate_cession_function (a function of a Portfolio object that adjusts individual line densities; applied after line aggs created but before creating not-lines; actual statistics do not reflect impact.) Agg re by unit is now applied in the Aggregate object.

TODO: consider aggregate covers at the portfolio level... Where in parse - at the top!

\section*{Parameters}
- log2 -
- bs - bucket size
- approx_freq_ge - use method of moments if frequency is larger than approx_freq_ge
- approx_type - type of method of moments approx to use (slognorm or sgamma)
- remove_fuzz - remove machine noise elements from FFT
- sev_calc - how to calculate the severity, discrete (point masses as xs) or continuous (uniform between xs points)
- discretization_calc - survival or distribution (accurate on right or left tails)
- normalize - if true, normalize the severity so sum probs \(=1\). This is generally what you want; but
- padding - for \(\mathrm{fft} 1=\) double, \(2=\) quadruple
- tilt_amount - for tiling methodology - see notes on density for suggested parameters
- epds - epd points for priority analysis; if None-> sensible defaults
- trim_df - remove unnecessary columns from density_df before returning
- add_exa - run add_exa to append additional allocation information needed for pricing; if add_exa also add epd info
- force_severity - force computation of severities for aggregate components even when approximating
- recommend_p - percentile to use for bucket recommendation.
- approximation - if not None, use these instructions ('exact')
- debug - if True, print debug information

\section*{Returns}
property valid
Check if the model appears valid. See documentation for Aggregate.valid.
An answer of True does not guarantee the model is valid, but False means it is definitely suspect. (Similar to the null hypothesis in a statistical test). Called and reported automatically by qd for Aggregate objects.

Checks the relative errors (from self. describe) for:
- severity mean < eps
- severity cv \(<10 *\) eps
- severity skew \(<100\) * eps (skewness is more difficult to estimate)
- aggregate mean <eps and \(<2 *\) severity mean relative error (larger values indicate possibility of aliasing and that bs is too small).
- aggregate \(\mathrm{cv}<10 *\) eps
- aggregate skew < 100 * esp
eps \(=1 \mathrm{e}-3\) by default; change in validation_eps attribute.
Test only applied for CV and skewness when they are \(>0\).

\section*{Returns}

True if all tests are passed, else False.
\(\operatorname{var}(p)\)
value at risk \(=\) alias for quantile function

\section*{Parameters}
p-

\section*{Returns}
var_dict ( \(p\), kind='lower', total='total', snap=False)
make a dictionary of value at risks for each line and the whole portfolio.
Returns: \{line : \(\operatorname{var}(\mathrm{p}\), kind \()\}\) and includes the total as self.name line
if p near 1 and epd uses 1-p.
Example:
for \(p, \arg\) in \(\operatorname{zip}([.996, .996, .996, .985, .01]\), ['var', 'lower', 'upper', 'tvar', 'epd']): print(port.var_dict(p, arg, snap=True))

\section*{Parameters}
- p-
- kind - var (defaults to lower), upper, lower, tvar, epd
- total - name for total: total=='name' gives total name self.name
- snap - snap tvars to index

\section*{Returns}

\subsection*{3.4.2 Other Portfolio functions}
```

aggregate.portfolio.check01 (s)

```
add 01 at start end
```

aggregate.portfolio.convex_points(}s,gs

```

Extract the points that make the convex envelope, including 01
Testers:
```

%%sf 1 1 5 5
s_values, gs_values = [.001,.0011, .002,.003, 0.005, .008, .01], [0.002,.02, .
->03, .035, 0.036, .045, 0.05]
s_values, gs_values = [.001, .002,.003, .009, .011, 1], [0.02, .03, .035, .05,
@ 0.05, 1]
s_values, gs_values = [.001, .002,.003, .009, .01, 1], [0.02, .03, .035,
¢0351, 0.05, 1]
s_values, gs_values = [0.01, 0.04], [0.03, 0.07]
points = make_array(s_values, gs_values)
ax.plot(points[:, 0], points[:, 1], 'x')
s_values, gs_values = convex_points(s_values, gs_values)
ax.plot(s_values, gs_values, 'r+')
ax.set(xlim=[-0.0025, .1], ylim=[-0.0025, .1])
hull = ConvexHull(points)
for simplex in hull.simplices:
ax.plot(points[simplex, 0], points[simplex, 1], 'k-', lw=.25)

```
```

aggregate.portfolio.make_array (s,gs)

```
convert to np array and pad with 01
```

aggregate.portfolio.make_awkward (log2, scale=False)

```

Decompose a uniform random variable on range \(\left(2^{* *} \log 2\right)\) into two parts using Eamonn Long's base 4 method. Usage:
awk = make_awkward(16)
awk.density_df.filter(regex='p_[ABt]').cumsum().plot()
awk.density_df.filter(regex='exeqa_[AB]|loss').plot()

\subsection*{3.5 Utilities}

\subsection*{3.5.1 Moment Aggregator Class}
class aggregate.utilities.MomentAggregator (freq_moms=None)
Purely accumulates moments Used by Portfolio Not frequency aware makes report_ser df and statistics_df Internal variables agg, sev, freq, tot \(=\) running total, \(1,2,3=\) noncentral moments, \(E\left(X^{\wedge} k\right)\)

\section*{Parameters}
freq_moms - function of one variable returning first three noncentral moments of the underlying frequency distribution
\(\qquad\) (freq_moms=None)
add_f1s (f1, sl, s2, s3)
accumulate new moments defined by f 1 and s - fills in \(\mathrm{f} 2, \mathrm{f} 3\) based on stored frequency distribution used by Aggregate
compute agg for the latest values

\section*{Parameters}
- f1 -
- s1 -
- s2 -
- s3-

\section*{Returns}
add_fs ( \(f 1, f 2, f 3, s 1, s 2, s 3\) )
accumulate new moments defined by f and s
used by Portfolio
compute agg for the latest values

\section*{Parameters}
- f1 -
- f2-
- \(£ 3\) -
- s1 -
- s2 -
- s3-

\section*{Returns}
add_fs2 ( \(f 1, v f, s l, v s\) )
accumulate based on first two moments entered as mean and variance - this is how questions are generally written.
```

static agg_from_fs(fl,f2,f3,s1, s2, s3)

```
aggregate_project moments from freq and sev components

\section*{Parameters}
- f1 -
- \(£ 2\) -
- f3-
- s1 -
- s2-
- s3-

\section*{Returns}
```

static agg_from_fs2(fl,vf,sl,vs)

```
aggregate_project moments from freq and sev ex and var x

\section*{Parameters}
- f1 -
- vf -
- s1 -
- vs -

\section*{Returns}

\section*{static column_names()}
list of the moment and statistics_df names for \(\mathrm{f} \mathrm{x} \mathrm{s}=\mathrm{a}\)

\section*{Returns}
static cumulate_moments ( \(m 1, m 2, m 3, n 1, n 2, n 3\) )
Moments of sum of indepdendent variables

\section*{Parameters}
- m1 - 1st moment, \(\mathrm{E}(\mathrm{X})\)
- m2 - 2nd moment, \(\mathrm{E}\left(\mathrm{X}^{\wedge} 2\right)\)
- m3 - 3rd moment, \(\mathrm{E}\left(\mathrm{X}^{\wedge} 3\right)\)
- n1 -
- n2 -
- n3 -

\section*{Returns}
```

get_fsa_stats(total, remix=False)

```
get the current \(\mathrm{f} \times \mathrm{s}=\) agg statistics_df and moments total \(=\) true use total else, current remix \(=\) true for total only, re-compute freq statistics_df based on total freq 1

\section*{Parameters}
- total - binary
- remix - combine all sevs and recompute the freq moments from total freq

\section*{Returns}
moments (mom_type, total=True)
vector of the moments; convenience function

\section*{Parameters}
- mom_type -
- total -

\section*{Returns}
moments_to_mcvsk (mom_type, total=True)
convert noncentral moments into mean, cv and skewness type \(=\operatorname{agg} \mid\) freq \(|\mathrm{sev}|\) mix delegates work

\section*{Parameters}
- mom_type -
- total -

\section*{Returns}
static static_moments_to_mcvsk (exl, ex2, ex3)
returns mean, cv and skewness from non-central moments

\section*{Parameters}
- ex1-
- ex2 -
- ex3-

\section*{Returns}
stats_series (name, limit, pvalue, remix)
combine elements into a reporting series handles order, index names etc. in one place

\section*{Parameters}
- name - series name
- limit -
- pvalue-
- remix - called from Aggregate want remix=True to collect mix terms; from Portfolio remix \(=\) False

\section*{Returns}

\subsection*{3.5.2 Moment Wrangler Class}
```

class aggregate.utilities.MomentWrangler

```

Conversion between central, noncentral and factorial moments
Input any one and ask for any translation.
Stores moments as noncentral internally
\(\qquad\) ()
_make_factorial()
add factorial from central

\subsection*{3.5.3 Axis Manager Class}
class aggregate.utilities.AxisManager ( \(n\), figsize=None, height=2, aspect=1, \(n r=5\) )
Manages creation of a grid of axes for plotting. Allows pandas plot and matplotlib to plot to same set of axes. Always created and managed through axiter_factory function

\section*{Parameters}
- n - number of plots in grid
- figsize -
- height - height of individual plot
- aspect - aspect ratio of individual plot
- nr - number of plots per row
__init__ ( \(n\), figsize=None, height=2, aspect \(=1, n r=5\) )

\section*{dimensions()}
return dimensions (width and height) of current layout

\section*{Returns}
```

static good_grid(n, c=4)

```

Good layout for n plots :param n : :return:

\section*{grid (size=0)}
return a block of axes suitable for Pandas if size \(=0\) return all the axes

\section*{Parameters}
size-

\section*{Returns}
grid_size ( \(n\), subgrid=False)
appropriate grid size given class parameters

\section*{Parameters}
- n -
- subgrid - call is for a subgrid, no special treatment for 6 and 8

\section*{Returns}
```

static make_figure (n, aspect=1.5, **kwargs)

```
make the figure and iterator :param n : :param aspect: :return:
static print_fig (n, aspect=1.5)
printout code...to insert (TODO copy to clipboard!) :param n: :param aspect: :return:
static size_figure ( \(r, c\), aspect \(=1.5\) )
reasonable figure size for n plots :param r : :param c : :param aspect: :return:
tidy()
delete unused axes to tidy up a plot

\section*{Returns}
```

static tidy_up(f,ax)

```
delete unused frames out of a figure :param ax: :return:

\subsection*{3.5.4 Utilities Module}
```

class aggregate.utilities.Answer(**kwargs)
__init__(**kwargs)
Generic answer wrapping class with plotting
Parameters
kwargs - key=value to wrap
_repr_html_()
List elements
list()
List elements
static nice(x)

```
        return a nice rep of x
    summary ()
        just print out the dataframes: horz or vertical as appropriate reasonable styling :return:
class aggregate.utilities.GCN (gross, net, ceded)
    _asdict()
        Return a new dict which maps field names to their values.
    classmethod _make (iterable)
        Make a new GCN object from a sequence or iterable
    _replace (**kwds)
        Return a new GCN object replacing specified fields with new values
    ceded
        Alias for field number 2
    gross
        Alias for field number 0
    net
        Alias for field number 1
class aggregate.utilities.GreatFormatter(sci=True, power_range=(-3, 3), offset=True,
                        mathText=False)
    __init__ (sci=True, power_range \(=(-3,3)\), offset=True, mathText=False \()\)
aggregate.utilities.approximate_work ( \(m, c v\), skew, name, agg_str, note, approx_type, output)

Does the work for Portfolio.approximate and Aggregate.approximate. See their documentation.

\section*{Parameters}
output - scipy - frozen scipy.stats continuous rv object; agg_decl sev_decl - DecL program for severity (to substituate into an agg ; no name) sev_kwargs - dictionary of parameters to create Severity agg_decl - Decl program agg T 1 claim sev_decl fixed any other string - created Aggregate object
aggregate.utilities.axiter_factory (axiter, \(n\), figsize=None, height=2, aspect=1, \(n r=5\) )
axiter \(=\) check_axiter \((\) axiter, \(\ldots\) ) to allow chaining TODO can this be done in the class somehow?

\section*{Parameters}
- axiter -
- n -
- figsize-
- height -
- aspect -
- nr -

\section*{Returns}
aggregate.utilities.block_iman_conover (unit_losses, intra_unit_corrs, inter_unit_corr, as_frame=False)
Apply Iman Conover to the unit loss blocks in unit_losses with correlation matrices in intra.
Then determine the ordering for the unit totals with correlation inter.
Re-order each unit, row by row, so that the totals have the desired correlation structure, but leaving the intra unit correlation unchanged.
```

unit_losses = [np.arrays or pd.Series] of losses by subunit within units, without totals
len(unit_losses) == len(intra_unit corrs)

```

For simplicity all normal copula; can add other later if required.
No totals input or output anywhere.
if as_frame then a dataframe version returned, for auditing.
Here is some tester code, using great.test_df to make random unit losses. Vary num_units and num_sims as required.
```

def bic_tester(num_units=3, num_sims=10000):
from aggregate import random_corr_matrix
\# from great import test_df
\# create samples
R = range(num_units)
unit_losses = [test_df(num_sims, 3 + i) for i in R]
totals = [u.sum(1) for u in unit_losses]
\# manual dataframe to check against
manual = pd.concat(unit_losses + totals, keys=[f'Unit_{i}' for i in R] + [
\hookrightarrow'Total' for i in R], axis=1)
\# for input to method
unit_losses = [i.to_numpy() for i in unit_losses]
totals = [i.to_numpy() for i in totals]
\# make corrs
intra_unit_corrs = [random_corr_matrix(i.shape[1], p=.5, positive=True)
\hookrightarrowfor i in unit_losses]
inter_unit_corr = random_corr_matrix(len(totals), p=1, positive=True)
\# apply method
bic = block_iman_conover(unit_losses, intra_unit_corrs, inter_unit_corr,
\hookrightarrow True)
\# extract frame answer, put col names back
bic.frame.columns = manual.columns
dm = bic.frame
\# achieved corr
for i, target in zip(dm.columns.levels[0], intra_unit_corrs + [inter_unit_
Gcorr]):
print(i)
print((dm[i].corr() - target).abs().max().max())

```
```

 # print(dm[i].corr() - target)
 # total corr across subunits
 display(dm.drop(columns=['Total']).corr())
 # total corr across subunits
 display(dm.drop(columns=['Total']).corr())
 return manual, bic, intra_unit_corrs, inter_unit_corr
 manual, bic, intra, inter = bic_tester(3, 10000)

```
aggregate.utilities.easy_formatter (ax, which, kind, places=None, power_range=(-3, 3), sep='", unit=", sci=True, mathText=False, offset=True)
set which \((x, y, b\), both \()\) to kind \(=s c i\), eng, nice nice \(=\) engineering but uses e-3, e-6 etc. see docs for ScalarFormatter and EngFormatter
aggregate.utilities.estimate_agg_percentile ( \(m, c v\), skew, \(p=0.999\) )
Come up with an estimate of the tail of the distribution based on the three parameter fits, ln and gamma
Updated Nov 2022 with a way to estimate p based on lognormal results. How far in the tail you need to go to get an accurate estimate of the mean. See 2_x_approximation_error in the help.

Retain p param for backwards compatibility.

\section*{Parameters}
- m -
- Cv -
- skew -
- \(\mathbf{p}\) - if \(>1\) converted to \(1-10^{* *}\)-n

\section*{Returns}
```

aggregate.utilities.explain_validation(rv)

```

Explain the validation result rv. Don't over report: if you fail CV don't need to be told you fail Skew too.
```

aggregate.utilities.frequency_examples (}n,v,f,\kappa,\mathrm{ sichel_case, log2, xmax=500)

```

Illustrate different frequency distributions and frequency moment calculations.
sichel_case \(=\) gamma \(|\mathrm{ig}|^{\prime \prime}\)
Sample call:
```

df, ans = frequency_examples(n=100, v=0.45, f=0.5, k=1.25,
sichel_case='', log}2=16, xmax=2500

```

\section*{Parameters}
- \(\mathrm{n}-\mathrm{E}(\mathrm{N})=\) expected claim count
- \(\mathbf{v}-\mathrm{CV}(\) mixing \()=\) asymptotic CV of any compound aggregate whose severity has a second moment
- \(\mathbf{f}\) - proportion of certain claims, \(0<=\mathrm{f}<1\), higher f corresponds to greater skewnesss
- \(\mathbf{x}\) - (kappa) claims per occurrence
- sichel_case - gamma, ig or "
- xmax -
```

aggregate.utilities.friendly(df)

```

Attempt to format df "nicely", in a user-friendly manner. Not designed for big dataframes!

\section*{Parameters}
df -

\section*{Returns}
aggregate.utilities.ft (z, padding, tilt)
fft with padding and tilt padding \(=\mathrm{n}\) makes vector \(2^{\wedge} \mathrm{n}\) as long \(\mathrm{n}=1\) doubles (default) \(\mathrm{n}=2\) quadruples tilt is passed in as the tilting vector or None: easier for the caller to have a single instance

\section*{Parameters}
- z-
- padding - = 1 doubles
- tilt - vector of tilt values

\section*{Returns}
```

aggregate.utilities.gamma_fit(m,cv)
aggregate.utilities.get_fmts(df)
reasonable formats for a styler

```

\section*{Parameters}
df -
Returns
aggregate.utilities.html_title (txt, \(n=1\), title_case=True)

\section*{Parameters}
- txt -
- n -
- title_case -

\section*{Returns}
```

aggregate.utilities.ic_noise(}n,d

```

Implements steps \(1,2,3,4,5\), and 6 This is bottleneck function, therefore cache it It handles the true-up of the random sample to ensure it is exactly independent :param n : row :param d: columns :return:
```

aggregate.utilities.ic_rank(N)

```
rankdata function: assign ranks to data, dealing with ties appropriately work by column N is a numpy array
```

aggregate.utilities.ic_reorder(ranks, samples)

```
put samples into the order determined by ranks array is calibrated to the reference distribution space for the answer
```

aggregate.utilities.ic_t_noise(n, d, dof)

```
as above using multivariate \(t\) distribution noise
aggregate.utilities.ift (z, padding, tilt)
ift that strips out padding and adjusts for tilt

\section*{Parameters}
- z -
- padding -
- tilt -

\section*{Returns}
aggregate.utilities.iman_conover (marginals, desired_correlation, dof=0, add_total=True)
Perform Iman Conover shuffling on input marginals to achieve desired_correlation Desired_correlation must be positive definite and of the correct size. The result has the same rank correlation as a reference sample with the desired linear correlation. Thus, the process relies on linear and rank correlation (for the reference and the input sample) being close.
if dof \(==0\) use normal scores; else you mv t
Sample code:
```

n = 100
df = pd.DataFrame({ f'line_{i}': ss.lognorm(.1 + . 2*np.random.rand(),
scale=10000).rvs(n) for i in range(3)})
desired = np.matrix([[1, -.3, 0], [-.3, 1, . 8], [0, . 8, 1]])
print(desired)

check it is a corr matrix

np.linalg.cholesky(desired)
df2 = iman_conover(df, desired)
df2.corr()
df_scatter(df2)

```

\section*{Iman Conover Method}

Make rank order the same as a reference sample with desired correlation structure.
Reference sample usually chosen as multivariate normal because it is easy and flexible, but you can use any reference, e.g. copula based.

The old @Risk software used Iman Conover.
Input: matrix \$mathbf \(\mathrm{X} \$\) of marginals and desired correlation matrix \$mathbf \(\mathrm{S} \$\)
1. Make one column of scores \(\$ \mathrm{a} _\mathrm{i}=\mathrm{Phi} \wedge\{-1\}(\mathrm{i} /(\mathrm{n}+1)) \$\) for \(\$ \mathrm{i}=1\), dots, \(\mathrm{n} \$\) and rescale to have standard deviation one. 1. Copy the scores \(\$ \mathrm{r} \$\) times to make the score matrix \(\$\) mathbf \(\mathrm{M} \$\). 1. Randomly permute the entries in each column of \$mathbf \(\mathbf{M} \$\). 1. Compute the correlation matrix \(\$ n^{\wedge}\{-1\}\) mathbf M'mathbf \(\mathbf{M} \$\) of the sample scores \$mathbf \(\mathbf{M} \$\). 1. Compute the Choleski decomposition \(\$ n^{\wedge}\{-1\}\) mathbf \(M^{\wedge}\) tmathbf \(\mathrm{M}=\) mathbf Emathbf \(E^{\wedge} t \$\) of the score correlation matrix. 1. Compute \(\$\) mathbf \(M^{\prime}=\) mathbf \(M\left(\text { mathbf } E^{\wedge} t\right)^{\wedge}\{-1\} \$\), which is exactly uncorrelated. 1. Compute the Choleski decomposition \(\$\) mathbf \(\mathrm{S}=\) mathbf Cmathbf \(\mathrm{C}^{\wedge} \mathrm{t} \$\) of the desired correlation matrix \$mathbf \(\mathrm{S} \$\). 1. Compute \$mathbf \(\mathrm{T}=\) mathbf M'mathbf \(\mathrm{C}^{\wedge} \mathrm{t} \$\). The matrix \$mathbf T\$ has exactly the desired correlation structure 1. Let \$mathbf Y\$ be the input matrix \$mathbf X\$ with each column reordered to have exactly the same rank ordering as the corresponding column of \$mathbf T\$.

Relies on the fact that rank (Spearman) and linear (Pearson) correlation are approximately the same.
```

aggregate.utilities.integral_by_doubling(func, x0, err=le-08)

```

Compute \(\int_{x_{0}}^{\infty} f\) as the sum
\[
\int_{x_{0}}^{\infty} f=\sum_{n \geq 0} \int_{2^{n} x_{0}}^{2^{n+1} x_{0}} f
\]

Caller should check the integral actually converges.

\section*{Parameters}
- func - function to be integrated.
- \(\mathbf{x} 0\) - starting x value
- err - desired accuracy: stop when incremental integral is <= err.
```

aggregate.utilities.introspect (ob)

```

Discover the non-private methods and properties of an object ob. Returns a pandas DataFrame.
```

aggregate.utilities.kaplan_meier (df,loss='loss', closed='closed')

```

Compute Kaplan Meier Product limit estimator based on a sample of losses in the dataframe df. For each loss you know the current evaluation in column loss and a \(0 / 1\) indicator for open/closed in closed.

The output dataframe has columns
- index x_i, size of loss
- open - the number of open events of size \(x _i\) (open claim with this size)
- closed - the number closed at size x_i
- events - total number of events of size \(\mathrm{x}_{-} \mathrm{i}\)
- n - number at risk at x_i
- s - probability of suriviving past \(\mathrm{x} _\mathrm{i}=1-\) closed \(/ \mathrm{n}\)
- pl - cumulative probability of surviving past x_i

See ipython workbook kaplan_meier.ipynb for a check against lifelines and some kaggle data (telco customer churn, https://www.kaggle.com/datasets/blastchar/telco-customer-churn?resource=download https:// towardsdatascience.com/introduction-to-survival-analysis-the-kaplan-meier-estimator-94ec5812a97a

\section*{Parameters}
- df - dataframe of data
- loss - column containing loss amount data
- closed - column indicating if the obervation is a closed claim (1) or open (0)

\section*{Returns}
dataframe as described above
```

aggregate.utilities.kaplan_meier_np (loss, closed)

```

Feeder to kaplan_meier where loss is np array of loss amounts and closed a same sized array of \(0=\) open, \(1=\) closed indicators.
```

aggregate.utilities.knobble_fonts(color=False)

```

Not sure we should get into this...
See FigureManager in Great or common.py
https://matplotlib.org/3.1.1/tutorials/intermediate/color_cycle.html
https://matplotlib.org/3.1.1/users/dflt_style_changes.html\#colors-in-default-property-cycle
https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html
https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/linestyles.html
https://stackoverflow.com/questions/22408237/named-colors-in-matplotlib
```

aggregate.utilities.ln_fit(m,cv)

```
lognormal parameters
```

aggregate.utilities.log_test()

```
" Issue logs at each level
```

aggregate.utilities.logarithmic_theta(mean)

```

Solve for theta parameter given mean, see JKK p. 288
aggregate.utilities.logger_level (level=30, name='aggregate', verbose=False)
Code from common.py
Change logger level all loggers containing name Changing for EVERY logger is a really bad idea, you get the endless debug info out of matplotlib find_font, for exapmle.
FWIW, to list all loggers:
```

loggers = [logging.getLogger()] \# get the root logger
loggers = loggers + [logging.getLogger(name) for name in logging.root.manager.
\hookrightarrowloggerDict]
loggers

```

\section*{Parameters}
level-

\section*{Returns}
aggregate.utilities.lognorm_approx (ser)
Lognormal approximation to series, index = loss values, values = density.
aggregate.utilities.lognorm_lev (mu, sigma, \(n\), limit)
return \(\mathrm{E}\left(\min (\mathrm{X}, \operatorname{limit})^{\wedge} \mathrm{n}\right)\) for lognormal using exact calculation currently only for \(\mathrm{n}=1,2\)

\section*{Parameters}
- mu -
- sigma -
- n -
- limit -

\section*{Returns}
aggregate.utilities.make_ceder_netter (reins_list, debug=False)
Build the netter and ceder functions. It is applied to occ_reins and agg_reins, so should be stand-alone.
The reinsurance functions are piecewise linear functions from 0 to inf which kinks as needed to express the ceded loss as a function of subject (gross) loss.

For example, if reins_list \(=[(1,10,0),(0.5,30,20)]\) the program is \(10 \times 10\) and 15 part of \(30 \times 20\) (share \(=0.5\) ). This requires nodes at \(0,10,20,50\), and inf.

It is easiest to make the ceder function. Ceded loss at subject loss at x equals the sum of the limits below x plus the cession to the layer in which \(x\) lies. The variable base keeps track of the layer, \(h\) of the sum (height) of lower layers. xs tracks the knot points, ys the values.
\begin{tabular}{cc} 
Break (xs) & Ceded (ys) \\
0 & 0 \\
10 & 0 \\
20 & 10 \\
50 & 25 \\
inf & 25
\end{tabular}

For example:
```

%%Sf12
c, n, x, y = make_ceder_netter([(1, 10, 10), (0.5, 30, 20), (.25, np.inf, 50)],
@ debug=True)
xs = np.linspace(0,250, 251)
ys}=c(xs
ax0.plot(xs, ys)
ax0.plot(xs, xs, ':C7')
ax0.set(title='ceded')
ax1.plot(xs, xs-ys)
ax1.plot(xs, xs, 'C7:')
ax1.set(title='net')

```

\section*{Parameters}
- reins_list - a list of (share of, limit, attach), e.g., ( \(0.5,3,2\) ) means \(50 \%\) share of \(3 \times 2\) or, equivalently, 1.5 part of \(3 \times 2\). It is better to store share rather than part because it still works if limit \(==\) inf.
- debug - if True, return layer function xs and ys in addition to the interpolation functions.

\section*{Returns}
netter and ceder functions; optionally debug information.
aggregate.utilities.make_corr_matrix(vine_spec)
Make a correlation matrix from a vine specification, https://en.wikipedia.org/wiki/Vine_copula.
A vine spececification is:
```

row 0: correl of X0...Xn-1 with X0
row 1: correl of X1....Xn-1 with X1 given X0
row 2: correl of X2Xn-1 with X2 given X0, X1
etc.

```

For example
```

vs = np.array([[1,.2,.2,.2,.2],
[0,1,.3,.3,.3],
[0,0,1,.4, .4],
[0,0,0,1,.5],
[0,0,0,0,1]])
make_corr_matrix(vs)

```

Key fact is the partial correlation forumula
\[
\rho(X, Y \mid Z)=\frac{(\rho(X, Y)-\rho(X, Z) \rho(Y, Z))}{\sqrt{\left(1-\rho(X, Z)^{2}\right)\left(1-\rho(Y, Z)^{2}\right)}}
\]
and therefore
\[
\left.\rho(X, Y)=\rho(X, Z) \rho(Y, Z)+\rho(X, Y \mid Z) \sqrt{( }\left(1-\rho(X Z)^{2}\right)\left(1-\rho(Y Z)^{2}\right)\right)
\]
see https://en.wikipedia.org/wiki/Partial_correlation\#Using_recursive_formula.
aggregate.utilities.make_mosaic_figure (mosaic, figsize \(=\) None, \(w=3.5, h=2.45\), xfmt='great', \(y f m t=\) 'great', places \(=\) None, power_range \(=(-3,3)\), sep=", unit=", sci=True, mathText=False, offset=True, return_array=False)
make mosaic of axes apply format to xy axes default engineering format default \(\mathrm{w} x\) h per subplot
\(x f m t=\) 'd' for default axis formatting, \(n=n i c e, e=e n g i n e e r i n g, s=s c i e n t i f i c, g=g r e a t ~ g r e a t=\) engineering with power of three exponents
if return_array then the returns are mor comparable with the old axiter_factory
aggregate.utilities.make_var_tvar(ser)
Make var (lower quantile), upper quantile, and tvar functions from a pd. Series ser, which has index given by losses and p_total values.
ser must have a unique monotonic increasing index and all p_totals \(>0\).
Such a series comes from a.density_df.query('p_total > 0').p_total, for example.
Tested using numpy vs pd.Series lookup functions, and this version is much faster. See var_tvar_test_suite function below for testers (obviously run before this code was integrated).
Changed in v. 0.13.0
aggregate.utilities.moms_analytic ( \(f z\), limit, attachment, \(n\), analytic=True)
Return moments of \(E\left[(X-\text { attachment })^{+} \wedge \text { limit }\right]^{m}\) for \(\mathrm{m}=1,2, \ldots, \mathrm{n}\).
To check:
```


fz = ss.lognorm(1.24)

fz = ss.gamma(6.234, scale=100)

fz = ss.pareto(3.4234, scale=100, loc=-100)

a1 = moms_analytic(fz, 50, 1234, 3)
a2 = moms_analytic(fz, 50, 1234, 3, False)
a1, a2, a1-a2, (a1-a2) / a1

```

\section*{Parameters}
- fz - frozen scipy.stats instance
- limit - double, limit (layer width)
- attachment - double, limit
- n - int, power
- analytic - if True use analytic formula, else numerical integrals
```

aggregate.utilities.more(self,regex)

```

Investigate self for matches to the regex. If callable, try calling with no args, else display.
```

aggregate.utilities.mu_sigma_from_mean_cv(m,cv)

```
lognormal parameters
aggregate.utilities.mv ( \(x, y=\) None)
Nice display of mean and variance for Aggregate or Portfolios or entered values.
R style function, no return value.

\section*{Parameters}
- \(\mathbf{x}\) - Aggregate or Portfolio or float
- y - float, if x is a float

\section*{Returns}

None
aggregate.utilities.nice_multiple ( \(m x\) )
Suggest a nice multiple for an axis with scale 0 to mx . Used by the MultipleLocator in discrete plots, where you want an integer multiple. Return 0 to let matplotlib figure the answer. Real issue is stopping multiples like 2.5.

\section*{Parameters}
mx -

\section*{Returns}
```

aggregate.utilities.parse_note(txt)

```

Extract kwargs from txt note. Recognizes bs, log2, padding, normalize, recommend_p. CSS format. Split on ; and then look for \(\mathrm{k}=\mathrm{v}\) pairs bs can be entered as \(1 / 32\) etc.

\section*{Parameters}
txt - input text

\section*{Return value}
dictionary of keyword: typed value
```

aggregate.utilities.parse_note_ex (txt, log2, bs, recommend_p,kwargs)

```

Avoid duplication: this is how the function is used in Underwriter.build.
```

aggregate.utilities.partial_e(sev_name, fz, a,n)

```

Compute the partial expected value of fz. Computing moments is a bottleneck, so you want analytic computation for the most commonly used types.

Exponential (for mixed exponentials) implemented separate from gamma even though it is a special case.
for \(\mathrm{k}=0, \ldots, \mathrm{n}\) as a np.array
To do: beta? weibull? Burr? invgamma, etc.

\section*{Parameters}
- sev_name - scipy.stats name for distribution
- \(\mathbf{f z}\) - frozen scipy.stats instance
- a - double, limit for integral
- n - int, power

\section*{Returns}
partial expected value
aggregate.utilities.partial_e_numeric \((f z, a, n)\)
Simple numerical integration version of partial_e for auditing purposes.
```

aggregate.utilities.picks_work (attachments,layer_loss_picks, xs, sev_density, n=1, sf=None, debug=False)

```

Adjust the layer unconditional expected losses to target. You need int \(\mathrm{xf}(\mathrm{x}) \mathrm{dx}\), but that is fraught when f is a mixed distribution. So we only use the int \(S\) version. \(f z\) was initially a frozen continuous distribution; but adjusted to sf function and dropped need for pdf function.

See notes for how the parts are defined. Notice that:
```

np.allclose(p.layers.v - p.layers.f, p.layers.l - p.layers.e)

```
is true.

\section*{Parameters}
- attachments - array of layer attachment points, in ascending order (bottom to top). \(\mathrm{a}[0]>0\)
- layer_loss_picks - Target means. If len (layer_loss_picks)==len (attachments) then the bottom layer, 0 to a[0], is added. Can be input as unconditional layer severity (i.e., \(\left.\mathbb{E}\left[(X-a)^{+} \wedge y\right]\right)\) or as the layer loss pick (i.e., \(\mathbb{E}\left[(X-a)^{+} \wedge y\right]^{\prime}\) timesn where \(n\) is the number of ground-up (to the insurer) claims. Multiplying and dividing by \(S(a)\) shows this equals conditional severity in the layer times the number of claims in the layer.) Actuaries usually estimate the loss pick to the layer in pricing. When called from Aggregate the number of ground up claims is known.
- en - ground-up expected claims. Target is divided by en.
- \(\mathbf{x s}-\mathrm{x}\) values for discretization
- sev_density - Series of existing severity density from Aggregate.
- \(\mathbf{s f}-\mathrm{cdf}\) function for the severity distribution.
- debug - if True, return debug information (layers, density with adjusted probs, audit of layer expected values.
aggregate.utilities.pprint (txt)
Simple text version of pprint with line breaking
aggregate.utilities.pprint_ex (txt, split=0, html=False)
Try to format an agg program. This is difficult because of dfreq and dsev, optional reinsurance, etc. Go for a simple approach of removing unnecessary spacing and removing notes. Notes can be accessed from the spec that is always to hand.

For long programs use split=60 or so, they are split at appropriate points.
Best to use html = True to get colorization.

\section*{Parameters}
- txt - program text input
- split - if \(>0\) split lines at this length
- html - if True return html (via pygments), else return text
```

aggregate.utilities.qd (*argv, accuracy=3, align=True, trim=True, ff=None, **kwargs)

```

Endless quest for a robust display format!
Quick display (qd) a list of objects. Dataframes handled in text with reasonable defaults. For use in documentation.

\section*{Param}
argv: list of objects to print

\section*{Param}
accuracy: number of decimal places to display

\section*{Param} align: if True, align columns at decimal point (sEngFormatter)

\section*{Param} trim: if True, trim trailing zeros (sEngFormatter)

\section*{Param} ff: if not None, use this function to format floats, or 'basic', or 'binary'

\section*{Kwargs}
passed to pd.DataFrame.to_string for dataframes only. e.g., pass dict of formatters by column.
```

aggregate.utilities.qdp(df)

```

Quick describe with nice percentiles and cv for a dataframe.
```

aggregate.utilities.random_corr_matrix(}n,p=1,\mathrm{ positive=False)

```
make a random correlation matrix
smaller p results in more extreme correlation \(0<\mathrm{p}<=1\)
Eg
```

 rcm = random_corr_matrix(5, . 8)
 rcm
 np.linalg.cholesky(rcm)
    ```
positive \(=\) True for all entries to be positive
aggregate.utilities.rearrangement_algorithm_max_VaR ( \(d f, p=0\), tau \(=0.001\), max_n_iter=100)
Implementation of the Rearragement Algorithm (RA). Determines the worst p-VaR rearrangement of the input variables.
For loss random variables p is usually close to 1 .
Embrechts, Paul, Giovanni Puccetti, and Ludger Ruschendorf, 2013, Model uncertainty and VaR aggregation, Journal of Banking and Finance 37, 2750-2764.

\section*{Worst-Case VaR}

Worst value at risk arrangement of marginals.
See Actuarial Review article.
Worst TVaR / Variance arrangement of bivariate data = pair best with worst, second best with second worst, etc., called countermonotonic arangement.

More than 2 marginals: can't make everything negatively correlated with everything else. If \(X\) and \(Y\) are negatively correlated and \(Y\) and \(Z\) are negatively correlated then \(X\) and \(Z\) will be positively correlated.
Next best attempt: make \(X\) countermonotonic to \(Y+Z, Y\) to \(X+Z\) and \(Z\) to \(X+Y\). Basis of rearrangement algorithm.

\section*{The Rearrangement Algorithm}
1. Randomly permute each column of \(X\), the \(N \times d\) matrix of top \(1-p\) observations
2. Loop
- Create a new matrix \(Y\) as follows. For column \(j=1, \ldots, d\)
- Create a temporary matrix \(V_{j}\) by deleting the \(j\) th column of \(X\)
- Create a column vector \(v\) whose \(i\) th element equals the sum of the elements in the \(i\) th row of \(V_{j}\)
- Set the \(j\) th column of \(Y\) equal to the \(j\) th column of \(X\) arranged to have the opposite order to \(v\), i.e. the largest element in the \(j\) th column of \(X\) is placed in the row of \(Y\) corresponding to the smallest element in \(v\), the second largest with second smallest, etc.
- Compute \(y\), the \(N \times 1\) vector with \(i\) th element equal to the sum of the elements in the \(i\) th row of \(Y\) and let \(y^{*}=\min (y)\) be the smallest element of \(y\) and compute \(x^{*}\) from \(X\) similarly
- If \(y^{*}-x^{*} \geq \epsilon\) then set \(X=Y\) and repeat the loop
- If \(y^{*}-x^{*}<\epsilon\) then break from the loop
3. The arrangement \(Y\) is an approximation to the worst :math:` \(\operatorname{ext}\{\mathrm{VaR}\}_{-}\)p \({ }^{`}\) arrangement of \(X\).

\section*{Parameters}
- df - Input DataFrame containing samples from each marginal. RA will only combine the top 1-p proportion of values from each marginal.
- \(p\) - If \(p==0\) assume df has already truncated to the top \(p\) values (for each marginal). Otherwise truncate each at the int ( \(1-\mathrm{p}\) * len(df))
- tau - simulation tolerance
- max_iter - maximum number of iterations to attempt

\section*{Returns}
the top 1-p values of the rearranged DataFrame
aggregate.utilities.round_bucket ( \(b s\) )
Compute a decent rounded bucket from an input float bs.
```

if bs > 1 round to 2, 5, 10, ...
elif bs < 1 find the smallest power of two greater than bs

```

Test cases:
```

test_cases = [1, 1.1, 2, 2.5, 4, 5, 5.5, 8.7, 9.9, 10, 13,
15, 20, 50, 100, 99, 101, 200, 250, 400, 457,
500, 750, 1000, 2412, 12323, 57000, 119000,
1e6, 1e9, 1e12, 1e15, 1e18, 1e21]
for i in test_cases:
print(i, round_bucket(i))

```
```

for i in test_cases:
print(1/i, round_bucket(1/i))

```
class aggregate.utilities.sEngFormatter (accuracy, min_prefix=-6, max_prefix=12, align=True, trim=True)

Formats float values according to engineering format inside a range of exponents, and standard scientific notation outside.

Uses the same number of significant digits throughout. Optionally aligns at decimal point. That takes up more horizontal space but produces easier to read output.

Based on matplotlib.ticker.EngFormatter and pandas EngFormatter. Converts to scientific notation outside (smaller) range of prefixes. Uses same number of significant digits?
Testers:
```

sef1 = sEngFormatter(accuracy=5, min_prefix=0, max_prefix=12,
\hookrightarrowalign=True, trim=True)
sef2 = sEngFormatter(accuracy=5, min_prefix=0, max_prefix=12,
\hookrightarrowalign=False, trim=True)
sef3 = sEngFormatter(accuracy=5, min_prefix=0, max_prefix=12,
align=True, trim=False)
sef4 = sEngFormatter(accuracy=5, min_prefix=0, max_prefix=12,
->align=False, trim=False)
test = [1.234 * 10**n for n in range (-20,20)]
test = [-i for i in test] + test
for sef in [sef1, sef2, sef3, sef4]:
print('

```
'.join([sef(i) for i in test]))
        print( \({ }^{( }\)
`)
print('===============') test \(=[1.234 * 10 * * \mathrm{n}+3 \mathrm{e}-16\) for n in range \((-20,20)]\) test \(=[-\mathrm{i}\) for i in test \(]\) + test for sef in [sef \(1, \operatorname{sef} 2, \operatorname{sef} 3, \operatorname{sef} 4]:\)
print( \({ }^{`}\)
'.join([sef(i) for i in test]))
__init__(accuracy, min_prefix=-6, max_prefix=12, align=True, , , , \(=\) True)
remove_trailing_zeros (str_x, \(x, d p s)\)
Remove trailing zeros from a string representation st \(r\) _ x of a number x . The number of decimal places is dps. If the number is in scientific notation then there is no change. Eg with dps \(==3,1.2000\) becomes \(1.2,1.000\) becomes 1 , but 1.200 when \(\mathrm{x}=1.20000001\) is unchanged.
aggregate.utilities.sensible_jump ( \(n\), desired_rows=20)
return a sensible jump size to output desired_rows given input of \(n\)

\section*{Parameters}
- n -
- desired_rows -

\section*{Returns}
aggregate.utilities.sgamma_fit ( \(m, c v\), skew)
method of moments shifted gamma fit matching given mean, cv and skewness

\section*{Parameters}
- m-
-cv-
- skew -

\section*{Returns}
aggregate.utilities.show_fig(f,format='svg', **kwargs)
Save a figure so it can be placed precisely in output. Used by Underwriter.show to interleaf tables and plots.

\section*{Parameters}
- \(\mathbf{f}\) - a plt.Figure
- format - svg or png
- kwargs - passed to savefig
aggregate.utilities.sln_fit ( \(m, c v\), skew)
method of moments shifted lognormal fit matching given mean, cv and skewness

\section*{Parameters}
- m -
- cv-
- skew -

\section*{Returns}
aggregate.utilities.style_df(df)
Style a df similar to pricinginsurancerisk.com styles.
graph background color is B4C3DC and figure (paler) background is \(\mathrm{F} 1 \mathrm{~F} 8 \mathrm{~F} \#\)
Dropped row lines; bold level0, caption

\section*{Parameters}
df -

\section*{Returns}
styled dataframe
```

aggregate.utilities.subsets(x)

```
all non empty subsets of \(x\), an interable
```

aggregate.utilities.suptitle_and_tight (title, **kwargs)

```
deal with tight layout when there is a suptitle

\section*{Parameters \\ title-}

\section*{Returns}
```

aggregate.utilities.test_var_tvar(program, bs=0, n_ps=1025, normalize=False,
speed_test=False, log2=16)

```

Run a test suite of programs against new var and tvar functions compared to old aggregate.Aggregate versions
Suggestion:
```

args = [
('agg T dfreq [1,2,4,8] dsev [1]', 0, 1025, False),
('agg T dfreq [1:8] dsev [2:3]', 0, 1025, False),
('agg D dfreq [1:6] dsev [1]', 0, 7, False),
('agg T2 10 claims 100 x 0 sev lognorm 10 cv 1 poisson ', 1/64, 1025,七
->False),
('agg T2 10 claims sev lognorm 10 CV 4 poisson ', 1/16, 1025, False),

```
```

 ('agg T2 10 claims sev lognorm 10 cv 4 mixed gamma 1.2 ', 1/8, 1025,七
 False),
('agg Dice dfreq [1] dsev [1:6]', 0, 7, False)
]
from IPython.display import display, Markdown
for t in args:
display(Markdown(f'\#\# {t[0]}'))
bs = t[1]
test_suite(*t, speed_test=False, log2=16 if bs!= 1/8 else 20)

```

Expected output to show that new functions are 3+ orders of magnitude faster, and agree with the old functions. q and q_upper agree everywhere except the jumps.
aggregate.utilities.tweedie_convert (*, \(p=\) None, \(\mu=\) None, \(\sigma 2=\) None, \(\lambda=\) None, \(\alpha=\) None, \(\beta=\) None, \(m=\) None, \(c \nu=\) None)

Translate between Tweedie parameters. Input \(\mathrm{p}, \mu, \sigma 2\) or \(\lambda, \alpha, \beta\) or \(\lambda, \mathrm{m}, \mathrm{cv}\). Remaining parameters are computed and returned in pandas Series.
\(\mathrm{p}, \mu, \sigma 2\) are the reproductive parameters, \(\mu\) is the mean and the variance equals \(\sigma 2 \mu^{\wedge} \mathrm{p} \lambda, \alpha, \beta\) are the additive parameters; \(\lambda \alpha \beta\) is the mean, \(\lambda \alpha(\alpha+1) \beta^{\wedge} 2\) is the variance ( \(\alpha\) is the gamma shape and \(\beta\) is the scale). \(\lambda, m\), cv specify the compound Poisson with expected claim count \(\lambda\) and gamma with mean m and cv

In addition, returns p 0 , the probability mass at 0 .
```

aggregate.utilities.tweedie_density (x, *, p=None, }\mu=None,\sigma2=None, \lambda=None, \alpha=None
\beta=None, m=None, cv=None)

```

Exact density of Tweedie distribution from series expansion. Use any parameterization and convert between them with Tweedie convert. Coded for clarity and flexibility not speed. See tweedie_convert for parameterization.
```

aggregate.utilities.xsden_to_meancv(xs,den)

```

Compute mean and cv from xs and density.
Consider adding: np.nan_to_num(den)
Note: cannot rely on pd.Series[-1] to work... it depends on the index. xs could be an index :param xs: :param den: :return:
```

aggregate.utilities.xsden_to_meancvskew (xs, den)

```

Compute mean, cv and skewness from xs and density
Consider adding: np.nan_to_num(den)
```

param xs
param den
return

```

\subsection*{3.5.5 Constants}
class aggregate.constants.Validation (value)
An enumeration.

\subsection*{3.6 Distortion Module}

\section*{class aggregate.spectral.Distortion (name, shape, \(r 0=0.0, d f=\) None, col_ \(x={ }^{\prime}\) ", col_ \(y=\) ", display_name=")}

Creation and management of distortion functions.
0.9.4: renamed roe to ccoc, but kept creator with roe for backwards compatibility. Oct 2022: renamed wtdtvar to bitvar, but kept ...
__init \(\qquad\) (name, shape, \(r 0=0.0, d f=\) None, col_ \(x=\) ", col_y=", display_name=")
Create a new distortion.
Tester:
```

ps = np.linspace(0, 1, 201)
for dn in agg.Distortion.available_distortions(True):
if dn=='clin':
\# shape param must be > 1
g_dist = agg.Distortion(**{'name': dn, 'shape': 1.25, 'r0': 0.02,
G'df': 5.5})
else:
g_dist = agg.Distortion(**{'name': dn, 'shape': 0.5, 'r0': 0.02,
G'df': 5.5})
g_dist.plot()
g = g_dist.g
g_inv = g_dist.g_inv
df = pd.DataFrame({'p': ps, 'gg_inv': g(g_inv(ps)), 'g_invg': g_
\hookrightarrowinv(g(ps)),
'g': g(ps), 'g_inv': g_inv(ps)})
print(dn)
print("errors")
display(df.query(' abs(gg_inv - g_invg) > 1e-5'))

```

\section*{Parameters}
- name - name of an available distortion, call Distortion. available_distortions() for a list
- shape - float or [float, float]
- shape - shape parameter
- r0 - risk free or rental rate of interest
- df - for convex envelope, dataframe with col_x and col_y used to parameterize or df for t
- col_x -
- col_y-
- display_name - over-ride name, useful for parameterized convex fix distributions
classmethod available_distortions (pricing=True, strict=True)
List of the available distortions.

\section*{Parameters}
- pricing - only return list suitable for pricing, excludes tvar and convex
- strict - only include those without mass at zero (pricing only)

\section*{Returns}
static average_distortion (data, display_name, \(n=201\), el_col='EL', spread_col='Spread')
Create average distortion from ( \(\mathrm{s}, \mathrm{g}(\mathrm{s})\) ) pairs. Each point defines a wtdTVaR with \(\mathrm{p}=\mathrm{s}\) and \(\mathrm{p}=1\) points.

\section*{Parameters}
- data -
- display_name -
- n - number of s values (between 0 and \(\max (E L), 1\) is added
- el_col - column containing EL
- spread_col - column containing Spread

\section*{Returns}
static bagged_distortion (data, proportion, samples, display_name=")
Make a distortion by bootstrap aggregation (Bagging) resampling, taking the convex envelope, and averaging from data.

Each sample uses proportion of the data.
Data must have two columns: EL and Spread

\section*{Parameters}
- data -
- proportion - proportion of data for each sample
- samples - number of resamples
- display_name - display_name of created distortion

\section*{Returns}
static convex_example (source='bond')
Example convex distortion using data from https://www.bis.org/publ/qtrpdf/r_qt0312e.pdf.

\section*{Parameters}
source - bond gives a bond yield curve example, cat gives cat bond / cat reinsurance pricing based example

\section*{Returns}
static distortions_from_params (params, index, \(r 0=0.025, d f=5.5\), pricing \(=\) True, strict \(=\) True)
Make set of dist funs and inverses from params, output of port.calibrate_distortions. params must just have one row for each method and be in the output format of cal_dist.

Called by Portfolio.

\section*{Parameters}
- index-
- params - dataframe such that params[index, :] has a [lep, param] etc. pricing=True, strict=True: which distortions to allow df for t distribution
- r0 - min rol parameters
- strict -
- pricing -

\section*{Returns}
g_dual ( \(x\) )
The dual of the distortion function g .
plot ( \(x s=\) None, \(n=101\), both=True, ax=None, plot_points=True, scale='linear', \(c=\) None, size \(=\) 'small', ***wargs)
Quick plot of the distortion

\section*{Parameters}
- \(\mathbf{x s}\) -
- n - length of vector is no xs
- both - True: plot \(g\) and ginv and add decorations, if False just \(g\) and no trimmings
- ax -
- plot_points -
- scale - linear as usual or return plots - \(\log (\mathrm{gs})\) vs - logs and inverts both scales
- size - 'small' or 'large' for size of plot, FIG_H or FIG_W. The default is 'small'.
- kwargs - passed to matplotlib.plot

\section*{Returns}
price (ser, a=inf, kind='ask', S_calculation='forwards')
Compute the bid and ask prices for the distribution determined by ser with an asset limit a. Index of ser need not be equally spaced, so it can be applied to \(\kappa\). To do this for unit A in portfolio port:
```

ser = port.density_df[['exeqa_A', 'p_total']].\
set_index('exeqa_A').groupby('exeqa_A').\
sum()['p_total']
dist.price(ser, port.q(0.99), 'both')

```

Always use S_calculation='forwards method to compute \(\mathrm{S}=1\) - cumsum(probs). Computes the price as the integral of gS .

\section*{Parameters}
- ser - pd.Series of is probabilities, indexed by outcomes. Outcomes need not be spaced evenly. ser is usually a probability column from density_df.
- kind - is "ask", "bid", or "both", giving the pricing view.
- a - asset level. ser is truncated at a.
price2 (ser, \(a=\) None, \(S_{-}\)calculation='forwards')
Compute the bid and ask prices for the distribution determined by ser with an asset limits given by values of ser. Index of ser need not be equally spaced, so it can be applied to \(\kappa\). To do this for unit A in portfolio port:
```

ser = port.density_df[['exeqa_A', 'p_total']].\
set_index('exeqa_A').groupby('exeqa_A').\
sum()['p_total']
dist.price(ser, port.q(0.99))

```

\section*{Parameters}
ser - pd.Series of is probabilities, indexed by outcomes. Outcomes must be spaced evenly.
ser is usually a probability column from density_df.
static s_gs_distortion (s, gs, display_name=")
Make a convex envelope distortion from \(\{\mathrm{s}, \mathrm{g}(\mathrm{s})\}\) points.

\section*{Parameters}
- s-iterable (can be converted into numpy.array
- gs -
- display_name -

\section*{Returns}
classmethod test ( \(r 0=0.035, d f=[0.0,0.9]\) )
Tester: make some nice plots of available distortions.

\section*{Returns}
static wtd_tvar ( \(p s\), wts, display_name=", details=False)
A careful version of wtd tvar with knots at ps and wts.

\section*{Parameters}
- ps-
- wts -
- display_name -
- details -

\section*{Returns}
aggregate.spectral.approx_ccoc (roe, eps=le-14, display_name=None)
Create a continuous approximation to the CCoC distortion with return roe. Helpful utility function for creating a distortion.

\section*{Parameters}
- roe - return on equity
- eps - small number to avoid mass at zero
aggregate.spectral.tvar_weights (d)
Return tvar weight function for a distortion d. Use np.gradient to differentiate g' but adjust for certain distortions. The returned function expects a numpy array of \(p\) values.

\section*{Param}
d distortion

\subsection*{3.7 Bounds Module}

\section*{class aggregate.bounds.Bounds (distribution_spec)}

Implement IME 2022 pricing bounds methodology.
Typical usage: First, create a Portfolio or Aggregate object a. Then
```

bd = cd.Bounds(a)
bd.tvar_cloud('line', premium=, a=, n_tps=, s=, kind=)
p_star = bd.p_star('line', premium)
bd.cloud_view(axes, ...)

```

\section*{Parameters}
distribution_spec - A Portfolio or Portfolio.density_df dataframe or pd.Series (must have loss as index) If DataFrame or Series values interpreted as desnsity, sum to 1. F, S, exgta all computed using Portfolio methdology If DataFrame line \(->\) p_\{ line \(\}\)
__init__(distribution_spec)
cloud_view ( \({ }^{*}\), axs \(=\) None, \(n _\)resamples \(=0\), scale='linear', alpha \(=0.05\), pricing \(=\) True, distortions='ordered', title=', lim=(-0.025, 1.025), check=False, add_average=True)
Visualize the distortion cloud with n_resamples. Execute after computing weights.

\section*{Parameters}
- axs -
- n_resamples - if random sample
- scale - linear or return
- alpha - opacity
- pricing - restrict to p_max \(=0\), ensuring \(g(s)<1\) when \(s<1\)
- distortions - 'ordered' shows the usual calibrated distortions, else list of dicts name:distortion.
- title - optional title (applied to all plots)
- lim-axis limits
- check - construct and plot Distortions to check working ; reduces n_resamples to 5

\section*{Returns}
```

compute_weight (premium, p0, pl, b=inf, kind='interp')

```
compute the weight for a single \(\operatorname{TVaR} \mathrm{p} 0<\mathrm{p} 1\) value pair

\section*{Parameters}
- line-
- premium -
- tp-
- b -

\section*{Returns}
```

compute_weights (line, premium, n_tps, b=inf, kind='interp')

```

Compute the weights of the extreme distortions
Applied to min(line, b) (allows to work for net)
Note: independent of the asset level

\section*{Parameters}
- line - within port, or total
- premium - target premium for the line
- n_tps - number of tvar p points (tps)number of tvar p points (tps)number of tvar p points (tps)number of tvar p points (tps).
- \(\mathbf{b}\) - loss bound: compute weights for \(\min (\) line, \(\mathbf{b})\); generally used for net losses only.

\section*{Returns}

\section*{distortion (pl, pu)}

Return the BiTVaR with probabilities pl and pu
```

make_ps (n, mode)

```

If add_one then you want \(\mathrm{n}=2^{* *} \mathrm{~m}+1\) to ensure nicely spaced points.
Mode: making s points (always uniform) or tvar p points (use t_mode). self.t_mode \(==\) ' \(u\) ': make uniform s points against which to evaluate g from 0 to 1 self.t_mode \(==\) ' gl ': make Gauss-Legndre p points at which TVaRs are evaluated from 0 inclusive to 1 exclusive with more around 1

\section*{Parameters}
n -

\section*{Returns}
make_tvar_function (line, \(b=i n f\) )
Change in 0.14 .0 with new tvar methodology, this function reflects the blimit, it is the TVaR of \(\min (X\), b)

Make unlimited TVaR function for line, self.tvar_unlimited_function, and set self.Fb.
- Portfolio or Aggregate: get from object
- DataFrame: make from p_\{line \} column
- Series: make from Series

In the last two cases, uses aggregate.utilties.make_var_tvar_function.
Includes determining sup and putting in value for zero. If sup is largest value in index, sup set to inf.
You generally want to apply with a limit, call self.tvar_with_bounds.

\section*{Parameters}
- line - only used for portfolio objects, to specify line (or 'total')
- \(\mathbf{b}\) - bound on the losses, e.g., to model limited liability insurer

\section*{Returns}
p_star (line, premium, \(b=\) inf, kind='interp')
Compute \(\mathrm{p}^{*}\) so TVaR @ \(\mathrm{p}^{*}\) of \(\min (\mathrm{X}, \mathrm{b})=\) premium
In this case the cap \(b\) has an impact (think of integrating \(q(p)\) over \(p\) to \(1, q\) is impacted by \(b\) )
premium \(<=\mathrm{b}\) is required (no rip off condition)
If \(\mathrm{b}<\inf\) then must solve \(\operatorname{TVaR}(\mathrm{p})-(1-\mathrm{F}(\mathrm{b})) /(1-\mathrm{p})[\operatorname{TVaR}(\mathrm{F}(\mathrm{b}))-\mathrm{b}]=\) premium Let \(\mathrm{k}=(1-\mathrm{F}(\mathrm{b}))\) [TVaR(F(b)) - b], so solving
\(\mathrm{f}(\mathrm{p})=\operatorname{TVaR}(\mathrm{p})-\mathrm{k} /(1-\mathrm{p})-\) premium \(==0\)
using NR

\section*{Parameters}
- line-
- premium - target premium
- b-bound
- kind - now ignored

\section*{Returns}
ped_distortion ( \(n\), solver='rs')
make the approximating distortion from the first n Principal Extreme Distortions (PED)s using rs or ip solutions

\section*{Parameters}
n -

\section*{Returns}
```

principal_extreme_distortion_analysis(gs, pricing=False)

```

Find the principal extreme distortion analysis to solve for \(g s=g(s), s=s e l f . c l o u d _d f . i n d e x\)
Assumes that tvar_cloud has been called and that cloud_df exists len \((\mathrm{gs})=\) len(cloud_df)
E.g., call
\(\mathrm{b}=\) Bounds(port) b.t_mode = 'u' \# set premium and asset level a b.tvar_cloud('total', premium, a) \# make gs b.principal_extreme_distortion_analysis(gs)

\section*{Parameters}
- gs - either \(g(s)\) evaluated on \(s=\) cloud_df.index or the name of a calibrated distortion in distribution_spec.dists (created by a call to calibrate_distortions)
- pricing - if try, try just using pricing distortions

\section*{Returns}
```

quick_price (distortion,a)

```
price total to assets a using distortion
requires distribution_spec has a density_df dataframe with a p_total or p_total
TODO: add ability to price other lines :param distortion: :param a: :return:
tvar_array (line, n_tps=257, b=inf, kind='interp')
Compute tvars at \(n\) equally spaced points, tps.

\section*{Parameters}
- line-
- n_tps - number of tvar p points, default 257 (assuming add-one mode)
- \(\mathbf{b}\) - cap on losses applied before computing TVaRs (e.g., adjust losses for finite assets b). Use np.inf for unlimited losses.
- kind - now ignored.

\section*{Returns}
tvar_cloud (line, premium, \(a, n _t p s, s\), kind='interp')
weight down tvar functions to the extremal convex measures
asset level a acts like an agg stop on what is being priced, i.e. we are working with \(\min (X, a)\)

\section*{Parameters}
- line-
- premium -
- a -
- n_tps -
- s-
- b-bound, applies to min(line, b)

\section*{Returns}
tvar_hinges ( \(s\) )
make the tvar hinge functions by evaluating each tvar_ \(\mathrm{p}(\mathrm{s})=\min (1, \mathrm{~s} /(1-\mathrm{p})\) for p in tps , at EP points s all arguments in \([0,1] \times[0,1]\)

\section*{Parameters}
s -

\section*{Returns}
```

tvar_with_bound (}p,b=inf,\mathrm{ kind='interp')

```

Compute tvar taking bound into account. Assumes tvar_unfunction setup.
Warning: \(b\) must equal the \(b\) used when calibrated. The issue is computing \(F\) which varies with the type of underlying portfolio. This is fragile. Added storing \(b\) and checking equal. For backwards comp. need to keep b argument

\section*{Parameters}
- p-
- b -
- kind - now ignored

\section*{Returns}
```

class aggregate.bounds.Bounds (distribution_spec)

```

Implement IME 2022 pricing bounds methodology.
Typical usage: First, create a Portfolio or Aggregate object a. Then
```

bd = cd.Bounds(a)
bd.tvar_cloud('line', premium=, a=, n_tps=, s=, kind=)
p_star = bd.p_star('line', premium)
bd.cloud_view(axes, ...)

```

\section*{Parameters}
distribution_spec - A Portfolio or Portfolio.density_df dataframe or pd.Series (must have loss as index) If DataFrame or Series values interpreted as desnsity, sum to 1. F, S, exgta all computed using Portfolio methdology If DataFrame line -> p_\{line\}
cloud_view ( \({ }^{*}\), axs=None, n_resamples=0, scale='linear', alpha=0.05, pricing=True, distortions='ordered', title=", lim=(-0.025, 1.025), check=False, add_average=True)
Visualize the distortion cloud with n_resamples. Execute after computing weights.

\section*{Parameters}
- axs -
- n_resamples - if random sample
- scale - linear or return
- alpha - opacity
- pricing - restrict to \(\mathrm{p} _\)max \(=0\), ensuring \(\mathrm{g}(\mathrm{s})<1\) when \(\mathrm{s}<1\)
- distortions - 'ordered' shows the usual calibrated distortions, else list of dicts name:distortion.
- title - optional title (applied to all plots)
- lim - axis limits
- check - construct and plot Distortions to check working ; reduces n_resamples to 5

\section*{Returns}
compute_weight (premium, p0, pl, b=inf, kind='interp')
compute the weight for a single TVaR \(\mathrm{p} 0<\mathrm{p} 1\) value pair

\section*{Parameters}
- line-
- premium -
- tp-
- b-

\section*{Returns}
compute_weights (line, premium, \(n\) _tps, \(b=i n f\), kind='interp')
Compute the weights of the extreme distortions
Applied to min(line, b) (allows to work for net)
Note: independent of the asset level

\section*{Parameters}
- line - within port, or total
- premium - target premium for the line
- n_tps - number of tvar p points (tps)number of tvar p points ( tps )number of tvar p points (tps)number of tvar p points (tps).
- \(\mathbf{b}\) - loss bound: compute weights for min(line, \(\mathbf{b}\) ); generally used for net losses only.

\section*{Returns}
```

distortion (pl,pu)

```

Return the BiTVaR with probabilities pl and pu
make_ps ( \(n\), mode)
If add_one then you want \(\mathrm{n}=2 * * \mathrm{~m}+1\) to ensure nicely spaced points.
Mode: making s points (always uniform) or tvar p points (use t_mode). self.t_mode \(==\) ' \(u\) ': make uniform s points against which to evaluate g from 0 to 1 self.t_mode \(==\) ' gl ': make Gauss-Legndre p points at which TVaRs are evaluated from 0 inclusive to 1 exclusive with more around 1

\section*{Parameters}
n -

\section*{Returns}
make_tvar_function (line, \(b=\) inf )
Change in 0.14 .0 with new tvar methodology, this function reflects the blimit, it is the TVaR of \(\min (X\), b)

Make unlimited TVaR function for line, self.tvar_unlimited_function, and set self.Fb.
- Portfolio or Aggregate: get from object
- DataFrame: make from p_\{line\} column
- Series: make from Series

In the last two cases, uses aggregate.utilties.make_var_tvar_function.
Includes determining sup and putting in value for zero. If sup is largest value in index, sup set to inf.
You generally want to apply with a limit, call self.tvar_with_bounds.

\section*{Parameters}
- line - only used for portfolio objects, to specify line (or 'total')
- \(\mathbf{b}\) - bound on the losses, e.g., to model limited liability insurer

\section*{Returns}
p_star (line, premium, \(b=\) inf, kind='interp')
Compute \(\mathrm{p}^{*}\) so TVaR @ \(\mathrm{p}^{*}\) of \(\min (\mathrm{X}, \mathrm{b})=\) premium
In this case the cap \(b\) has an impact (think of integrating \(q(p)\) over \(p\) to \(1, q\) is impacted by \(b\) )
premium \(<=\mathrm{b}\) is required (no rip off condition)

If \(\mathrm{b}<\inf\) then must solve \(\operatorname{TVaR}(\mathrm{p})-(1-\mathrm{F}(\mathrm{b})) /(1-\mathrm{p})[\operatorname{TVaR}(\mathrm{F}(\mathrm{b}))-\mathrm{b}]=\) premium Let \(\mathrm{k}=(1-\mathrm{F}(\mathrm{b}))\) [TVaR(F(b)) - b], so solving
\(\mathrm{f}(\mathrm{p})=\operatorname{TVaR}(\mathrm{p})-\mathrm{k} /(1-\mathrm{p})-\) premium \(==0\)
using NR

\section*{Parameters}
- line-
- premium - target premium
- \(\mathbf{b}\) - bound
- kind - now ignored

\section*{Returns}
ped_distortion ( \(n\), solver='rs')
make the approximating distortion from the first n Principal Extreme Distortions (PED)s using rs or ip solutions

\section*{Parameters}
n -

\section*{Returns}

\section*{principal_extreme_distortion_analysis (gs, pricing=False)}

Find the principal extreme distortion analysis to solve for \(\mathrm{gs}=\mathrm{g}(\mathrm{s})\), \(\mathrm{s}=\) self.cloud_df.index
Assumes that tvar_cloud has been called and that cloud_df exists len \((\mathrm{gs})=\) len(cloud_df)
E.g., call
\(\mathrm{b}=\) Bounds(port) b.t_mode = 'u' \# set premium and asset level a b.tvar_cloud('total', premium,
a) \# make gs b.principal_extreme_distortion_analysis(gs)

\section*{Parameters}
- gs - either \(\mathrm{g}(\mathrm{s})\) evaluated on \(\mathrm{s}=\) cloud_df.index or the name of a calibrated distortion in distribution_spec.dists (created by a call to calibrate_distortions)
- pricing - if try, try just using pricing distortions

\section*{Returns}
```

quick_price(distortion,a)

```
price total to assets a using distortion
requires distribution_spec has a density_df dataframe with a p_total or p_total
TODO: add ability to price other lines :param distortion: :param a: :return:
tvar_array (line, \(n _t p s=257, b=i n f\), kind='interp')
Compute tvars at \(n\) equally spaced points, tps.

\section*{Parameters}
- line-
- n_tps - number of tvar p points, default 257 (assuming add-one mode)
- b - cap on losses applied before computing TVaRs (e.g., adjust losses for finite assets b). Use np.inf for unlimited losses.
- kind - now ignored.

\section*{Returns}
tvar_cloud (line, premium, \(a, n _t p s, s\), kind='interp')
weight down tvar functions to the extremal convex measures
asset level a acts like an agg stop on what is being priced, i.e. we are working with \(\min (X, a)\)

\section*{Parameters}
- line-
- premium -
- a -
- n_tps -
- s-
- \(\mathbf{b}\) - bound, applies to \(\min (l i n e, ~ b)\)

\section*{Returns}
tvar_hinges ( \(s\) )
make the tvar hinge functions by evaluating each \(\operatorname{tvar} _\mathrm{p}(\mathrm{s})=\min (1, \mathrm{~s} /(1-\mathrm{p})\) for p in tps , at EP points s all arguments in \([0,1] \times[0,1]\)

\section*{Parameters}
s-

\section*{Returns}
tvar_with_bound ( \(p, b=\) inf, , kind='interp')
Compute tvar taking bound into account. Assumes tvar_unfunction setup.
Warning: \(b\) must equal the \(b\) used when calibrated. The issue is computing \(F\) which varies with the type of underlying portfolio. This is fragile. Added storing \(b\) and checking equal. For backwards comp. need to keep \(b\) argument

\section*{Parameters}
- p -
- b -
- kind - now ignored

\section*{Returns}
aggregate.bounds.plot_lee (port, \(a x, c, l w=1\) )
Lee diagram by hand
```

aggregate.bounds.plot_max_min(self, ax)

```

Extracted from bounds, self=Bounds object
```

aggregate.bounds.similar_risks_example()

```

Interesting beta risks and how to use similar_risks_graphs_sa.

\section*{Returns}
aggregate.bounds.similar_risks_graphs_sa (axd, bounds, port, pnew, roe, prem, p_reg=1)
stand-alone ONLY WORKS FOR BOUNDED PORTFOLIOS (use for beta mixture examples) Updated version in CaseStudy axd from mosaic bounds = Bounds class from port (calibrated to some base)it pnew = new portfolio input new beta( \(a, b\) ) portfolio, using existing bounds object
sample: see similar_risks_sample()
Provenance : from make_port in Examples_2022_post_publish

\subsection*{3.8 Extensions}

Extensions contains optional, nice to have code that extends basic functionality. For example, all CaseStudy material is included here. It is not required for core functionality. It is not included in the default import. It is included in the default build.

\subsection*{3.8.1 Basic}

\subsection*{3.8.2 Case Study Support}
class aggregate.extensions.case_studies.ClassicalPremium (ports, calibration_premium) manage classical premium examples

Net, no loading Expected value, constant loading Maximum loss \(->\) no VaR (as proxy for maximum loss) Variance Std Dev Semi-variance (Artzner p. 210) Exponential (zero utility, convex!) Esscher
Originally in hack.py
calibrate (port_name, line_name, calibration_premium, \(d f=\) None, \(o b=N o n e\), stats \(=\) None, \(m n=\) None, var=None, \(s d=\) None)
calibrate all methods...
distribution (port_name, line_name)
classical methods all depend on the distribution...so pull it out pull the object that will provide q etc. pull the audit stats
illustrate (port_name, line_name, ax, margin, *, \(p=0, K=0, n _b i g=10000, n _\)sample \(=25\), show_bounds=True, padding=2)
illustrate simulations at p level probability probability level determines capital or capital K input margin: premium \(=(1+\) margin \() *\) EL, margin \(=\) rho n_big \(=\) number of policies - max of horizontal axis n_sample \(=\) number of iterations to plot
Theoretic bounds use the actual moments, simulated use those from the process being estimated
From common_scripts Pentagon took out re-computation...
price (param, port_name, line_name, method, \(d f=\) None, \(o b=N o n e\), stats \(=\) None, \(m n=\) None, \(v a r=\) None, \(s d=\) None)
apply method to port_name, line_name with parameter(s) (all one param) these are all classical methods method_dict \(=\{\) method name \(: \operatorname{param}\}\) param \(=\) float \(\mid\) [float param, p ge 1 value] latter fro Fischer method
prices (port_name, line_name, method_dict)
run lots of prices
pricing_exhibit (port_name, line_name, calibration_premium, re_line)
calibrate and apply to all other portfolios
```

aggregate.extensions.case_studies.add_defaults (dict_in,kind='agg')

```
add default values to dict_inin. Leave existing values unchanged Used to output to a data frame, where you want all columns completed

\section*{Parameters}
- dict_in-
- kind -

\section*{Returns}
```

aggregate.extensions.case_studies.bivariate_density_plots (axi, ports, xmax,
contour_scale,
biv_log=True,
cmap='viridis', levels=30,
color_bar=False)

```
bivarate plots of each line against the others for each portfolio in case arguments as for twelve_plot / bivden plot
axi \(=\) iterator with enough exes ports \(=\) iterable of ports (list, dict.values(), etc.)
from common_scripts.py
```

aggregate.extensions.case_studies.extract_sort_order (summaries,_varlist_,
classical=False)

```

Pull out exhibits. Note difference: classical uses net_classical, calibrated to roe non-classical uses pricing calibrated to
```

aggregate.extensions.case_studies.g_ins_stats (axi,dn0, dist, ls='-')

```

Six part plot with EL, premium, loss ratio, profit, layer ROE and P:S for g axi \(=\) axis iterator
```

aggregate.extensions.case_studies.macro_market_graphs (axi, port, dn,rp)

```

Create more succinct \(4 \times 4\) graph to illustrate macro market structure and result, LR, P:S and ROE, etc.
Use a port object with calibrated distortion
see ch04_macro_market_stats_original
from: common_scripts.py ch04_macro_market_stats updated line colors
June 2022: removed all color=' k '

\section*{Parameters}
- dist-
- rp - return period
- sigma -

\section*{Returns}
```

aggregate.extensions.case_studies.pricing(port, p,roe, as_dataframe=True)

```

Make nice stats output for pricing from common_scripts.py
```

aggregate.extensions.case_studies.universal_renamer(x)

```
aggregate.extensions.case_studies.urn (df)
apply universal renamer

\subsection*{3.8.3 Pentagon}
```

aggregate.extensions.pentagon.code(r)

```
determine binary code for row
```

aggregate.extensions.pentagon.make_possible_pentagons()

```
enumerate possible and impossible pentagon configurations
```

class aggregate.extensions.pentagon.pent_ans(L,P,M,a,Q,LR,PQ,COC)

```

COC
Alias for field number 7
L
Alias for field number 0

LR
Alias for field number 5
M
Alias for field number 2
P
Alias for field number 1
PQ
Alias for field number 6
Q
Alias for field number 4
a
Alias for field number 3

\subsection*{3.8.4 Samples}

Warning: All functionality in extensions.samples has been moved into the base package.

\subsection*{3.8.5 Figures}
```

aggregate.extensions.figures.adjusting_layer_losses()

```

Figure to illustrate the process of adjusting layer losses. TODO: Add reference
```

aggregate.extensions.figures.discretization_agg_example (outcomes)

```

For AAS paper. Convergence of sevs with smaller bucket size.
```

aggregate.extensions.figures.discretization_sev_example (outcomes)

```

For AAS paper. Convergence of sevs with smaller bucket size.
```

aggregate.extensions.figures.dual_distortion(dist=None, s=0.3)

```

Illustrate how the dual distortion relates to the distortion.
```

aggregate.extensions.figures.g_insurance_statistics (axi, dist, c='C0', ls='-',lw=l,
diag=False, grid=False)

```

Six part plot with EL, premium, loss ratio, profit, layer ROE and P:S for g axi \(=\) axis iterator with 6 axes dist \(=\) distortion Used to create PIR Figs 11.6 and 11.7
aggregate.extensions.figures.g_risk_appetite (axi, dist, \(c=\) ' \(C 0^{\prime}\) ', \(l s==^{\prime}-{ }^{\prime}, N=1000, l w=1\), grid=False, xlabel=True, title=True, add_tvar=False)
Plot to illustrate the risk appetite associated with a distortion g. Derived from g_insurance_statistics. Plots premium, loss ratio, margin, return (easier to understand than discount), VaR wts and optionally TVaR wts axi \(=\) axis iterator with 6 axes dist \(=\) distortion Used to create PIR Figs 11.6 and 11.7
```

aggregate.extensions.figures.gh_example(en)

```

Code to reproduce GHGrübel and Hermesmeier 1999, Table 1. The function exact_cdf calculates the compound probability that \(x-1 / 2<X \leq x+1 / 2\). For AAS paper with en=20.
```

aggregate.extensions.figures.mixing_convergence (freq_cv, sev_cv, bs=0.015625)

```

Illustrate convergence of mixed distributions to the mixing distribution.
```

aggregate.extensions.figures.power_variance_family()

```

Graph to illustrate the power variance exponential family distributions.
Reference: Jørgensen, Bent. 1997. The theory of dispersion models. CRC Press.
```

aggregate.extensions.figures.savings_charge()

```

Figure to illustrate the insurance savings and expense(charge).

\subsection*{3.8.6 PIR Figures}
```

aggregate.extensions.pir_figures.curlyBrace (ax, p1, p2, k_r=0.1,bool_auto=True,
str_text=", int_line_num=2, fontdict={},
**kwargs)

```

Plot an optionally annotated curly bracket on the given axes of the given figure.
Note that the brackets are anti-clockwise by default. To reverse the text position, swap "p1" and "p2".
Note that, when the axes aspect is not set to "equal", the axes coordinates need to be transformed to screen coordinates, otherwise the arcs may not be seeable.

\section*{Parameters}
fig
[matplotlib figure object] The of the target axes.
ax
[matplotlib axes object] The target axes.
p1
[two element numeric list] The coordinates of the starting point.
p2
[two element numeric list] The coordinates of the end point.
k_r
[float] This is the gain controlling how "curvy" and "pointy" (height) the bracket is.
Note that, if this gain is too big, the bracket would be very strange.

\section*{bool_auto}
[boolean] This is a switch controlling wether to use the auto calculation of axes scales.
When the two axes do not have the same aspects, i.e., not "equal" scales, this should be turned on, i.e., True.

When "equal" aspect is used, this should be turned off, i.e., False.
If you do not set this to False when setting the axes aspect to "equal", the bracket will be in funny shape.
Default \(=\) True
str_text
[string] The annotation text of the bracket. It would displayed at the mid point of bracket with the same rotation as the bracket.

By default, it follows the anti-clockwise convention. To flip it, swap the end point and the starting point.
The appearance of this string can be set by using "fontdict", which follows the same syntax as the normal matplotlib syntax for font dictionary.
Default \(=\) empty string (no annotation)

\section*{int_line_num}
[int] This argument determines how many lines the string annotation is from the summit of the bracket.
The distance would be affected by the font size, since it basically just a number of lines appended to the given string.

Default \(=2\)

\section*{fontdict}
[dictionary] This is font dictionary setting the string annotation. It is the same as normal matplotlib font dictionary.

Default \(=\) empty dict

\section*{**kwargs}
[matplotlib line setting arguments] This allows the user to set the line arguments using named arguments that are the same as in matplotlib.

\section*{Returns}

\section*{theta}
[float] The bracket angle in radians.

\section*{summit}
[list] The positions of the bracket summit.
arc1
[list of lists] arc1 positions.
\(\operatorname{arc} 2\)
[list of lists] arc2 positions.
\(\operatorname{arc} 3\)
[list of lists] arc3 positions.
arc4
[list of lists] arc4 positions.

\section*{Reference}
https://uk.mathworks.com/matlabcentral/fileexchange/38716-curly-brace-annotation
aggregate.extensions.pir_figures.fig_10_3 (dist=None, \(s=0.3\) )
Figure 10.3 Illustrating distortion functions ( \(\mathrm{s}, \mathrm{g}(\mathrm{s})\) ) with vertical line at s and split loss, premium, margin, and capital labelled
aggregate.extensions.pir_figures.fig_10_5 (port=None, dist=None, s=0.3)
three plot version of previous with more explanation of first picture
return_period_max = defines extend of yaxis return_period_x = capital level to illustrate
map from s space into loss space extended version of ch04_s_gs_loss_premium_capital which includes the horizontal bar [ loss ][m][ equity ] plotted on the provided second axis

Suggested figure set up for extended:
\(\mathrm{f}=\) plt.Figure(figsize \(=(4,3)\), tight_layout=True) \(\mathrm{a}=\mathrm{f} . \operatorname{add_ }\)-axes([0, 100/3+1/27, 1, 2/3], label='a')
\(\mathrm{b}=\mathrm{f} . \operatorname{add} _\operatorname{axes}([0,0,1,1 / 3]\), label='b')
aggregate.extensions.pir_figures.fig_10_6 (port=None, dist=None)
Same distortion and portfolio as \(10 _5\) Slight clarification of the diagram vs. book version.
```

aggregate.extensions.pir_figures.fig_4_1()

```

Figure 4.1: illustrating quantiles.
```

aggregate.extensions.pir_figures.getAxSize(fig,ax)

```

Get the axes size in pixels.
Reference: https://uk.mathworks.com/matlabcentral/fileexchange/38716-curly-brace-annotation

\section*{Parameters}
- \(\mathbf{f i g}\) - matplotlib figure object The of the target axes.
- ax - matplotlib axes object The target axes.

\section*{Returns}
ax_width : float, the axes width in pixels; ax_height : float, the axes height in pixels.
aggregate.extensions.pir_figures.natural_scale (port)
For creating Table 9.15

\subsection*{3.8.7 Test Suite}

\section*{DEC LANGUAGE REFERENCE}

This section describes how a DecL program is pre-processed, lexed, and parsed according to the grammar specification. It reports the results of interpreting the builtin test suite of programs.

The DecL introduction describes its design and purpose.

\subsection*{4.1 Pre-Processing}

Programs are processed one line at a time. Before passing to the lexer, the following pre-processing occurs.
1. Remove Python and C++ style \# or / / comments, through end of line
2. Remove \(\backslash n\) in [] (vectors) that appear from using \(f\) ' \(\{n p\). linspace (. . .) \}'
3. Map semicolons to newline
4. Map backslash newline (Python line continuations) to space
5. Replace \(\backslash n \backslash t\) with space, to support the tabbed indented Portfolio layout
6. Split on remaining newlines

\subsection*{4.2 Lexer Term Definitions}

Ignored characters: tab (remaining after pre-processing), colon, comma, and pipe. These characters can be used to improve readability.

Aggregate names must not include underscore. Portfolio names may include underscore. Names can include a period, A.Basic. 01.
```

tokens = {ID, BUILTIN_AGG, BUILTIN_SEV,NOTE,
SEV, AGG, PORT,
NUMBER, INFINITY,
PLUS, MINUS, TIMES, DIVIDE, INHOMOG_MULTIPLY,
LOSS, PREMIUM, AT, LR, CLAIMS, EXPOSURE, RATE,
XS, PICKS,
DISTORTION,
CV, WEIGHTS, EQUAL_WEIGHT, XPS,
MIXED, FREQ, TWEEDIE, ZM, ZT,
NET, OF, CEDED, TO, OCCURRENCE, AGGREGATE, PART_OF, SHARE_OF, TOWER,
AND, PERCENT,
EXPONENT, EXP,
DFREQ, DSEV, RANGE
}
ignore = ' \t,
|'
literals = {'[', ']', '!', '(', ')'}

```
```

NOTE = r'note\{[^\}]*\}' \# r'[^\}] +'
BUILTIN_AGG = r'agg\.[a-zA-Z][a-zA-Z0-9.__:~]*'
BUILTIN_SEV = r'sev\.[a-zA-Z][a-zA-Z0-9._:~]*'
FREQ = 'binomial|pascal|poisson|bernoulli|geometric|fixed|neyman(a|A) ?|logarithmic'
DISTORTION = 'dist(ortion)?'
NUMBER = r'\-?(\d+\.?\d*|\d*\.\d+)([eE](+%7C-)?\d+)?'
ID = r'[a-zA-Z][\.:~_a-zA-Z0-9]*'
EXPONENT = r'\^|\*\*'
PLUS = r'\+'
MINUS = r'\-'
TIMES = r'\*'
DIVIDE = '/'
PERCENT = '%'
INHOMOG_MULTIPLY = '@'
EQUAL_WEIGHT = '='
RANGE = ':'
ID['occurrence'] = OCCURRENCE
ID['unlimited'] = INFINITY
ID['aggregate'] = AGGREGATE
ID['exposure'] = EXPOSURE
ID['tweedie'] = TWEEDIE
ID['premium'] = PREMIUM
ID['tower'] = TOWER
ID['mixed'] = MIXED
ID['unlim'] = INFINITY
ID['picks'] = PICKS
ID['prem'] = PREMIUM
ID['claims'] = CLAIMS
ID['ceded'] = CEDED
ID['claim'] = CLAIMS
ID['dfreq'] = DFREQ
ID['dsev'] = DSEV
ID['lOSS'] = LOSS
ID['port'] = PORT
ID['rate'] = RATE
ID['net'] = NET
ID['sev'] = SEV
ID['agg'] = AGG
ID['xps'] = XPS
ID['wts'] = WEIGHTS
ID['inf'] = INFINITY
ID['and'] = AND
ID['exp'] = EXP
ID['wt'] = WEIGHTS
ID['at'] = AT
ID['CV'] = CV
ID['lr'] = LR
ID['XS'] = XS
ID['Of'] = OF
ID['to'] = TO
ID['PO'] = PART_OF
ID['so'] = SHARE_OF
ID['zm'] = ZM
ID['zt'] = ZT
ID['x'] = XS

```

\subsection*{4.3 Dec Language Grammar Specification}

Here is the full DecL Grammar and a grammar railroad diagram.
```

answer
::= agg_out
port_out
| distortion_out
| expr
distortion_out ::= DISTORTION name ID expr
DISTORTION name ID expr "[" numberl "]"
::= PORT name note agg_list
::= agg_list agg_out
agg_out
::= AGG name exposures layers sev_clause occ_reinsu
| AGG name dfreq layers sev_clause occ_reins agg_
| AGG name TWEEDIE expr expr expr note
| AGG name builtin_agg occ_reins agg_reins note
| builtin_agg agg_reins note
::= SEV name sev note
SEV name dsev note
::= freq ZM expr
freq ZT
| MIXED ID expr expr
| MIXED ID expr
| FREQ expr expr
| FREQ expr
| FREQ
agg_reins ::= AGGREGATE NET OF reins_list
| AGGREGATE CEDED TO reins_list
| %prec LOW
occ_reins
::= OCCURRENCE NET OF reins_list
OCCURRENCE CEDED TO reins_list
|
::= reins_list AND reins_clause
reins_clause
| tower
::= expr XS expr
| expr SHARE_OF expr XS expr
| expr PART_OF expr XS expr
sev_clause ::= SEV sev
dsev
| BUILTIN_SEV
sev ::= sev picks
| sev "!"
| sev2 weights splice
| BUILTIN_SEV
dsev
::= dsev "!"

```
\begin{tabular}{|c|c|}
\hline & | DSEV doutcomes dprobs \\
\hline sev2 & ```
::= sev1 PLUS numbers
    | sev1 MINUS numbers
    | sev1
``` \\
\hline sev1 & ```
::= numbers TIMES sev0
 | sev0
``` \\
\hline sev0 & ```
::= ids numbers CV numbers
    | ids numbers numbers
    | ids numbers
    | ids xps
    | ids
``` \\
\hline xps & :: = XPS doutcomes dprobs \\
\hline dfreq & \(::=\) DFREQ doutcomes dprobs \\
\hline picks & ::= PICKS "[" numberl "]" "[" numberl "]" \\
\hline doutcomes & ```
::= "[" numberl "]"
 | "[" expr RANGE expr "]"
 | "[" expr RANGE expr RANGE expr "]"
``` \\
\hline dprobs & ::= "[" numberl "]" \\
\hline weights & ```
::= WEIGHTS EQUAL_WEIGHT expr
    | WEIGHTS "[" numberl "]"
``` \\
\hline splice & \[
::=\text { SPLICE "[" numberl "]" }
\] \\
\hline layers & ```
::= numbers XS numbers
 | tower
``` \\
\hline tower & : : = TOWER doutcomes \\
\hline note & \[
\begin{aligned}
& ::=\text { NOTE } \\
& \text { | \%prec LOW }
\end{aligned}
\] \\
\hline exposures & ```
::= numbers CLAIMS
    | numbers LOSS
    | numbers PREMIUM AT numbers LR
    | numbers EXPOSURE AT numbers RATE
``` \\
\hline ids & \[
\begin{aligned}
& ::=\text { "[" idl "]" } \\
& \text { | ID }
\end{aligned}
\] \\
\hline idl & \[
\begin{aligned}
& ::=\text { idl ID } \\
& \text { | ID }
\end{aligned}
\] \\
\hline builtin_agg & ```
::= expr INHOMOG_MULTIPLY builtin_agg
 | expr TIMES builtin_agg
 | builtin_agg PLUS expr
 | builtin_agg MINUS expr
 | BUILTIN_AGG
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{me \(\quad::=\) ID} \\
\hline \multicolumn{3}{|r|}{```
| "[" expr RANGE expr "]"
    "[" expr RANGE expr RANGE expr "]"
    expr
```} \\
\hline numberl & & \[
\begin{aligned}
& ::=\text { numberl expr } \\
& \text { | expr }
\end{aligned}
\] \\
\hline expr & & : : = atom \\
\hline atom & & ```
::= atom DIVIDE atom
 | "(" atom ")"
 | EXP atom
 | atom EXPONENT atom
 | NUMBER
``` \\
\hline \begin{tabular}{l}
FREQ \\
\(\hookrightarrow|f i x e d| l o g a r i t\)
\end{tabular} & \[
\begin{gathered}
::= \\
\text { ybin' }
\end{gathered}
\] & 'binomial|poisson|bernoulli|pascal|geometric|neymana? \\
\hline BUILTINID & : : = & 'sev|agg|port|meta.ID' \\
\hline NOTE & : : \(=\) & 'note \{TEXT \({ }^{\prime}\) \\
\hline EQUAL_WEIGHT & : : \(=\) & \\
\hline AGG & : : \(=\) & 'agg' \\
\hline AGGREGATE & : : = & 'aggregate' \\
\hline AND & : : = & 'and' \\
\hline AT & : : \(=\) & 'at' \\
\hline CEDED & : : \(=\) & 'ceded' \\
\hline CLAIMS & : : = & 'claims|claim' \\
\hline CONSTANT & : : \(=\) & 'constant' \\
\hline CV & : : \(=\) & ' Cv' \\
\hline DFREQ & : : = & 'dfreq' \\
\hline DSEV & : : = & 'dsev' \\
\hline EXP & : : = & 'exp' \\
\hline EXPONENT & : : = & '^|**' \\
\hline INHOMOG_MULTIPLY & : : = & "@ " \\
\hline INFINITY & : \(:=\) & 'inf|unlim|unlimited' \\
\hline LOSS & : : = & 'loss' \\
\hline LR & : : \(=\) & 'lr' \\
\hline MIXED & : : \(=\) & 'mixed' \\
\hline
\end{tabular}
```

NET ::= 'net'
OCCURRENCE ::= 'occurrence'
OF ::= 'Of'
PART_OF ::= 'po'
PERCENT ::= '%%
PORT ::= 'port'
PREMIUM ::= 'premium|prem'
SEV ::= 'sev'
SHARE_OF ::= 'so'
TO ::= 'to'
WEIGHTS ::= 'wts|wt'
XPS ::= 'xps'
XS
::= "xs|x"

```

\subsection*{4.4 Test Suite Programs}

To run the test suite for HTML output, svg graphics.
```

from aggregate.extensions.test_suite import TestSuite
TestSuite().run('^[A-KNO]', 'All Aggregate Tests', 'svg')

Test Suite Examples

====================

Comprehensive list of examples to test the parser and creation logic.

Contents

A. Creating Aggregates, Portfolios, and Distortion objects

B. Basic examples using dfreq and dsev notation, including dice examples

C. Frequency only fixed sev

D. Severity only, fixed freq, different distributions

E. Severity transformations: shift, scale, layer, and attachment, unconditionalv

\hookrightarrowseverities

F. Specifying exposure

G. Mixed severities

H. Limit profiles

I. Limit profiles with mixed severities

J. Reinsurance

K. Tweedie distribution examples

L. Examples from papers

M. Case Studies from Pricing Insurance Risk book

N. Proxies for US Lines

O. Novelties (the logo mixed distribution)

```
```


Default severity used in many other examples

sev One dsev [1]

Guides examples

================

Simple Dice Examples

======================

agg A.Dice00 dfreq [1:6] dsev [1]
\hookrightarrow}
agg A.Dice01 dfreq [1] dsev [1:6]
agg A.Dice02 dfreq [2] dsev [1:6]
\hookrightarrowdice.}
agg A.Dice03 dfreq [5] dsev [1:6]
\hookrightarrowdice.}
agg A.Dice04 dfreq [1:6] dsev [1:6]
\hookrightarrowdice rolls}
agg A.Dice05 dfreq [1:4] dsev [1:16]
\hookrightarroweasily by hand}

Basic examples using freq and dsev notation

==

agg B.Basic01 dfreq [1] dsev [0 1] note{toss of a\smile
\hookrightarrowsingle coin}
agg B.Basic02 dfreq [12] dsev [0 1] note{toss ofu
agg B.Basic03 dfreq [1:3] dsev [1 2 10] note{1, 2 or 3u
Claims using range notation, sev 1, 2, 10 all equally likely}
agg B.Basic03 dfreq [1:11:2] dsev [1 2 10]
\hookrightarrowclaims range and step, sev 1, 2, 10 all equally likely}
agg B.Basic04 dfreq [1 2 3] [.5 1/4 1/4] dsev [1 2 10]
\hookrightarrowprobabilities of claims}
agg B.Basic05 dfreq [1:3] dsev [1 2 10] [.4 .4 .2] note{specifyv
@probabilities of sev}
agg B.Basic06 dfreq [1:3] [.5 1/4 1/4] dsev [1 2 10] [.4 .4 .2] note{specifyv
\hookrightarrowboth probabilities }
agg B.Basic07 dfreq [0 1 2] [.5 . 3 . 2] sev sev.One
agg B.Basic08 dfreq [0 1 2] [.5 . 3 . 2] sev.One
agg B.Basic09 dfreq [0 1 2] [.5 . 3 . 2] sev lognorm 10 cv . 3

Frequency only, fixed severity

================================

Using the usual exposure-based frequency clause

agg Ca.Freq01.Fixed 10 claims sev.One fixed
agg Ca.Freq02.Poisson 10 claims sev.One poisson
agg Ca.Freq03.Bernoulli . }8\mathrm{ claims sev.One bernoulli
agg Ca.Freq04.Binomial 10 claims sev.One binomial 0.5
agg Ca.Freq05.Geometric 10 claims sev.One geometric
agg Ca.Freq06.Pascal 10 claims sev.One pascal . }8
agg Ca.Freq07.NegBin 10 claims sev.One negbin 3 note{shape\smile
\hookrightarrowparamter equals variance multiplier}
agg Ca.Freq08.Logarithmic 10 claims sev.One logarithmic
agg Ca.Freq09.NeymanA 10 claims sev.One neymana 3 note{shape\sqcup
\hookrightarrowparamter number of eggs per cluster}

Mixing distributions

agg Cb.Freq10.NegBin 10 claims sev.One mixed gamma 0.65 note{shapeъ
\hookrightarrowparamter equals variance of mixing distribution}
agg Cb.Freq11.Delaporte 10 claims sev.One mixed delaporte . 65 . 25
agg Cb.Freq12.IG 10 claims sev.One mixed ig . 65
agg Cb.Freq13.SIG }10\mathrm{ claims sev.One mixed sig 0.5 0.4

```
(continued from previous page)
```

agg Cb.Freq14.Sichel 10 claims sev.One mixed delaporte . 65 -0.25
agg Cb.Freq15.Sichel.gamma 10 claims sev.One mixed sichel.gamma . 65 . 25
agg Cb.Freq16.Sichel.ig 10 claims sev.One mixed sichel.ig . 65 . 25
agg Cb.Freq17.Beta 10 claims sev.One mixed beta . 5 4

ZM and ZT distributions, note alternative way to specify fixed severity

agg Cc.Freq20.Poisson 4 claims dsev [1] poisson zt
agg Cc.Freq21.Poisson 4 claims dsev [1] poisson zm . 5
agg Cc.Freq22.Geometric 4 claims dsev [1] geometric zm .5
note{pr (N=0)=1,
\hookrightarrowthere is no zt version}
agg Cc.Freq23.Logarithmic 4 claims dsev [1] logarithmic zm . 5 note{pr(N=0)=1,レ
\hookrightarrowthere is no zt version}
agg Cc.Freq24.Binomial 4 claims dsev [1] binomial 0.6 zm .5 note{Cannotu
\hookrightarrowmake p0 smaller than the natural p}
agg Cc.Freq25.Negbin 4 claims dsev [1] negbin 3 zm .5 note{Limits onv
@0}

Severity only, fixed freq, different distributions

===

zero parameter

agg D.Sev01 1 claim sev 100 * expon fixed note{zeror
@param severity can look odd, but it works}
agg D.Sev02 1 claim sev 100 * expon 1 + 10 fixed
agg D.Sev03 1 claim sev 100 * expon + 10 fixed note{will thisu
agg D.Sev04 1 claim sev 100 * norm +500 fixed
agg D.Sev05 1 claim sev 100 * uniform + 50 fixed
agg D.Sev05b 2 claims sev 100*uniform + 50 fixed

one parameter

agg D.Sev06 1 claim sev 10 * gamma 0.3 fixed
agg D.Sev07 1 claim sev gamma 12 cv . 3 fixed
agg D.Sev08 1 claim sev lognorm 50 cv . 3 fixed
agg D.Sev09 1 claim sev 50/exp(.3**2/2) * lognorm . 3 fixed note{meanv
\hookrightarrowequals }50\mathrm{ and CV is slightly higher than . 3}
agg D.Sev10 1 claim sev 100 * invgamma 4.07 fixed note{rememberu
must set scale or mean}
agg D.Sev11 1 claim sev 100 * weibull_min 1.5 fixed
agg D.Sev12 1 claim sev invgauss 10 cv . 5 fixed
agg D.Sev13 1 claim sev 10 * pareto 2.6 + -10 fixed note{enteringu
@Pareto is awkward}

two parameter distributions

agg D.Sev14 1 claim sev 50 * beta 3 2 + 10 fixed

empirical severities, continuous and discrete

agg D.Sev15 1 claim sev dhistogram xps [1 10 40] [.5 . 3 . 2] fixed note{oldv
->notation}
agg D.Sev16 dfreq [1] dsev [1 10 40] [.5 .3 .2] note
\hookrightarrowpreferred new notation}
agg D.Sev17 1 claim sev chistogram xps [1 10 40] [.5 .3 .2] fixed note
\hookrightarrow{continuous version}

Severity transformations: shift, scale, layer, and attachment, unconditionalu

\hookrightarrowseverities


```

(continued from previous page)

(continued from previous page)
```

agg H.Limits02
cv 2.0 fixed
agg H.Limits03 [10 10 10 10] claims [inf 10 inf 10] xs [0 0 5 5] sev lognorm 10v
Ccv 1.25 fixed

Limit profiles with mixed severities

=====================================

agg I.Blend01 10 claims [5 10 15] xs 0 sev lognorm 12 cv [1 1.5`
@3] poisson
agg I.Blend02 10 claims [5 10 15] xs 0 sev lognorm 12 cv [1 1.5_
\hookrightarrow] mixed gamma 0.25
agg I.Blend03 10 claims [5 10 15] xs 0 sev lognorm 12 cv [1 1.5.5
\hookrightarrow] wts=3 mixed gamma 0.25
agg I.Blend04 1 claims [1 5 10 20] xs 0
4.20 . 20 .1] mixed gamma 0.25
agg I.Blend05 5 claims [10 20 50 100] xs 10 sev lognorm 10 cv 1.2 wts [.
40 . 20 . 20 .1] mixed gamma 0.25
agg I.Blend06 [10 30 15 5] claims [inf 10 inf 10] xs [0 0 5 5] sev lognorm 10 cv=
@[1.0 1.25 1.5] wts=3 mixed gamma 0.25
agg I.Blend07 [10 20 30] claims [100 200 75] xs [0 50 75] sev lognorm 100 cv-
[1 2] wts [.6 .4]
agg I.Blend08 [10 30] claims sev lognorm 100 cve
\leftrightarrow [1 ~ 2] ~ m i x e d ~ g a m m a ~ 0 . 4 ~
agg I.Blend09 [1000 2000 500] prem at [.8 . 7 . 5] lr sev lognorm 10 cve
[.2 . 35 .5] wts [1/2 3/8 1/8] mixed gamma 0.5 note{log2=17;}
agg I.Blend10 [500 800 200] loss sev lognorm 10 cv-
. .2 . 35 .5] wts=3 mixed gamma 0.5
agg I.Blend11 [1000 2000 500] prem at [.8 . 7 .5] lr sev lognorm 10 cve
@.2 . 35 .5] wts [1/2 3/8 1/8] mixed gamma 0.5 note{log2=17;}
agg I.Blend12 [500 800 200] loss sev lognorm 10 cve
@.2 .35 .5] wts=3 mixed gamma 0.5

Reinsurance

===========

agg J.Re01 5 claims 100 xs 0 sev lognorm 10 cv . 75 occurrence net of 50% so 5 xs
\hookrightarrow and 5 po 15 xs 5 and 30 xs 20 poisson
agg J.Re02 5 claims 100 xs 0 sev lognorm 10 cv . }7
poisson aggregate net of 50% so 25 xs 0 and 75`
<s 25
agg J.Re03 5 claims 100 xs 0 sev lognorm 10 cv . }75\mathrm{ occurrence net of 50% so 5 xs
\hookrightarrow and 5 po 15 xs 5 and 30 xs 20 poisson aggregate net of 50% so 25 xs 0 and
400 xs 25
agg J.Re04 5 claims 100 xs 0 dsev [1:100] occurrence net of 50% so 5 xs
\hookrightarrow0 and 5 po 15 xs 5 and 30 xs 20 poisson aggregate net of 50% so 25 xs 0 and
4100 xs 25
agg J.Re05 5 claims 100 xs 0 sev lognorm 10 cv . }75\mathrm{ occurrence ceded to 50% so 5.
xs 0 and 5 po 15 xs 5 and 30 xs 20 poisson
agg J.Re06 5 claims 100 xs 0 sev lognorm 10 cv . }7
poisson aggregate ceded to 50% so 25 xs 0 and
47 xs 25
agg J.Re07 5 claims 100 xs 0 sev lognorm 10 cv . }75\mathrm{ occurrence ceded to 50% so 5%
xs 0 and 5 po 15 xs 5 and 30 xs 20 poisson aggregate ceded to 50% so 25 xs 0 and
๑100 xs 25
agg J.Re08 5 claims 100 xs 0 dsev [1:100] occurrence ceded to 50% so 5.
xs 0 and 5 po 15 xs 5 and 30 xs 20 poisson aggregate ceded to 50% so 25 xs 0 and
400 xs 25
agg J.Re09 5 claims 100 xs 0 sev lognorm 10 cv . }75\mathrm{ occurrence ceded to 15 xs 5s
@poisson
agg J.Re10 5 claims 100 xs 0 sev lognorm 10 cv . }7
\hookrightarrowpoisson aggregate net of 20 xs 0
agg J.Re11 5 claims 100 xs 0 sev lognorm 10 cv . 75 occurrence ceded to 15 xs 5v

```
(continues on next page)
(continued from previous page)
```

\hookrightarrowpoisson aggregate net of 20 xs 0
agg J.Re12 5 claims 100 xs 0 dsev [1:100] occurrence ceded to 15 xs 5.
@poisson aggregate net of 20 xs 0
agg J.Re13 5 claims 100 xs 0 dsev [1:100] occurrence net of 15 xs 5.
ppoisson aggregate ceded to 20 xs 0
agg J.Re14 1000 prem at .5 lr sev lognorm 10 cv [.2 . 35 . 5] wts=3 occurrence_
ceded to . 5 xs . 5 and . 5 po 1.0 xs 1.0 and 25% so 3.0 xs 2.0 mixed gamma 0.
\hookrightarrow aggregate ceded to 1.5 xs 1.5 and 5.0 po 10.0 xs 12.5
agg J.Re15 10 claims sev lognorm 3 cv 0.35 occurrence net\checkmark
Of 1 xs 1 and 2.5 po 5 xs 5 and 25% so 30 xs 20 and inf xs 100 poisson
\hookrightarrowggregate net of 10 xs 15
agg J.Re16 5 claims dsev [0:100] occurrence ceded to tower [10:50:10] poisson
agg J.Re17 5 claims dsev [0:100] poisson aggregate ceded to tower [200:500:100]

Tweedie distributions

=======================

agg K.Tweedie0 10.050251256281404 claims sev gamma 0.0995 cv 0.07088812050083283_
\hookrightarrowpoisson note{Tweedie defined by claim count, gamma mean and cv}
agg K.Tweedie1 10.050251256281404 claims sev 0.0005 * gamma 199 poisson
note{Tweedie defined by claim count, gamma scale and shape}
agg K.Tweedie2 tweedie 1 1.005 0.1
@ note{Tweedie defined using mean, p, and dispersion, variance = dispersion}
\hookrightarrowXS mean**p}

Examples from books and papers

================================

The way this file is interpreted by the deubugger forces the programs to beఒ

\hookrightarrowwritten on one line
port L.Bodoff1 note{Bodoff Thought Experiment No. 1} agg wind1 1 claim sev,
\dhistogram xps [0, 99] [0.80, 0.20] fixed agg quake1 1 claim sev dhistogram xps
\hookrightarrow[0, 100] [0.95, 0.05] fixed
port L.Bodoff2 note{Bodoff Thought Experiment No. 2} agg wind2 1 claim sev
\hookrightarrowdhistogram xps [0, 50] [0.80, 0.20] fixed agg quake2 1 claim sev dhistogram xps
\hookrightarrow[0, 100] [0.95, 0.05] fixed
port L.Bodoff3 note{Bodoff Thought Experiment No. 3} agg wind3 1 claim sev
\hookrightarrowdhistogram xps [0, 5] [0.80, 0.20] fixed agg quake3 1 claim sev dhistogram xps
\hookrightarrow[0, 100] [0.95, 0.05] fixed
port L.Bodoff4 note{Bodoff Thought Experiment No. 4 (check!)} agg a 0.25 claims_
\hookrightarrowsev 4 * expon poisson agg b 0.05 claims sev 20 * expon poisson agg c 0.05`
claims sev 100 * expon poisson

PIR book case studies

======================

hints: reg_p=1; roe=0.10;

numbers in names ensure correct sort order

port M.PIR.1.Discrete note{PIR Discrete case study. Change 8 to 9 for the equalr
\leftrightarrowpoints example.} agg Discrete.X1 1 claim dsev [0 8 10] [1/2 1/4 1/4] fixed agg
@Discrete.X2 1 claim dsev [0 1 90] [1/2 1/4 1/4] fixed note{bs=1; log2=8;
\hookrightarrowpadding=1}

hints: reg_p=.999, roe=0.10

port M.PIR.2.Tame note{PIR Tame case study. For reinsurance see text.} agg Tame.A
\hookrightarrow1 claim sev gamma 50 cv 0.10 fixed agg Tame.B 1 claim sev gamma 50 cv 0.15`
\hookrightarrowfixed note{bs=1/64, log2=16, padding=1}

hints: reg_p=.999, roe=0.10

port M.PIR.3.CNC.Gross note{PIR Cat-Noncat gross case study.} agg CNC.NonCat 1-
Glaim sev gamma }80\mathrm{ cv 0.15 fixed agg CNC.Cat 1 claim sev lognorm 20 cv 1.00-

```
```

\hookrightarrowfixed note{bs=1/64, log2=16, padding=1}
port M.PIR.4.CNC.Net note{PIR Cat-Noncat net case study.} agg CNC.Net.NonCat 1ь
claim sev gamma }80\mathrm{ cv 0.15 fixed agg CNC.Net.Cat 1 claim sev lognorm 20,
cv 1.00 fixed aggregate net of 79.64 xs 41.11 note{bs=1/64, log2=16, padding=1}

hints: reg_p=.999, roe=0.10,

port M.PIR.5.HuSCS.Gross note{PIR Hurricane SCS gross case study.} agg SCS 70`
\hookrightarrowclaims sev exp(-1.9**2 / 2) * lognorm 1.9 poisson agg Hu 2 claims sev
\varphiexp(-2.5**2/2)/(1/15) * lognorm 2.5 poisson note{bs=1/4, log2=19, padding=1}
port M.PIR.6.HuSCS.Net note{PIR Hurricane SCS net case study.} agg Net.SCS 70^
claims sev exp(-1.9**2 / 2) * lognorm 1.9 poisson agg Net.Hu 2 claims sev
\varphiexp(-2.5**2/2)/(1/15) * lognorm 2.5 occurrence net of 372.4 xs 40.25 poisson note
\hookrightarrow{bs=1/4, log2=19, padding=1}

Proxies for US Lines

=====================

for portfolio construction: 10M sized books with "reasonable" severity curves

IRS: used cycle adjusted numbers, no further adjustments

RMI: see \S\Teaching\2019-09\RMI3388\Notes\pdf\Archive\QA16_RMI3388_Tue-29-Oct-

\hookrightarrow2019_cat_models.pdf

SCS is a swag; last pages of 2021 cat report for EF3+ tornados shows 25-50/year;

\leftrightarrowig

SCS events 3-6 billion; https://www.aon.com/reinsurance/catastropheinsight/

\hookrightarrowglobal-regional-losses.html?region=United%20States\&type=insured

shows avg / year about 25B, so mean severity is 25 / 37.5 = 2/3 = 666M

sigma 1.75 of makes 10B a 1 in 16 event; mu mean=666 eq np.log(666e6) - 1.75**2/

\hookrightarrow2 = 18.785550228504665
agg N.US.Hurricane 1.79 claims 1e12 xs 0 sev exp(19.595) * lognorm 2.581 poisson u
note{Based on NOAA reanalysis dataset and sample of hurricane loss. Source SJUv
\&MI3388 Course.}
agg N.US.SCS 37.50 claims 50e9 xs 0 sev exp(18.785550228504665) * lognorm 1.
45 poisson note{Judgmental based on fre3quency of EF4-5 tornadoes, AAL of 25B
->and extreme event loss of 10B}

CVs based on sigmas of 1.5 for liab, 1.75 for prof and 1.25 for ppa

Average severity selected judgmentally

agg N.Comm.Liability 10e6 loss 1e6 xs 0 sev lognorm 100e3 cv 3.77 mixed.
Ggamma 0.26 note{Source: CV from Aon IRS 10th ed, severity selected judgmentally.}
agg N.Comm.Professional 10e6 loss 5e6 xs 0 sev lognorm 850e3 cv 8.48 mixed,
\hookrightarrowgamma 0.27 note{Source: CV from Aon IRS 10th ed, severity selected judgmentally.}
agg N.Personal.Auto 10e6 loss 300e3 xs 0 sev lognorm 45e3 cv 20.4山
\hookrightarrowmixed gamma 0.13 note{Source: CV from Aon IRS 10th ed, severity selected~
\hookrightarrowjudgmentally.}

limits profile low and high limits and attaching book: 1/1, 4/1 and 5/5

severity midway between liability and professional

agg N.Comm.Umbrella [6e6 3e6 1e6] loss [1e6 4e6 5e6] xs [1e6 1e6 5e6] sev lognorm
\hookrightarrow20e3 cv 5.00 mixed gamma 0.26 note{Source: CV from Aon IRS 10th ed, severity`
\hookrightarrowselected judgmentally.}

property mixed severity property and cat, pass through mixing

note on CV of betas: for high cv it becomes a zero / one variable, to theч

\hookrightarrowvariance maxes out at p (1-p) where p is the mean

thus the CV maxes out at 1/sqrt (p(1-p)). For a mean of 0.1 the variance equals 1/

sqrt(0.09) = 0.3 and the cv is 0.3/ 0.1 = 3

could limit profile too, but keep simple

assumes full ITV

agg N.Comm.Property [7e6 3e6] loss 100e6 xs 0 sev 100e6 * beta 0.1 cv [1.25 2.5].
mixed gamma 0.28 note{Source: CV from Aon IRS 10th ed, severity selected

```
(continues on next page)
(continued from previous page)
```

\hookrightarrowjudgmentally.}
agg N.Homeowners [8e6 2e6] loss 650e3 xs 0 sev 650e3 * beta 0.1 cv [0.75`
\hookrightarrow2.75] mixed gamma 0.37 note{Source: CV from Aon IRS 10th ed, severity selectedv
\hookrightarrowjudgmentally.}

really a severity curve, but you can't mix severity

agg N.Comm.Auto.MED 1 claim sev [2.764e3 24.548e3 275.654e3 1.917469e6 10e6] *u

Gexpon 1 wts [0.824796 0.159065 0.014444 0.001624 0.000071] fixed note{User
\hookrightarrowlog2=18 and bs=500 or apply limits. Source: Example from Mixed Exponentialv
snippet and Similar Risks IME paper (2022).; log2=18; bs=500;}
sev N.Comm.Auto.MED [2.764e3 24.548e3 275.654e3 1.917469e6 10e6] * expon 1 wts [0.
\hookrightarrow24796 0.159065 0.014444 0.001624 0.000071] note{Source: Example from Mixed,
@xponential snippet and Similar Risks IME paper (2022)}

Novelties

==========

agg O.Logo 1 claim [10:250:10] xs 0 sev lognorm 100 cv 1 fixed

```

To only parse:
```

from aggregate import build
filename = build.default_dir / 'test_suite.agg'
assert filename.exists()
build.logger_level(30)
df = build.interpreter_file(filename=filename)
df.query('error != 0')

```

\section*{4.5 sly Parser}

The parser is built using the sly package, https://sly.readthedocs.io/en/latest/sly.html.

\section*{TECHNICAL GUIDES}

Technical Guides cover theory and implementation. How calculations work in theory and how they have been implemented in aggregate.

\subsection*{5.1 Probability Background}

Objectives: Statement and limited explanation of important probability concepts that underlie aggregate calculations.

Audience: Readers looking for a probability refresher.
Prerequisites: Knowledge of basic probability and calculus (real analysis).
See also: Insurance Probability.
Notation: The variance of a random variable \(X\) is \(\operatorname{var}(X)=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}\). The standard deviation is \(\sigma(X)=\) \(\sqrt{\operatorname{var}(X)}\). The coefficient of variation (CV) of \(X\) is \(\mathrm{CV}(X)=\sigma(X) / \mathrm{E}[X]\). The skewness of \(X\) is \(\mathrm{E}[(X-\) \(\left.\mathrm{E}[X])^{3}\right] / \sigma(X)^{3}\).

\section*{Contents:}
- Helpful References
- Types
- Severity Distributions
- Moment Generating Functions
- Frequency Distributions
- Aggregate Distributions
- Shifted Gamma and Lognormal Distributions
- list of freq distributions
- list of distributions

\subsection*{5.1.1 Helpful References}
- Klugman et al. [2019]
- Panjer and Willmot [1992]
- Williams [1991]
- Feller [1971]
- Loeve [2017]
- Johnson et al. [2005]
- Mildenhall [2017]

\subsection*{5.1.2 Types}

Todo: Documentation to follow.

\subsection*{5.1.3 Severity Distributions}

\section*{Computing moments}

Higher moments of a layer with a limit \(y\) excess of an attachment (deductible, retention) \(a\) can be computed as
\[
\begin{aligned}
\mathrm{E}\left[\left((X-a)^{+} \wedge l\right)^{n}\right] & =\int_{a}^{a+l}(x-a)^{n} f(x) d x+l^{n} S(a+l) \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} a^{n-k} \int_{a}^{a+l} x^{k} f(x) d x+l^{n} S(a+l) \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} a^{n-k}(\mathrm{E}[k ; a+l]-\mathrm{E}[k ; a])+l^{n} S(a+l)
\end{aligned}
\]
where
\[
\mathrm{E}[k ; a]=\int_{0}^{a} x^{k} f(x) d x
\]
is the partial expectation function.

\section*{Lognormal}

For the lognormal, the trick for higher moments is to observe that if \(X\) is lognormal \((\mu, \sigma)\) then \(X^{k}\) is lognormal \((k \mu, k \sigma)\). The formula for partial expectations of the lognormal is easy to compute by substitution, giving
\[
\mathrm{E}[k, a]=\exp \left(k \mu+k^{2} \sigma^{2} / 2\right) \Phi\left(\frac{\log x-\mu-k \sigma^{2}}{\sigma}\right)
\]

Densities of the form \(f(x)=x^{\alpha} c(\alpha) g(x)\)
\[
\begin{aligned}
\mathrm{E}[k, a] & =\int_{0}^{a} x^{k} x^{\alpha} c(\alpha) g(x) d x \\
& =\frac{c(\alpha)}{c(n+\alpha)} \int_{0}^{a} x^{k+\alpha} c(k+\alpha) g(x) d x \\
& =\frac{c(\alpha)}{c(n+\alpha)} F_{k+\alpha}(a)
\end{aligned}
\]
are easy to express in terms of the distribution function. This is a broad class including the gamma.

\section*{Pareto}

An easy integral computation, substitute \(y=\lambda+x\) to express in powers of \(y\) :
\[
\begin{aligned}
\mathrm{E}[k, a] & =\int_{0}^{a} \alpha x^{k} \frac{\lambda^{\alpha}}{(\lambda+x)^{\alpha+1}} d x \\
& =\int_{\lambda}^{\lambda+a} \alpha \lambda^{\alpha} \frac{(y-\lambda)^{k}}{y^{\alpha+1}} d y \\
& =\sum_{i=0}^{k}(-1)^{k-i} \alpha \lambda^{\alpha}\binom{k}{i} \int_{\lambda}^{\lambda+a} y^{i-\alpha-1} \lambda^{k-i} d y \\
& =\left.\sum_{i=0}^{k}(-1)^{k-i} \alpha \lambda^{\alpha+k-i}\binom{k}{i} \frac{y^{i-\alpha}}{i-\alpha}\right|_{\lambda} ^{\lambda+a} .
\end{aligned}
\]

\section*{scipy.stats Severity Distributions}

All zero, one, and two shape parameter scipy. stats continuous random variable classes can be used as severity distributions. See list of distributions for details about each available option.

\subsection*{5.1.4 Frequency Distributions}

The following reference is from the scipy documentation.

\section*{Bernoulli Distribution}

The probability mass function for bernoulli is:
\[
f(k)= \begin{cases}1-p & \text { if } k=0 \\ p & \text { if } k=1\end{cases}
\]
for \(k\) in \(\{0,1\}, 0 \leq p \leq 1\) bernoulli takes \(p\) as shape parameter, where \(p\) is the probability of a single success and \(1-p\) is the probability of a single failure.

\section*{Binomial Distribution}

The probability mass function for binom is:
\[
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
\]
for \(k \in\{0,1, \ldots, n\}, 0 \leq p \leq 1\) binom takes \(n\) and \(p\) as shape parameters, where \(p\) is the probability of a single success and \(1-p\) is the probability of a single failure.

\section*{Geometric Distribution}

The probability mass function for geom is:
\[
f(k)=(1-p)^{k-1} p
\]
for \(k \geq 1,0<p \leq 1\) geom takes \(p\) as shape parameter, where \(p\) is the probability of a single success and \(1-p\) is the probability of a single failure.

\section*{Poisson Distribution}

The probability mass function for poisson is:
\[
f(k)=\exp (-\mu) \frac{\mu^{k}}{k!}
\]
for \(k \geq 0\). poisson takes \(\mu \geq 0\) as shape parameter.

\section*{Neyman (A) Distribution}

The Neyman distribution is a Poisson stopped-sum distribution of Poisson variables, see Johnson et al. [2005].

\section*{Fixed Distribution}

The fixed distribution takes a single value with probability one.

\subsection*{5.1.5 Moment Generating Functions}

The moment generating function of a random variable \(X\) is defined as
\[
M_{X}(z)=\mathrm{E}[\exp (z X)] .
\]

The moment generating function is related to the characteristic function of \(X\) which is defined as \(\phi_{X}(z)=\) \(\mathrm{E}[\exp (i z X)]=M_{X}(i z) . \phi\) is guaranteed to converge for all real \(z\) and so is preferred in certain situations.

Moment generating functions get their name from the fundamental property that
\[
\left.\frac{\partial^{n} M_{X}}{\partial z^{n}}\right|_{z=0}=\mathrm{E}\left[X^{n}\right]
\]
for all positive integers \(n\) provided the differential exists.
Let \(F\) be the distribution function of \(X\). Feller [1971] Section XVII.2a shows that if \(F\) has expectation \(\mu\) then \(\phi\), the characteristic function of \(F\), has a derivative \(\phi^{\prime}\) and \(\phi^{\prime}(0)=i \mu\). However the converse is false. Pitman proved that the following are equivalent.
1. \(\phi^{\prime}(0)=i \mu\).
2. As \(t \rightarrow \infty, t(1-F(t)+F(-t)) \rightarrow 0\) and
\[
\int_{t}^{-t} x d F(x) \rightarrow \mu
\]
where \(F(-t):=\lim F(s)\) as \(s \uparrow t\).
3. The average \(\left(X_{1}+\cdots+X_{n}\right) / n\) tends in probability to \(\mu\), that is \(\operatorname{Pr}\left(\left|\left(X_{1}+\cdots+X_{n}\right) / n-\mu\right|>\epsilon\right) \rightarrow 0\) as \(n \rightarrow \infty\).

The condition for the limit in 2 to exist is weaker than the requirement that \(\mathrm{E}[X]\) exists if \(X\) is supported on the whole real line. For the expectation to exist requires \(\int_{-\infty}^{\infty} x d F(x)\) exists which means \(\lim _{t \rightarrow-\infty} \lim _{s \rightarrow \infty} \int_{t}^{s} x d F(x)\).
The moment generating function of a bivariate distribution \(\left(X_{1}, X_{2}\right)\) is defined as
\[
M_{X_{1}, X_{2}}\left(z_{1}, z_{2}\right)=\mathrm{E}\left[\exp \left(z_{1} X_{1}+z_{2} X_{2}\right)\right] .
\]

It has the property that
\[
\left.\frac{\partial^{m+n} M_{X_{1}, X_{2}}}{\partial z_{1}^{m} \partial z_{2}^{n}}\right|_{(0,0)}=\mathrm{E}\left[X_{1}^{m} X_{2}^{n}\right]
\]
for all positive integers \(n, m\).
The MGF of a normal variable with mean \(\mu\) and standard deviation \(\sigma\) is
\[
M(z)=\exp \left(\mu z \sigma^{2} z^{2} / 2\right)
\]

The MGF of a Poisson variable with mean \(n\) is
\[
M(z)=\exp \left(n\left(e^{z}-1\right)\right)
\]

See any standard text on probability for more information on moment generating functions, characteristic functions and modes of convergence.

\subsection*{5.1.6 Mixed Frequency Distributions}

A random variable \(N\) is \(G\)-mixed Poisson if \(N \mid G\) has a Poisson \(n G\) distribution for some fixed non-negative \(n\) and a non-negative mixing distribution \(G\) with \(\mathrm{E}[G]=1\). Let \(\operatorname{var}(G)=c\) and let \(\mathrm{E}\left[G^{3}\right]=g\). Glenn Meyers calls \(c\) the contagion.

The MGF of a \(G\)-mixed Poisson is
\[
M_{N}(z)=\mathrm{E}\left[e^{z N}\right]=\mathrm{E}\left[\mathrm{E}\left[e^{z N} \mid G\right]\right]=\mathrm{E}\left[e^{n G\left(e^{z}-1\right]}\right)=M_{G}\left(n\left(e^{z}-1\right)\right)
\]
since \(M_{G}(z):=\mathrm{E}\left[e^{z G}\right]\) and the MGF of a Poisson with mean \(n\) is \(\exp \left(n\left(e^{z}-1\right)\right)\). Thus
\[
\mathrm{E}[N]=M_{N}^{\prime}(0)=n M_{G}^{\prime}(0)=n
\]
because \(\mathrm{E}[G]=M_{G}^{\prime}(0)=1\). Similarly
\[
\mathrm{E}\left[N^{2}\right]=M_{N}^{\prime \prime}(0)=n^{2} M_{G}^{\prime \prime}(0)+n M_{G}^{\prime}(0)=n^{2}(1+c)+n
\]
and so
\[
\operatorname{var}(N)=n(1+c n)
\]

Finally
\[
\begin{aligned}
\mathrm{E}\left[N^{3}\right] & =M_{N}^{\prime \prime \prime}(0) \\
& =n^{3} M_{G}^{\prime \prime \prime}(0)+3 n^{2} M_{G}^{\prime \prime}(0)+n M_{G}^{\prime}(0)=g n^{3}+3 n^{2}(1+c)+n
\end{aligned}
\]
and therefore the central moment
\[
\mathrm{E}(N-\mathrm{E}[N])^{3}=n^{3}(g-3 c-1)+3 c n^{2}+n
\]

We can also assume \(G\) has mean \(n\) and work directly with \(G\) rather than \(n G, \mathrm{E}[G]=1\). We will call both forms mixing distributions.

\section*{Gamma Mixing}

A negative binomial is a gamma-mixed Poisson: if \(N \mid G\) is distributed as a Poisson with mean \(G\), and \(G\) has a gamma distribution, then the unconditional distribution of \(N\) is a negative binomial. A gamma distribution has a shape parameter \(a\) and a scale parameter \(\theta\) so that the density is proportional to \(x^{a-1} e^{x / \theta}, \mathrm{E}[G]=a \theta\) and \(\operatorname{var}(G)=a \theta^{2}\). Let \(c=\operatorname{var}(G)=\nu^{2}\), so \(\nu\) is the coefficient of variation of the mixing distribution. Then
- \(a \theta=1\) and \(a \theta^{2}=c\)
- \(\theta=c=\nu^{2}, a=1 / c\)

The non-central moments of the gamma distribution are \(\mathrm{E}\left[G^{r}\right]=\theta^{r} \Gamma(a+r) / \Gamma(a)\). Therefore \(\operatorname{Var}(G)=a \theta^{2}\) and \(E(G-E(G))^{3}=2 a \theta^{3}\). The skewness of \(G\) is \(\gamma=2 / \sqrt{(a)}=2 \nu\).

Applying the general formula for the third central moment of \(N\) we get an expression for the skewness
\[
\operatorname{skew}(N)=\frac{n^{3}(\gamma-3 c-1)+n^{2}(3 c+2)+n}{(n(1+c n))^{3 / 2}} .
\]

The corresponding MGF of the gamma is \(M_{G}(z)=(1-\theta z)^{-a}\).
The gamma and negative binomial occur in the literature with many different parameterizations. The main ones are shown in the next three tables.

Table 1: Parameterizations of the Gamma Distribution
\begin{tabular}{|l|l|l|l|l|}
\hline Model & Density & MGF & Mean & Var \\
\hline (a) \(\alpha, \beta\) & \(\frac{x^{\alpha-1} e^{-x / \beta}}{\beta^{\alpha} \Gamma(\alpha)}\) & \((1-\beta t)^{-\alpha}\) & \(\alpha \beta\) & \(\alpha \beta^{2}\) \\
\hline (b) \(\alpha, \beta\) & \(\frac{x^{\alpha-1} \beta^{\alpha} e^{-x \beta}}{\Gamma(\alpha)}\) & \((1-t / \beta)^{-\alpha}\) & \(\alpha / \beta\) & \(\alpha / \beta^{2}\) \\
\hline (c) \(\alpha, \theta\) & \(\frac{x^{\alpha-1} e^{-x / \theta}}{\theta^{\alpha} \Gamma(\alpha)}\) & \((1-t \theta)^{-\alpha}\) & \(\alpha \theta\) & \(\alpha \theta^{2}\) \\
\hline
\end{tabular}

Model (a) is used by Microsoft Excel, Wang [1998], and Johnson et al. [2005] Chapter 17. Model (b) is used by Bowers et al. [1997]. Model (c) is used by . Obviously model (c) is just model (a) with a change of notation.

Table 2: Parameterizations of the Negative Binomial Distribution
\begin{tabular}{|l|l|l|l|l|}
\hline Model & Density & MGF & Mean & Var \\
\hline (a) \(\alpha, \beta\) & \(\binom{\alpha+x-1}{x}\left(\frac{\beta}{1+\beta}\right)^{x}\left(1\left(\frac{\left.\left.P^{p}\left(\rho^{t}\right)^{\alpha}-1\right)\right)^{-\alpha}}{}\right.\right.\) & \(\alpha \beta\) & \(\alpha \beta^{2}\) \\
\hline (b) \(P, k\) & \(\binom{k+x-1}{x}\left(\frac{P}{Q}\right)^{x}\) & \(\left.\frac{Q_{Q} P}{Q} P^{k} e^{k}\right)^{-k}\) & \(k P\) & \(k P Q\) \\
\hline (c) \(p, r>0\) & \(\binom{r+x-1}{x} p^{r} q^{x}\) & \(\frac{p^{r}}{\left(1-q e^{s}\right)^{r}}\) & \(r q / p\) & \(r q / p^{2}\) \\
\hline
\end{tabular}

Note that \(Q=P+1, q=1-p, 0<p<1\) and \(r>0\), and \(P=1 /(\beta+1)\).

Table 3: Fitting the Negative Binomial Distribution
\begin{tabular}{|l|l|l|l|l|l|}
\hline Model & Parameters & VM Scale & VM Shape & Ctg Scale & Ctg Shape \\
\hline (a) & \(r, \beta\) & \(r=m /(v-1)\) & \(\beta=v-1\) & \(r=1 / c\) & \(\beta=c n\) \\
\hline (b) & \(k, P\) & \(k=m /(v-1)\) & \(P=v-1\) & \(k=1 / c\) & \(P=c n\) \\
\hline (c) & \(r, p\) & \(r=m /(v-1)\) & \(p=1 / v\) & \(r=1 / c\) & \(p=1 /(1+c n)\) \\
\hline
\end{tabular}

In model (c) the parameter \(r\) need not be an integer because the binomial coefficient can be computed as
\[
\binom{r+x-1}{x}=\frac{\Gamma(r+x)}{\Gamma(r) x!},
\]
an expression which is valid for all \(r\). The cumulative distribution function of the negative binomial can be computed using the cumulative distribution of the beta distribution. Using the model (c) parameterization, if \(N\) is negative binomial \(p, r\) then
\[
\begin{aligned}
\operatorname{Pr}(N \leq k) & =\operatorname{BETADIST}(p ; r, k+1) \\
& :=\frac{1}{B(r, k+1)} \int_{0}^{p} u^{r-1}(1-u)^{k} d u
\end{aligned}
\]
where \(B\) is the complete beta function. See Johnson, Kotz and Kemp [Eqn. 5.31] for a derivation. BETADIST is the Excel beta cumulative distribution function.

The name negative binomial comes from an analogy with the binomial. A binomial variable has parameters \(n\) and \(p\), mean \(n p\) and variance \(n p q\), where \(p+q=1\). It is a sum of \(n\) independent Bernoulli variables \(B\) where \(\operatorname{Pr}(B=1)=p\) and \(\operatorname{Pr}(B=0)=q=1-p\). The MGF for a binomial is \(\left(q+p e^{z}\right)^{n}\) and the probabilities are derived from the binomial expansion of the MGF. By analogy the negative binomial can be defined in terms of the negative binomial expansion of \(\left(Q-P e^{z}\right)^{-k}\) where \(Q=1+P, P>0\) and \(k>0\).

The actuary can look at the negative binomial in two different way, each of which gives different results. It is important to understand these two views. First there is the contagion view, where the mixing distribution \(G\) has mean \(n\) and variance \(c\) producing a negative binomial with mean \(n\) and variance \(n(1+c n)\). (In fact \(G\) is a gamma with model (a) parameters \(\alpha=r\) and \(\beta=1 / r\).) The word contagion is used by Heckman and Meyers [1983] and is supposed to indicate a "contagion" of claim propensity driven by common shock uncertainty, such as claim inflation, economic activity, or weather. Here the variance grows with the square of \(n\) and the coefficient of variation tends to \(\sqrt{c}>0\) as \(n \rightarrow \infty\). Secondly, one can consider an over-dispersed family of Poisson variables with mean \(n\) and variance \(v n\) for some \(v>1\). We call \(v\) the variance multiplier. Now, the coefficient of variation tends to 0 as \(n \rightarrow \infty\). The notion of over-dispersion and its application in modeling is discussed in Clark and Thayer [2004] and Verrall [2004].

\section*{The Variance Multiplier}

The variance of a mixed Poisson equals \(n(1+c n)\) where \(c\) equals the variance of the mixing distribution. Thus the variance equals \(v=1+c n\) times the mean \(n\), where \(v\) is called the variance multiplier. The variance multiplier specification is used by some US rating bureaus. The dictionary to variance and mix CV is
\[
\begin{aligned}
c & =(v-1) / n \\
c v & =\sqrt{(v-1) / n}
\end{aligned}
\]

The frequency for an excess layer attaching at \(a\) equals \(n S(a)\). For fixed \(c\), the implied variance multiplier \(v=\) \(1+c n S(a)\) decreases and the excess claim count distribution converges to a Poisson. This is an example of the law of small numbers.

Per Mildenhall [2017], if \(\nu\) is the CV of \(G\) then the \(\nu\) equals the asymptotic coefficient of variation for any \(G\)-mixed compound Poisson distribution whose variance exists. The variance will exist iff the variance of the severity term exists. See 5_x_severity_irrelevant.

\section*{Negative Binomial Distribution}

Negative binomial distribution describes a sequence of iid Bernoulli trials, repeated until a predefined, non-random number of successes occurs.

The probability mass function of the number of failures for nbinom is:
\[
f(k)=\binom{k+n-1}{n-1} p^{n}(1-p)^{k}
\]
for \(k \geq 0,0<p \leq 1\)
nbinom takes \(n\) and \(p\) as shape parameters where n is the number of successes, \(p\) is the probability of a single success, and \(1-p\) is the probability of a single failure.

Another common parameterization of the negative binomial distribution is in terms of the mean number of failures \(\mu\) to achieve \(n\) successes. The mean \(\mu\) is related to the probability of success as
\[
p=\frac{n}{n+\mu}
\]

The number of successes \(n\) may also be specified in terms of a "dispersion", "heterogeneity", or "aggregation" parameter \(\alpha\), which relates the mean \(\mu\) to the variance \(\sigma^{2}\), e.g. \(\sigma^{2}=\mu+\alpha \mu^{2}\). Regardless of the convention used for \(\alpha\),
\[
\begin{aligned}
& p=\frac{\mu}{\sigma^{2}} \\
& n=\frac{\mu^{2}}{\sigma^{2}-\mu}
\end{aligned}
\]

\section*{Beta Binomial Distribution}

The beta-binomial distribution is a binomial distribution with a probability of success \(p\) that follows a beta distribution. The probability mass function for betabinom is:
\[
f(k)=\binom{n}{k} \frac{B(k+a, n-k+b)}{B(a, b)}
\]
for \(k \in\{0,1, \ldots, n\}, n \geq 0, a>0, b>0\), where \(B(a, b)\) is the beta function.
betabinom takes \(n, a\), and \(b\) as shape parameters.

\section*{Shifted Mixing (General)}

We can adjust the skewness of mixing with shifting. In addition to a target \(\mathrm{CV} \nu\) assume a proportion \(f\) of claims are sure to occur. Use a mixing distribution \(G=f+G^{\prime}\) such that
- \(\mathrm{E}[G]=f+\mathrm{E}\left[G^{\prime}\right]=1\) and
- \(\mathrm{CV}(G)=\sigma\left(G^{\prime}\right)=\nu\).

As \(f\) increases from 0 to 1 the skewness of \(G\) will increase. Delaporte first introduced this idea.
Since skew \((G)=\operatorname{skew}\left(G^{\prime}\right)\) we have \(g=\mathrm{E}\left[G^{3}\right]=\nu^{3} \operatorname{skew}\left(G^{\prime}\right)+3 c+1\).

\section*{Delaporte Mixing (Shifted Gamma)}

Inputs are target \(\mathrm{CV} \nu\) and proportion of certain claims \(f, 0 \leq f \leq 1\). Find parameters \(f, a\) and \(\theta\) for a shifted gamma \(G=f+G^{\prime}\) with \(E\left(G^{\prime}\right)=1-f\) and \(S D\left(G^{\prime}\right)=\nu\) as
- \(f\) is input
- mean \(a \theta=1-s\) and \(C V=\nu=\sqrt{a} \theta\) so \(a=(1-f)^{2} / \nu^{2}=(1-f)^{2} / c\) and \(\theta=(1-f) / a\)

The skewness of \(G\) equals the skewness of \(G^{\prime}\) equals \(2 / \sqrt{a}=2 \nu /(1-f)\), which is then greater than the skewness \(2 \nu\) when \(f=0\). The third non-central moment \(g=2 \nu^{4} /(1-f)+3 c+1\)

\section*{Poisson Inverse Gaussian Distribution}

The \((a, b, 0)\) and \((a, b, 1)\) Classes
See Klugman et al. [2019].

\subsection*{5.1.7 Aggregate Distributions}

Let \(A=X_{1}+\cdots+X_{N}\) be an aggregate distribution, where \(N\) is the frequency component and \(X_{i}\) are iid severity random variables.

\section*{Aggregate Mean}

The mean of a sum equals the sum of the means. Let \(A=X_{1}+\cdots+X_{N}\). If \(N=n\) is fixed then \(\mathrm{E}[A]=n \mathrm{E}[X]\), because all \(\mathrm{E}\left[X_{i}\right]=\mathrm{E}[X]\). In general,
\[
\mathrm{E}[A]=\mathrm{E}[X] \mathrm{E}[N]
\]
by conditional probability.

\section*{Aggregate Variance}

The variance of a sum of independent random variables equals the sum of the variances. If \(N=n\) is fixed then \(\operatorname{Var}(A)=n \operatorname{Var}(X)\) and \(\operatorname{Var}(N)=0\). If \(X=x\) is fixed then \(\operatorname{Var}(A)=x^{2} \operatorname{Var}(N)\) and \(\operatorname{Var}(X)=0\). Making the obvious associations \(n \leftrightarrow \mathrm{E}[N], x \leftrightarrow \mathrm{E}[X]\) suggests
\[
\operatorname{Var}(A)=\mathrm{E}[N] \operatorname{Var}(X)+\mathrm{E}[X]^{2} \operatorname{Var}(N)
\]

Using conditional expectations and conditioning on the value of \(N\) shows this is the correct answer!
Exercise. Confirm the formulas for an aggregate mean and variance hold for the Simple Example.

\section*{Aggregate Moment Generating Function}

Using the tower property of conditional expectations and the independence of \(N\) and \(X_{i}\) gives
\[
\begin{aligned}
M_{A}(z) & =\mathrm{E}\left[\exp \left(z\left(X_{1}+\cdots X_{N}\right)\right)\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[\exp \left(z\left(X_{1}+\cdots X_{N}\right)\right) \mid N\right]\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[\exp \left(z X_{1}\right)^{N}\right]\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[\exp \left(z X_{1}\right)\right]^{N}\right] \\
& =M_{N}\left(\log \left(M_{X}(z)\right)\right)
\end{aligned}
\]

Differentiating and using XXs formula, yields the moments of \(A\), see below.

The last expression is very important and underlies the use of FFTs to compute aggregate distributions.
Next, specialize to the case where \(A=X_{1}+\cdots+X_{N}\) is an aggregate distribution with \(N\) a \(G\)-mixed Poisson. Then
\[
\begin{aligned}
M_{A}(z) & =\mathrm{E}\left[\exp \left(z\left(X_{1}+\cdots X_{N}\right)\right)\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[\exp \left(z\left(X_{1}+\cdots X_{N}\right)\right) \mid N\right]\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[\exp \left(z X_{1}\right)^{N}\right]\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[M_{X}(z)^{N} \mid G\right]\right] \\
& =\mathrm{E}\left[\exp \left(n G\left(M_{X}(z)-1\right)\right)\right] \\
& =M_{G}\left(n\left(M_{X}(z)-1\right)\right)
\end{aligned}
\]

Thus
\[
\mathrm{E}[A]=M_{A}^{\prime}(0)=n M_{G}^{\prime}(0) M_{X}^{\prime}(0)=n \mathrm{E}[X]
\]
and
\[
\begin{aligned}
\mathrm{E}\left[A^{2}\right] & =M_{A}^{\prime \prime}(0) \\
& =n^{2} M_{G}^{\prime \prime}(0) M_{X}^{\prime}(0)^{2}+n M_{G}^{\prime}(0) M_{X}^{\prime \prime}(0) \\
& =n^{2} \mathrm{E}\left[G^{2}\right] \mathrm{E}[X]^{2}+n \mathrm{E}\left[X^{2}\right] .
\end{aligned}
\]

Hence, using the fact that \(\mathrm{E}\left[G^{2}\right]=1+c\),
we get
\[
\begin{aligned}
\operatorname{var}(A) & =n^{2} \mathrm{E}\left[G^{2}\right] \mathrm{E}[X]^{2}+n \mathrm{E}\left[X^{2}\right]-n^{2} \mathrm{E}[X]^{2} \\
& =n^{2} c \mathrm{E}[X]^{2}+n \mathrm{E}\left[X^{2}\right] \\
& =(\operatorname{var}(N)-\mathrm{E}[N]) \mathrm{E}[X]^{2}+\mathrm{E}[N] \mathrm{E}\left[X^{2}\right] \\
& =\operatorname{var}(N) \mathrm{E}[X]^{2}+\mathrm{E}[N] \operatorname{var}(X) .
\end{aligned}
\]

Continuing along the same vein we get
\[
\begin{aligned}
\mathrm{E}\left[A^{3}\right]= & \mathrm{E}[N] \mathrm{E}\left[X^{3}\right]+\mathrm{E}\left[N^{3}\right] \mathrm{E}[X]^{3}+3 \mathrm{E}\left[N^{2}\right] \mathrm{E}[X] \mathrm{E}\left[X^{2}\right] \\
& -3 \mathrm{E}[N] \mathrm{E}[X] \mathrm{E}\left[X^{2}\right]-3 \mathrm{E}\left[N^{2}\right] \mathrm{E}[X]^{3}+2 \mathrm{E}[N] \mathrm{E}[X]^{3} .
\end{aligned}
\]
and so we can compute the skewness of \(A\), remembering that
\[
\mathrm{E}\left[(A-\mathrm{E}[A])^{3}\right]=\mathrm{E}\left[A^{3}\right]-3 \mathrm{E}\left[A^{2}\right] \mathrm{E}[A]+2 \mathrm{E}[A]^{3}
\]

Further moments can be computed using derivatives of the moment generating function.
Having computed the mean, CV and skewness of the aggregate using these equations we can use the method of moments to fit a shifted lognormal or shifted gamma distribution. We turn next to a description of these handy distributions.

\subsection*{5.1.8 Shifted Gamma and Lognormal Distributions}

The shifted gamma and shifted lognormal distributions are versatile three parameter distributions whose method of moments parameters can be conveniently computed by closed formula. The examples below show that they also provide a very good approximation to aggregate loss distributions. The shifted gamma approximation to an aggregate is discussed in Bowers et al. [1997]. Properties of the shifted gamma and lognormal distributions, including the method of moments fit parameters, are also shown in Daykin et al. [1993] chapter 3.

Let \(L\) have a lognormal distribution. Then \(S=s \pm L\) is a shifted lognormal, where \(s\) is a real number. Since \(s\) can be positive or negative and since \(L\) can equal \(s+L\) or \(s-L\), the shifted lognormal can model distributions which are positively or negatively skewed, as well as distributions supported on the negative reals. The key facts about the shifted lognormal are shown in Table 1.4. The variable \(\eta\) is a solution to the cubic equation
\[
\eta^{3}+3 \eta-\gamma=0
\]
where \(\gamma\) is the skewness.
Let \(G\) have a gamma distribution. Then \(T=s \pm G\) is a shifted gamma distribution, where \(s\) is a real number. Table 1.1 shows some common parametric forms for the gamma distribution. The key facts about the shifted gamma distribution are also shown in Table 1.4.

The exponential is a special case of the gamma where \(\alpha=1\). The \(\chi^{2}\) is a special case where \(\alpha=k / 2\) and \(\beta=2\) in the Excel parameterization. The Pareto is a mixture of exponentials where the mixing distribution is gamma.

Table 4: Shifted Gamma and Lognormal Distributions
\begin{tabular}{|l|l|l|}
\hline Item & Shifted Gamma & Shifted Lognormal \\
\hline Parameters & \(s, \alpha, \theta\) & \(s, \mu, \sigma\) \\
\hline Mean \(m\) & \(s+\alpha \theta\) & \(s+\exp \left(\mu+\sigma^{2} / 2\right)\) \\
\hline Variance & \(\alpha \theta^{2}\) & \(m^{2} \exp \left(\sigma^{2}-1\right)\) \\
\hline CV, \(\nu\) & \(\sqrt{\alpha} \beta / \gamma\) & \(\exp \left(\left(\sigma^{2}-1\right) / 2\right)\) \\
\hline Skewness, & \(2 / \sqrt{\alpha}\) & \(\gamma=\nu\left(\nu^{2}+3\right)\) \\
\hline Method of Moments Parameters & & \\
\hline\(\eta\) & \(\mathrm{n} / \mathrm{a}\) & \(\eta=u-1 / u\) where \\
\hline & & \(u^{3}=\sqrt{\gamma^{2}+4} / 2+\gamma / 2\) \\
\hline Shift variable, \(s\) & \(m-\alpha \beta\) & \(m(1-\nu \eta)\) \\
\hline\(\alpha\) or \(\sigma\) & \(4 / \gamma^{2}\) & \(\sqrt{\ln \left(1+\eta^{2}\right)}\) \\
\hline\(\beta\) or \(\mu\) & \(m \nu \gamma / 2\) & \(\ln (m-s)-\sigma^{2} / 2\) \\
\hline
\end{tabular}

\subsection*{5.1.9 Appendix: Selected scipy.stats Discrete Random Variables}

Here is the list of scipy. stats discrete random variables.

- bernoulli Bernoulli (help). The probability mass function for bernoulli is:
\[
f(k)= \begin{cases}1-p & \text { if } k=0 \\ p & \text { if } k=1\end{cases}
\]
for \(k\) in \(\{0,1\}, 0 \leq p \leq 1\)
bernoulli takes \(p\) as shape parameter, where \(p\) is the probability of a single success and \(1-p\) is the probability of a single failure.

The probability mass function above is defined in the "standardized" form. To shift distribution use the loc parameter. Specifically, bernoulli.pmf (k, p, loc) is identically equivalent to bernoulli.pmf(k - loc, p).
- betabinom Betabinom (help). The beta-binomial distribution is a binomial distribution with a probability of success \(p\) that follows a beta distribution.

The probability mass function for betabinom is:
\[
f(k)=\binom{n}{k} \frac{B(k+a, n-k+b)}{B(a, b)}
\]
for \(k \in\{0,1, \ldots, n\}, n \geq 0, a>0, b>0\), where \(B(a, b)\) is the beta function.
betabinom takes \(n, a\), and \(b\) as shape parameters.
- binom Binom (help). The probability mass function for binom is:
\[
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
\]
for \(k \in\{0,1, \ldots, n\}, 0 \leq p \leq 1\)
binom takes \(n\) and \(p\) as shape parameters, where \(p\) is the probability of a single success and \(1-p\) is the probability of a single failure.
- bolt zmann Boltzmann (help). The probability mass function for boltzmann is:
\[
f(k)=(1-\exp (-\lambda)) \exp (-\lambda k) /(1-\exp (-\lambda N))
\]
for \(k=0, \ldots, N-1\).
boltzmann takes \(\lambda>0\) and \(N>0\) as shape parameters.
- geom Geom (help). The probability mass function for geom is:
\[
f(k)=(1-p)^{k-1} p
\]
for \(k \geq 1,0<p \leq 1\)
geom takes \(p\) as shape parameter, where \(p\) is the probability of a single success and \(1-p\) is the probability of a single failure.
- logser Logser (help). The probability mass function for logser is:
\[
f(k)=-\frac{p^{k}}{k \log (1-p)}
\]
for \(k \geq 1,0<p<1\)
logser takes \(p\) as shape parameter, where \(p\) is the probability of a single success and \(1-p\) is the probability of a single failure.
- nbinom Nbinom (help). Negative binomial distribution describes a sequence of i.i.d. Bernoulli trials, repeated until a predefined, non-random number of successes occurs.

The probability mass function of the number of failures for nbinom is:
\[
f(k)=\binom{k+n-1}{n-1} p^{n}(1-p)^{k}
\]
for \(k \geq 0,0<p \leq 1\)
nbinom takes \(n\) and \(p\) as shape parameters where n is the number of successes, \(p\) is the probability of a single success, and \(1-p\) is the probability of a single failure.
Another common parameterization of the negative binomial distribution is in terms of the mean number of failures \(\mu\) to achieve \(n\) successes. The mean \(\mu\) is related to the probability of success as
\[
p=\frac{n}{n+\mu}
\]

The number of successes \(n\) may also be specified in terms of a "dispersion", "heterogeneity", or "aggregation" parameter \(\alpha\), which relates the mean \(\mu\) to the variance \(\sigma^{2}\), e.g. \(\sigma^{2}=\mu+\alpha \mu^{2}\). Regardless of the convention used for \(\alpha\),
\[
\begin{aligned}
p & =\frac{\mu}{\sigma^{2}} \\
n & =\frac{\mu^{2}}{\sigma^{2}-\mu}
\end{aligned}
\]
- planck Planck (help). The probability mass function for planck is:
\[
f(k)=(1-\exp (-\lambda)) \exp (-\lambda k)
\]
for \(k \geq 0\) and \(\lambda>0\).
planck takes \(\lambda\) as shape parameter. The Planck distribution can be written as a geometric distribution (geom) with \(p=1-\exp (-\lambda)\) shifted by loc \(=-1\).
- poisson Poisson (help). The probability mass function for poisson is:
\[
f(k)=\exp (-\mu) \frac{\mu^{k}}{k!}
\]
for \(k \geq 0\).
poisson takes \(\mu \geq 0\) as shape parameter. When \(\mu=0\), the pmf method returns 1.0 at quantile \(k=0\).
- randint Randint (help). The probability mass function for randint is:
\[
f(k)=\frac{1}{\text { high }- \text { low }}
\]
for \(k \in\{\) low, \(\ldots\), high -1\(\}\).
randint takes low and high as shape parameters.

\subsection*{5.1.10 Appendix: scipy. stats Continuous Random Variables}

The information below was extracted from the scipy help for continuous distributions. The basic list can be created by introspection-wonderful Python!
```

In [1]: import scipy.stats as ss
In [2]: import pandas as pd
In [3]: ans = []

```
```

In [4]: for k in dir(ss):
...: ob = getattr(ss, k)
...: if str(type(ob)).find('continuous_distns') > 0:
...: try:
...: fz = ob()
...: except TypeError as e:
...: ee = e
...: ans.append([k, str(e), -1, ob.a, ob.b])
...: else:
...: ans.append([k, 'no args fine', 0, ob.a, ob.b])
. . . :

```
In [5]: df = pd.DataFrame(ans, columns=['dist', 'm', 'args', 'a', 'b'])
In [6]: for i in range \((1,5)\) :
    ...: df.loc[df.m.str.find(f'\{i\} required')>=0, 'args'] = i
    ... :
In [7]: df = df.sort_values(['args', 'dist'])
In [8]: df['params'] = ''
In [9]: df.loc[df.args > 0, 'params'] = df.loc[df.args > 0, 'm'].str.split(':').
In [9]:
\(\rightarrow \operatorname{str}[1]\)
In [10]: \(d f=d f . d r o p(c o l u m n s=' m ')\)
In [11]: print(df.rename (columns=\{'dist': 'Distribution', 'args': 'Num. args',
    ....: 'a': 'Min range' , 'b': 'Max range', 'params': 'Parameters'\}).
    ....: set_index('Distribution').to_string(float_format=lambda x: f'\{x:.
\(\left.\rightarrow 4 \mathrm{~g}\}^{\prime}\right)\) )
    ....:
Distribution
anglit
arcsine
\(-0.7854 \quad 0.7854\)
            \(\begin{array}{rr}0 & 1 \\ \text {-inf } & \text { inf }\end{array}\)
cauchy
        \(\begin{array}{rr}-3.142 & 3.142 \\ 0 & \text { inf }\end{array}\)
cosine
expon
            \(\begin{array}{rr}0 & \inf \\ \text {-inf } & \text { inf }\end{array}\)
gibrat
\(\begin{array}{rrr}0 & -i n f & \inf \\ 0 & -i n f & \inf \\ 0 & 0 & \text { inf }\end{array}\)
gumbel_l
\(\begin{array}{rrr}0 & -i n f & \inf \\ 0 & -i n f & \inf \\ 0 & 0 & \text { inf }\end{array}\)
gumbel_r
\(\begin{array}{lll}0 & 0 & \inf \\ 0 & 0 & \text { inf }\end{array}\)
halfcauchy
\(\begin{array}{lrl}0 & 0 & \inf \\ 0 & 0 & \inf \\ 0 & 0 & \text { inf } \\ 0 & -i n f & \text { inf }\end{array}\)
halflogistic
halfnorm
            -inf inf
hypsecant
            \(\begin{array}{rr}0 & \text { inf } \\ \text {-inf } & \text { inf }\end{array}\)
kstwobign
laplace
            \(0 \quad\) inf
levy
            -inf 0
levy_l
            \(\begin{array}{rr}-i n f & i n f \\ 0 & i n f\end{array}\)
logistic
maxwell
            \(\begin{array}{rr}0 & \text { inf } \\ \text {-inf } & \text { inf } \\ \text {-inf } & \text { inf }\end{array}\)
moyal
norm
            \(\begin{array}{rr}-i n f & \inf \\ 0 & i n f\end{array}\)
rayleigh
                    Num. args Min range Max range Parameters
0
0
0
0
0
            Num. args Min range Max range
        \(0 \quad 1\)
                                    inf
            inf
        inf
    inf
\(i n f\)
semicircular
            \(\begin{array}{rr}0 & \text { inf } \\ -1 & 1\end{array}\)
uniform
        \(\begin{array}{rr}-1 & 1 \\ 0 & 1\end{array}\)
wald
        \(\begin{array}{ll}0 & \text { inf } \\ 0 & \text { inf }\end{array}\)
wald
alpha
        inf 'a'
argus
\(\begin{array}{lr}0 & \text { inf } \\ 0 & 1 \\ 0 & 1\end{array}\)
            \(\begin{array}{rr}\text { inf } & \text { 'a' } \\ 1 & \text { 'chi' } \\ 1 & ' c '\end{array}\)
bradford
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & (continued from previous page) \\
\hline chi & 1 & 0 & inf & 'df' \\
\hline chi2 & 1 & 0 & inf & 'df' \\
\hline dgamma & 1 & -inf & inf & 'a' \\
\hline dweibull & 1 & -inf & inf & 'c' \\
\hline erlang & 1 & 0 & inf & 'a' \\
\hline exponnorm & 1 & -inf & inf & 'K' \\
\hline exponpow & 1 & 0 & inf & 'b ' \\
\hline fatiguelife & 1 & 0 & inf & 'c' \\
\hline fisk & 1 & 0 & inf & ' C' \\
\hline foldcauchy & 1 & 0 & inf & ' C' \\
\hline foldnorm & 1 & 0 & inf & 'c' \\
\hline gamma & 1 & 0 & inf & 'a' \\
\hline genextreme & 1 & -inf & inf & 'c' \\
\hline genhalflogistic & 1 & 0 & inf & ' C' \\
\hline genlogistic & 1 & -inf & inf & 'c' \\
\hline gennorm & 1 & -inf & inf & 'beta' \\
\hline genpareto & 1 & 0 & inf & ' C' \\
\hline gompertz & 1 & 0 & inf & 'c' \\
\hline halfgennorm & 1 & 0 & inf & 'beta' \\
\hline invgamma & 1 & 0 & inf & 'a' \\
\hline invgauss & 1 & 0 & inf & 'mu' \\
\hline invweibull & 1 & 0 & inf & 'c' \\
\hline kappa3 & 1 & 0 & inf & 'a' \\
\hline ksone & 1 & 0 & 1 & 'n' \\
\hline kstwo & 1 & 0 & 1 & 'n' \\
\hline laplace_asymmetric & 1 & -inf & inf & 'kappa' \\
\hline loggamma & 1 & -inf & inf & 'c' \\
\hline loglaplace & 1 & 0 & inf & 'c' \\
\hline lognorm & 1 & 0 & inf & 's' \\
\hline lomax & 1 & 0 & inf & 'c' \\
\hline nakagami & 1 & 0 & inf & 'nu' \\
\hline pareto & 1 & 1 & inf & 'b' \\
\hline pearson3 & 1 & -inf & inf & 'skew' \\
\hline powerlaw & 1 & 0 & 1 & 'a' \\
\hline powernorm & 1 & -inf & inf & ' C' \\
\hline rdist & 1 & -1 & 1 & ' C' \\
\hline recipinvgauss & 1 & 0 & inf & 'mu' \\
\hline rel_breitwigner & 1 & 0 & inf & 'rho' \\
\hline rice & 1 & 0 & inf & 'b' \\
\hline skewcauchy & 1 & -inf & inf & 'a' \\
\hline skewnorm & 1 & -inf & inf & 'a' \\
\hline t & 1 & -inf & inf & 'df' \\
\hline triang & 1 & 0 & 1 & 'c' \\
\hline truncexpon & 1 & 0 & inf & 'b ' \\
\hline tukeylambda & 1 & -inf & inf & 'lam' \\
\hline vonmises & 1 & -inf & inf & 'kappa' \\
\hline vonmises_line & 1 & -3.142 & 3.142 & 'kappa' \\
\hline weibull_max & 1 & -inf & 0 & 'c' \\
\hline weibull_min & 1 & 0 & inf & 'c' \\
\hline wrapcauchy & 1 & 0 & 6.283 & 'c' \\
\hline beta & 2 & 0 & 1 & 'a' and 'b' \\
\hline betaprime & 2 & 0 & inf & 'a' and 'b' \\
\hline burr & 2 & 0 & inf & 'c' and 'd' \\
\hline burr12 & 2 & 0 & inf & 'c' and 'd' \\
\hline crystalball & 2 & -inf & inf & 'beta' and 'm' \\
\hline exponweib & 2 & 0 & inf & 'a' and 'c' \\
\hline f & 2 & 0 & inf & 'dfn' and 'dfd' \\
\hline gengamma & 2 & 0 & inf & 'a' and 'c' \\
\hline geninvgauss & 2 & 0 & inf & 'p' and 'b' \\
\hline jf_skew_t & 2 & -inf & inf & 'a' and 'b' \\
\hline johnsonsb & 2 & 0 & 1 & 'a' and 'b' \\
\hline
\end{tabular}
(continues on next page)

- alpha Alpha (help). The probability density function for alpha is:
\[
f(x, a)=\frac{1}{x^{2} \Phi(a) \sqrt{2 \pi}} * \exp \left(-\frac{1}{2}(a-1 / x)^{2}\right)
\]
where \(\Phi\) is the normal CDF, \(x>0\), and \(a>0\).
alpha takes a as a shape parameter.
- anglit Anglit (help). The probability density function for anglit is:
\[
f(x)=\sin (2 x+\pi / 2)=\cos (2 x)
\]
for \(-\pi / 4 \leq x \leq \pi / 4\).
- arcsine Arcsine (help). The probability density function for arcsine is:
\[
f(x)=\frac{1}{\pi \sqrt{x(1-x)}}
\]
for \(0<x<1\).
- argus Argus (help). The probability density function for argus is:
\[
f(x, \chi)=\frac{\chi^{3}}{\sqrt{2 \pi} \Psi(\chi)} x \sqrt{1-x^{2}} \exp \left(-\chi^{2}\left(1-x^{2}\right) / 2\right)
\]
for \(0<x<1\) and \(\chi>0\), where
\[
\Psi(\chi)=\Phi(\chi)-\chi \phi(\chi)-1 / 2
\]
with \(\Phi\) and \(\phi\) being the CDF and PDF of a standard normal distribution, respectively. argus takes \(\chi\) as shape a parameter.
- beta Beta (help). The probability density function for beta is:
\[
f(x, a, b)=\frac{\Gamma(a+b) x^{a-1}(1-x)^{b-1}}{\Gamma(a) \Gamma(b)}
\]
for \(0<=x<=1, a>0, b>0\), where \(\Gamma\) is the gamma function (scipy.special.gamma).
beta takes \(a\) and \(b\) as shape parameters.
- betaprime Beta Prime (help). The probability density function for betaprime is:
\[
f(x, a, b)=\frac{x^{a-1}(1+x)^{-a-b}}{\beta(a, b)}
\]
for \(x>=0, a>0, b>0\), where \(\beta(a, b)\) is the beta function (see scipy.special.beta).
betaprime takes \(a\) and \(b\) as shape parameters.
- bradford Bradford (help). The probability density function for bradford is:
\[
f(x, c)=\frac{c}{\log (1+c)(1+c x)}
\]
for \(0<=x<=1\) and \(c>0\).
bradford takes c as a shape parameter for \(c\).
- burr Burr (Type III) (help). The probability density function for burr is:
\[
f(x, c, d)=c d x^{-c-1} /\left(1+x^{-c}\right)^{d+1}
\]
for \(x>=0\) and \(c, d>0\).
burr takes \(c\) and \(d\) as shape parameters.
This is the PDF corresponding to the third CDF given in Burr's list; specifically, it is equation (11) in Burr's paper. The distribution is also commonly referred to as the Dagum distribution. If the parameter \(c<1\) then the mean of the distribution does not exist and if \(c<2\) the variance does not exist. The PDF is finite at the left endpoint \(x=0\) if \(c * d>=1\).
- burr12 Burr (Type XII) (help). The probability density function for burr is:
\[
f(x, c, d)=c d x^{c-1} /\left(1+x^{c}\right)^{d+1}
\]
for \(x>=0\) and \(c, d>0\).
burr 12 takes C and d as shape parameters for \(c\) and \(d\).
This is the PDF corresponding to the twelfth CDF given in Burr's list; specifically, it is equation (20) in Burr's paper.
- cauchy Cauchy (help). The probability density function for cauchy is
\[
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
\]
for a real number \(x\).
- chi Chi (help). The probability density function for chi is:
\[
f(x, k)=\frac{1}{2^{k / 2-1} \Gamma(k / 2)} x^{k-1} \exp \left(-x^{2} / 2\right)
\]
for \(x>=0\) and \(k>0\) (degrees of freedom, denoted df in the implementation). \(\Gamma\) is the gamma function (scipy.special.gamma).

Special cases of chi are:
- chi(1, loc, scale) is equivalent to halfnorm
- chi (2, 0, scale) is equivalent to rayleigh
- chi (3, 0, scale) is equivalent to maxwell
chi takes df as a shape parameter.
- chi 2 Chi-squared (help). The probability density function for chi2 is:
\[
f(x, k)=\frac{1}{2^{k / 2} \Gamma(k / 2)} x^{k / 2-1} \exp (-x / 2)
\]
for \(x>0\) and \(k>0\) (degrees of freedom, denoted df in the implementation).
chi2 takes df as a shape parameter.
The chi-squared distribution is a special case of the gamma distribution, with gamma parameters \(\mathrm{a}=\mathrm{df} / 2\), loc \(=0\) and scale \(=2\).
- cos ine Cosine (help). The cosine distribution is an approximation to the normal distribution. The probability density function for cosine is:
\[
f(x)=\frac{1}{2 \pi}(1+\cos (x))
\]
for \(-\pi \leq x \leq \pi\).
- crystalball Crystalball (help). The probability density function for crystalball is:
\[
f(x, \beta, m)= \begin{cases}N \exp \left(-x^{2} / 2\right), & \text { for } x>-\beta \\ N A(B-x)^{-m} & \text { for } x \leq-\beta\end{cases}
\]
where \(A=(m /|\beta|)^{m} \exp \left(-\beta^{2} / 2\right), B=m /|\beta|-|\beta|\) and \(N\) is a normalisation constant.
crystalball takes \(\beta>0\) and \(m>1\) as shape parameters. \(\beta\) defines the point where the pdf changes from a power-law to a Gaussian distribution. \(m\) is the power of the power-law tail.
- dgamma Double Gamma (help). The probability density function for dgamma is:
\[
f(x, a)=\frac{1}{2 \Gamma(a)}|x|^{a-1} \exp (-|x|)
\]
for a real number \(x\) and \(a>0 . \Gamma\) is the gamma function (scipy.special.gamma).
dgamma takes a as a shape parameter for \(a\).
- dweibull Double Weibull (help). The probability density function for \(d\) weibull is given by
\[
f(x, c)=c / 2|x|^{c-1} \exp \left(-|x|^{c}\right)
\]
for a real number \(x\) and \(c>0\).
\(d\) weibull takes C as a shape parameter for \(c\).
- erlang Erlang (help). The Erlang distribution is a special case of the Gamma distribution, with the shape parameter \(a\) an integer. Note that this restriction is not enforced by erlang. It will, however, generate a warning the first time a non-integer value is used for the shape parameter.

Refer to gamma for examples.
- expon Exponential (help). The probability density function for expon is:
\[
f(x)=\exp (-x)
\]
for \(x \geq 0\).
- exponnorm Exponentially Modified Normal (help). The probability density function for exponnorm is:
\[
f(x, K)=\frac{1}{2 K} \exp \left(\frac{1}{2 K^{2}}-x / K\right) \operatorname{erfc}\left(-\frac{x-1 / K}{\sqrt{2}}\right)
\]
where \(x\) is a real number and \(K>0\).
It can be thought of as the sum of a standard normal random variable and an independent exponentially distributed random variable with rate \(1 / \mathrm{K}\).
- exponweib Exponentiated Weibull (help). The probability density function for exponweib is:
\[
f(x, a, c)=a c\left[1-\exp \left(-x^{c}\right)\right]^{a-1} \exp \left(-x^{c}\right) x^{c-1}
\]
and its cumulative distribution function is:
\[
F(x, a, c)=\left[1-\exp \left(-x^{c}\right)\right]^{a}
\]
for \(x>0, a>0, c>0\).
exponweib takes \(a\) and \(c\) as shape parameters:
- \(a\) is the exponentiation parameter, with the special case \(a=1\) corresponding to the (nonexponentiated) Weibull distribution weibull_min.
- \(c\) is the shape parameter of the non-exponentiated Weibull law.
- exponpow Exponential Power (help). The probability density function for exponpow is:
\[
f(x, b)=b x^{b-1} \exp \left(1+x^{b}-\exp \left(x^{b}\right)\right)
\]
for \(x \geq 0, b>0\). Note that this is a different distribution from the exponential power distribution that is also known under the names "generalized normal" or "generalized Gaussian".
exponpow takes b as a shape parameter for \(b\).
- \(\mathrm{f} \mathbf{F}\) (Snecdor \(\mathbf{F}\) ) (help). The probability density function for \(f\) is:
\[
f\left(x, d f_{1}, d f_{2}\right)=\frac{d f_{2}^{d f_{2} / 2} d f_{1}^{d f_{1} / 2} x^{d f_{1} / 2-1}}{\left(d f_{2}+d f_{1} x\right)^{\left(d f_{1}+d f_{2}\right) / 2} B\left(d f_{1} / 2, d f_{2} / 2\right)}
\]
for \(x>0\).
\(f\) takes dfn and dfd as shape parameters.
- fatiguelife Fatigue Life (Birnbaum-Saunders) (help). The probability density function for fatiguelife is:
\[
f(x, c)=\frac{x+1}{2 c \sqrt{2 \pi x^{3}}} \exp \left(-\frac{(x-1)^{2}}{2 x c^{2}}\right)
\]
for \(x>=0\) and \(c>0\).
fatiguelife takes c as a shape parameter for \(c\).
- fisk Fisk (help). The probability density function for fisk is:
\[
f(x, c)=c x^{-c-1}\left(1+x^{-c}\right)^{-2}
\]
for \(x>=0\) and \(c>0\).
\(f i s k\) takes c as a shape parameter for \(c\).
fisk is a special case of burr or burr 12 with \(\mathrm{d}=1\).
- foldcauchy Folded Cauchy (help). The probability density function for foldcauchy is:
\[
f(x, c)=\frac{1}{\pi\left(1+(x-c)^{2}\right)}+\frac{1}{\pi\left(1+(x+c)^{2}\right)}
\]
for \(x \geq 0\).
foldcauchy takes c as a shape parameter for \(c\).
- foldnorm Folded Normal (help). The probability density function for foldnorm is:
\[
f(x, c)=\sqrt{2 / \pi} \cosh (c x) \exp \left(-\frac{x^{2}+c^{2}}{2}\right)
\]
for \(c \geq 0\).
foldnorm takes c as a shape parameter for \(c\).
- genlogist ic Generalized Logistic (help). The probability density function for genlogistic is:
\[
f(x, c)=c \frac{\exp (-x)}{(1+\exp (-x))^{c+1}}
\]
for \(x>=0, c>0\).
genlogistic takes C as a shape parameter for \(c\).
- gennorm Generalized normal (help). The probability density function for gennorm is:
\[
f(x, \beta)=\frac{\beta}{2 \Gamma(1 / \beta)} \exp \left(-|x|^{\beta}\right)
\]
\(\Gamma\) is the gamma function (scipy.special.gamma).
gennorm takes bet a as a shape parameter for \(\beta\). For \(\beta=1\), it is identical to a Laplace distribution.
For \(\beta=2\), it is identical to a normal distribution (with scale=1/sqrt (2)).
- genpareto Generalized Pareto (help). The probability density function for genpareto is:
\[
f(x, c)=(1+c x)^{-1-1 / c}
\]
defined for \(x \geq 0\) if \(c \geq 0\), and for \(0 \leq x \leq-1 / c\) if \(c<0\).
genpareto takes c as a shape parameter for \(c\).
For \(c=0\), genpareto reduces to the exponential distribution, expon:
\[
f(x, 0)=\exp (-x)
\]

For \(c=-1\), genpareto is uniform on \([0,1]\) :
\[
f(x,-1)=1
\]
- genexpon Generalized Exponential (help). The probability density function for genexpon is:
\[
f(x, a, b, c)=(a+b(1-\exp (-c x))) \exp \left(-a x-b x+\frac{b}{c}(1-\exp (-c x))\right)
\]
for \(x \geq 0, a, b, c>0\).
genexpon takes \(a, b\) and \(c\) as shape parameters.
- genext reme Generalized Extreme Value (help). For \(c=0\), genextreme is equal to gumbel_r. The probability density function for genextreme is:
\[
f(x, c)= \begin{cases}\exp (-\exp (-x)) \exp (-x) & \text { for } c=0 \\ \exp \left(-(1-c x)^{1 / c}\right)(1-c x)^{1 / c-1} & \text { for } x \leq 1 / c, c>0\end{cases}
\]

Note that several sources and software packages use the opposite convention for the sign of the shape parameter \(c\).
genextreme takes C as a shape parameter for \(c\).
- gausshyper Gauss Hypergeometric (help). The probability density function for gausshyper is:
\[
f(x, a, b, c, z)=C x^{a-1}(1-x)^{b-1}(1+z x)^{-c}
\]
for \(0 \leq x \leq 1, a>0, b>0, z>-1\), and \(C=\frac{1}{B(a, b) F[2,1](c, a ; a+b ;-z)} . F[2,1]\) is the Gauss hypergeometric function scipy.special.hyp \(2 f 1\).
gausshyper takes \(a, b, c\) and \(z\) as shape parameters.
- gamma Gamma (help). The probability density function for gamma is:
\[
f(x, a)=\frac{x^{a-1} e^{-x}}{\Gamma(a)}
\]
for \(x \geq 0, a>0\). Here \(\Gamma(a)\) refers to the gamma function.
gamma takes a as a shape parameter for \(a\).
When \(a\) is an integer, gamma reduces to the Erlang distribution, and when \(a=1\) to the exponential distribution.

Gamma distributions are sometimes parameterized with two variables, with a probability density function of:
\[
f(x, \alpha, \beta)=\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}
\]

Note that this parameterization is equivalent to the above, with scale \(=1 /\) beta.
- gengamma Generalized gamma (help). The probability density function for gengamma is:
\[
f(x, a, c)=\frac{|c| x^{c a-1} \exp \left(-x^{c}\right)}{\Gamma(a)}
\]
for \(x \geq 0, a>0\), and \(c \neq 0 . \Gamma\) is the gamma function (scipy.special.gamma).
gengamma takes \(a\) and \(c\) as shape parameters.
- genhalflogistic Generalized Half Logistic (help). The probability density function for genhalflogistic is:
\[
f(x, c)=\frac{2(1-c x)^{1 /(c-1)}}{\left[1+(1-c x)^{1 / c}\right]^{2}}
\]
for \(0 \leq x \leq 1 / c\), and \(c>0\).
genhalflogistic takes c as a shape parameter for \(c\).
- genhyperbolic Generalized Hyperbolic (help). The probability density function for genhyperbolic is:
\[
f(x, p, a, b)=\frac{\left(a^{2}-b^{2}\right)^{p / 2}}{\sqrt{2 \pi} a^{p-0.5} K_{p}\left(\sqrt{a^{2}-b^{2}}\right)} e^{b x} \times \frac{K_{p-1 / 2}\left(a \sqrt{1+x^{2}}\right)}{\left(\sqrt{1+x^{2}}\right)^{1 / 2-p}}
\]
for \(x, p \in(-\infty ; \infty),|b|<a\) if \(p \geq 0,|b| \leq a\) if \(p<0 . K_{p}(\).\() denotes the modified Bessel\) function of the second kind and order \(p\) (scipy.special.kn)
genhyperbolic takes p as a tail parameter, a as a shape parameter, b as a skewness parameter.
- geninvgauss Generalized Inverse Gaussian (help). The probability density function for geninvgauss is:
\[
f(x, p, b)=x^{p-1} \exp (-b(x+1 / x) / 2) /\left(2 K_{p}(b)\right)
\]
where \(x>0\), and the parameters \(p, b\) satisfy \(b>0 . K_{p}\) is the modified Bessel function of second kind of order \(p\) (scipy.special.kv).
- gilbrat Gilbrat (help). The probability density function for gilbrat is:
\[
f(x)=\frac{1}{x \sqrt{2 \pi}} \exp \left(-\frac{1}{2}(\log (x))^{2}\right)
\]
gilbrat is a special case of lognorm with \(s=1\).
- gompertz Gompertz (Truncated Gumbel) (help). The probability density function for gompertz is:
\[
f(x, c)=c \exp (x) \exp \left(-c\left(e^{x}-1\right)\right)
\]
for \(x \geq 0, c>0\).
gompertz takes c as a shape parameter for \(c\).
- gumbel_r (help). The probability density function for gumbel_r is:
\[
f(x)=\exp \left(-\left(x+e^{-x}\right)\right)
\]

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the extreme value distribution, log-Weibull and Gompertz distributions.
- gumbel_l (help). The probability density function for gumbel_l is:
\[
f(x)=\exp \left(x-e^{x}\right)
\]

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the extreme value distribution, log-Weibull and Gompertz distributions.
- halfcauchy Half Cauchy (help). The probability density function for halfcauchy is:
\[
f(x)=\frac{2}{\pi\left(1+x^{2}\right)}
\]
for \(x \geq 0\).
- halflogistic Half Logistic (help). The probability density function for halflogistic is:
\[
f(x)=\frac{2 e^{-x}}{\left(1+e^{-x}\right)^{2}}=\frac{1}{2} \operatorname{sech}(x / 2)^{2}
\]
for \(x \geq 0\).
- halfnorm Half Normal (help). The probability density function for halfnorm is:
\[
f(x)=\sqrt{2 / \pi} \exp \left(-x^{2} / 2\right)
\]
for \(x>=0\).
halfnorm is a special case of chi with \(\mathrm{df}=1\).
- halfgennorm Generalized Half Normal (help). The probability density function for halfgennorm is:
\[
f(x, \beta)=\frac{\beta}{\Gamma(1 / \beta)} \exp \left(-|x|^{\beta}\right)
\]
for \(x>0 . \Gamma\) is the gamma function (scipy.special.gamma).
gennorm takes beta as a shape parameter for \(\beta\). For \(\beta=1\), it is identical to an exponential distribution. For \(\beta=2\), it is identical to a half normal distribution (with scale=1/sqrt (2) ).
- hypsecant Hyperbolic Secant (help). The probability density function for hypsecant is:
\[
f(x)=\frac{1}{\pi} \operatorname{sech}(x)
\]
for a real number \(x\).
- invgamma Inverse Gamma (help). The probability density function for invgamma is:
\[
f(x, a)=\frac{x^{-a-1}}{\Gamma(a)} \exp \left(-\frac{1}{x}\right)
\]
for \(x>=0, a>0\). \(\Gamma\) is the gamma function (scipy.special.gamma).
invgamma takes a as a shape parameter for \(a\).
invgamma is a special case of gengamma with \(\mathrm{C}=-1\), and it is a different parameterization of the scaled inverse chi-squared distribution. Specifically, if the scaled inverse chi-squared distribution is parameterized with degrees of freedom \(\nu\) and scaling parameter \(\tau^{2}\), then it can be modeled using invgamma with \(a=\nu / 2\) and scale \(=\nu \tau^{2} / 2\).
- invgauss Inverse Gaussian (help). The probability density function for invgauss is:
\[
f(x, \mu)=\frac{1}{\sqrt{2 \pi x^{3}}} \exp \left(-\frac{(x-\mu)^{2}}{2 x \mu^{2}}\right)
\]
for \(x>=0\) and \(\mu>0\).
invgauss takes mu as a shape parameter for \(\mu\).
- invweibull Inverse Weibull (help). The probability density function for invweibull is:
\[
f(x, c)=c x^{-c-1} \exp \left(-x^{-c}\right)
\]
for \(x>0, c>0\).
invweibull takes c as a shape parameter for \(c\).
- johnsonsb Johnson SB (help). The probability density function for johnsonsb is:
\[
f(x, a, b)=\frac{b}{x(1-x)} \phi\left(a+b \log \frac{x}{1-x}\right)
\]
where \(x, a\), and \(b\) are real scalars; \(b>0\) and \(x \in[0,1] . \phi\) is the pdf of the normal distribution.
johnsonsb takes \(a\) and \(b\) as shape parameters.
- johnsonsu Johnson SU (help). The probability density function for johnsonsu is:
\[
f(x, a, b)=\frac{b}{\sqrt{x^{2}+1}} \phi\left(a+b \log \left(x+\sqrt{x^{2}+1}\right)\right)
\]
where \(x, a\), and \(b\) are real scalars; \(b>0 . \phi\) is the pdf of the normal distribution.
johnsonsu takes \(a\) and \(b\) as shape parameters.
- kappa 4 Kappa 4 parameter (help). The probability density function for kappa4 is:
\[
f(x, h, k)=(1-k x)^{1 / k-1}\left(1-h(1-k x)^{1 / k}\right)^{1 / h-1}
\]
if \(h\) and \(k\) are not equal to 0 .
If \(h\) or \(k\) are zero then the pdf can be simplified:
\(\mathrm{h}=0\) and \(\mathrm{k}!=0\) :
```

kappa4.pdf(x, h, k) = (1.0 - k*x)**(1.0/k - 1.0)*
exp(-(1.0 - k*x)**(1.0/k))

```
\(\mathrm{h}!=0\) and \(\mathrm{k}=0\) :
```

kappa4.pdf(x, h, k) = exp(-x)*(1.0 - h*exp(-x))**(1.0/h - 1.0)

```
\(\mathrm{h}=0\) and \(\mathrm{k}=0\) :
```

kappa4.pdf(x, h, k) = exp(-x)*exp(-exp(-x))

```
kappa 4 takes \(h\) and \(k\) as shape parameters.
The kappa4 distribution returns other distributions when certain \(h\) and \(k\) values are used.
\begin{tabular}{|l|l|l|l|}
\hline h & \(\mathrm{k}=0.0\) & \(\mathrm{k}=1.0\) & -inf \(<=\mathrm{k}<=\mathrm{inf}\) \\
\hline- & Logistic & Generalized Logistic(1) \\
1.0 & logistic(x) & \begin{tabular}{l} 
Reverse Exponen- \\
tial(2)
\end{tabular} & \begin{tabular}{l} 
Generalized Extreme Value \\
genextreme(x, k\()\)
\end{tabular} \\
\hline 0.0 & \begin{tabular}{l} 
Gumbel \\
gumbel_r(x)
\end{tabular} & \begin{tabular}{l} 
Uniform \\
uniform(x)
\end{tabular} & \begin{tabular}{l} 
Generalized Pareto \\
genpareto(x, -k)
\end{tabular} \\
\hline 1.0 & \begin{tabular}{l} 
Exponential \\
expon(x)
\end{tabular} & \\
\hline
\end{tabular}
- kappa3 Kappa 3 parameter (help). The probability density function for kappa3 is:
\[
f(x, a)=a\left(a+x^{a}\right)^{-(a+1) / a}
\]
for \(x>0\) and \(a>0\).
kappa3 takes a as a shape parameter for \(a\).
- ksone Distribution of Kolmogorov-Smirnov one-sided test statistic (help). \(D_{n}^{+}\)and \(D_{n}^{-}\)are given by
\[
\begin{aligned}
& D_{n}^{+}=\sup _{x}\left(F_{n}(x)-F(x)\right) \\
& D_{n}^{-}=\sup _{x}\left(F(x)-F_{n}(x)\right)
\end{aligned}
\]
where \(F\) is a continuous CDF and \(F_{n}\) is an empirical CDF. ksone describes the distribution under the null hypothesis of the KS test that the empirical CDF corresponds to \(n\) i.i.d. random variates with CDF \(F\).
- kstwo Distribution of Kolmogorov-Smirnov two-sided test statistic (help). \(D_{n}\) is given by
\[
D_{n}=\sup _{x}\left|F_{n}(x)-F(x)\right|
\]
where \(F\) is a (continuous) CDF and \(F_{n}\) is an empirical CDF. kstwo describes the distribution under the null hypothesis of the KS test that the empirical CDF corresponds to \(n\) i.i.d. random variates with CDF \(F\).
- kstwobign Limiting Distribution of scaled Kolmogorov-Smirnov two-sided test statistic. (help). \(\sqrt{n} D_{n}\) is given by
\[
D_{n}=\sup _{x}\left|F_{n}(x)-F(x)\right|
\]
where \(F\) is a continuous CDF and \(F_{n}\) is an empirical CDF. kstwobign describes the asymptotic distribution (i.e. the limit of \(\sqrt{n} D_{n}\) ) under the null hypothesis of the KS test that the empirical CDF corresponds to i.i.d. random variates with CDF \(F\).
- laplace Laplace (help). The probability density function for laplace is
\[
f(x)=\frac{1}{2} \exp (-|x|)
\]
for a real number \(x\).
- laplace_asymmetric (help). The probability density function for laplace_asymmetric is
\[
\begin{aligned}
f(x, \kappa) & =\frac{1}{\kappa+\kappa^{-1}} \exp (-x \kappa), \quad x \geq 0 \\
& =\frac{1}{\kappa+\kappa^{-1}} \exp (x / \kappa), \quad x<0
\end{aligned}
\]
for \(-\infty<x<\infty, \kappa>0\).
laplace_asymmetric takes kappa as a shape parameter for \(\kappa\). For \(\kappa=1\), it is identical to a Laplace distribution.
- levy Levy (help). The probability density function for levy is:
\[
f(x)=\frac{1}{\sqrt{2 \pi x^{3}}} \exp \left(-\frac{1}{2 x}\right)
\]
for \(x>=0\).
This is the same as the Levy-stable distribution with \(a=1 / 2\) and \(b=1\).
- logist ic Logistic (help). The probability density function for logistic is:
\[
f(x)=\frac{\exp (-x)}{(1+\exp (-x))^{2}}
\]
logistic is a special case of genlogistic with \(\mathrm{C}=1\).
Remark that the survival function (logistic.sf) is equal to the Fermi-Dirac distribution describing fermionic statistics.
- loggamma Log-Gamma (help). The probability density function for loggamma is:
\[
f(x, c)=\frac{\exp (c x-\exp (x))}{\Gamma(c)}
\]
for all \(x, c>0\). Here, \(\Gamma\) is the gamma function (scipy.special.gamma).
loggamma takes C as a shape parameter for \(c\).
- loglaplace Log-Laplace (Log Double Exponential) (help). The probability density function for loglaplace is:
\[
f(x, c)= \begin{cases}\frac{c}{2} x^{c-1} & \text { for } 0<x<1 \\ \frac{c}{2} x^{-c-1} & \text { for } x \geq 1\end{cases}
\]
for \(c>0\).
loglaplace takes c as a shape parameter for \(c\).
- lognorm Log-Normal (help). The probability density function for lognorm is:
\[
f(x, s)=\frac{1}{s x \sqrt{2 \pi}} \exp \left(-\frac{\log ^{2}(x)}{2 s^{2}}\right)
\]
for \(x>0, s>0\).
lognorm takes s as a shape parameter for \(s\).
- loguniform Log-Uniform (help). The probability density function for this class is:
\[
f(x, a, b)=\frac{1}{x \log (b / a)}
\]
for \(a \leq x \leq b, b>a>0\). This class takes \(a\) and \(b\) as shape parameters.
- Iomax Lomax (Pareto of the second kind) (help). The probability density function for lomax is:
\[
f(x, c)=\frac{c}{(1+x)^{c+1}}
\]
for \(x \geq 0, c>0\).
lomax takes C as a shape parameter for \(c\).
lomax is a special case of pareto with loc \(=-1.0\).
- maxwell Maxwell (help). A special case of a chi distribution, with \(\mathrm{df}=3,1 \mathrm{oc}=0.0\), and given scale \(=\) \(a\), where \(a\) is the parameter used in the Mathworld description.

The probability density function for maxwell is:
\[
f(x)=\sqrt{2 / \pi} x^{2} \exp \left(-x^{2} / 2\right)
\]
for \(x>=0\).
- mielke Mielke's Beta-Kappa (help). The probability density function for mielke is:
\[
f(x, k, s)=\frac{k x^{k-1}}{\left(1+x^{s}\right)^{1+k / s}}
\]
for \(x>0\) and \(k, s>0\). The distribution is sometimes called Dagum distribution. It was already defined in, called a Burr Type III distribution (burr with parameters \(c=s\) and \(d=k / s\) ).
mielke takes \(k\) and \(s\) as shape parameters.
- moyal Moyal (help). The probability density function for moyal is:
\[
f(x)=\exp (-(x+\exp (-x)) / 2) / \sqrt{2 \pi}
\]
for a real number \(x\).
- nakagami Nakagami (help). The probability density function for nakagami is:
\[
f(x, \nu)=\frac{2 \nu^{\nu}}{\Gamma(\nu)} x^{2 \nu-1} \exp \left(-\nu x^{2}\right)
\]
for \(x>=0, \nu>0\).
nakagami takes nu as a shape parameter for \(\nu\).
- ncx2 Non-central chi-squared (help). The probability density function for \(n c x 2\) is:
\[
f(x, k, \lambda)=\frac{1}{2} \exp (-(\lambda+x) / 2)(x / \lambda)^{(k-2) / 4} I_{(k-2) / 2}(\sqrt{\lambda x})
\]
for \(x>=0\) and \(k, \lambda>0 . k\) specifies the degrees of freedom (denoted \(d f\) in the implementation) and \(\lambda\) is the non-centrality parameter (denoted nc in the implementation). \(I_{\nu}\) denotes the modified Bessel function of first order of degree \(\nu\) (scipy.special.iv).
\(n c x 2\) takes df and nc as shape parameters.
- ncf Non-central \(\mathbf{F}\) (help). The probability density function for \(n c f\) is:
\[
\begin{array}{r}
f\left(x, n_{1}, n_{2}, \lambda\right)=\exp \left(\frac{\lambda}{2}+\lambda n_{1} \frac{x}{2\left(n_{1} x+n_{2}\right)}\right) n_{1}^{n_{1} / 2} n_{2}^{n_{2} / 2} x^{n_{1} / 2-1} \\
\left(n_{2}+n_{1} x\right)^{-\left(n_{1}+n_{2}\right) / 2} \gamma\left(n_{1} / 2\right) \gamma\left(1+n_{2} / 2\right) \\
\frac{L_{n_{2} / 2}^{\frac{n_{1}}{2}-1}\left(-\lambda n_{1} \frac{x}{2\left(n_{1} x+n_{2}\right)}\right)}{B\left(n_{1} / 2, n_{2} / 2\right) \gamma\left(\frac{n_{1}+n_{2}}{2}\right)}
\end{array}
\]
for \(n_{1}, n_{2}>0, \lambda \geq 0\). Here \(n_{1}\) is the degrees of freedom in the numerator, \(n_{2}\) the degrees of freedom in the denominator, \(\lambda\) the non-centrality parameter, \(\gamma\) is the logarithm of the Gamma function, \(L_{n}^{k}\) is a generalized Laguerre polynomial and \(B\) is the beta function.
\(n c f\) takes \(d f 1, d f 2\) and \(n c\) as shape parameters. If \(n c=0\), the distribution becomes equivalent to the Fisher distribution.
- nct Non-central Student's T (help). If \(Y\) is a standard normal random variable and \(V\) is an independent chi-square random variable (chi2) with \(k\) degrees of freedom, then
\[
X=\frac{Y+c}{\sqrt{V / k}}
\]
has a non-central Student's t distribution on the real line. The degrees of freedom parameter \(k\) (denoted df in the implementation) satisfies \(k>0\) and the noncentrality parameter \(c\) (denoted nc in the implementation) is a real number.
- norm Normal (Gaussian) (help). The probability density function for norm is:
\[
f(x)=\frac{\exp \left(-x^{2} / 2\right)}{\sqrt{2 \pi}}
\]
for a real number \(x\).
- norminvgauss Normal Inverse Gaussian (help). The probability density function for norminvgauss is:
\[
f(x, a, b)=\frac{a K_{1}\left(a \sqrt{1+x^{2}}\right)}{\pi \sqrt{1+x^{2}}} \exp \left(\sqrt{a^{2}-b^{2}}+b x\right)
\]
where \(x\) is a real number, the parameter \(a\) is the tail heaviness and \(b\) is the asymmetry parameter satisfying \(a>0\) and \(|b|<=a . K_{1}\) is the modified Bessel function of second kind (scipy.special.kl).
- pareto Pareto (help). The probability density function for pareto is:
\[
f(x, b)=\frac{b}{x^{b+1}}
\]
for \(x \geq 1, b>0\).
pareto takes b as a shape parameter for \(b\).
- pearson3 Pearson type III (help). The probability density function for pearson3 is:
\[
f(x, \kappa)=\frac{|\beta|}{\Gamma(\alpha)}(\beta(x-\zeta))^{\alpha-1} \exp (-\beta(x-\zeta))
\]
where:
\[
\begin{aligned}
\beta & =\frac{2}{\kappa} \\
\alpha=\beta^{2} & =\frac{4}{\kappa^{2}} \\
\zeta=-\frac{\alpha}{\beta}= & -\beta
\end{aligned}
\]
\(\Gamma\) is the gamma function (scipy.special.gamma). Pass the skew \(\kappa\) into pearson 3 as the shape parameter skew.
- powerlaw Power-function (help). The probability density function for powerlaw is:
\[
f(x, a)=a x^{a-1}
\]
for \(0 \leq x \leq 1, a>0\).
powerlaw takes a as a shape parameter for \(a\).
- powerlognorm Power log normal (help). The probability density function for powerlognorm is:
\[
f(x, c, s)=\frac{c}{x s} \phi(\log (x) / s)(\Phi(-\log (x) / s))^{c-1}
\]
where \(\phi\) is the normal pdf, and \(\Phi\) is the normal cdf, and \(x>0, s, c>0\).
powerlognorm takes \(c\) and \(s\) as shape parameters.
- powernorm Power normal (help). The probability density function for powernorm is:
\[
f(x, c)=c \phi(x)(\Phi(-x))^{c-1}
\]
where \(\phi\) is the normal pdf, and \(\Phi\) is the normal cdf, and \(x>=0, c>0\).
powernorm takes C as a shape parameter for \(c\).
- rdist R-distribution (help). The probability density function for \(r\) dist is:
\[
f(x, c)=\frac{\left(1-x^{2}\right)^{c / 2-1}}{B(1 / 2, c / 2)}
\]
for \(-1 \leq x \leq 1, c>0\). rdist is also called the symmetric beta distribution: if B has a beta distribution with parameters \((\mathrm{c} / 2, \mathrm{c} / 2)\), then \(\mathrm{X}=2 * \mathrm{~B}-1\) follows a R -distribution with parameter c . \(r d i s t\) takes C as a shape parameter for \(c\).
This distribution includes the following distribution kernels as special cases:
```

 c = 2: uniform
 c = 3: `semicircular`
 c = 4: Epanechnikov (parabolic)
 c = 6: quartic (biweight)
 c = 8: triweight
    ```
- rayleigh Rayleigh (help). The probability density function for rayleigh is:
\[
f(x)=x \exp \left(-x^{2} / 2\right)
\]
for \(x \geq 0\).
rayleigh is a special case of \(c h i\) with \(\mathrm{df}=2\).
- rice Rice (help). The probability density function for rice is:
\[
f(x, b)=x \exp \left(-\frac{x^{2}+b^{2}}{2}\right) I_{0}(x b)
\]
for \(x>=0, b>0 . I_{0}\) is the modified Bessel function of order zero (scipy.special.i0). rice takes b as a shape parameter for \(b\).
- recipinvgauss Reciprocal Inverse Gaussian (help). The probability density function for recipinvgauss is:
\[
f(x, \mu)=\frac{1}{\sqrt{2 \pi x}} \exp \left(\frac{-(1-\mu x)^{2}}{2 \mu^{2} x}\right)
\]
for \(x \geq 0\).
recipinvgauss takes mu as a shape parameter for \(\mu\).
- semicircular Semicircular (help). The probability density function for semicircular is:
\[
f(x)=\frac{2}{\pi} \sqrt{1-x^{2}}
\]
for \(-1 \leq x \leq 1\).
The distribution is a special case of \(r d i s t\) with \(c=3\).
- skewcauchy Skew Cauchy (help). The probability density function for skewcauchy is:
\[
f(x)=\frac{1}{\pi\left(\frac{x^{2}}{(a \operatorname{sign}(x)+1)^{2}}+1\right)}
\]
for a real number \(x\) and skewness parameter \(-1<a<1\).
When \(a=0\), the distribution reduces to the usual Cauchy distribution.
- skewnorm Skew normal (help). The pdf is:
```

skewnorm.pdf(x, a) = 2 * norm.pdf(x) * norm.cdf(a*x)

```
skewnorm takes a real number \(a\) as a skewness parameter. When \(\mathrm{a}=0\) the distribution is identical to a normal distribution (norm).
- studentized_range (help). The probability density function for studentized_range is:
\(f(x ; k, \nu)=\frac{k(k-1) \nu^{\nu / 2}}{\Gamma(\nu / 2) 2^{\nu / 2-1}} \int_{0}^{\infty} \int_{-\infty}^{\infty} s^{\nu} e^{-\nu s^{2} / 2} \phi(z) \phi(s x+z)[\Phi(s x+z)-\Phi(z)]^{k-2} d z d s\)
for \(x \geq 0, k>1\), and \(\nu>0\).
studentized_range takes k for \(k\) and df for \(\nu\) as shape parameters.
When \(\nu\) exceeds 100,000 , an asymptotic approximation (infinite degrees of freedom) is used to compute the cumulative distribution function.
- t Student's T (help). The probability density function for \(t\) is:
\[
f(x, \nu)=\frac{\Gamma((\nu+1) / 2)}{\sqrt{\pi \nu} \Gamma(\nu / 2)}\left(1+x^{2} / \nu\right)^{-(\nu+1) / 2}
\]
where \(x\) is a real number and the degrees of freedom parameter \(\nu\) (denoted df in the implementation) satisfies \(\nu>0 . \Gamma\) is the gamma function (scipy.special.gamma).
- trapezoid Trapezoidal (help). The trapezoidal distribution can be represented with an up-sloping line from loc to (loc + \(c^{\star}\) scale), then constant to (loc \(+d^{*}\) scale) and then downsloping from (loc \(+d^{*}\) scale) to (loc+scale). This defines the trapezoid base from loc to (loc+scale) and the flat top from c to d proportional to the position along the base with \(0<=\mathrm{c}<=\mathrm{d}<=1\). When \(\mathrm{c}=\mathrm{d}\), this is equivalent to triang with the same values for loc, scale and \(c\).
trapezoid takes \(c\) and \(d\) as shape parameters.
- triang Triangular (help). The triangular distribution can be represented with an up-sloping line from loc to (loc + c*scale) and then downsloping for (loc + c*scale) to (loc + scale).
triang takes c as a shape parameter for \(c\).
- truncexpon Truncated Exponential (help). The probability density function for truncexpon is:
\[
f(x, b)=\frac{\exp (-x)}{1-\exp (-b)}
\]
for \(0<=x<=b\).
truncexpon takes b as a shape parameter for \(b\).
- truncnorm Truncated Normal (help). The standard form of this distribution is a standard normal truncated to the range \([\mathrm{a}, \mathrm{b}]\) — notice that a and b are defined over the domain of the standard normal. To convert clip values for a specific mean and standard deviation, use:
```

a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std

```
truncnorm takes \(a\) and \(b\) as shape parameters.
- tukeylambda Tukey-Lambda (help). A flexible distribution, able to represent and interpolate between the following distributions:
- Cauchy (lambda \(=-1\) )
- logistic (lambda \(=0\) )
- approx Normal \((l a m b d a=0.14)\)
- uniform from -1 to \(1(l a m b d a=1)\)
tukeylambda takes a real number lambda (denoted lam in the implementation) as a shape parameter.
- uni form Uniform (help). a uniform continuous random variable
- vonmises Von-Mises (Circular) (help). The probability density function for vonmises and vonmises_line is:
\[
f(x, \kappa)=\frac{\exp (\kappa \cos (x))}{2 \pi I_{0}(\kappa)}
\]
for \(-\pi \leq x \leq \pi, \kappa>0 . I_{0}\) is the modified Bessel function of order zero (scipy.special.i0).
vonmises is a circular distribution which does not restrict the distribution to a fixed interval. Currently, there is no circular distribution framework in scipy. The cdf is implemented such that \(\operatorname{cdf}(x+2 * n p . p i)==\operatorname{cdf}(x)+1\).
vonmises_line is the same distribution, defined on \([-\pi, \pi]\) on the real line. This is a regular (i.e. non-circular) distribution.
vonmises and vonmises_line take kappa as a shape parameter.
- vonmises_line (help). The probability density function for vonmises and vonmises_line is:
\[
f(x, \kappa)=\frac{\exp (\kappa \cos (x))}{2 \pi I_{0}(\kappa)}
\]
for \(-\pi \leq x \leq \pi, \kappa>0 . I_{0}\) is the modified Bessel function of order zero (scipy.special.i0).
vonmises is a circular distribution which does not restrict the distribution to a fixed interval. Currently, there is no circular distribution framework in scipy. The cdf is implemented such that \(\operatorname{cdf}(x+2 * n p . p i)==\operatorname{cdf}(x)+1\).
vonmises_line is the same distribution, defined on \([-\pi, \pi]\) on the real line. This is a regular (i.e. non-circular) distribution.
vonmises and vonmises_line take kappa as a shape parameter.
- wald Wald (help). The probability density function for wald is:
\[
f(x)=\frac{1}{\sqrt{2 \pi x^{3}}} \exp \left(-\frac{(x-1)^{2}}{2 x}\right)
\]
for \(x>=0\).
wald is a special case of invgauss with \(\mathrm{mu}=1\).
- weibull_min (help). The probability density function for weibull_min is:
\[
f(x, c)=c x^{c-1} \exp \left(-x^{c}\right)
\]
for \(x>0, c>0\).
weibull_min takes C as a shape parameter for \(c\). (named \(k\) in Wikipedia article and \(a\) in numpy. random.weibull). Special shape values are \(c=1\) and \(c=2\) where Weibull distribution reduces to the expon and rayleigh distributions respectively.
- weibull_max (help). The probability density function for weibull_max is:
\[
f(x, c)=c(-x)^{c-1} \exp \left(-(-x)^{c}\right)
\]
for \(x<0, c>0\).
weibull_max takes c as a shape parameter for \(c\).
- wrapcauchy Wrapped Cauchy (help). The probability density function for wrapcauchy is:
\[
f(x, c)=\frac{1-c^{2}}{2 \pi\left(1+c^{2}-2 c \cos (x)\right)}
\]
for \(0 \leq x \leq 2 \pi, 0<c<1\).
wrapcauchy takes C as a shape parameter for \(c\).

\subsection*{5.2 Quantiles and Related Risk Measures}

Objectives: Definition and calculation of quantiles and related risk measures.
Audience: Readers interested in quantiles, VaR, and TVaR risk measures.
Prerequisites: Risk measures, probability.
See also: Insurance Probability.

\section*{Contents:}
- Helpful References
- Quantiles
- Value at Risk
- The Failure of VaR to be Subadditive
- Tail VaR and Related Risk Measures

\subsection*{5.2.1 Helpful References}
- Klugman et al. [2019]
- Mildenhall and Major [2022], Chapter 4
- Hyndman and Fan [1996]

\subsection*{5.2.2 Quantiles}

A quantile function is inverse to the distribution function \(F(x):=\operatorname{Pr}(X \leq x)\). For each \(0<p<1\), it solves \(F(x)=p\) for \(x\), answering the question,
which \(x\) has non-exceedance probability equal to \(p\) ?
Or, said another way,
which \(x\) has exceedance probability equal to \(1-p\) ?
When the distribution function is continuous and strictly increasing there is a unique such \(x\). It is called the \(p\)-quantile, and is denoted \(q(p)\). The resulting function \(q(p)=F^{-1}(p)\) is called the quantile function; it satisfies \(F(q(p))=p\). Two issues arise when defining quantiles.
1. The equation \(F(x)=p\) may fail to have a unique solution when \(F\) is not strictly increasing. This can occur for any \(F\). Is corresponds to a range of outcome values with probability zero.
2. When \(F\) is not continuous, the equation \(F(x)=p\) may have no solution: \(F\) can jump from below \(p\) to above \(p\). Simulation and catastrophe models, and all discrete random variables have discontinuous distributions.

\section*{Example.}

Here's an example of the problems that can occur.
```

In [1]: from aggregate.extensions.pir_figures import fig_4_1
In [2]: fig = fig_4_1()

```


The distribution \(F\) has a flat spot between 0.9 and 1.5 at height \(p=0.417\). At \(x=1.5\) it jumps up to \(p=0.791\). The "inverse" to \(F\) at \(p=0.417\) could be any value between 0.9 and 1.5 -illustrated by the lower green horizontal dashed line. The inverse at any value \(0.417<p<0.791\) does not exist because there is no \(p\) so that \(F(p)=0.6\). However, any rational person looking at the graph would agree that the answer must be \(x=1.5\), where the black dashed line intersects the vertical line \(x=1.5\).

When \(F\) is not continuous and \(F(x)=p\) has no solution because \(p\) lies is within a jump, we can still find an \(x\) so that
\[
\operatorname{Pr}(X<x) \leq p \leq \operatorname{Pr}(X \leq x)
\]
\(\operatorname{Pr}(X<x)\) equals the height of \(F\) at the bottom of the jump and \(\operatorname{Pr}(X \leq x)\) at the top. Turning this around, we can also say \(\operatorname{Pr}(X \geq x) \geq 1-p \geq \operatorname{Pr}(X>x)\). At a \(p\) with no jump, \(\operatorname{Pr}(X=x)=0, \operatorname{Pr}(X<x)=p=\operatorname{Pr}(X \leq x)\), and we have a well defined inverse, as the lower line at \(p=0.283\) illustrates.

The vertical segment at \(x=1.5\) between \(p=0.417\) and \(p=0.791\) is not strictly a part of \(F\) 's graph, because a function must associate a unique value to each \(x\) in its domain. However, filling in the vertical segment makes it easier to locate inverse values by finding the graph's intersection with the horizontal line at \(p\) and is recommended in Rockafellar and Royset [2014]. Mentally, you should always fill in jumps in this way, treating the added segment as part of the graph.

Definition. Let \(X\) be a random variable with distribution function \(F\) and \(0<p<1\). Any \(x\) satisfying
\[
\operatorname{Pr}(X<x) \leq p \leq \operatorname{Pr}(X \leq x)
\]
is a \(p\) quantile of \(X\). Any function \(q(p)\) satisfying
\[
\operatorname{Pr}(X<q(p)) \leq p \leq \operatorname{Pr}(X \leq q(p))
\]
for \(0<p<1\) is a quantile function of \(X\).
Exercise. What are the 0.1 and \(1 / 6\) quantiles for the outcomes of the fair roll of a 6 -sided die?
Solution. There are six outcomes \(\{1,2,3,4,5,6\}\) each with probability \(1 / 6\). The distribution function jumps at each outcome.
1. For \(p=0.1\) we seek \(x\) so that \(\operatorname{Pr}(X<x) \leq 0.1 \leq \operatorname{Pr}(X \leq x)\). We know \(0=\operatorname{Pr}(X<1)<\operatorname{Pr}(X \leq 1)=\) \(1 / 6\) and therefore \(q(0.1)=1\). It is good to rule out other possible values. If \(x<1\) then \(\operatorname{Pr}(X \leq x)=0\) and if \(x>1\) then \(\operatorname{Pr}(X<x) \geq 1 / 6\), showing neither alternative satisfies the definition of a quantile.
2. For \(p=1 / 6\) we seek \(x\) so that \(\operatorname{Pr}(X<x) \leq 1 / 6 \leq \operatorname{Pr}(X \leq x)\), which is satisfied by any \(1 \leq x \leq 2\). If we pick \(x=1\) then \(0=\operatorname{Pr}(X<1)<1 / 6=\operatorname{Pr}(X \leq 1)\). If we pick \(1<x<2\) then \(\operatorname{Pr}(X<x)=1 / 6=\) \(\operatorname{Pr}(X \leq x)\). If \(x=2\) then \(\operatorname{Pr}(X<2)=1 / 6<\operatorname{Pr}(X \leq 2)=1 / 3\).

Since the distribution and quantile functions are inverse, their graphs are reflections of one another in a 45-degree line through the origin. The distribution function is continuous from the right, hence the location of the probability masses indicated by the circles.

Define
- The lower quantile function \(q^{-}(p):=\sup \{x \mid F(x)<p\}=\inf \{x \mid F(x) \geq p\}\), and
- The upper quantile function \(q^{+}(p):=\sup \{x \mid F(x) \leq p\}=\inf \{x \mid F(x)>p\}\).

The lower and upper quantiles both satisfy the requirements to be a quantile function. The lower quantile is left continuous. The upper quantile is right continuous. When the quantile is not unique, it lies between the lower and upper values.

\subsection*{5.2.3 Value at Risk}

When a quantile is used as a risk measure it is called Value at Risk \((\mathbf{V a R}): \operatorname{VaR}_{p}(X):=q^{-}(p)=\inf \{x \mid F(x) \geq\) \(p\}\).

Thus \(l\) is \(\operatorname{VaR}_{p}(X)\) if it is the smallest loss such that the probability \(X \leq l\) is \(\geq p\). This is sometimes phrased: the smallest loss so that \(X \leq l\) with confidence at least \(p\). Smallest loss allows for the case \(F\) is flat at \(p\). Probability \(\geq p\) allows for jumps in \(F\).

VaR has several advantages. It is simple to explain, can be estimated robustly, and is always finite. It is widely used by regulators, rating agencies, and companies in their internal risk management. Its principal disadvantage is its failure to be subadditive.

\subsection*{5.2.4 The Failure of VaR to be Subadditive}

It is easy to create simple discrete examples where VaR fails to be subadditive, for example:
\begin{tabular}{crrrrr}
\hline Event & Prob & \(F\) & \(X_{1}\) & \(X_{2}\) & \(X\) \\
\hline 1 & 0.98 & 0.98 & 0 & 0 & 0 \\
2 & 0.01 & 0.99 & 1000 & 100 & 1100 \\
3 & 0.01 & 1.00 & 150 & 1100 & 1250 \\
\hline
\end{tabular}
\(X_{1}\) has 0.99 VaR 150 and \(X_{2}\) has 0.99 VaR 100 but \(X\) has \(0.99 \operatorname{VaR} 1100\).
More interesting, \(0.7-\mathrm{VaR}\) applied to the sum of two independent exponential distributions is not subadditive, but \(0.95-\mathrm{VaR}\) is.
```

In [3]: from aggregate import build, qd
In [4]: import pandas as pd
In [5]: p = build('port NotSA '
...: 'agg A dfreq [1] sev 1 * expon '
...: 'agg B dfreq [1] sev 1 * expon')
... :
In [6]: ans = p.var_dict(0.7)
In [7]: ans['sum'] = ans['A'] + ans['B']
In [8]: ans2 = p.var_dict(0.95)
In [9]: ans2['sum'] = ans2['A'] + ans2['B']
In [10]: pd.DataFrame([ans, ans2], index=pd.Index(['0.70', '0.95'], name='p'))
Out [10]:
A B total sum
p
0.70 1.204 1.204 2.439 2.408
0.95 2.996 2.996 4.744 5.992

```

The function var_dict returns the VaR of each unit in \(p\) and the total. The total VaR is greater than the sum of the parts. Subadditivity requires total VaR be less than or equal to the sum of the parts.

\subsection*{5.2.5 Tail VaR and Related Risk Measures}

Tail value at risk (TVaR) is the conditional average of the worst \(1-p\) outcomes. Let \(X\) be a loss random variable and \(0 \leq p<1\). Then \(p\)-Tail Value at Risk is given by
\[
\begin{aligned}
\operatorname{TVaR}_{p}(X): & =\frac{1}{1-p} \int_{p}^{1} \operatorname{VaR}_{s}(X) d s \\
& =\frac{1}{1-p} \int_{p}^{1} q^{-}(s) d s
\end{aligned}
\]

In particular \(\operatorname{TVaR}_{0}(X)=\mathrm{E}[X]\). When \(p=1, \operatorname{TVaR}_{1}(X)\) is defined to be \(\sup (X)\) if \(X\) is unbounded.
TVaR is defined in terms of \(q^{-}\), that is, dual implicit events. The actual sample space on which \(X\) is defined is not used. Recall, \(\operatorname{VaR}_{p}(X)\) refers to the lower quantile \(q^{-}(p)\).

TVaR is a well behaved function of \(p\). It is continuous, differentiable almost everywhere, and equal to the integral of its derivative (fundamental theorem of calculus). It takes every value between \(\mathrm{E}[X]\) and sup \(X\). TVaR has a kink at jumps in \(F\) and is differentiable elsewhere.

\section*{Algorithm to Evaluate TVaR for a Discrete Distribution}

Algorithm Input: \(X\) is a discrete random variable, taking \(N\) equally likely values \(X_{j} \geq 0, j=0, \ldots, N-1\). Probability level \(p\).
Follow these steps to determine \(\operatorname{TVaR}_{p}(X)\).

\section*{Algorithm Steps}
(1) Sort outcomes into ascending order \(X_{0}<\cdots<X_{N-1}\).
(2) Find \(n\) so that \(n \leq p N<(n+1)\).
(3) If \(n+1=N\) then \(\operatorname{TVaR}_{p}(X):=X_{N-1}\) is the largest observation, exit;
(4) Else \(n<N-1\) and continue.
(5) Compute \(T_{1}:=X_{n+1}+\cdots+X_{N-1}\).
(6) Compute \(T_{2}:=((n+1)-p N) x_{n}\).
(7) Compute \(\operatorname{TVaR}_{p}(X):=(1-p)^{-1}\left(T_{1}+T_{2}\right) / N\).

These steps compute the average of the largest \(N(1-p)\) observations. Step (6) adds a pro-rata portion of the \(\lfloor N(1-p)\rfloor\) largest observation when \(N(1-p)\) is not an integer. For instance, if \(N=71\) and \(p=0.95\), then \(N p=67.45\) and \(n=67\), giving \(\mathrm{TVaR}_{p}=20\left(0.55 x_{67}+x_{68}+x_{69}+x_{70}\right) / 71\).

\section*{Example.}

Let \(X\) be defined on a sample space with ten equally likely events and outcomes \(0,1,1,1,2,3,4,8,12,25\). Compute \(\operatorname{TVaR}_{p}(X)\) for all \(p\). Is it a piecewise linear function?

Solution. For \(p \geq 0.9, q(p)=25\) and \(\operatorname{TVaR}_{p}(X)=25\). For \(0.8 \geq p<0.9\)
\[
\begin{aligned}
(1-p) \operatorname{TVaR}_{p}(X) & =\int_{p}^{1} q^{-}(s) d s \\
& =\int_{p}^{0.9} q^{-}(s) d s+\int_{0.9}^{1} q^{-}(s) d s \\
& =(0.9-p) \times 12+(1-0.9) \times \operatorname{TVaR}_{0.9}(X),
\end{aligned}
\]
for \(0.7 \geq p<0.8\)
\[
(1-p) \operatorname{TVaR}_{p}(X)=(0.8-p) \times 8+(1-0.8) \times \operatorname{TVaR}_{0.8}(X)
\]
and so forth. The TVaR function is shown below. TVaR is not piecewise linear. For example, for \(0.8 \leq p<0.9\), \(\operatorname{TVaR}_{p}(X)=(12(0.9-p)+2.5) /(1-p)\).

The default aggregate TVaR function ignores this slight non-linearity and just interpolates. To get a more exact answer use kind='tail'. The difference is illustrated on the left in the next figure.
```

In [11]: from aggregate.extensions.pir_figures import fig_4_8
In [12]: fig_4_8()

```


\section*{CTE, and WCE: Alternatives to TVaR}

There are two other risk measures (confusingly) similar to TVaR.
1. Tail value at risk (TVaR) is the conditional average of the worst \(1-p\) outcomes.
2. Conditional tail expectation (CTE) refers to the conditional expectation of \(X\) over \(X \geq \operatorname{VaR}_{p}(X)\).
3. Worst conditional expectation (WCE) refers to the greatest expected value of \(X\) conditional on a set of probability \(>1-p\).

The formal definitions of CTE and WCE are as follows. Let \(X\) be a loss random variable and \(0 \leq p<1\).
- \(\mathrm{CTE}_{p}(X):=\mathrm{E}\left[X \mid X \geq \operatorname{VaR}_{p}(X)\right]\) (lower) conditional tail expectation (TCE).
- The upper CTE equals \(\mathrm{E}\left[X \mid X \geq q^{+}(p)\right]\).
- \(\mathrm{WCE}_{p}(X):=\sup \{\mathrm{E}[X \mid A] \mid \operatorname{Pr}(A)>1-p\}\) is the worst conditional expectation.

Like TVaR, CTE is defined in terms of quantiles, and the sample space on which \(X\) is defined is not used. In contrast, WCE works with the original sample space and relies on its events. Some actuarial papers refer to CTE as tail value at risk, e.g., Bodoff [2007].

For continuous random variables TVaR, CTE, and WCE are all equal, and they are easy to compute. The distinctions between them arise for discrete and mixed variables when \(p\) coincides with a mass point.

\section*{Expected Policyholder Deficit}

The expected policyholder deficit EPD when a risk \(X\) is supported by assets \(a\) equals \(\mathrm{E}\left[(X-a)^{+}\right]\), the unconditional excess loss cost. The insurer defaults on the EPD amount.

The EPD ratio is defined as the ratio of the EPD to expected losses. It gives the proportion of losses that are unpaid when \(X\) is supported by assets \(a\).

\section*{Example.}

We can use the EPD to define a tail risk measure that is analogous to VaR and TVaR. Define the EPD risk measure \(\mathrm{E} P D_{s}(X)\) to be the amount of assets resulting in an EPD ratio of \(0<s<1\), i.e., solving
\[
\mathrm{E}\left[\left(X-\mathrm{E} P D_{p}(X)\right)^{+}\right]=s \mathrm{E}[X] .
\]

The EPD risk measure is a stricter standard for smaller \(s\). It accounts for the degree of default relative to promised payments, making it attractive to regulators. It is used to set risk based capital standards in Butsic [1994] and as a capital standard in Myers and Read Jr. [2001].

EPD is available in aggregate as the epd column in density_df.

\subsection*{5.3 Insurance Probability}

Objectives: AEP and OEP points; theory of the insurance charge; adjusting severity distributions to achieve selected loss picks by layer in an excess of loss program; theory of the Tweedie distribution; when is severity relevant?

Audience: Actuaries at the Associate or Fellow level.
Prerequisites: Individual risk and retro rating; GLM modeling; Tweedie distributions.
See also: Individual Risk Pricing, Reinsurance Pricing, The tweedie Keyword.
Contents.
- q aep oep
- ir stop loss
- Adjusting Layer Loss Picks
- 2_x_tweedie
- Excess Frequency Distributions
- p sev irrel

\subsection*{5.3.1 Helpful References}
- Klugman et al. [2019]
- Panjer and Willmot [1992]
- Mildenhall and Major [2022]
- Woo [2002]

\subsection*{5.3.2 Occurrence and Aggregate Probable Maximal Loss}

\section*{Probable maximal loss (PML)}

Probable maximal loss or PML and the related maximum foreseeable loss (MFL) originated in fire underwriting in the early 1900s. The PML estimates the largest loss that a building is likely to suffer from a single fire if all critical protection systems function as expected. The MFL estimates the largest fire loss likely to occur if loss-suppression systems fail. For a large office building, the PML could be a total loss to 4 to 6 floors, and the MFL could be a total loss within four walls, assuming a single structure burns down. McGuinness [1969] discusses PMLs.

Today, PML is used to quantify potential catastrophe losses. Catastrophe risk is typically managed using reinsurance purchased on an occurrence basis and covering all losses from a single event. Therefore insurers are interested in the annual frequency of events greater than an attachment threshold, leading to the occurrence PML, now known as occurrence exceeding probabilities.

\section*{Occurrence Exceeding Probability (OEP)}

To describe occurrence PMLs, we need to specify the stochastic model used to generate events. It is standard to use a homogeneous Poisson process, with a constant event intensity \(\lambda\) per year. The number of events in time \(t\) has a Poisson distribution with mean \(\lambda t\). If \(X\) is the severity distribution (size of loss conditional on an event) then the number of events per year above size \(x\) has Poisson distribution with mean \(\lambda S(x)\). Therefore the probability of one or more events causing loss \(x\) or more is 1 minus the probability that a Poisson \((\lambda S(x))\) random variable equals zero, which equals \(1-e^{-\lambda S(x)}\). The \(n\) year occurrence \(\mathbf{P M L}, \mathrm{PML}_{n, \lambda}(X)=\mathrm{PML}_{n, \lambda}\), is the smallest loss \(x\) so that the probability of one or more events causing a loss of \(x\) or more in a year is at least \(1 / n\). It can be determined by solving \(1-e^{-\lambda S\left(\mathrm{PML}_{n, \lambda}\right)}=1 / n\), giving
\[
\begin{aligned}
S\left(\mathrm{PML}_{n, \lambda}\right) & =\frac{1}{\lambda} \log \left(\frac{n}{n-1}\right) \\
\Longrightarrow \mathrm{PML}_{n, \lambda} & =q_{X}\left(1-\frac{1}{\lambda} \log \left(\frac{n}{n-1}\right)\right)
\end{aligned}
\]
(if \(S(x)=s\) then \(F(x)=1-s\) and \(x=q_{X}(1-s)=\operatorname{VaR}_{1-s}(X)\) ). Thus, the occurrence PML is a quantile of severity at an adjusted probability level, where the adjustment depends on \(\lambda\).

Converting to non-exceedance probabilities, if \(p=1-1 / n\) (close to 1 ) then \(n /(n-1)=1 / p\) and we obtain a relationship between the occurrence PML and severity VaR:
\[
\mathrm{PML}_{n, \lambda}=q_{X}\left(1+\frac{\log (p)}{\lambda}\right)=\operatorname{VaR}_{1+\log (p) / \lambda}(X)
\]

Catastrophe models output a sample of \(N\) loss events, each with an associated annual frequency \(\lambda_{i}\) and an expected loss \(x_{i}, i=1, \ldots, N\). Each event is assumed to have a Poisson occurrence frequency distribution. The associated severity distribution is concentrated on the set \(\left\{x_{1}, \ldots, x_{N}\right\}\) with \(\operatorname{Pr}\left(X=x_{i}\right)=\lambda_{i} / \lambda\), where \(\lambda=\sum_{i} \lambda_{i}\) is the expected annual event frequency. It is customary to fit or smooth \(X\) to get a continuous distribution, resulting in unique quantiles.

\section*{Return Periods}

VaR points are often quoted by return period, such as a 100 or 250 year loss, rather than by probability level. By definition, the exceedance probability \(\operatorname{Pr}\left(X>\operatorname{VaR}_{p}(X)\right)\) of \(p-\operatorname{VaR}\) is less than or equal to \(1-p\), meaning at most a \(1-p\) probability per year. If years are independent, then the average waiting time to an exceedance is at least \(1 /(1-p)\). (The waiting time has a geometric distribution, with parameter \(p\). Let \(q=1-p\). The average wait time is \(q+2 p q+3 p^{2} q+\cdots=q\left(1+2 p+3 p^{2}+\cdots\right)=1 / q\).)

Standard return periods and their probability representation are shown below.
\begin{tabular}{|l|l|l|l|}
\hline VaR threshold & Exceedance probability & Return Period & Applications \\
\hline\(p\) & \(1-p\) & \(1 /(1-p)\) & \\
\hline 0.99 & 0.01 & 100 years & \\
\hline 0.995 & 0.005 & 200 years & Solvency 2 \\
\hline 0.996 & 0.004 & 250 years & AM Best, S\&P, RBC \\
\hline 0.999 & 0.001 & 1,000 years & \\
\hline
\end{tabular}

In a Poisson model, the waiting time between events with a frequency of \(\lambda\) has an exponential distribution with mean \(1 / \lambda\). Thus, an event with frequency 0.01 is often quoted as having a 100 year return period. Notice, however, the distinction between the chances of no events in a year and the waiting time until the next event. If \(\lambda\) is large, say 12 (one event per month on average), the chances of no events in a year equals \(\exp (-12)=6.1 \times 10^{-6}\) is vs. a one-month return period. For small \(\lambda\) there is very little difference between the two since the probability of one or more events equals \(1-\exp (-\lambda) \approx \lambda\).

To reiterate the definition above, when \(X\) represents aggregate annual losses, the statement \(x=\operatorname{VaR}_{0.99}(X), p=\) 0.99 means
- \(x\) is the smallest loss for which \(X \leq x\) with an annual probability of at least 0.99 , or
- \(x\) is the smallest loss with an annual probability at most 0.01 of being exceeded.

\section*{Aggregate Exceeding Probability (AEP)}

Severity VaR (quantile) and occurrence PML are distinct but related concepts. However, aggregate PML or aggregate exceeding probability is often used as a synonym for aggregate VaR, i.e., VaR of the aggregate loss distribution..
Let \(A\) equal the annual aggregate loss random variable. \(A\) has a compound Poisson distribution with expected annual frequency \(\lambda\) and severity random variable \(X . X\) is usually thick tailed. Then, as we explain shortly,
\[
\operatorname{VaR}_{p}(A) \approx \operatorname{VaR}_{1-(1-p) / \lambda}(X)
\]

This equation is a relationship between aggregate and severity VaRs.
We can sometimes estimate aggregate VaRs in terms of occurrence PMLs with no simulation. For large \(n\) and a thick tailed \(X\) occurrence PMLs and aggregate VaRs contain the same information-there is not more information in the aggregate, as is sometimes suggested. The approximation follows from the equation
\[
\operatorname{Pr}\left(X_{1}+\cdots+X_{n}>x\right) \rightarrow n \operatorname{Pr}(X>x) \text { as } x \rightarrow \infty
\]
for all \(n\), which holds when \(X\) is sufficiently thick tailed. See Embrechts et al. [1997], Corollary 1.3.2 for the details.

\subsection*{5.3.3 Self-Insurance Plan Stop-Loss Insurance}

Self-insurance plans often purchase per occurrence (specific) insurance, to limit the amount from any one loss that flows into the plan, and aggregate stop-loss insurance, to limit their aggregate liability over all occurrences in a year. Retro rating plans need to estimate the insurance charge for the aggregate cover. It is a function of the expected loss, the specific loss limit, and the aggregate retention. They sometimes also want to know the insurance savings, a credit for losses below a minimum. Tables tabulating insurance savings and charges are called Table L (California) or Table M (rest of the US). The two differ in the denominator: limited or unlimited losses.

Let \(X\) denote unlimited severity, \(N\) annual frequency, \(l\) the occurrence limit and \(a\) the aggregate retention of limited losses. The distribution of gross aggregate losses is given by
\[
A_{g}:=X_{1}+\cdots+X_{N}
\]

Aggregate losses retained by the plan, reflecting the specific but not the aggregate insurance, are a function of \(l\) and \(n:=\mathrm{E}[N]\) the expected ground-up claim count, with distribution
\[
A(n, l):=\left(X_{1} \wedge l\right)+\cdots+\left(X_{N} \wedge l\right)
\]

Aggregate limits are expressed in terms of the entry ratio \(r\), which we define as the ratio
\[
r=\frac{a}{\mathrm{E}[A(n, l)]}
\]
of the aggregate limit to expected losses net of specific insurance. Therefore, the aggregate retention equals
\[
a=r \mathrm{E}[A(n, l)]=r n \mathrm{E}\left[X_{1} \wedge l\right] .
\]

The insurance charge
\[
\begin{aligned}
\phi(r): & =\frac{\mathrm{E}\left[A(n, l) 1_{A(n, l)>r \mathrm{E}[A(n, l)]}\right]}{\mathrm{E}[A(n, l)]} \\
& =\frac{\mathrm{E}\left[A(n, l) \mid A(n, l)>r \mathrm{E}[A(n, l)] S_{(n, l)}(r \mathrm{E}[A(n, l)])\right.}{\mathrm{E}[A(n, l)]}
\end{aligned}
\]
where \(S_{(n, l)}(\cdot)\) is the survival function of \(A(n, l)\). The aggregate protection loss cost equals \(\phi(r) \mathrm{E}[A(n, l)]\). The insurance savings equals
\[
\begin{aligned}
\psi(r): & =\frac{\mathrm{E}\left[A(n, l) 1_{A(n, l) \leq r \mathrm{E}[A(n, l)]}\right]}{\mathrm{E}[A(n, l)]} \\
& =\frac{\mathrm{E}\left[A(n, l) \mid A(n, l) \leq r \mathrm{E}[A(n, l)] F_{A(n, l)}(r \mathrm{E}[A(n, l)])\right.}{\mathrm{E}[A(n, l)]} .
\end{aligned}
\]
where \(F_{(n, l)}(\cdot)\) is the cdf of \(A(n, l)\).
With this notation, a retro program with maximum entry ratio \(r_{1}\) and minimum \(r_{0}\) has a net insurance charge (ignoring expenses and the loss conversion factor) equal to
\[
\left(\phi\left(r_{1}\right)-\psi\left(r_{0}\right)\right) n \mathbf{E}\left[X_{1} \wedge l\right] .
\]

The charge and savings are illustrated below. Losses are scaled by expected (limited) losses in the figure and so the area under the blue curve equal 1 . The graph is the Lee diagram, plotting \(x\) against \(F(x)\).
```

In [1]: from aggregate.extensions.figures import savings_charge
In [2]: savings_charge();

```


The figure makes the put-call parity relationship, savings plus 1 equals entry plus charge obvious:
\[
\psi(r)+1=r+\phi(r)
\]

Remember \(r\) is the area under the horizontal line because the width of the plot equals 1 . Taking \(r=1\) in put-call parity shows that \(\psi(1)=\phi(1)\) : at expected losses, the savings equals the charge.

\subsection*{5.3.4 Adjusting Layer Loss Picks}

Reinsurance actuaries apply experience and exposure rating to excess of loss programs. Experience rating trends and develops layer losses to estimate loss costs. Exposure rating starts with a (ground-up) severity curve. In the US, these are often published by a rating agency (ISO, NCCI). It then applies a limit profit and uses difference of ILFs with a ground up loss ratio to estimate layer losses. The actuary then selects a loss cost by layer based on the two methods. When the selection is different from the exposure rate, the actuary no longer has a well-defined stochastic model for the business. In this section we show how to adjust the severity curve to match the selected loss picks by layer. The adjusted curve can then be used in a stochastic model that will replicate the layer loss selections.

Layer severity equals the integral of the survival function and layer expected losses equals layer frequency times severity. The easiest way to adjust a single layer is to scale the frequency. The simple approach fails when there are multiple layers because higher layer frequency impacts lower layers. We are led to adjust the survival function in each layer to hit the all selected layer loss picks. The method described next creates a legitimate, non-increasing survival function and retains its continuity properties whenever possible. It is easy to select inconsistent layer losses which produces negative probabilities or values greater than 1 . When such inconsistencies occur the selections must be altered.

Here is the layer adjustment process. Adjustments to higher layers impact all lower layers because they change the probability of limit losses. The approach is to start from the top-most layer, figure its adjustment, and then take the impact of that adjustment into account on the next layer down, and so forth. The adjusted severity curve to maintain the shape of the curve and it continuity properties, conditional on a loss in each layer.

To make these ideas rigorous requires a surprising amount of notation. Define
- Specify layer attachment points \(0=a_{0}<a_{1}<a_{2}<\cdots<a_{n}\) and corresponding layer limits \(y_{i}=a_{i}-a_{i-1}\) for \(i=1,2, \ldots, n\). The layers are \(l_{i}\) excess \(a_{i-1}\).
- \(l_{i}=\operatorname{LEV}\left(a_{i}\right)-\operatorname{LEV}\left(a_{i-1}\right)=\int_{a_{i-1}}^{a_{i}} S(x) d x=\mathrm{E}\left[\left(X-a_{i-1}\right)^{+} \wedge y_{i}\right]\) equals the unconditional expected layer loss (per ground-up claim).
- \(p_{i}=\operatorname{Pr}\left(a_{i-1}<X \leq a_{i}\right)=S\left(a_{i-1}\right)-S\left(a_{i}\right)\) equals the probability of a loss in the layer, excluding the mass at the limit.
- \(e_{i}=y_{i} S\left(a_{i}\right)\) equals the part of \(l_{i}\) from full limit losses.
- \(f_{i}=a_{i-1} p_{i}\)
- \(m_{i}=\int_{a_{i-1}}^{a_{i}} x d F(x)-f_{i}=\int_{a_{i-1}}^{a_{i}}\left(x-a_{i-1}\right) d F(x)=l_{i}-e_{i}\) equals the part of \(l_{i}\) from losses in the layer.
- \(t_{i}\) are selected unconditional expected losses by layer. \(t_{i}=l_{i}\) results in no adjustment. \(t_{i}\) is computed by dividing the layer loss pick by the expected number of ground-up claims.

Integration by parts gives
\[
\begin{aligned}
\int_{a_{i-1}}^{a_{i}} S(x) d x & =\left.x S(x)\right|_{a_{i-1}} ^{a_{i}}+\int_{a_{i-1}}^{a_{i}} x d F(x) \\
& =a_{i} S\left(a_{i}\right)+\int_{a_{i-1}}^{a_{i}}\left(x-a_{i-1}\right) d F(x) \\
& =e_{i}+m_{i}
\end{aligned}
\]

These quantities are illustrated in the next figure.
```

In [1]: from aggregate.extensions.figures import adjusting_layer_losses
In [2]: adjusting_layer_losses();

```


There is no adjustment to \(S\) for \(x \geq a_{n}\). In the top layer, adjust to \(\tilde{S}(x)=S\left(a_{n}\right)+w_{n}\left(S(x)-S\left(a_{n}\right)\right)\), so
\[
\begin{aligned}
t_{n} & =\int_{a_{n-1}}^{a_{n}} \tilde{S}(x) d x \\
& =S\left(a_{n}\right) y_{n}+w_{n}\left(l_{n}-e_{n}\right) \\
& =\omega_{n} y_{n}+w_{n} m_{n} \\
\Longrightarrow w_{n} & =\frac{t_{n}-\omega_{n} y_{n}}{m_{n}},
\end{aligned}
\]
where \(\omega_{n}=S\left(a_{n}\right)\). Set \(\omega_{i}=\omega_{i+1}+w_{i+1} p_{i+1}\) and \(\tilde{S}(x)=\omega_{i}+w_{n}\left(S(x)-S\left(a_{n}\right)\right)\) in the \(i\) th layer. We can compute all the weights by proceeding down the tower:
\[
\begin{aligned}
t_{i} & =\int_{a_{i-1}}^{a_{i}} \tilde{S}(x) d x \\
& =\omega_{i} y_{i}+w_{i}\left(l_{i}-e_{i}\right) \\
\Longrightarrow w_{i} & =\frac{t_{i}-\omega_{i} y_{i}}{m_{i}}
\end{aligned}
\]
\(\tilde{S}\) is continuous is \(S\) is because of the definition of \(\omega\) at the layer boundaries. When \(x=a_{i-1}, \tilde{S}\left(a_{i-1}\right)=\omega_{i}+\) \(w_{i}\left(S\left(a_{i-1}\right)-S\left(a_{i}\right)\right)=\omega_{i}+w_{i} p_{i}=\omega_{i=1}\).
The function utilities.picks_work computes the adjusted severity. In debug mode, it returns useful layer information. A severity can be adjusted on-the-fly by Aggregate using the picks keyword after the severity specification and before any occurrence reinsurance.

\subsection*{5.3.5 The Tweedie Distribution}

The Tweedie distribution is a Poisson mixture of gammas. It is an exponential family distribution [Jørgensen, 1997]. Tweedie distributions are a suitable model for pure premiums and are used as unit distributions in GLMs [McCullagh and Nelder, 2019]. Tweedie distributions do not have a closed form density, but estimating the density is easy using aggregate.
The Tweedie family of distributions is a three-parameter exponential family. A variable \(X \sim \operatorname{Tw}_{p}\left(\mu, \sigma^{2}\right)\) when \(\mathrm{E}[X]=\mu\) and \(\operatorname{Var}(X)=\sigma^{2} \mu^{p}, 1 \leq p \leq 2 . p\) is a shape parameter and \(\sigma^{2}>0\) is a scale parameter called the dispersion.

A Tweedie with \(1<p<2\) is a compound Poisson distribution with gamma distributed severities. The limit when \(p=1\) is an over-dispersed Poisson and when \(p=2\) is a gamma. More generally: \(\operatorname{Tw}_{0}\left(\mu, \sigma^{2}\right)\) is normal \(\left(\mu, \sigma^{2}\right)\), \(\mathrm{Tw}_{1}\left(\mu, \sigma^{2}\right)\) is over-dispersed Poisson \(\sigma^{2} \operatorname{Po}\left(\mu / \sigma^{2}\right)\), and \(\mathrm{Tw}_{2}\left(\mu, \sigma^{2}\right)\) is a gamma with \(\mathrm{CV} \sigma\).
Let \(\mathrm{Ga}(\alpha, \beta)\) denote a gamma with shape \(\alpha\) and scale \(\beta\), with density \(f(x ; \alpha, \beta)=x^{\alpha}-e^{-x / \beta} / \beta^{\alpha} x \Gamma(\alpha)\). It has mean \(\alpha \beta\), variance \(\alpha \beta^{2}\), expected square \(\alpha(\alpha+1) \beta\) and coefficient of variation \(1 / \sqrt{\alpha}\). We can define an alternative parameterization \(\mathrm{Tw}^{*}(\lambda, \alpha, \beta)=\operatorname{CP}(\lambda,(G a(\alpha, \beta))\) as a compound Poisson of gammas, with expected frequency \(\lambda\).

The dictionary between the two parameterizations relies on the relation between the two shape parameters \(\alpha\) and \(p\) given by
\[
\alpha=\frac{2-p}{p-1}, \quad p=\frac{2+\alpha}{1+\alpha} .
\]

Starting from \(\mathrm{Tw}_{p}\left(\mu, \sigma^{2}\right): \lambda=\frac{\mu^{2-p}}{(2-p) \sigma^{2}}\) and \(\beta=\frac{\mu^{1-p}}{(p-1) \sigma^{2}}=\mu / \lambda \alpha\)
Starting from \(\mathrm{Tw}^{*}(\lambda, \alpha, \beta): \mu=\lambda \alpha \beta\) and \(\sigma^{2}=\lambda \alpha(\alpha+1) /\left(\beta^{2} \mu^{p}\right)\), by equating expressions for the variance.
It is easy to convert from the gamma mean \(m\) and \(\mathrm{CV} \nu\) to \(\alpha=1 / \nu^{2}\) and \(\beta=m / \alpha\). Remember, scipy. stats scale equals \(\beta\).
Tweedie distributions are mixed: they have a probability mass of \(p_{0}=e^{-\lambda}\) at 0 and are continuous on \((0, \infty)\).
Jørgensen calls \(\operatorname{Tw}(\lambda, \alpha, \beta)\) the additive form of the model because
\[
\sum_{i} \operatorname{Tw}\left(\lambda_{i}, \alpha, \beta\right)=\operatorname{Tw}\left(\sum_{i} \lambda_{i}, \alpha, \beta\right) .
\]

He calls \(\mathrm{Tw}_{p}(\mu, \sigma)\) the reproductive exponential dispersion model. If \(X_{i} \sim \operatorname{Tw}_{p}\left(\mu, \sigma / w_{i}\right)\) then
\[
\frac{1}{w} \sum_{i} w_{i} X_{i} \sim \operatorname{Tw}_{p}\left(\mu, \frac{\sigma^{2}}{w}\right)
\]
where \(w=\sum_{i} w_{i}\). The weights \(w_{i}\) represents volume in cell \(i\) and \(X_{i}\) represents the pure premium. The sum on the left represents the total pure premium.

The next diagram shows how the Tweedie family fits within the broader power variance exponential family of distributions. See the blog post The Tweedie-Power Variance Function Family for more details.
```

In [1]: from aggregate.extensions.figures import power_variance_family
In [2]: power_variance_family()

```


\subsection*{5.3.6 Excess Frequency Distributions}

Given a ground-up claim count distribution \(N\), what is the distribution of the number of claims exceeding a certain threshold? We assume that severities are independent and identically distributed and that the probability of exceeding the threshold is \(q\). Define an indicator variable \(I\) which takes value 0 if the claim is below the threshold and the value 1 if it exceeds the threshold. Thus \(\operatorname{Pr}(I=0)=p=1-q\) and \(\operatorname{Pr}(I=1)=q\). Let \(M_{N}\) be the moment generating function of \(N\) and \(N^{\prime}\) is the number of claims in excess of the threshold. By definition we can express \(N^{\prime}\) as an aggregate
\[
N^{\prime}=I_{1}+\cdots+I_{N}
\]

Thus the moment generating function of \(N^{\prime}\) is
\[
\begin{aligned}
M_{N^{\prime}}(\zeta) & =M_{N}\left(\log \left(M_{I}(\zeta)\right)\right) \\
& =M_{N}\left(\log \left(p+q e^{\zeta}\right)\right)
\end{aligned}
\]

Using indicator variables \(I\) is called \(p\)-thinning by Grandell [1997].
Here are some examples.
Let \(N\) be Poisson with mean \(n\). Then
\[
M_{N^{\prime}}(\zeta)=\exp \left(n\left(p+q e^{\zeta}-1\right)\right)=\exp \left(q n\left(e^{\zeta}-1\right)\right)
\]
so \(N^{\prime}\) is also Poisson with mean \(q n\)-the simplest possible result.
Next let \(N\) be a \(G\)-mixed Poisson. Thus
\[
\begin{aligned}
M_{N^{\prime}}(\zeta) & =M_{N}\left(\log \left(p+q e^{\zeta}\right)\right) \\
& =M_{G}\left(n\left(p+q e^{\zeta}-1\right)\right) \\
& =M_{G}\left(n q\left(e^{\zeta}-1\right)\right) .
\end{aligned}
\]

Hence \(N^{\prime}\) is also a \(G\)-mixed Poisson with lower underlying claim count \(n q\) in place of \(n\).
In particular, if \(N\) has a negative binomial with parameters \(P\) and \(c\) (mean \(c P, Q=1+P\), moment generating function \(\left.M_{N}(\zeta)=\left(Q-P e^{\zeta}\right)^{-1 / c}\right)\), then \(N^{\prime}\) has parameters \(q P\) and \(c\). If \(N\) has a Poisson-inverse Gaussian distribution with parameters \(\mu\) and \(\beta\), so
\[
M_{N}(\zeta)=\exp \left(-\mu\left(\sqrt{1+2 \beta\left(e^{\zeta}-1\right)}-1\right)\right)
\]
then \(N\) is also Poisson inverse Gaussian with parameters \(\mu q\) and \(\beta q\).
In all cases the variance of \(N^{\prime}\) is lower than the variance of \(N\) and \(N^{\prime}\) is closer to Poisson than \(N\) in the sense that the variance to mean ratio has decreased. For the general \(G\)-mixed Poisson the ratio of variance to mean decreases from \(1+c n\) to \(1+c q n\). As \(q \rightarrow 0\) the variance to mean ratio approaches 1 and \(N^{\prime}\) approaches a Poisson distribution. The fact that \(N^{\prime}\) becomes Poisson is called the law of small numbers.

\subsection*{5.3.7 When Is Severity Irrelevant?}

In some cases the actual form of the severity distribution is essentially irrelevant to the shape of the aggregate distribution. Consider an aggregate with a \(G\)-mixed Poisson frequency distribution. If the expected claim count \(n\) is large and if the severity is tame (roughly tame means bounded or has a log concave density; a policy with a limit has a tame severity; unlimited workers compensation or cat losses may not be tame) then particulars of the severity distribution diversify away in the aggregate. Moreover, the variability from the Poisson claim count component also diversifies away, and the shape of the aggregate distribution converges to the shape of the frequency mixing distribution \(G\). Another way of saying the same thing is that the normalized distribution of aggregate losses (aggregate losses divided by expected aggregate losses) converges in distribution to \(G\).
We can prove these assertions using moment generating functions. Let \(X_{n}\) be a sequence of random variables with distribution functions \(F_{n}\) and let \(X\) another random variable with distribution \(F\). If \(F_{n}(x) \rightarrow F(x)\) as \(n \rightarrow \infty\) for every point of continuity of \(F\) then we say \(F_{n}\) converges weakly to \(F\) and that \(X_{n}\) converges in distribution to \(F\).

Convergence in distribution is a relatively weak form of convergence. A stronger form is convergence in probability, which means for all \(\epsilon>0 \operatorname{Pr}\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0\) as \(n \rightarrow \infty\). If \(X_{n}\) converges to \(X\) in probability then \(X_{n}\) also converges to \(X\) in distribution. The converse is false. For example, let \(X_{n}=Y\) and \(X=1-Y\) be binomial 0/1 random variables with \(\operatorname{Pr}(Y=1)=\operatorname{Pr}(X=1)=1 / 2\). Then \(X_{n}\) converges to \(X\) in distribution. However, since \(\operatorname{Pr}(|X-Y|=1)=1, X_{n}\) does not converge to \(X\) in probability.

It is a fact that \(X_{n}\) converges to \(X\) if the MGFs \(M_{n}\) of \(X_{n}\) converge to the MFG of \(M\) of \(X\) for all \(t: M_{n}(t) \rightarrow M(t)\) as \(n \rightarrow \infty\). See Feller [1971] for more details. We can now prove the following result.
Proposition. Let \(N\) be a \(G\)-mixed Poisson distribution with mean \(n, G\) with mean 1 and variance \(c\), and let \(X\) be an independent severity with mean \(x\) and variance \(x\left(1+\gamma^{2}\right)\). Let \(A=X_{1}+\cdots+X_{N}\) and \(a=n x\). Then \(A / a\) converges in distribution to \(G\), so
\[
\operatorname{Pr}(A / a<\alpha) \rightarrow \operatorname{Pr}(G<\alpha)
\]
as \(n \rightarrow \infty\). Hence
\[
\sigma(A / a)=\sqrt{c+\frac{x\left(1+\gamma^{2}\right)}{a}} \rightarrow \sqrt{c}
\]

Proof. We know
\[
M_{A}(\zeta)=M_{G}\left(n\left(M_{X}(\zeta)-1\right)\right)
\]
and so using Taylor's expansion we can write
\[
\begin{aligned}
\lim _{n \rightarrow \infty} M_{A / a}(\zeta) & =\lim _{n \rightarrow \infty} M_{A}(\zeta / a) \\
& =\lim _{n \rightarrow \infty} M_{G}\left(n\left(M_{X}(\zeta / n x)-1\right)\right) \\
& =\lim _{n \rightarrow \infty} M_{G}\left(n\left(M_{X}^{\prime}(0) \zeta / n x+R(\zeta / n x)\right)\right) \\
& \left.=\lim _{n \rightarrow \infty} M_{G}(\zeta+n R(\zeta / n x))\right) \\
& =M_{G}(\zeta)
\end{aligned}
\]
for some remainder function \(R(t)=O\left(t^{2}\right)\). Note that the assumptions on the mean and variance of \(X\) guarantee \(M_{X}^{\prime}(0)=x=\mathrm{E}[X]\) and that the remainder term in Taylor's expansion actually is \(O\left(t^{2}\right)\). The second part is trivial.

The proposition implies that if the frequency distribution is actually a Poisson, so the mixing distribution \(G=1\) with probability 1 , then the loss ratio distribution of a very large book will tend to the distribution concentrated at the expected, hence the expression that "with no parameter risk the process risk completely diversifies away."

The next figure illustrate the proposition, showing how aggregates change shape as expected counts increase.
```

In [1]: from aggregate.extensions import mixing_convergence
In [2]: mixing_convergence(0.25, 0.5)

```


On the top, \(G=1\) and the claim count is Poisson. Here the scaled distributions get more and more concentrated about the expected value (scaled to 1.0). Notice that the density peaks (left) are getting further apart as the claim count increases. The distribution (right) is converging to a Dirac delta step function at 1 .

On the bottom, \(G\) has a gamma distribution with variance 0.0625 (asymptotic CV of \(25 \%\) ). The density peaks are getting closer, converging to the mixing gamma. The scaled aggregate distributions converge to \(G\) (thick line, right).

It is also interesting to compute the correlation between \(A\) and \(G\). We have
\[
\begin{aligned}
\operatorname{cov}(A, G) & =\mathrm{E}[A G]-\mathrm{E}[A] \mathrm{E}[G] \\
& =\mathrm{EE}[A G \mid G]-n x \\
& =\mathrm{E}\left[n x G^{2}\right]-n x \\
& =n x c,
\end{aligned}
\]
and therefore
\[
\operatorname{corr}(A, G)=n x c / \sqrt{n x \gamma+n(1+c n)} \sqrt{c} \rightarrow 1
\]
as \(n \rightarrow \infty\).
The proposition shows that in some situations severity is irrelevant to large books of business. However, it is easy to think of examples where severity is very important, even for large books of business. For example, severity becomes important in excess of loss reinsurance when it is not clear whether a loss distribution effectively exposes an excess layer. There, the difference in severity curves can amount to the difference between substantial loss exposure and none. The proposition does not say that any uncertainty surrounding the severity distribution diversifies away; it is only true when the severity distribution is known with certainty. As is often the case with risk management metrics, great care needs to be taken when applying general statements to particular situations!

\subsection*{5.4 Numerical Methods and FFT Convolution}

Objectives: Describe the numerical distribution representation and FFT convolution algorithm that underlie all computations in aggregate.

Audience: User who wants a detailed understanding of the computational algorithms, potential errors, options, and parameters.

Prerequisites: Probability theory and aggregate distributions; complex numbers and matrix multiplication; numerical analysis, especially numerical integration; basics of Fourier transforms and series helpful.

See also: User Guides.

\section*{Contents:}
- Helpful References
- Overview
- Digital Representation of Distributions
- Fourier Transform Convolution Algorithm
- Floating Point Arithmetic and Rounding Errors

\subsection*{5.4.1 Helpful References}

Actuarial and operational risk books and papers
- Gerber [1982]
- Bühlmann [1984]
- Embrechts et al. [1993]
- Wang [1998]
- Grübel and Hermesmeier [1999]
- Mildenhall [2005]
- Schaller and Temnov [2008]
- Kaas et al. [2008]
- Embrechts and Frei [2009]
- Shevchenko [2010]

Books on probability covering characteristic functions, \(t \mapsto \mathrm{E}\left[e^{i t X}\right]\)
- Loeve [1955]
- Feller [1971]
- Lukacs [1970]
- Billingsley [1986]
- Malliavin et al. [1995]
- McKean [2014]

Books on Fourier analysis and Fourier transforms, \(t \mapsto \mathrm{E}\left[e^{-2 \pi i t X}\right]\), the same concept with slightly different notation. Malliavin is a sophisticated treatment of both Fourier analysis and probability.
- Stein and Weiss [1971]
- Stein and Shakarchi [2011]
- Strang [1986]
- Terras [2013]
- Körner [2022]

\subsection*{5.4.2 Overview}

\section*{A Trilemma}

Numerical analysts face a trilemma: they can pick two of fast, accurate, or flexible. Simulation is flexible, but trades speed against accuracy. Fewer simulations is faster but less accurate; many simulations improves accuracy at the cost of speed. aggregate delivers the third trilemma option using a fast Fourier transform (FFT) convolution algorithm to deliver speed and accuracy but with less flexibility than simulation.

\section*{The aggregate Convolution Algorithm}

Complaint It is the most natural thing in the world to decompose an oscillating electrical signal into sines and cosines of various frequencies via the Fourier transform - but probabilities, no. Basically, these are positive numbers adding up to 1 , and what have sines and cosines to do with that? Indeed, in many applications done first by Fourier, a simpler, more understandable proof may emerge upon taking Fourier away. Still, the Fourier transform is a very effective, sometimes indispensable technical tool in much of our business here. [McKean, 2014]

This section describes the core convolution algorithm implemented in aggregate. It is an application where the caveat in McKean's complaint holds true. The use of Fourier transform methods is unnatural but very effective. As usual, let \(A=X_{1}+\cdots+X_{N}\) where severity \(X_{i}\) are iid and independent of the claim count \(N\). We want to explicitly compute the distribution
\[
\begin{aligned}
\operatorname{Pr}(A<a) & =\sum_{n} \operatorname{Pr}(A<a \mid N=n) \operatorname{Pr}(N=n) \\
& =\sum_{n} \operatorname{Pr}\left(X^{* n}<a\right) \operatorname{Pr}(N=n) .
\end{aligned}
\]

Here, \(X^{* n}\) denotes the sum of \(n\) independent copies of \(X\). This problem is usually hard to solve analytically. For example, if \(X\) is lognormal then there is no closed form expression for the distribution of \(X^{* 2} \sim X_{1}+X_{2}\). However, things are more promising in the Fourier domain. The characteristic function of \(A\) can be written, using independence, as
\[
\begin{aligned}
\phi_{A}(t): & =\mathrm{E}\left[e^{i t A}\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[e^{i t A} \mid N\right]\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[e^{i t X}\right]^{N}\right] \\
& =\mathscr{P}_{N}\left(\phi_{X}(t)\right)
\end{aligned}
\]
where \(\mathscr{P}_{N}(z)=\mathrm{E}\left[z^{N}\right]\) is the probability generating function. The pgfs of most common frequency distributions are know. For example, \(N\) is Poisson with mean \(\lambda\) then it is easy to see that \(\mathscr{P}_{N}(z)=\exp (\lambda(z-1))\).

Note: The algorithm assumes the pgf can be written an explicit function. That, in turn, implies that frequency is thin tailed (it is not subexponential). This is generally not a problem because of how insurance events are defined. Losses from a catastrophe event, which can produce a large number of claims, are combined into a single occurrence. As a result, we usually model a small and thin tailed number of events with a thick tailed severity distribution. For example, there are approximately 1.75 US landfalling hurricanes per year, and the distribution of events since 1850 is well-fit by a (thin-tailed) Poisson distribution.

Knowing the characteristic function is useful because it can be inverted to determine the density of \(A\). Subject to certain terms and conditions, described below, these arguments can be carried out in a finite discrete setting which is helpful for two reasons. First, it makes the problem tractable for a digital computer, and second, many \(A\) that arise in insurance problems that are discrete or mixed, because policy limits introduce mass points. For these reasons, we model a discrete approximation to \(A\), see also Digital Representation of Distributions.

In a discrete approximation, the function \(\phi_{X}(t)\) is replaced by a vector sample computed either by taking the discrete Fourier transform (DFT) of a discretized approximation to the distribution of \(X\) or by directly sampling \(\phi_{X}\). We usually do the former, computing the DFT using the Fast Fourier transform (FFT) algorithm. However, certain \(X\), such as stable distributions, have known characteristic functions but no closed-form distribution or density function. In that case, a sample of the characteristic function can be used directly. The pgf is then applied element-by-element to the characteristic function sample vector, and the inverse FFT routine used to obtain a discrete approximation to the aggregate distribution. The exact rationale for this process are discussed in Fourier Transform Convolution Algorithm. The errors it introduces are discussed there and in num error analysis.

In summary, the FFT algorithm is simply:
1. Discretize the severity cdf.
2. Apply the FFT to discrete severity.
3. Apply the frequency pgf to the FFT.
4. Apply the inverse FFT to create a discretized approximation to the aggregate distribution.

This algorithm has appeared numerous times in the literature, see Related Actuarial Literature. The details are laid out in The aggregate Convolution Algorithm: Details. A plain Python implementation is presented in Aggregate Algorithm in Detail.

\section*{Strengths and Weaknesses}

I've been using the FFT algorithm since Glenn Meyers explained it to me at a COTOR meeting around 1996, and I still find it miraculous. It is very fast and its speed is largely independent of the expected claim count-in contrast to simulations. The algorithm is also very accurate, both in absolute and relative terms. It is essentially exact in many cases and eight-plus digit precision is often easy to obtain. The algorithm works well in almost all situations and for many use-cases it is unbeatable, including computing:
- The distribution of aggregate losses from a portfolio with a complex limit and attachment profile, and a mixed severity.
- Ceded or net outcome distributions for an occurrence reinsurance program.
- Ceded or net outcome distributions for reinsurance contracts with variable features such as sliding commissions, swing rated programs, profit commissions, aggregate limits, see Reinsurance Pricing.
- The distribution of retained losses net of specific and aggregate insurance, as found in a risk-retention group, see Individual Risk Pricing, including exact computation of Table L and Table M charges in US worker compensation ratemaking.
- The distribution of the sum of independent distributions, e.g., aggregating units such as line of business, business unit, geographic unit etc.
- The distribution of the sum of dependent units, where the dependence structure is driven by common frequency mixing variables.

The algorithm is particularly well-suited to compute aggregates with low claim counts and a thick-tailed severity and where accuracy is important, such as catastrophe risk PML, AEP, and OEP points. Outcomes with low expected loss rates are hard to simulate accurately.
The FFT algorithm is not a panacea. On the downside, its mysterious Fourier-nature presents the user with a choice of trusting in magic or a steep learning curve to understand the theory. It relies on hard-to-select parameters and can fail spectacularly and without warning if they are not chosen judiciously. A big contribution of aggregate is to provide the user with sensible default parameters and a test of model validity, see num error analysis. It does not work well for a high mean, thick-tailed frequency combined with a thick-tailed severity distribution that has an intricate distribution-an unusual situation that stresses any numerical method. However, when either frequency or severity is thin-tailed, it excels. Finally, the aggergate implementation is limited to tracking one variable at a time. It cannot model joint distributions, such as ceded and net loss or derived quantities such as the total cession to a specific and aggregate cover, or the cession to an occurrence program with limited reinstatements. Both of these require a bivariate distribution. It can model the net position after specific and aggregate cessions, and ceded losses to an occurrence program with an aggregate limit. See num extensions for an approach to bivariate extensions.

\section*{Related Actuarial Literature}

The earliest reference to Fourier transforms in actuarial science I have found is Heckman and Meyers [1983]. They used continuous Fourier transforms to compute aggregate distributions by numerically integrating the characteristic function. Their analysis includes severity and frequency uncertainty, that they call contagion and mixing.

Explicit use of the FFT appears first in [Bertram, 1983]. It has subsequently appeared in numerous places.
Bühlmann [1984] compares the FFT algorithm with Panjer recursion for compound Poisson distributions. It concludes that usually FFTs can be computed in fewer operations. Hürlimann [1986] obtains an error bound for stop-loss premium computed with FFTs.
Robertson [1992] considers a quasi-FFT algorithm, using discrete-continuous adjustments to reflect a piecewise linear as opposed to a fully discrete, distribution function. These greatly complicate the analysis for little tangible benefit. We recommend using a fully discrete distribution as explained in Digital Representation of Distributions.

Embrechts et al. [1993] describes the FFT algorithm and considers Richardson extrapolation to estimate the density.
Wang [1998] describes the FFT algorithm, using padding to control aliasing (wrapping) error. The first edition of Klugman et al. [2019], published in 1998, describes the algorithm, although it no longer appears in the fifth edition. Grübel and Hermesmeier [1999] describes the use of exponential tilting to reduce aliasing error and Grübel and Hermesmeier [2000] explains how to use Richardson extrapolation to improve density estimates. Exponential tilting is the same process used in GLM exponential families to adjust the mean, and it is also used in large deviation theory. Mildenhall [2005] describes the FFT algorithm.

Approximate inversion of the Fourier transform is also possible using FFTs. Menn and Rachev [2006] uses of FFTs to determine densities for distributions which have analytic MGFs but not densities, notably the class of stable distributions. This method is shown in Fourier Transform Convolution Algorithm.

Kaas et al. [2008] section 3.6 presents the FFT algorithm in R.
Embrechts and Frei [2009] revisits Panjer recursion compared to the FFT algorithm. It also explores exponential tilting for aliasing error. It comments "Compared to the Panjer recursion, FFT has two main advantages: It works with arbitrary frequency distributions and it is much more efficient." It concludes:

The Panjer recursion is arguably the most widely used method to "exactly" evaluate compound distributions. However, FFT is a viable alternative: It can be applied with arbitrary frequencies and offers a tremendous timing advantage for a large number of lattice points; moreover, the use of exponential tilting-which practically rules out any aliasing effects-facilitates applications (such as evaluation of the lower tail) that were thought to be an exclusive task for recursive procedures.

More recently, Papush et al. [2021], extending Papush et al. [2001], considers the best two parameter approximation to an frequency severity convolution. It shows that the gamma provides the best fit across a wide range of synthetic examples. However, all of their examples have a bounded (hence thin tailed) severity. A simple model:
```

agg 10 claims sev lognorm 2 poisson

```
is not best fit by a gamma.
Homer and Clark [2003] and Mildenhall [2005] describe the use of two-dimensional FFTs to model aggregates with bivariate frequency (for two different lines) and bivariate severity (net and ceded).

\section*{Other Applications}

The FFT algorithm is applied to model operational risk in Schaller and Temnov [2008], Temnov and Warnung [2008], Luo and Shevchenko [2009], Luo and Shevchenko [2011], and Shevchenko [2010]. These applications mirror the actuarial approach, using either padding or exponential tilting (exponential window) to control aliasing error. They are interesting because they include modeling with a very high expected claim counts and a very thick tailed severity (no mean). See Truncation Example.

In finance, FFTs are used in option pricing, Carr and Madan [1999]. These applications can use distributions derived from stable- \(\alpha\) and Levy process families that have a closed for characteristic function but no analytic density. Duan et al. [2012] describe more recent innovations. FFTs are also used as a general purpose convolution routine, Černý [2004]

Wilson and Keich [2016] describes an interesting approach to accurate pairwise convolution that splits each component to limit the ratio of its most and least (non-zero) likely outcome. It provides helpful estimates for assessing relative error and determining when an FFT estimate can be trusted.

\section*{Conditional Expectations (Kappa)}

The function \(\kappa_{i}(x):=\mathrm{E}\left[X_{i} \mid X=x\right]\) is the basis for many of the computations in Portfolio. It can be computed using Fourier transforms because it is a convolution. There is no loss in generality assuming \(X=X_{1}+X_{2}\). For simplicity suppose \(\left(X_{1}, X_{2}\right)\) have a bivariate density \(f\). Then
\[
\begin{aligned}
\mathrm{E}\left[X_{1} \mid X=x\right] & =\int_{0}^{x} t \frac{f(t, x-t)}{f(x)} d t \\
& =\frac{1}{f(x)} \int_{0}^{x} t f_{1}(t) f_{2}(x-t) d t
\end{aligned}
\]
can be computed from the convolution of \(t f_{1}(t)\) and \(f_{2}\). The convolution can be computed using Fourier transforms in the usual way: transform, product, inverse transform. Using FFTs and relying on the discretized version of \(X_{i}\), the algorithm becomes:
1. Compute the discrete approximation to \(X_{\hat{i}}\), the sum of all \(X_{j}, j \neq i\), identifying distributions with their discrete approximation vectors.
2. Compute FFTs of \(X_{i}\) and \(X_{\hat{i}}\), with optional padding.
3. Take the elementwise product of the FFTs.
4. Apply the inverse FFT and unpad if necessary.

A variable with density \(x f(x) / \mathrm{E}[X]\) is called the size-bias of \(X\). Size-biased variables have lots of interesting applications, see Arratia et al. [2019].
The aggregate implementation computes \(X_{\hat{i}}\) by dividing out the distribution of \(X_{i}\) from the overall sum (deconvolution), where that is possible, saving computing time.

\subsection*{5.4.3 Digital Representation of Distributions}
"We come now to reality. The truth is that the digital computer has totally defeated the analog computer. The input is a sequence of numbers and not a continuous function. The output is another sequence of numbers." [Strang, 1986]

\section*{How aggregate Represents a Distribution}
aggregate aims to deliver the speed and accuracy of parametric distributions to aggregate probability distributions and make them as easy to use as the lognormal. To achieve that, it needs a representation of the underlying distribution amenable to computation.

There is no analytic expression for the cdf of most aggregate distributions. For example, there is no closed form expression for the distribution of the sum of two lognormals [Milevsky and Posner, 1998]. Therefore we must use a numerical approximation to the exact cdf. There are two obvious ways to construct a numerical approximation to a cdf:
1. As a discrete (arithmetic, lattice) distribution supported on a discrete set of points.
2. As a continuous random variable with a piecewise linear distribution function.

The next two figures illustrate of the two approaches. First, a discrete approximation, which results in a step-function, piecewise constant cdf, is shown left and the corresponding quantile function, right. The cdf is continuous from the right and the (lower) quantile function is continuous from the left. The distribution does not have a density function (pdf); it only has a probability mass function (pmf).
```

In [1]: from aggregate.extensions.pir_figures import fig_4_5, fig_4_6
In [2]: fig_4_5()

```


Second, a piecewise linear continuous approximation, which results in a step-function pdf (not shown).


The second approach assumes the aggregate has a continuous distribution, which is often not the case. For example, the Tweedie and all other compound Poisson distributions are mixed (they have a mass at zero). An aggregate whose severity has a limit will have a mass at multiples of the limit caused by the non-zero probability of limit-only claims. When \(X\) is mixed it is impossible to distinguish the jump and continuous parts using a numerical approximation. The large jumps may be obvious but the small ones are not.
There are three other arguments in favor of discrete models. First, we live in a discrete world. Monetary amounts are multiples of a smallest unit: the penny, cent, yen, satoshi. Computers are inherently discrete. Second, probability theory is based on measure theory, which approximates distributions using simple functions that are piecewise constant. Third, the continuous model introduces unnecessary complexities in use, without any guaranteed gain in accuracy across all cases. See the complicated calculations in Robertson [1992], for example.
For all of these reasons, we use a discrete approximation. Further, we assume that the distribution is known at integer multiples of a fixed bandwidth or bucket size. This assumption is forced by the use of FFTs and has some undesirable consequences. Ideally, we would use a stratified approach, sampling more points where the distribution changes shape and using larger gaps to capture the tail. However, the computational efficiency of FFTs make this a good trade-off.

Based on the above considerations, saying we have computed an aggregate means that we have a discrete approximation to its distribution function concentrated on integer multiples of a fixed bucket size \(b\). This specifies the approximation aggregate as
1. the value \(b\) and
2. a vector of probabilities \(\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)\)
with the interpretation
\[
\operatorname{Pr}(X=k b)=p_{k} .
\]

All subsequent computations assume that the aggregate is approximated in this way. There are several important consequences.
- The cdf is a step function with a jump of size \(p_{k}\) at \(k b\).
- The cdf is continuous from the right (it jumps up at \(k b\) ).
- The cdf be computed from the cumulative sum of \(\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)\).
- The approximation has moments given by
\[
\sum_{k} k^{r} p_{i} b .
\]
- The limited expected value (the integral of the survival function), can be computed at the points \(k b\) as \(b\) times the cumulative sum of the survival function.
- The pdf, if it exists, can be approximated by \(p_{i} / b\).

All of these calculations are more straightforward than assuming a piecewise linear cdf.

\section*{Sidebar: Continuous Discretization}

It is possible to approximate the continuous cdf approach in aggregate. For example, the following code will reproduce the simple example in Section 4 of Robertson [1992]. Compare the output to his Table 4. Using bs=1/200 approximates a continuous histogram. The use of a decimal bucket size is never recommended, but is used here to approximate Robertson's table values. We recommend against this approach. It is unnecessarily complicated and does not improve accuracy in any example we have encountered.
```

In [4]: from aggregate import build, qd
In [5]: s = build('agg Robertson '
...: '5 claims '
...: 'sev chistogram xps [0 .2 . 4 . 6 . 8 1] [.2 . 2 %] '
...: 'fixed'
...: , bs=1/200, log2=12)
... :
In [6]: qd(s.density_df.loc[0:6:40, ['F']], max_rows=100,
...: float_format=lambda x: f'{x:. 10f }')
... :
loss
200.000m 0.0000028505
400.000m 0.0000881354
600.000m 0.0006619547
800.000m 0.0027744084
1.000 0.0084395964
1.200 0.0209413662
1.400 0.0447838984
1.600 0.0847627931
1.800 0.1446976504
2.000 0.2261520701
2.200 0.3271821577
2.400 0.4417953515

| 2.600 | 0.5611682516 |
| :--- | :--- |
| 2.800 | 0.6755414579 |
| 3.000 | 0.7761395705 |
| 3.200 | 0.8570626840 |
| 3.400 | 0.9164675600 |
| 3.600 | 0.9559897985 |
| 3.800 | 0.9794889995 |
| 4.000 | 0.9917687630 |
| 4.200 | 0.9973109416 |
| 4.400 | 0.9993650547 |
| 4.600 | 0.9999172021 |
| 4.800 | 0.9999974838 |
| 5.000 | 1.0000000000 |
| 5.200 | 1.0000000000 |
| 5.400 | 1.0000000000 |
| 5.600 | 1.0000000000 |
| 5.800 | 1.0000000000 |
| 6.000 | 1.0000000000 |

Discretizing the Severity Distribution

This section discusses ways to approximate a severity distribution with a discrete distribution. Severity distributions used by aggregate are supported on the non-negative real numbers; we allow a loss of zero, but not negative losses. However, the discretization process allows severity to be derived from a distribution supported on the whole real line-see the note below.

Let F be a distribution function and q the corresponding lower quantile function. It is convenient to be able to refer to a random variable with distribution F, so let $X=q(U)$ where $U(\omega)=\omega$ is the standard uniform variable on the sample space $\Omega=[0,1]$. X has distribution F [Föllmer and Schied, 2016].

We want approximate F with a finite, purely discrete distribution supported at points $x_{k}=k b, k=0,1, \ldots, m$, where b is called the bucket size or the bandwidth. Split this problem into two: first create an infinite discretization on $k=0,1, \ldots$, and then truncate it.

The calculations described in this section are performed in Aggregate.discretize().

Infinite Discretization

There are four common methods to create an infinite discretization.

1. The rounding method assigns probability to the k th bucket equal to

$$
\begin{aligned}
p_{k} & =\operatorname{Pr}((k-1 / 2) b<X \leq(k+1 / 2) b) \\
& =F((k+1 / 2) b)-F((k-1 / 2) b) \\
p_{0} & =F(b / 2) .
\end{aligned}
$$

2. The forward difference method assigns

$$
\begin{aligned}
p_{k} & =\operatorname{Pr}(k b<X \leq(k+1) b) \\
& =F((k+1) b)-F(k b) \\
p_{0} & =F(b) .
\end{aligned}
$$

3. The backward difference method assigns

$$
\begin{aligned}
p_{k} & =\operatorname{Pr}((k-1) b<X \leq k b) \\
& =F(k b)-F((k-1) b) \\
p_{0} & =F(0) .
\end{aligned}
$$

4. The moment difference method [Klugman et al., 2019] assigns

$$
\begin{aligned}
& p_{k}=\frac{2 \mathrm{E}[X \wedge k b]-\mathrm{E}[X \wedge(k-1) b]-\mathrm{E}[X \wedge(k+1) b]}{b} \\
& p_{0}=1-\frac{\mathrm{E}[X \wedge b]}{b}
\end{aligned}
$$

The moment difference ensures the discretized distribution has the same first moment as the original distribution. This method can be extended to match more moments, but the resulting weights are not guaranteed to be positive.

Note: Setting the first bucket to $F(b / 2)$ for the rounding method (resp. $F(b), F(0)$) allows the use of random variables with negative support. Any values ≤ 0 are included in the zero bucket. This behavior is useful because it allows the normal, Cauchy, and other similar distributions can be used as the basis for a severity.

Each of these methods produces a sequence $p_{k} \geq 0$ of probabilities that sum to 1 that can be interpreted as the pmf and distribution function $F_{b}^{(d)}$ of a discrete approximation random variable $X_{b}^{(d)}$

$$
\begin{array}{r}
\operatorname{Pr}\left(X_{b}^{(d)}=k b\right)=p_{k} \\
F_{b}^{(d)}(k b)=\sum_{i \leq k} p_{i}
\end{array}
$$

where superscript $d=r, f, b, m$ describes the discretization method and subscript b the bucket size.
There is a disconnect between how the rounding method is defined and how it is interpreted. By definition, it corresponds to a distribution with jumps at $(k+1 / 2) b$, not $k b$. However, the approximation assumes the jumps are at $k b$ to simplify and harmonize subsequent calculations across the three discretization methods.

It is clear that [Embrechts and Frei, 2009]

$$
\begin{aligned}
& F_{b}^{(b)} \leq F \leq F_{b}^{(f)} \\
& F_{b}^{(b)} \leq F_{b}^{r} \leq F_{b}^{(f)} \\
& X_{b}^{(b)} \geq X \geq X_{b}^{(f)} \\
& X_{b}^{(b)} \geq X_{b}^{r} \geq X_{b}^{(f)} \\
& X_{b}^{(b)} \uparrow X \text { as } b \downarrow 0 \\
& X_{b}^{(f)} \downarrow X \text { as } b \downarrow 0
\end{aligned}
$$

X_{b}, X_{r}, and X_{f} converge weakly (in L^{1}) to X and the same holds for a compound distribution with severity X. These inequalities are illustrated in the example below.

Rounding Method Used by Default

aggregate uses the rounding method by default and offers the forward and backwards methods to compute explicit bounds on the distribution approximation if required. We found that the rounding method performs well across all examples we have run. These options are available in update () through the sev_calc argument, which can take the values round, forwards, and backwards. This decision is based in part on the following observations about the moment method in Embrechts and Frei [2009] (emphasis added):

> that both the forward/backward differences and the rounding method do not conserve any moments of the original distribution. In this light Gerber [1982] suggests a procedure that locally matches the first k moments. Practically interesting is only the case $k=1$; for $k \geq 2$ the procedure is not well defined, potentially leading to negative probability mass on certain lattice points. The moment matching method is much more involved than the rounding method in terms of implementation; we need to calculate limited expected values. Apart from that, the gain is rather modest; moment matching only pays off for large bandwidths, and after all, the rounding method is to be preferred. This is further reinforced by the work of Grübel and Hermesmeier [1999]: if the severity distribution is absolutely continuous
with a sufficiently smooth density, the quantity $f_{b, j} / b$, an approximation for the compound density, can be quadratically extrapolated.

Klugman et al. [2019] report that Panjer and Lutek [1983] found two moments were usually sufficient and that adding a third moment requirement adds only marginally to the accuracy. Furthermore, they report that the rounding method and the first-moment method had similar errors, while the second-moment method provided significant improvement but at the cost of no longer guaranteeing that the resulting probabilities are nonnegative.

Approximating the Density

The pdf at $\$ \mathrm{~kb} \$$ can be approximated as $\$ \mathrm{p} \_\mathrm{k} / \mathrm{b} \$$. This suggests another approach to discretization. Using the rounding method

$$
\begin{aligned}
p_{k} & =F((k+1 / 2) b)-F((k-1 / 2) b) \\
& =\int_{(k-1 / 2) b}^{(k+1) b} f(x) d x \\
& \approx f(k b) b .
\end{aligned}
$$

Therefore we could rescale the vector $(f(0), f(b), f(2 b), \ldots)$ to have sum 1 . This method works well for continuous distributions, but does not apply for mixed ones, e.g., when a policy limit applies.

Discretization Example

This example illustrates the impact of different discretization methods on the severity and aggregate distributions. The example uses a severity that can take negative values. aggregate treats any negative values as a mass at zero. This approach allows for the use of the normal and other distributions supported on the whole real line. The severity has finite support, so truncation is not an issue, and it is discrete so it is easy to check the calculations are correct. The severity is shown first, discretized using $b s=1,1 / 2,1 / 4,1 / 8$. As expected, the rounding method (orange), lies between the forward (blue) and backwards (green) methods.

```
In [7]: from aggregate import build, qd
In [8]: import matplotlib.pyplot as plt
In [9]: from matplotlib import ticker
In [10]: dsev = [-1, 0, .25,.5,.75, 1, 1.5 + 1 / 16, 2, 2 + 1/4, 3]
In [11]: a01 = build(f'agg Num:01 1 claim dsev {dsev} fixed', update=False)
In [12]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45 + 0.1),
    ....: constrained_layout=True)
    .... :
In [13]: for bs, ax in zip([1, 1/2, 1/4, 1/8], axs.flat):
    ....: for k in ['forward', 'round', 'backward']:
    ...: a01.update (log2=10, bs=bs, sev_calc=k)
    ...: a01.density_df.p_total.cumsum().\
    ...: plot(xlim=[-.25, 3.25], lw=2 if k=='round' else 1,
    ...: drawstyle='steps-post', ls='--', label=k, ax=ax)
    ....: ax.legend(loc='lower right')
    ...: ax.set(title=f'Bucket size bs={bs}')
    .... :
In [14]: axs[0,0].set(ylabel='distribution');
In [15]: axs[1,0].set(ylabel='distribution');
```

In [16]: fig.suptitle('Severity by discretization method for different bucket sizes $\left.\hookrightarrow^{\prime}\right)$;

Next, create aggregate distributions with a Poisson frequency, mean 4 claims, shown for the same values of bs.

```
In [17]: a02 = build(f'agg Num:02 4 claims dsev {dsev} poisson', update=False)
In [18]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45 + 0.1),
    ....: constrained_layout=True)
    .... :
In [19]: for bs, ax in zip([1, 1/2, 1/4, 1/8], axs.flat):
    ....: for k in ['forward', 'round', 'backward']:
    ....: a02.update(log2=10, bs=bs, sev_calc=k)
    ....: a02.density_df.p_total.cumsum().\
    ...: plot(xlim=[-2, 27], lw=2 if k=='round' else 1,
    ...: drawstyle='steps-post', label=k, ax=ax)
    ....: ax.legend(loc='lower right')
    ....: ax.set(title=f'Bucket size bs={bs}')
    .... :
```

In [20]: fig.suptitle('Aggregates by discretization method');

Note: Setting drawstyle='steps-post' joins dots with a step function that jumps on the right (post=afterwards), making the result continuous from the right, appropriate for a distribution. Quantile functions are continuous from the left and should be rendered using drawstyle='steps-pre' (before), which puts the jump on the left.

Exact Calculation

The differences $p_{k}=F((k+1 / 2) b)-F((k-1 / 2) b)$ can be computed in three different ways, controlled by the discretization_calc option. The options are:

1. discretization_calc='distribution' takes differences of the sequence $F((k+1 / 2) b)$. This results in a potential loss of accuracy in the right tail where the distribution function increases to 1 . The resulting probabilities can be no smaller than the smallest difference between 1 and a float. numpy reports this as numpy.finfo(float).epsneg; it is of the order 1e-16.
2. discretization_calc='survival' takes the negative difference of the sequence $S(k+1 / 2) b)$ of survival function values. This results in a potential loss of accuracy in the left tail where the survival function increases to 1 . However, it provides better resolution in the right.
3. discretization_calc='both' attempts to make the best of both worlds, computing:
```
np.maximum(np.diff(fz.cdf(adj_xs)), -np.diff(fz.sf(adj_xs)))
```

This does double the work and is marginally slower.
The update default is survival. The calculation method does not generally impact the aggregate distribution when FFTs are used because they compute to accuracy about $1 \mathrm{e}-16$ (there is a 1 in each row and column of F , see Fast Fourier Transforms). However, the option can be helpful to create a pleasing graph of severity log density.

Truncation and Normalization

The discrete probabilities p_{k} must be truncated into a finite-length vector to use in calculations. The number of buckets used is set by the $\log 2$ variable, which inputs its base $2 \operatorname{logarithm}$. The default is $\log 2=16$ corresponding to 65,536 buckets. There are two truncation options, controlled by the normalize variable.

1. normalize=Fal se simply truncates, possibly resulting in a vector of probabilities that sums to less than 1 .
2. normalize=True truncates and then normalizes, dividing the truncated vector by its sum, resulting in a vector of probabilities that does sums to 1 (approximately, see floats).

The default is normalize=True.
It is obviously desirable for the discrete probabilities to sum to 1 . A third option, to put a mass at the maximum loss does not produce intuitive results-since the underlying distributions generally do not have a mass the graphs look wrong.

In general, it is best to use normalize=True in cases where the truncation error is immaterial, for example with a thin tailed severity. It is numerically cleaner and avoids issues with quantiles close to 1 . When there will be an unavoidable truncation error, it is best to use normalize=False. The user needs to be aware that the extreme right tail is understated. The bucket size and number of buckets should be selected so that the tail is accurate where it is being relied upon. See num error analysis for more.

Warning: Avoid using normalize=True for thick tail severities. It results in unreliable and hard to interpret estimated mean severity.

Truncation Example

Schaller and Temnov [2008] consider a Poisson-generalized Pareto model for operational risk. They assume an expected claim count equal to 18 and a generalized Pareto with shape 1, scale 12000 and location 7000. This distribution does not have a mean. They want to model the 90th percentile point. They compare using exponential tilting [Grübel and Hermesmeier, 1999] with padding, using up to 1 million $\log 2=20$ buckets. They use a right-hand endpoint of 1 million on the severity. This example illustrates the impact of normalization and shows that padding and tilting have a similar effect.

Setup the base distribution without recomputing. Note infinite severity.

```
In [21]: a = build('agg Schaller:Temnov '
    ....: '18 claims '
    ...: 'sev 12000 * genpareto 1 + 7000 '
    ....: 'poisson'
    ....: , update=False)
    .... :
In [22]: qd(a)
        E[X] CV(X) Skew(X)
X
Freq 18 0.2357 0.2357
Sev inf
Agg inf
log2 = 0, bandwidth = na, validation: n/a, not updated.
```

Execute a variety of updates and assemble answer. Compare Schaller and Temnov [2008], Example 4.3.2, p. 197. They estimate the 90 th percentile as $3,132,643$. In this case, normalizing severity has a material impact; it acts to decrease the tail thickness and hence estimated percentiles.

```
In [23]: import time
In [24]: import pandas as pd
```

```
In [25]: updates = {
    ....: 'a': dict(log2=17, bs=100, normalize=True, padding=0 , tilt_
๑vector=None),
    ....: 'b': dict(log2=17, bs=100, normalize=False, padding=0, tilt_
\hookrightarrowvector=None)
    ....: 'c': dict(log2=17, bs=100, normalize=False, padding=1, tilt_
๑vector=None),
    ....: 'd': dict(log2=17, bs=100, normalize=False, padding=2, tilt_
๑vector=None)
    ....: 'e': dict(log2=20, bs=25, normalize=True, padding=1 , tilt_
\hookrightarrowvector=None)
    ....: 'f': dict(log2=20, bs=25, normalize=False, padding=1 , tilt_
๑vector=None)
    ....: 'g': dict(log2=17, bs=100, normalize=False, padding=0, tilt_vector=20_
\hookrightarrow/ (1<<17))
    ....: }
    ....:
In [26]: ans = {}
In [27]: for k, v in updates.items():
    ....: start_time_ns = time.time_ns()
    ....: a.update(**v)
    ....: end_time_ns = time.time_ns()
    ...: ans[k] = [a.q(0.9), a.q(0.95), a.q(0.99), (-start_time_ns + end_time_
@ns) / 1e6]
    ....:
In [28]: \(d f=\) pd.DataFrame(ans.values(), index=ans.keys(), columns=[.9, .95, .99, \(\hookrightarrow ' m i l l i s e c '])\)
In [29]: for \(k, ~ v\) in updates['a'].items():
....: df[k] \(=\) [v[k] for \(v\) in updates.values()]
... :
In [30]: \(d f=d f . r e p l a c e(n p . n a n, ~ ' N o n e ')\)
In [31]: df = df.set_index(['log2', 'bs', 'normalize', 'padding', 'tilt_vector'])
In [32]: df.columns.name = 'percentile'
In [33]: qd(df, float_format=lambda \(x: f^{\prime}\{x: 12, .0 f\}^{\prime}\), sparsify=False, col_space=4)
```


(continues on next page)

28

Estimating the Bucket Size

Warning: Estimating the bucket size correctly is critical to obtaining accurate results from the FFT algorithm. This section is very important!

The bucket size is estimated as the p-percentile of a moment matched fit to the aggregate. By default $p=0.999$, but the user can selection another value using the recommend_p argument to update.

On creation, Aggregate automatically computes the theoretic mean, CV, and skewness γ of the requested distribution. Using those values and p the bucket size is estimated as follows.

1. If the CV is infinite the user must input b. An ValueError is thrown if no value is provided. Without a standard deviation there is no way to gauge the scale of the distribution. Note that the CV is automatically infinite if the mean does not exist.
2. Else if the CV is finite and $\gamma<0$, fit a normal approximation (matching two moments). Most insurance applications have positive skewness.
3. Else if the CV is finite and $0<\gamma<\infty$, fit shifted lognormal and gamma distributions (matching three moments), and a normal distribution.
4. Else if the CV is finite but skewness is infinite, fit lognormal, gamma, and normal distributions (two moments).
5. Compute b^{\prime} as the greatest of any fit distribution p-percentile (usually the lognormal).
6. If all severity components are limited, compute the maximum limit, m, otherwise set $m=0$.
7. Take $b=\max \left(b^{\prime}, m\right) / n$, where n is the number of buckets.
8. If $b \geq 1$ round up to $1,2,5,10,20,100,200$, etc., and return. Else if $b<1$ return the smallest power of 2 greater than b (e.g., 0.2 rounds to $0.25,0.1$ to 0.125).

Step 8 ensures that $b \geq 1$ is a reasonable looking round number and is an exact float when $b \leq 1$. The algorithm performs well in practice, though it can under-estimate b for thick-tailed severities. The user should always look at the diagnostics Aggregate Quick Diagnostics.

Occurrence Reinsurance and Loss Picks

If specific layer loss picks are selected, the adjustment occurs immediately after the gross severity is computed in Step 2.
Occurrence reinsurance is applied after loss pick adjustment and before step 3.
Aggregate reinsurance is applied at the very end of the algorithm.

5.4.4 Fourier Transform Convolution Algorithm

We come now to reality. The truth is that the digital computer has totally defeated the analog computer. The input is a sequence of numbers and not a continuous function. The output is another sequence of numbers, whether it comes from a digital filter or a finite element stress analysis or an image processor. The question is whether the special ideas of Fourier analysis still have a part to play, and the answer is absolutely yes. [Strang, 1986]

The previous section quoted Strang in support of discrete models. Here we complete his quote in support of using Fourier analysis, born in application to continuous functions, in a discrete setting.

The aggregate Convolution Algorithm: Details

This section expands on each step in the FFT algorithm presented at the end of The aggregate Convolution Algorithm in more detail. Recall, the four steps:

1. Discretize the severity cdf.
2. Apply the FFT to discrete severity.
3. Apply the frequency pgf to the FFT.
4. Apply the inverse FFT to create a discretized approximation to the aggregate distribution.

Algorithm Objective

Compute a discrete approximation to the aggregate distribution

$$
A=X_{1}+\cdots+X_{N}
$$

under the assumption that X_{i} are iid like X and N is independent of X_{i}.

Algorithm Inputs

1. Severity distribution (cdf, sf, and moments), optionally including loss pick and occurrence reinsurance adjustments.
2. Frequency distribution (probability generating function $\mathscr{P}(z):=\mathrm{E}\left[z^{N}\right]$, and moments).
3. Number of buckets, expressed as \log base $2, n=2^{\log 2}$.
4. Bucket size, b.
5. Severity calculation method: round, forwards, or backwards
6. Discretization calculation method: survial, distribution, or both.
7. Normalization parameter, True or False.
8. Padding parameter, an integer $d \geq 0$.
9. Tilt parameter, a real number $\theta \geq 0$.
10. Remove "fuzz" parameter, True or False

Usually either tilting or padding is applied to manage aliasing, but not both. When both are requested, tilting is applied first and the result is zero padded.

Default and Reasonable Parameter Values

The severity and frequency distributions are required. Defaults and reasonable ranges for the other parameters are as follows. Set $x_{\max }=b n$ to be the range of the discretized output.
3. $\log 2=16$, with a reasonable range $3 \leq \log 2 \leq 28-d$ (on a 64 -bit computer with 32 GB RAM).
4. Estimating the bucket size is quite involved and is described in Estimating the Bucket Size.
5. Severity calculation round, see Rounding Method Used by Default.
6. Discretization survival, see Exact Calculation.
7. Normalization defaults to True. It should only be used if it is immaterial, in the sense that $1-F\left(x_{\max }\right)$ is small. See Truncation and Normalization.
8. Padding equals 1 , meaning severity is doubled in size and padded with zeros. Padding equals to 2 , which quadruples the size of the severity vector, is sometimes necessary. Schaller and Temnov [2008] report requiring padding equal to 2 in empirical tests with very high frequency and thick tailed severity.
9. Tilt equals 0 (no tilting applied). Embrechts and Frei [2009] recommend $\theta n \leq 20$. Schaller and Temnov [2008] section 4.2 discuss how to select θ to the decrease in aliasing error and impact on numerical precision. Padding is an effective way to manage aliasing, but no more so than padding most circumstances. We prefer the simpler padding approach.
10. Remove fuzz is True.

Algorithm Steps

The default steps are shown next, followed by further explanation.

1. If frequency is identically zero, then $(1,0, \ldots)$ is returned with no further calculation.
2. If frequency is identically one, then the discretized severity is returned with no further calculation.
3. If needed, estimate the bucket size, Estimating the Bucket Size.
4. Discretize severity into a vector $\mathbf{p}=\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)$, see Discretizing the Severity Distribution. This step may include normalization.
5. Tilt severity, $p_{k} \leftarrow p_{k} e^{-k \theta}$.
6. Zero pad the vector p to length $2^{\log 2+d}$ by appending zeros, to produce x .
7. Compute $z:=F F T(x)$.
8. Compute $f:=\mathscr{P}(\mathbf{z})$.
9. Compute the inverse FFT, $\mathrm{y}:=\mathrm{IFFT}(\mathrm{f})$.
10. Take the first n entries in y to obtain $\mathrm{a}:=\mathrm{y}[0: n]$.
11. Aggregate reinsurance is applied a if applicable.

Theory: Why the Algorithm Works

This section explains why the output output $\mathbf{a}=\left(a_{0}, \ldots, a_{m-1}\right)$ has a_{k} very close to $\operatorname{Pr}(A=k b)$.
Fourier transforms provide an alternative way to represent a distribution function. The [Wikipedia](https://en. wikipedia.org/wiki/Fourier_transform) article says:

The Fourier transform of a function is a complex-valued function representing the complex sinusoids that comprise the original function. For each frequency, the magnitude (absolute value) of the complex value represents the amplitude of a constituent complex sinusoid with that frequency, and the argument of the complex value represents that complex sinusoid's phase offset. If a frequency is not present, the transform has a value of 0 for that frequency. The Fourier inversion theorem provides a synthesis process that recreates the original function from its frequency domain representation.

Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for this principle is the Gaussian function: the Fourier transform of a Gaussian function is another Gaussian function.

Generalizations include the discrete-time Fourier transform (DTFT, group $\$ Z \$$), the discrete Fourier transform $\left(\mathrm{DFT}\right.$, group $Z(\bmod N)$) and the Fourier series or circular Fourier transform (group $=S^{1}$, the unit circle being a closed finite interval with endpoints identified). The latter is routinely employed to handle periodic functions. The fast Fourier transform (FFT) is an algorithm for computing the DFT.
The Fourier transform (FT) of a distribution function F is usually written \hat{F}. The FT contains the same information as the distribution and there is a dictionary back and forth between the two, using the inverse FT. Some computations
with distributions are easier to perform using their FT, which is what makes them useful. The FT is like exponentiation for distributions. The exponential and log functions turn (difficult) multiplication into (easy) addition

$$
e^{a} \times e^{b}=e^{a+b}
$$

FTs turn difficult convolution of distributions (addition of the corresponding random variables) into easy multiplication of Fourier transforms. If X_{i} are random variables, $X=X_{1}+X_{2}$, and F_{X} is the distribution of X, then

$$
\widehat{F_{X_{1}+X_{2}}}(t)=\widehat{F_{X_{1}}}(t) \times \widehat{F_{X_{2}}}(t),
$$

where the righthand side is a product of functions. Computing the distribution of a sum of random variables is complicated because you have to consider all different ways an outcome can be split, but it is easy using FTs. Of course, this depends on it being easy to compute the FT and its inverse-which is where FFTs come in.

There are three things going on here:

1. Fourier transform of a function,
2. Discrete Fourier transform of an infinite sequence, and
3. Fast Fourier transform of a finite vector.

Discrete Fourier transforms are a discrete approximation to continuous FTs, formed by sampling at evenly spaced points. The DFT is a sequence, rather than a function. It retains the convolution property of FTs. They are sometimes called discrete cosine transforms (DCT).

The Fast Fourier transform refers to a very fast way to compute finite discrete FTs, which are applied to finite samples of FTs. General usage blurs the distinction between discrete FTs and their computation, and uses FFT as a catchall for both.

Thus, there are four-steps from the continuous to the finite discrete computational strategy (notation explained below):

1. Analytic domain:

$$
f \rightarrow \hat{f} \rightarrow \mathscr{P} \circ \hat{f} \rightarrow \widehat{\mathscr{P} \circ \hat{f}}=: g
$$

2. Discrete approximation:

$$
f \rightarrow f_{b} \rightarrow \hat{f}_{b} \rightarrow \mathscr{P} \circ \hat{f}_{b} \rightarrow \widehat{\mathscr{P} \circ \hat{f}_{b}}=: g_{b}
$$

3. Finite discrete approximation:

$$
f \rightarrow \hat{f_{b, n}} \rightarrow \hat{f_{b, n}} \rightarrow \mathscr{P} \circ \hat{f_{b, n}} \rightarrow \widehat{\mathscr{P} \circ \hat{f_{b, n}}}=: g_{b, n}
$$

4. Finite discrete approximation, periodic inversion:

$$
f \rightarrow \hat{f_{b, n}} \rightarrow \hat{f_{b, n}} \rightarrow \mathscr{P}_{m} \circ \hat{f_{b, n}} \rightarrow \widehat{\mathscr{P}_{m} \circ f \hat{f_{b, n}}}=: g_{b, n, m}
$$

Here is the rationale for each step.

- Step 1 to 2: discretize f because we are working in a digital world, not an analog/analyic one (Strang quote) and because the answers are often not continuous distributions. Discretize at multiples of a sampling interval b. The sampling rate is $1 / b$ samples per unit. The sampled distribution (which no longer has a density) is

$$
f_{b}=\sum_{k} p_{k} \delta_{k b}
$$

f_{b} has Fourier transform

$$
\hat{f}_{b}(t)=\sum_{k} p_{k} e^{-2 \pi i k b t}
$$

If \hat{f} is know analytically it can be sampled directly, see the stable example below. However, many relevant f do not have analytic FTs, e.g., lognormal. At this point, f_{b} is still defined of \mathbb{R}.

- Step 2 to 3: truncate and take a finite discretization because we are working on a digital computer with finite memory.

$$
f_{b, n}=\sum_{k=0}^{n-1} p_{k} \delta_{k b}
$$

Let $P=n b$. Now $f_{b, n}$ is non-zero only on $[0, P)$. Finite discretization combined with an assumption of P periodicity enables the use of FFTs to compute $f_{b, n} \rightarrow \hat{f_{b, n}}$. (In order for a Fourier series to be P-periodic, it can only weight frequencies that are a multiple of $1 / P$ since $\exp (2 \pi i(x+k P) t)=\exp (2 \pi i x t)$ for all integers k iff $\exp (2 \pi i k P t)=1$ iff $P t$ is an integer. Take the integer to be 1 ; higher values correspond to aliasing. Hence Shannon-Nyquist and bandwidth limited functions etc.) Sampling $\widehat{f_{b, n}}(t)$ at $t=0,1 / P, \ldots,(n-1) / P$, requires calculating

$$
\hat{f_{b, n}\left(\frac{l}{P}\right)}=\sum_{k} p_{k} e^{-2 \pi i k b \frac{l}{P}}=\sum_{k} p_{k} e^{-\frac{2 \pi i}{n} k l}
$$

which is exactly what FFTs compute very quickly.

- Step 3 to 4: finite convolution, \mathscr{P}_{m} is computed with a sample of length $m \geq n$, i.e., padding, to control aliasing. We can also use exponential tilting (which must be done in the f domain). $\mathscr{P}_{m} \circ \hat{f_{b, n}}$ is the application of a function to a vector, element-by-element and is easy to compute. $\mathscr{P}_{m} \circ \hat{f_{b, n}} \rightarrow \widehat{\mathscr{P}_{m} \circ \hat{f_{b, n}}}$ can be computed using FFTs, whereas inverting $\mathscr{P} \circ \hat{f_{b, n}}$ would usually be very difficult because it usually has infinite support. The price for using FFTs is assuming g is P-periodic, i.e., introducing aliasing error. For simplicity, assume $m=n$ by padding the samples in Step 2 .

Now we can use the inverse DFT to recover g at the values $k b$:

$$
\begin{align*}
g(k b) & =\sum_{l} \hat{g}\left(\frac{l}{P}\right) e^{2 \pi i k b \frac{l}{P}} \tag{5.1}\\
& =\sum_{l} \hat{g} f\left(\frac{l}{P}\right) e^{\left.\frac{2 \pi i}{(5.2} \cdot 2\right)}
\end{align*}
$$

However, this is an infinite sum (step 3), and we are working with computers, so it needs to be truncated (step 4). What is

$$
\sum_{l=0}^{n-1} \hat{g}\left(\frac{l}{P}\right) e^{\frac{2 \pi i}{n} k l} ?
$$

It is an inverse DFT, that FFTs compute with alacrity. What does it equal?
Define $g_{P}(x)=\sum_{k} g(x+k P)$ to be the P-periodic version of g. If g has finite support contained in $[0, P)$ then $g_{P}=g$. If that is not the case there will be wrapping spill-over, see PICTURE.

Now

$$
\begin{align*}
\hat{g}\left(\frac{l}{P}\right): & =\int_{\mathbb{R}} g(x) e^{-2 \pi i x \frac{l}{P}} d x \tag{5.3}\\
& =\sum_{k} \int_{k P}^{(k+1) P} g(x) e^{-2 \pi i x(15 c(l))} \\
& =\sum_{k} \int_{0}^{P} g(x+k P) e^{\left.-2 \pi i(x+k P) \frac{l}{(55} \pi x\right)} \\
& =\int_{0}^{P} \sum_{k} g(x+k P) e^{-2 \pi i x\left(\frac{l}{(55}(x)\right)} \\
& =\int_{0}^{P} g_{P}(x) e^{\left.-2 \pi i x \frac{l}{(15} \pi x\right)} \\
& =\hat{g_{R}\left(\left(\frac{l}{P}\right)\right.}
\end{align*}
$$

and therefore, arguing backwards and assuming that \hat{g} is quickly decreasing, for large enough n,

$$
\begin{align*}
\sum_{l=0}^{n-1} \hat{g}\left(\frac{l}{P}\right) e^{\frac{2 \pi i}{n} k l} & \approx \sum_{l} \hat{g}\left(\frac{l}{P}\right) e^{\frac{2 \pi i}{n} k l} \tag{5.9}\\
& =\sum_{l} \hat{\left.g_{P}\left(\frac{l}{P}\right) e^{\frac{2 \pi i}{5 n \cdot 1}} 6\right)} \\
& =g(5(\mathbf{D}(\boldsymbol{k})
\end{align*}
$$

Thus the partial sum we can easily compute on the left approximates g_{P} and in favorable circumstances it is close to g.

There are four sources of error in the FFT algorithm. They can be controlled by different parameters:

1. Discretization error $f \leftrightarrow f_{b}$ (really $\hat{f} \leftrightarrow \hat{f}_{b}$): replacing the original distribution with a discretized approximation, controlled by decreasing the bucket size.
2. Truncation error $\hat{f_{b}} \leftrightarrow \hat{f_{b, n}}$: shrinking the support of the severity distribution by right truncation, controlled by increasing the bucket size and/or increasing the number of buckets.
3. Aliasing error $\widehat{\mathscr{P} \circ \hat{f_{b, n}}} \leftrightarrow \widehat{\mathscr{P}_{m} \circ f_{b, n}}$: expect g_{k} get $\sum_{l} g_{k+l n}$: working with only finitely many frequencies in the Fourier domain which results in visible the aggregate wrapping, controlled by padding or tilting severity.
4. FFT algorithm: floating point issues, underflow and (rarely) overflow, hidden by removing numerical "fuzz" after the algorithm has run.
To summarize:

- If we know \hat{f} analyically, we can use this method to estimate a discrete approximation to f. We are estimating $f_{P}(k b)$ not $f(k b)$, so there is always aliasing error, unless f actually has finite support.
- If f is actually discrete, the only error comes from truncating the Fourier series. We can make this as small as we please by taking enough terms in the series. This case is illustrated for the Poisson distribution. This method is also applied by aggregate: the "analytic" chf is $\mathscr{P}_{N}\left(M_{X}(t)\right)$, where $M_{X}(t)$ is the sum of exponentials given above.
- When \hat{f} is known we have a choice between discretizing in the space (loss) or time domain.
- If f is not discrete, there is a discretization and potentially aliasing error. We can control the former with high frequency (small b) sampling. We control the latter with large $P=n b$, arguing for large n or large b (in conflict to managing discretization error).

Using FFT to Invert Characteristic Functions

The use of FFTs to recover the aggregate at the end of Step 4 is entirely generic. It can be used to invert any characteristic function. In this section we provide some of examples.

Invert a gamma distribution from a sample of its characteristic function and compare with the true density. These plots show the inversion is extremely accurate over a very wide range. The top right plot compares the log density, highlighting differences only in the extreme tails.

```
In [1]: from aggregate.extensions import ft_invert
In [2]: import scipy.stats as ss
In [3]: import matplotlib.pyplot as plt
In [4]: df = ft_invert(
    ...: }\quad\operatorname{log}2=6\mathrm{ ,
    ...: chf=lambda alpha, t: (1 - 1j * t) ** -alpha,
    ...: frz_generator=ss.gamma,
    ...: params=[30],
    ...: loc=0,
```


Invert a Poisson distribution with a very high mean. This is an interesting case, because we do not need space for the whole answer, just the effective range of the answer. We can use periodicity to "move" the answer to the right x range. This example reproduces a Poisson with mean 10,000 . The standard deviation is only 100 and so the effective rate of the distribution (using the normal approximation) will be about 9500 to 10500 . Thus a satisfactory approximation can be obtained with only $2^{10}=1024$ buckets.

```
In [5]: import aggregate.extensions.ft as ft
In [6]: df = ft.ft_invert(
    ...: log2=10,
    ...: chf=lambda en, t: np.exp(en * (np.exp(1j * t) - 1)),
    ...: frz_generator=ss.poisson,
    ...: params=[10000],
    ...: loc=0,
    ...: scale=None, # for freq dists, scaling does not apply
    ...: xmax=None, # for freq dists want bs = 1, so xmax=1<<log2
    ...: xshift=9500,
    ...: suptitle='Poisson distribution, large mean computed in smallu
\hookrightarrowspace.')
```

 ... :

Invert a stable distribution. Here there is more aliasing error because the distribution is so thick tailed. There is also more on the left than right because of the asymmetric beta parameter.

```
In [7]: def levy_chf(alpha, beta, t):
    ...: \Phi = np.tan(np.pi * alpha / 2) if alpha != 1 else -2 / np.pi * np.
\hookrightarrowlog(np.abs(t))
    ...: return np.exp(- np.abs(t) ** alpha * (1 - 1j * beta * np.sign(t) * \Phi))
    ...:
In [8]: df = ft.ft_invert(
    ...: log2=12,
    ...: chf=levy_chf,
    ...: frz_generator=ss.levy_stable,
    ...: params=[1.75, 0.3], # alpha, beta
    ...: loc=0,
    ...: scale=1.,
    ...: xmax=1<<8,
    ...: xshift=- (1<<7),
    ...: suptitle='Stable Levy exponent $\\alpha=7/4$, '
    ...: 'slightly skewed')
    ...:
In [9]: f = plt.gcf()
In [10]: ax = f.axes[1]
In [11]: ax.grid(lw=.25, c='w');
```


Fast Fourier Transforms

The trick with FFTs is how they are computed. What they compute is very straightforward and given by a simple matrix multiplication.
The FFT of the $m \times 1$ vector $\mathrm{x}=\left(x_{0}, \ldots, x_{m-1}\right)$ is just another $m \times 1$ vector $\hat{\mathbf{x}}$ whose j th component is

$$
x_{j}=\sum_{k=0}^{m-1} x_{k} \exp (-2 \pi i j k / m)
$$

where $i=\sqrt{-1}$. The coefficients of $\hat{\mathrm{x}}$ are complex numbers. It is easy to see that $\hat{\mathrm{x}}=\mathrm{Fx}$ where

$$
\mathbf{F}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & w & \ldots & w^{m-1} \\
1 & w^{2} & \ldots & w^{2(m-1)} \\
\vdots & & & \vdots \\
1 & w^{m-1} & \ldots & w^{(m-1)^{2}}
\end{array}\right)
$$

is a matrix of complex roots of unity and $w=\exp (-2 \pi i / m)$. This shows there is nothing inherently mysterious about an FFT. The trick is that there is a very efficient algorithm for computing the matrix multiplication [Press et al., 1992]. Rather than taking time proportional to m^{2}, as one would expect, it can be computed in time proportional to $m \log (m)$. For large values of m, the difference between $m \log (m)$ and m^{2} time is the difference between practically possible and practically impossible.
The inverse FFT to recovers x from its transform \hat{x}. The inverse FFT is computed using the same equation as the FFT with F^{-1} (matrix inverse) in place of F. It is easy to see that inverse equals

$$
\mathrm{F}^{-1}=\frac{1}{m}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & w^{-1} & \ldots & w^{-(m-1)} \\
1 & w^{2} & \ldots & w^{2(m-1)} \\
\vdots & & & \vdots \\
1 & w^{-(m-1)} & \ldots & w^{-(m-1)^{2}}
\end{array}\right)
$$

The (j, j) element of $m \mathrm{FF}^{-1}$ is

$$
\sum_{g} w^{j g} w^{-j g}=\sum_{g} 1=m
$$

and the $(j, k), j \neq k$ element is

$$
\sum_{g} w^{j g} w^{-g k}=\sum_{g} w^{g(j-k)}=0 .
$$

The inversion process can also be computed in $m \log (m)$ time because the matrix equation is the same.
How does the FFT compute convolutions? Given two probability vectors for outcomes $k=0,1, \ldots, n-1$, say $\mathrm{p}=\left(p_{0}, \ldots, p_{n-1}\right)$ and $\mathbf{q}=\left(q_{0}, \ldots, q_{n-1}\right)$, the product of the k th elements of the FFTs equals

$$
\left(\sum_{g} p_{g} w^{g k}\right)\left(\sum_{h} p_{h} w^{h k}\right)=\sum_{m=0}^{n-1}\left(\sum_{\substack{g, h \\ g+h \equiv m(n)}} p_{g} q_{h}\right) w^{k m}
$$

is the k th element of the FFT of the wrapped convolution of \mathbf{p} and \mathbf{q}. For example, if $n=4$ and $m=0$, the inner sum on the right equals

$$
p_{0} q_{0}+p_{1} q_{3}+p_{2} q_{2}+p_{3} q_{1}
$$

which can be interpreted as

$$
p_{0} q_{0}+p_{1} q_{-1}+p_{2} q_{-2}+p_{3} q_{-3}
$$

in arithmetic module n.
In the convolution algorithm, the product of functions $\widehat{F_{X_{1}}} \times \widehat{F_{X_{2}}}$ is replaced by the component-by-component product of two vectors, which is easy to compute. Thus, to convolve two discrete distributions, represented as $\mathrm{p}=$ $\left(p_{0}, \ldots, p_{m-1}\right)$ and $\mathbf{q}=\left(q_{0}, \ldots, q_{m-1}\right)$ simply

- Take the FFT of each vector, $\hat{\mathrm{p}}=\mathrm{Fp}$ and $\hat{\mathrm{q}}=\mathrm{Fq}$
- Compute the component-by-component product $\mathbf{z}=\hat{\mathrm{p}} \hat{\mathrm{q}}$
- Compute the inverse FFT F^{-1} z.

The answer is the exact convolution of the two input distributions, except that sum values wrap around: the extreme right tail re-appears as probabilities around 0 . This problem is called aliasing (the same as the wagon-wheel effect in old Westerns), but it can be addressed by padding the input vectors.

Here is a simple example of wrapping, using a compound Poisson distribution with an expected claim count of 10 and severity taking the values $0,1,2,3$, or 4 equally often. The aggregate has a mean of 20 and is computed using only 32 buckets. This is not enough space, and the right hand part of the distribution wraps around. The components are shown in the middle and how they combine on the right.

```
In [12]: ft.fft_wrapping_illustration(ez=10, en=2)
```


The next figure illustrates more extreme FFT wrapping. It shows an attempt to model a compound Poisson distribution with a mean of 80 using only 32 buckets. The result is the straight line on the left. The middle plot shows the true distribution and the vertical slices of width 32 that are combined to get the total. These are shown shifted on the left. The right plot zooms into the rate $0: 32$, and shows how the wrapped components sum to the result on the left. This is a good example of how FFT methods can fail and can appear to give inexplicable results.
In [13]: ft.fft_wrapping_illustration(ez=10, en=8)

It is not necessary to understand the details of FTs to use aggregate although they are fascinating, see for example Körner [2022]. In probability, the moment generating functions and characteristic function are based on FTs. They are discussed in any serious probability text.

FFT Routines

Computer systems offer a range of FFT routines. aggregate uses two functions from scipy.fft called scipy.fft.rfft() and scipy.fft.irfft(). There are similar functions in numpy.fft. They are tailored to taking FFTs of vectors of real numbers (as opposed to complex numbers). The FFT routine automatically handles padding the input vector. The inverse transform returns real numbers only, so there is no need to take the real part to remove noise-level imaginary parts. It is astonishing that the whole aggregate library pivots on a single line of code:

```
agg_density = rifft(\mathscr P(rfft(p)))
```

Obviously, a lot of work is done to marshal the input, but this line is where the magic occurs.
The FFT routines are accurate up to machine noise, of order $1 \mathrm{e}-16$. The noise can be positive or negative-the latter highly undesirable in probabilities. It appears random and does not accumulate undesirably in practical applications. It is best to strip out the noise, setting to zero all values with absolute value less than machine epsilon (numpy . finfo(float).esp). The remove_fuzz option controls this behavior. It is set True by default. CHECK SURE?

5.4.5 Floating Point Arithmetic and Rounding Errors

The internal workings of computer floating point arithmetic can cause unexpected problems. You can read no further in this section if you promise to obey

Warning: Only use a bucket size b with an exact floating point representation. It must have an exact binary representation as a fraction a / b where b is a power of two.
$1 / 3,1 / 5$ and $1 / 10$ are not binary floats.

For those who choose to continue, this section presents random selection of results about floats that tripped me up as I wrote aggregate.

Floating point arithmetic is not associative!

```
In [1]: x = .1 + (0.6 + 0.3)
In [2]: y = (0.1 + 0.6) + 0.3
In [3]: x, x.as_integer_ratio(), y, y.as_integer_ratio()
Out[3]: (0.99999999999999999, (9007199254740991, 9007199254740992), 1.0, (1, 1))
```

This fact can be used to create sequences with nasty accumulating errors.

Exercise Redux

Recall the exercise to compute quantiles of a dice roll. aggregate produces the consistent results-if we look carefully and account for the foibles of floating point numbers. The case $p=0.1$ is easy. But the case $p=1 / 6$ appears wrong. There are two ways we can model the throw of a dice: with frequency 1 to 6 and fixed severity 1 , or as fixed frequency 1 and severity 1 to 6 . They give different answers. The lower quantile is wrong in the first case (it equals 1) and the upper quantile in the second (2).

```
In [4]: from aggregate import build, qd
In [5]: import pandas as pd
In [6]: d = build('agg Dice dfreq [1:6] dsev [1]')
In [7]: print(d.q(0.1, 'lower'), d.q(0.1, 'upper'))
1.0 1.0
In [8]: print(d.q(1/6, 'lower'), d.q(1/6, 'upper'))
1.0 2.0
In [9]: d2 = build('agg Dice2 dfreq [1] dsev [1:6]')
In [10]: print(d2.q(1/6, 'lower'), d2.q(1/6, 'upper'))
1.0 2.0
```

These differences are irritating! The short answer is to adhere to the warning above.
Here's the long answer, if you want to know. Looking at the source code shows that the quantile function is implemented as a previous or next look up on a dataframe of distinct values of the cumulative distribution function. These two dataframes for the different dice models are:

```
In [11]: ff = lambda x: f'{x:. 25g}'
In [12]: qd(d.density_df.query('p_total > 0')[['p', 'F']], float_format=ff)
    P F
loss
1.000 0.1666666666666666574148081 0.1666666666666666574148081
2.000 0.1666666666666666296592325 0.333333333333333259318465
3.000 0.1666666666666666296592325 0.499999999999999988889776975
4.000 0.1666666666666666296592325 0.66666666666666651863693
5.000 0.1666666666666666574148081 0.8333333333333331482961626
6.000 0.1666666666666666574148081 0.99999999999999997779553951
In [13]: qd(d2.density_df.query('p_total > 0')[['p', 'F']], float_format=ff)
    p F
loss
1.000 0.166666666666666740681535 0.166666666666666740681535
2.000 0.1666666666666666296592325 0.3333333333333333703407675
3.000 0.1666666666666666296592325 0.5
4.000 0.166666666666666740681535 0.666666666666666740681535
5.000 0.166666666666666740681535 0.83333333333333348136307
6.000 0.16666666666666651863693 1
In [14]: print(f'\n{d.cdf(1):.25f}< {1/6:.25f}< 1/6< {d2.cdf(1):.25f}')
0.1666666666666666574148081 < 0.16666666666666666574148081< < < < 0.
\hookrightarrow1666666666666667406815350
```

Based on these numbers, the reported quantiles are correct. $p=1 / 6$ is strictly greater than $\mathrm{d} . \mathrm{cdf}(1)$ and strictly less than $\mathrm{d} 2 . \operatorname{cdf}(1)$, as shown in the last row! d and d 2 are different because the former runs through the FFT
routine to convolve the trivial severity, whereas the latter does not.

Exercise

X is a random variable defined on a sample space with ten equally likely events. The event outcomes are $0,1,1,1,2,3,4,8,12,25$. Compute $\operatorname{VaR}_{p}(X)$ for all p.

```
In [15]: a = build('agg Ex.50 dfreq [1] '
    ...: 'dsev [l0 1 2 3 3 4 8 12 25] [.1 . 3 .1 .1 .1 .1 .1 .1]')
    .... :
In [16]: a.plot()
In [17]: print(a.q(0.05), a.q(0.1), a.q(0.2), a.q(0.4),
    \ldots..: a.q(0.4, 'upper'), a.q(0.41), a.q(0.5))
    .... :
0.0 1.0 1.0 1.0 2.0 2.0 2.0
In [18]: qd(a.density_df.query('p_total > 0')[['p', 'F']],
    ....: float_format=ff)
    .... :
                            p F
loss
0.000 0.09999999999999997779553951 0.099999999999999997779553951
1.000 0.300000000000000044408921 0.40000000000000000222044605
2.000 0.09999999999999997779553951 0.5
3.000 0.099999999999999997779553951 0.59999999999999999777955395
4.000 0.09999999999999997779553951 0.699999999999999955591079
8.000 0.0999999999999999639177517 0.7999999999999999333866185
12.000 0.09999999999999997779553951 0.899999999999999911182158
25.000 0.100000000000000088817842
```


Solution. On the graph, fill in the vertical segments of the distribution function. Draw a horizontal line at height p and find its intersection with the completed graph. There is a unique solution for all p except $0.1,0.4,0.5, \ldots, 0.9$. Consider $p=0.4$. Any x satisfying $\operatorname{Pr}(X<x) \leq 0.4 \leq \operatorname{Pr}(X \leq x)$ is a 0.4 -quantile. By inspection the solutions are $1 \leq x \leq 2$. VaR is defined as the lower quantile, $x=1$. The 0.41 quantile is $x=2$. VaRs are not interpolated in this problem specification. The loss 25 is the p-VaR for any $p>0.9$. The apparently errant numbers for aggregate (the upper quantile at 0.1 equals 2) are explained by the float representations. The float representation of 0.4 is $3602879701896397 / 9007199254740992$ which actually equals 0.4000000000000000222044605 .

5.5 Distortions and Spectral Risk Measures

Objectives: Introduce distortion functions and spectral risk measures.
Audience: Readers looking for a deeper technical understanding.
Prerequisites: Knowledge of probability and calculus; insurance terminology.
See also: 5_x_distortion_calculations.
Contents:

- Helpful References
- Distortion Function and Spectral Risk Measures
- Layer Densities
- The Equal Priority Default Rule
- Expected Loss Payments at Different Asset Levels
- The Natural Allocation Premium
- Properties of Alpha, Beta, and Kappa
- Properties of the Natural Allocation
- The Natural Allocation of Equity
- Appendix: Notation and Conventions

5.5.1 Helpful References

- Mildenhall and Major [2022]
- The text in this section is derived from Major and Mildenhall [2020].
- Mildenhall [2022]

5.5.2 Distortion Function and Spectral Risk Measures

We define SRMs and recall results describing their different representations. By De Waegenaere et al. [2003] SRMs are consistent with general equilibrium and so it makes sense to consider them as pricing functionals. The SRM is interpreted as the (ask) price for an insurer-written risk transfer.

Definition. A distortion function is an increasing concave function $g:[0,1] \rightarrow[0,1]$ satisfying $g(0)=0$ and $g(1)=1$.

A spectral risk measure ρ_{g} associated with a distortion g acts on a non-negative random variable X as

$$
\rho_{g}(X)=\int_{0}^{\infty} g(S(x)) d x
$$

The simplest distortion if the identity $g(s)=s$. Then $\rho_{g}(X)=\mathrm{E}[X]$ from the integration-by-parts identity

$$
\int_{0}^{\infty} S(x) d x=\int_{0}^{\infty} x d F(x)
$$

Other well-known distortions include the proportional hazard $g(s)=s^{r}$ for $0<r \leq 1$, its dual $g(s)=1-(1-s)^{r}$ for $r \geq 1$, and the Wang transform $g(s)=\Phi\left(\Phi^{-1}(s)+\lambda\right)$ for $\lambda \geq 0$, Wang [1995].

Since g is concave $g(s) \geq 0 g(0)+s g(1)=s$ for all $0 \leq s \leq 1$, showing ρ_{g} adds a non-negative margin.
Going forward, g is a distortion and ρ is its associated distortion risk measure. We interpret ρ as a pricing functional and refer to $\rho(X)$ as the price or premium for insurance on X.

SRMs are translation invariant, monotonic, subadditive, and positive homogeneous, and hence coherent, Acerbi [2002]. In addition, they are law invariant and comonotonic additive. In fact, all such functionals are SRMs. As well has having these properties, SRMs are powerful because we have a complete understanding of their representation and structure, which we summarize in the following theorem.

Theorem. Subject to ρ satisfying certain continuity assumptions, the following are equivalent.

1. ρ is a law invariant, coherent, comonotonic additive risk measure.
2. $\rho=\rho_{g}$ for a concave distortion g.
3. ρ has a representation as a weighted average of TVaRs for a measure μ on $[0,1]: \rho(X)=\int_{0}^{1} \operatorname{TVaR}_{p}(X) \mu(d p)$.
4. $\rho(X)=\max _{\mathrm{Q} \in \mathscr{Q}} \mathrm{E}_{\mathrm{Q}}[X]$ where \mathscr{Q} is the set of (finitely) additive measures with $\mathrm{Q}(A) \leq g(\mathrm{P}(A))$ for all measurable A.
5. $\rho(X)=\max _{Z \in \mathscr{Z}} \mathrm{E}[X Z]$ where \mathscr{Z} is the set of positive functions on Ω satisfying $\int_{p}^{1} q_{Z}(t) d t \leq g(1-p)$, and q_{Z} is the quantile function of Z.

The Theorem combines results from Föllmer and Schied [2011] (4.79, 4.80, 4.93, 4.94, 4.95), Delbaen [2000], Kusuoka [2001], and Carlier and Dana [2003]. It requires that ρ is continuous from above to rule out the possibility $\rho=$ sup. In certain situations, the sup risk measure applied to an unbounded random variable can only be represented as a sup over a set of test measures and not a max. Note that the roles of from above and below are swapped from Föllmer and Schied [2011] because they use the asset, negative is bad, sign convention whereas we use the actuarial, positive is bad, convention.
The relationship between μ and g is given by Föllmer and Schied [2011] 4.69 and 4.70. The elements of \mathscr{Z} are the Radon-Nikodym derivatives of the measures in \mathscr{Q}.

The next four sections introduce the idea of layer densities and prove that SRM premium can be allocated to policy in a natural and unique way.

5.5.3 Layer Densities

Risk is often tranched into layers that are then insured and priced separately. Meyers [1996] describes layering in the context of liability increased limits factors and Culp and O'Donnell [2009], Mango et al. [2013] in the context of excess of loss reinsurance.

Define a layer y excess x by its payout function $I_{(x, x+y]}(X):=(X-x)^{+} \wedge y$. The expected layer loss is

$$
\begin{aligned}
\mathrm{E}\left[I_{(x, x+y]}(X)\right] & =\int_{x}^{x+y}(t-x) d F(t)+y S(x+y) \\
& =\int_{x}^{x+y} t d F(t)+\left.t S(t)\right|_{x} ^{x+y} \\
& =\int_{x}^{x+y} S(t) d t
\end{aligned}
$$

Based on this equation, Wang [1996] points out that S can be interpreted as the layer loss (net premium) density. Specifically, S is the layer loss density in the sense that $S(x)=d / d x\left(\mathrm{E}\left[I_{(0, x]}(X)\right]\right)$ is the marginal rate of increase in expected losses in the layer at x. We use density in this sense to define premium, margin and equity densities, in addition to loss density.

Clearly $S(x)$ equals the expected loss to the cover $1_{\{X>x\}}$. By scaling, $S(x) d x$ is the close to the expected loss for $I_{(x, x+d x]}$ when $d x$ is very small; Bodoff [2007] calls these infinitesimal layers.

Wang [1996] goes on to interpret

$$
\int_{x}^{x+y} g(S(t)) d t
$$

as the layer premium and hence $g(S(x))$ as the layer premium density. We write $P(x):=g(S(x))$ for the premium density.

We can decompose X into a sum of thin layers. All these layers are comonotonic with one another and with X, resulting in an additive decomposition of $\rho(X)$, since ρ is comonotonic additive. The decomposition mirrors the definition of ρ as an integral.

The amount of assets a available to pay claims determines the quality of insurance, and premium and expected losses are functions of a. Premiums are well-known to be sensitive to the insurer's asset resources and solvency, Phillips et al. [1998]. Assets may be infinite, implying unlimited cover. When a is finite there is usually some chance of default. Using the layer density view, define expected loss \bar{S} and premium \bar{P} functions as

$$
\begin{aligned}
\bar{S}(a) & =\mathrm{E}[X \wedge a]=\int_{0}^{a} S(x) d x \\
\bar{P}(a) & =\rho(X \wedge a)=\int_{0}^{\infty} g\left(S_{X \wedge a}(x)\right) d x \\
& =\int_{0}^{a} g\left(S_{X}(x)\right) d x
\end{aligned}
$$

Margin is $\bar{M}(a):=\bar{P}(a)-\bar{S}(a)$ and margin density is $M(a)=d \bar{M}(a) / d a$. Assets are funded by premium and equity $\bar{Q}(a):=a-\bar{P}(a)$. Again $Q(a)=d \bar{Q} / d a=1-P(a)$. Together S, M, and Q give the split of layer funding between expected loss, margin and equity. Layers up to a are, by definition, fully collateralized. Thus $\rho(X \wedge a)$ is the premium for a defaultable cover on X supported by assets a, whereas $\rho(X)$ is the premium for an unlimited, default-free cover.

The layer density view is consistent with more standard approaches to pricing. If X is a Bernoulli risk with $\operatorname{Pr}(X=$ $1)=s$ and expected loss cost s, then $\rho(X)=g(s)$ can be regarded as pricing a unit width layer with attachment probability s. In an intermediated context, the funding constraint requires layers to be fully collateralized by premium plus equity-without such funding the insurance would not be credible since the insurer has no other source of funds.

Given g we can compute insurance market statistics for each layer. The loss, premium, margin, and equity densities are $s, g(s), g(s)-s$ and $1-g(s)$. The layer loss ratio is $s / g(s)$ and $(g(s)-s) /(1-g(s))$ is the layer return on equity. These quantities are illustrated in the next figure for a typical distortion function. The corresponding statistics for ground-up covers can be computed by integrating densities.

```
In [1]: from aggregate.extensions.pir_figures import fig_10_3
In [2]: fig_10_3()
```


For an insured risk, we regard the margin as compensation for ambiguity aversion and associated winner's curse drag. Both of these effects are correlated with risk, so the margin is hard to distinguish from a risk load, but the rationale is different. Again, recall, although ρ is non-additive and appears to charge for diversifiable risk, De Waegenaere et al. [2003] assures us the pricing is consistent with a general equilibrium.

The layer density is distinct from models that vary the volume of each unit in a homogeneous portfolio model. Our portfolio is static. By varying assets we are implicitly varying the quality of insurance.

5.5.4 Portfolio Pricing with Spectral Risk Measures

Taken as read: a painful discussion that markets set prices, not actuaries and models. Pricing here means valuing according to some model. For actuaries, valuation is a term of art it means reserving to a life actuary. Pricing actuaries understanding that they are just determining a model value. Thus we will refer to the model price.

Several methods apply a distortion g to price by computing

$$
\rho_{g}(X)=\int g(S(t)) d t
$$

notably:

1. Aggregate: price, apply_distortion
2. Portfolio: price, apply_distortion, (called by analyze distortion)
3. Distortion: price, price2
4. Working by hand using density_df.p_total.

All of these methods use the same approach, the integral is approximated as a left Riemann sum:

$$
\int_{0}^{\infty} g(S(t)) d t \approx \sum_{k=0} n g(S(k b)) b
$$

The implementation computes

- S as 1 - p_total.cumsum(),
- $g S=\operatorname{d.g}(S)$, and
- (gS.loc[:a - bs] * np.diff(S.index)).sum() or .cumsum().iloc[-1].

The p_total. cumsum () idiom automatically accounts for the case where the output distribution is not normalized (sums to <1). Using sum vs. cumsum is usually an $\mathrm{O}(1 \mathrm{e}-16)$ difference. These methods all use the forward difference of $d t$ and match against the unlagged values of S or $g S$ (per PIR p. 272-3). The Aggregate method prepends 0 and then computes a cumsum, so the a index gives the right value. Remember, pandas. Series. loc [: a] includes the element with index a (whereas iloc [:n] does not). When a is given, the series includes a (based on $\operatorname{loc}[: a]$) and the last value is dropped from the sum product.

The next block of code provides a reconciliation of methods. Build an aggregate and put it in a Portfolio object to expose calibrate_distortions.

```
In [3]: from aggregate import Portfolio, build, qd
In [4]: import pandas as pd
In [5]: a = build('agg CommAuto '
    ...: '10 claims '
    ...: '10000 xs 0 '
    ...: 'sev lognorm 50 cv 4 '
    ...: 'poisson')
    ...:
In [6]: qd(a)
        E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 
Agg 498.04 498.03-4.6559e-06 1.179 1.179 6.0196 6.0195
log2 = 16, bandwidth = 1/2, validation: not unreasonable.
In [7]: pa = Portfolio('test', [a])
```

(continued from previous page)
In [8]: pa.update $(\log 2=16, \mathrm{bs}=1 / 4)$

In [9]: qd(pa)

| | | E [X] | t E[X] | Err E[X] | CV (X) | Est CV(X) | Skew (X) | Est Skew (X) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| unit | X | | | | | | | |
| CommAuto | Freq | 10 | | | 0.31623 | | 0.31623 | |
| | Sev | 49.804 | 49.804 | $-3.0452 e-07$ | 3.5917 | 3.5918 | 20.434 | 20.434 |
| | Agg | 498.04 | 498.04 | $-1.8636 e-06$ | 1.179 | 1.179 | 6.0196 | 6.0168 |
| total | Freq | 10 | | | 0.31623 | | 0.31623 | |
| | Sev | 49.804 | 49.804 | -3.0452e-07 | 3.5917 | | 20.434 | |
| | Agg | 498.04 | 498.03 | -1.655e-05 | 1.179 | 1.1788 | 6.0196 | 6.0109 |
| $\log 2=16$, bandwidth $=1 / 4$, validation: fails agg mean error >> sev, possible $\rightarrow a l i a s i n g ; ~ t r y ~ l a r g e r ~ b s . ~$ | | | | | | | | |

Determine distortion parameters to achieve a 10% return at 99 percentile capital, and display them. Pull out the achieved pricing.

```
In [10]: pa.calibrate_distortions(ROEs=[0.1], Ps=[0.99], strict='ordered');
In [11]: d = pa.dists['dual']
In [12]: qd(pa.distortion_df)
@error
a LR method
2.745k 700.875m ccoc 0.0099992 482.03 687.76 0.33431 2057.2 0.1 0.1
@ 0
7053e-12 ph 0.0099992 482.03 687.76 0.33431 2057.2 0.1 0.68741 1.
wang 0.0099992 482.03 687.76 0.33431 2057.2 0.1 0.43983 2.
\hookrightarrow58e-11
    dual 0.0099992 482.03 687.76 0.33431 2057.2 0.1 1.9436-1.
41369e-13
    tvar 0.0099992 482.03 687.76 0.33431 2057.2 0.1 0.39096 8.
\hookrightarrow1372e-06
In [13]: f"Exact premium {pa.distortion_df.iloc[0, 2]:.15f}"
Out[13]: 'Exact premium 687.755319984361222'
```

Compute pricing in the four ways described above.

```
In [14]: dm = pa.price(.99, d)
In [15]: f'Exact value {dm.price:.15f}'
Out[15]: 'Exact value 687.755319984360540'
In [16]: bit = a.density_df[['loss', 'p_total', 'S']]
In [17]: bit['aS'] = 1 - bit.p_total.cumsum()
In [18]: bit['gS'] = d.g(bit.S)
In [19]: bit['gaS'] = d.g(bit.aS)
In [20]: test = pd.Series((d.price(bit.loc[:a.q(0.99), 'p_total'], kind='both')[-
@1],
    ...: d.price(a.density_df.p_total, a.q(0.99), kind='both')[-
\hookrightarrow1],
```

(continued from previous page)

```
    ...: d.price2(bit.p_total).loc[a.q(0.99)].ask,
    ...: d.price2(bit.p_total, a.q(0.99)).ask.iloc[0],
    ...: a.price(0.99, d).iloc[0, 1],
    ....: dm.price,
    ...: bit.loc[:a.q(0.99)-a.bs, 'gS'].sum() * a.bs,
    ...: bit.loc[:a.q(0.99)-a.bs, 'gS'].cumsum().iloc[-1] * a.bs,
    \ldots..: bit.loc[:a.q(0.99)-a.bs, 'gaS'].sum() * a.bs,
    ...: bit.loc[:a.q(0.99)-a.bs, 'gaS'].cumsum().iloc[-1] * a.
↔bs),
    ....: index=['distortion.price',
    ....: 'distortion.price with a',
    ....: 'distortion.price2, find a',
    ...: 'distortion.price2(a)',
    ....: 'Aggregate.price',
    ....: 'Portfolio.price',
    ....: 'bit sum',
    ....: 'bit cumsum',
    ....: 'bit sum alt S',
    ...: 'bit cumsum alt S'
    .... :
    ])
    .... :
```

Display the results and the relative difference to the largest price.

```
In [21]: qd(test.sort_values(),
    ....: float_format=lambda x: f'{x:.15f}')
    .... :
distortion.price2(a)
    687.755319984360540
distortion.price2, find a 687.755319984360540
Portfolio.price 687.755319984360540
Aggregate.price 687.755319984360540
bit cumsum 687.755319984360540
bit cumsum alt S 687.755319984360540
distortion.price 687.755319984361108
distortion.price with a 687.755319984361108
bit sum
bit sum alt S 687.755319984361108
In [22]: qd(test.sort_values() / test.sort_values().iloc[-1] - 1,
    ....: float_format=lambda x: f'{x:.6e}')
    .... :
distortion.price2(a)
-7.771561e-16
distortion.price2, find a -7.771561e-16
Portfolio.price
Aggregate.price -7.771561e-16
bit cumsum -7.771561e-16
-7.771561e-16
bit cumsum alt S -7.771561e-16
distortion.price 0.000000e+00
distortion.price with a 0.000000e+00
bit sum 0.000000e+00
bit sum alt S 0.000000e+00
```


5.5.5 The Equal Priority Default Rule

If assets are finite and the provider has limited liability we need to to determine policy-level cash flows in default states before we can determine the fair market value of insurance. The most common way to do this is using equal priority in default.

Under limited liability, total losses are split between provider payments and provider default as

$$
X=X \wedge a+(X-a)^{+}
$$

Next, actual payments $X \wedge a$ must be allocated to each policy.
X_{i} is the amount promised to i by their insurance contract. Promises are limited by policy provisions but are not limited by provider assets. At the policy level, equal priority implies the payments made to, and default borne by, policy i are split as

$$
\begin{aligned}
X_{i} & =X_{i} \frac{X \wedge a}{X}+X_{i} \frac{(X-a)^{+}}{X} \\
& =(\text { payments to policy } i)+(\text { default borne by policy } i) .
\end{aligned}
$$

Therefore the payments made to policy i are given

$$
X_{i}(a):=X_{i} \frac{X \wedge a}{X}= \begin{cases}X_{i} & X \leq a \\ X_{i} \frac{a}{X} & X>a\end{cases}
$$

$X_{i}(a)$ is the amount actually paid to policy i. It depends on a, X and X_{i}. The dependence on X is critical. It is responsible for almost all the theoretical complexity of insurance pricing.
It is worth reiterating that with this definition $\sum_{i} X_{i}(a)=X \wedge a$.

Example.

Here is an example illustrating the effect of equal priority. Consider a certain loss $X_{0}=1000$ and X_{1} given by a lognormal with mean 1000 and coefficient of variation 2.0. Prudence requires losses be backed by assets equal to the 0.9 quantile. On a stand-alone basis X_{0} is backed by $a_{0}=1000$ and is risk-free. X_{1} is backed by $a_{1}=2272$ and the recovery is subject to a considerable haircut, since $\mathrm{E}\left[X_{1} \wedge 2272\right]=732.3$. If these risks are pooled, the pool must hold $a=a_{0}+a_{1}$ for the same level of prudence. When $X_{1} \leq a_{1}$ both units are paid in full. But when $X_{1}>a_{1}, X_{0}$ receives $1000\left(a /\left(1000+X_{1}\right)\right)$ and X_{1} receives the remaining $X_{1}\left(a /\left(1000+X_{1}\right)\right)$. Payment to both units is pro rated down by the same factor $a /\left(1000+X_{1}\right)$-hence the name equal priority. In the pooled case, the expected recovery to X_{0} is 967.5 and 764.8 to X_{1}. Pooling and equal priority result in a transfer of 32.5 from X_{0} to X_{1}. This example shows what can occur when a thin tailed unit pools with a thick tailed one under a weak capital standard with equal priority. We shall see how pricing compensates for these loss payment transfers, with X_{1} paying a positive margin and X_{0} a negative one. The calculations are performed in aggregate as follows. First, set up the Portfolio:

```
In [23]: from aggregate import build, qd
In [24]: port = build('port Dist:EqPri '
    ...: 'agg A 1 claim dsev [1000] fixed '
    ...: 'agg B 1 claim sev lognorm 1000 cv 2 fixed',
    ...: bs=4)
    .... :
In [25]: qd(port)
```


| Agg | 1000 | 999.91 | $-8.6294 e-05$ | 2 | 1.9921 | 14 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

var_dict () returns the 90th percentile points by unit and in total.

```
In [26]: port.var_dict(.9)
Out[26]: {'A': 1000.0, 'B': 2272.0, 'total': 3272.0}
```

Extract the relevant fields from density_df for the allocated loss recoveries. The first block shows standalone, the second pooled.

```
In [27]: qd(port.density_df.filter(regex='S|lev_[ABt]').loc[[port.B.q(0.9)]])
S lev_total lev_A lev_B
In [28]: qd(port.density_df.filter(regex='S|exa_[ABt]').loc[[port.q(0.9)]])
S exa_total exa_A exa_B
3.272k 0.099939 1732.4 967.51 764.85
```


5.5.6 Expected Loss Payments at Different Asset Levels

Expected losses paid to policy i are $\bar{S}_{i}(a):=\mathrm{E}\left[X_{i}(a)\right] . \bar{S}_{i}(a)$ can be computed, conditioning on X, as

$$
\bar{S}_{i}(a)=\mathrm{E}\left[\mathrm{E}\left[X_{i}(a) \mid X\right]\right]=\mathrm{E}\left[X_{i} \mid X \leq a\right] F(a)+a \mathrm{E}\left[\left.\frac{X_{i}}{X} \right\rvert\, X>a\right] S(a)
$$

Because of its importance in allocating losses, define

$$
\alpha_{i}(a):=\mathrm{E}\left[X_{i} / X \mid X>a\right] .
$$

The value $\alpha_{i}(x)$ is the expected proportion of recoveries by unit i in the layer at x. Since total assets available to pay losses always equals the layer width, and the chance the layer attaches is $S(x)$, it is intuitively clear $\alpha_{i}(x) S(x)$ is the loss density for unit i, that is, the derivative of $\bar{S}_{i}(x)$ with respect to x. We now show this rigorously.

Proposition. Expected losses to policy i under equal priority, when total losses are supported by assets a, is given by

$$
\bar{S}_{i}(a)=\mathrm{E}\left[X_{i}(a)\right]=\int_{0}^{a} \alpha_{i}(x) S(x) d x
$$

and so the policy loss density at x is $S_{i}(x):=\alpha_{i}(x) S(x)$.
Proof. By the definition of conditional expectation, $\alpha_{i}(a) S(a)=\mathrm{E}\left[\left(X_{i} / X\right) 1_{X>a}\right]$. Conditioning on X, using the tower property, and taking out the functions of X on the right shows

$$
\alpha_{i}(a) S(a)=\mathrm{E}\left[\mathrm{E}\left[\left(X_{i} / X\right) 1_{X>a} \mid X\right]\right]=\int_{a}^{\infty} \mathrm{E}\left[X_{i} \mid X=x\right] \frac{f(x)}{x} d x
$$

and therefore

$$
\frac{d}{d a}\left(\alpha_{i}(a) S(a)\right)=-\mathrm{E}\left[X_{i} \mid X=a\right] \frac{f(a)}{a}
$$

Now we can use integration by parts to compute

$$
\begin{aligned}
\int_{0}^{a} \alpha_{i}(x) S(x) d x & =\left.x \alpha_{i}(x) S(x)\right|_{0} ^{a}+\int_{0}^{a} x \mathrm{E}\left[X_{i} \mid X=x\right] \frac{f(x)}{x} d x \\
& =a \alpha_{i}(a) S(a)+E\left[X_{i} \mid X \leq a\right] F(a) \\
& =\bar{S}_{i}(a)
\end{aligned}
$$

Therefore the policy i loss density in the asset layer at a, i.e. the derivative of cref \{eq:eloss-main \} with respect to a, is $S_{i}(a)=\alpha_{i}(a) S(a)$ as required.

Note that S_{i} is not the survival function of $X_{i}(a)$ nor of X_{i}.

5.5.7 The Natural Allocation Premium

Premium under ρ is given by $\int_{0}^{a} g(S)$. We can interpret $g(S(a))$ as the portfolio premium density in the layer at a. We now consider the premium and premium density for each policy.
Using integration by parts we can express the price of an unlimited cover on X as

$$
\left.\rho(X)=\int_{0}^{\infty} g(S(x)) d x=\int_{0}^{\infty} x g^{\prime}(S(x)) f(x) d x=\mathrm{E}\left[X g^{\prime}(S(X))\right)\right]
$$

It is important that this integral is over all $x \geq 0$ so the $\left.x g(S(x))\right|_{0} ^{a}$ term disappears. The formula makes sense because a concave distortion is continuous on $(0,1]$ and can have at most countably infinitely many points where it is not differentiable (it has a kink). In total these points have measure zero, Borwein and Vanderwerff [2010], and we can ignore them in the integral. For more details see Dhaene et al. [2012].

Combining the integral and the properties of a distortion function, $g^{\prime}(S(X))$ is the Radon-Nikodym derivative of a measure Q with $\rho(X)=\mathrm{E}_{\mathrm{Q}}[X]$. In fact, $\mathrm{E}_{\mathrm{Q}}[Y]=\mathrm{E}\left[Y g^{\prime}(S(X))\right]$ for all random variables Y. In general, any non-negative function Z (measure Q) with $\mathrm{E}[Z]=1$ and $\rho(X)=\mathrm{E}[X Z]$ ($=\mathrm{E}_{\mathrm{Q}}[X]$) is called a contact function (subgradient) for ρ at X, see Shapiro et al. [2009]. Thus $g^{\prime}(S(X))$ is a contact function for ρ at X. The name subgradient comes from the fact that $\rho(X+Y) \geq \mathrm{E}_{\mathrm{Q}}[X+Y]=\rho(X)+\mathrm{E}_{\mathrm{Q}}[Y]$, by the representation theorem. The set of subgradients is called the subdifferential of ρ at X. If there is a unique subgradient then ρ is differentiable. Delbaen [2000] Theorem 17 shows that subgradients are contact functions.
We can interpret $g^{\prime}(S(X))$ as a state price density specific to the X, suggesting that $\mathrm{E}\left[X_{i} g^{\prime}(S(X))\right]$ gives the value of the cash flows to policy i. This motivates the following definition.

Definition. For $X=\sum_{i} X_{i}$ with $\mathrm{Q} \in \mathcal{Q}$ so that $\rho(X)=\mathrm{E}_{\mathrm{Q}}[X]$, the natural allocation premium to policy X_{j} as part of the portfolio X is $\mathrm{E}_{\mathrm{Q}}\left[X_{j}\right]$. It is denoted $\rho_{X}\left(X_{j}\right)$.

The natural allocation premium is a standard approach, appearing in Delbaen [2000], Venter et al. [2006] and Tsanakas and Barnett [2003] for example. It has many desirable properties. Delbaen shows it is a fair allocation in the sense of fuzzy games and that it has a directional derivative, marginal interpretation when ρ is differentiable. It is consistent with Jouini and Kallal [2001] and Campi et al. [2013], which show the rational price of X in a market with frictions must be computed by state prices that are anti-comonotonic X. In our application the signs are reversed: $g^{\prime}(S(X))$ and X are comonotonic.
The choice $g^{\prime}(S(X))$ is economically meaningful because it weights the largest outcomes of X the most, which is appropriate from a social, regulatory and investor perspective. It is also the only choice of weights that works for all levels of assets. Since investors stand ready to write any layer at the price determined by g, their solution must work for all a.

However, there are two technical issues with the proposed natural allocation. First, unlike prior works, we are allocating the premium for $X \wedge a$, not X, a problem also considered in Major [2018]. And second, Q may not be unique. In general, uniqueness fails at capped variables like $X \wedge a$. Both issues are surmountable for a SRM, resulting in a unique, well defined natural allocation. For a non-comonotonic additive risk measure this is not the case.

It is helpful to define the premium, risk adjusted, analog of the α_{i} as

$$
\beta_{i}(a):=\mathrm{E}_{\mathrm{Q}}\left[\left(X_{i} / X\right) \mid X>a\right] .
$$

$\beta_{i}(x)$ is the value of the recoveries paid to unit i by a policy paying 1 in states $\{X>a\}$, i.e. an allocation of the premium for $1_{X>a}$. By the properties of conditional expectations, we have

$$
\beta_{i}(a)=\frac{\mathrm{E}\left[\left(X_{i} / X\right) Z \mid X>a\right]}{\mathrm{E}[Z \mid X>a]}
$$

The denominator equals $\mathrm{Q}(X>a) / \mathrm{P}(X>a)$. Remember that while $\mathrm{E}_{\mathrm{Q}}[X]=\mathrm{E}[X Z]$, for conditional expectations $\mathrm{E}_{\mathrm{Q}}[X \mid \mathcal{F}]=\mathrm{E}[X Z \mid \mathcal{F}] / \mathrm{E}[Z \mid \mathcal{F}]$, see [Föllmer and Schied [2011], Proposition A.12].

To compute α_{i} and β_{i} we use a third function,

$$
\kappa_{i}(x):=\mathrm{E}\left[X_{i} \mid X=x\right],
$$

the conditional expectation of loss by policy, given the total loss.
Theorem. Let $\mathrm{Q} \in \mathcal{Q}$ be the measure with Radon-Nikodym derivative $Z=g^{\prime}\left(S_{X}(X)\right)$. Then:

1. $\mathrm{E}\left[X_{i} \mid X=x\right]=\mathrm{E}_{\mathrm{Q}}\left[X_{i} \mid X=x\right]$.
2. β_{i} can be computed from κ_{i} as

$$
\beta_{i}(a)=\frac{1}{\mathrm{Q}(X>a)} \int_{a}^{\infty} \frac{\kappa_{i}(x)}{x} g^{\prime}(S(x)) f(x) d x .
$$

1. The natural allocation premium for policy i under equal priority when total losses are supported by assets a, $\bar{P}_{i}(a):=\rho_{X \wedge a}\left(X_{i}(a)\right)$, is given by

$$
\begin{aligned}
\bar{P}_{i}(a) & =\mathrm{E}_{\mathrm{Q}}\left[X_{i} \mid X \leq a\right](1-g(S(a)))+a \mathrm{E}_{\mathrm{Q}}\left[X_{i} / X \mid X>a\right] g(S(a)) \\
& =\mathrm{E}\left[X_{i} Z \mid X \leq a\right](1-S(a))+a \mathrm{E}\left[\left(X_{i} / X\right) Z \mid X>a\right] S(a) .
\end{aligned}
$$

1. The policy i premium density equals

$$
P_{i}(a)=\beta_{i}(a) g(S(a)) .
$$

It is an important to know when the natural allocation premium is unique. It is so when Z is the only contact function (i.e., there are no others). If X has a strictly increasing quantile function or is injective then Q is unique and therefore given by $g^{\prime} S(X)$ and hence X measurable, see [Carlier and Dana, 2003] and Marinacci and Montrucchio [2004]. More generally, we can replace Q with its expectation given X to make a canonical choice, resulting in the linear natural allocation [Cherny and Orlov, 2011].

The problem that can occur when Q is not unique, but that can be circumvented when ρ is a SRM, can be illustrated as follows. Suppose ρ is given by p-TVaR. The measure Q weights the worst $1-p$ proportion of outcomes of X by a factor of $(1-p)^{-1}$ and ignores the others. Suppose a is chosen as p^{\prime}-VaR for a lower threshold $p^{\prime}<p$. Let $X_{a}=X \wedge a$ be capped insured losses and $C=\left\{X_{a}=a\right\}$. By definition $\operatorname{Pr}(C) \geq 1-p^{\prime}>1-p$. Pick any $A \subset C$ of measure $1-p$ so that $\rho(X)=\mathrm{E}[X \mid A]$. Let ψ be a measure preserving transformation of Ω that acts non-trivially on C but trivially off C. Then $\mathrm{Q}^{\prime}=\mathrm{Q} \psi$ will satisfy $\mathrm{E}_{\mathrm{Q}^{\prime}}\left[X_{a}\right]=\mathrm{E}_{\mathrm{Q}}\left[X_{a} \psi^{-1}\right]=\rho\left(X_{a}\right)$ but in general $\mathrm{E}_{Q^{\prime}}[X]<\rho(X)$. The natural allocation with respect to Q^{\prime} will be different from that for Q . The theorem isolates a specific Q to obtain a unique answer. The same idea applies to Q from other, non-TVaR, ρ : you can always shuffle part of the contact function within C to generate non-unique allocations. See Mildenhall and Major [2022] Example 239 for an illustration.

When Q is X measurable, then $\mathrm{E}_{\mathrm{Q}}\left[X_{i} \mid X\right]=\mathrm{E}\left[X_{i} \mid X\right]$, which enables explicit calculation. In this case there is no risk adjusted version of κ_{i}. If Q is not X measurable, then there can be risk adjusted κ_{i} because

$$
\mathrm{E}\left[X_{i} Z \mid X\right] \neq \mathrm{E}\left[X_{i} \mid X\right] \mathrm{E}[Z \mid X] .
$$

The proof writes the price of a limited liability cover as the price of default-free protection minus the value of the default put. This is the standard starting point for allocation in a perfect competitive market taken by Phillips et al. [1998], Myers and Read Jr. [2001], Sherris [2006], and Ibragimov et al. [2010]. They then allocate the default put rather than the value of insurance payments directly.

To recap: the premium formulas have been derived assuming capital is provided at a cost g and there is equal priority by unit. The formulas are computationally tractable (see implementation in 5_x_portfolio_calculations) and require only that X have an increasing quantile function or that $g^{\prime} S(X)$ be used as the risk adjustment, but make no other assumptions. There is no need to assume the X_{i} are independent. They produce an entirely general, canonical determination of premium in the presence of shared costly capital. This result extends Grundl and Schmeiser [2007], who pointed out that with an additive pricing functional there is no need to allocate capital in order to price, to the situation of a non-additive SRM pricing functional.

5.5.8 Properties of Alpha, Beta, and Kappa

In this section we explore properties of α_{i}, β_{i}, and κ_{i}, and show how they interact to determine premiums by unit via the natural allocation.

For a measurable $h, \mathrm{E}\left[X_{i} h(X)\right]=\mathrm{E}\left[\kappa_{i}(X) h(X)\right]$ by the tower property. This simple observation results in huge simplifications. In general, $\mathrm{E}\left[X_{i} h(X)\right]$ requires knowing the full bivariate distribution of X_{i} and X. Using κ_{i} reduces it to a one dimensional problem. This is true even if the X_{i} are correlated. The κ_{i} functions can be estimated from data using regression and they provide an alternative way to model correlations.

Despite their central role, the κ_{i} functions are probably unfamiliar so we begin by giving several examples to illustrate how they behave. In general, they are non-linear and usually, but not always, increasing.

Examples of κ functions

1. If Y_{i} are independent and identically distributed and $X_{n}=Y_{1}+\cdots+Y_{n}$ then $\mathrm{E}\left[X_{m} \mid X_{m+n}=x\right]=$ $m x /(m+n)$ for $m \geq 1, n \geq 0$. This is obvious when $m=1$ because the functions $\mathrm{E}\left[Y_{i} \mid X_{n}\right]$ are independent across $i=1, \ldots, n$ and sum to x. The result follows because conditional expectations are linear. In this case $\kappa_{i}(x)=m x /(m+n)$ is a line through the origin.
2. If X_{i} are multivariate normal then κ_{i} are straight lines, given by the usual least-squares fits

$$
\kappa_{i}(x)=\mathrm{E}\left[X_{i}\right]+\frac{\operatorname{cov}\left(X_{i}, X\right)}{\operatorname{var}(X)}(x-\mathrm{E}[X])
$$

This example is familiar from the securities market line and the CAPM analysis of stock returns. If X_{i} are iid it reduces to the previous example because the slope is $1 / n$.
3. If $X_{i}, i=1,2$, are compound Poisson with the same severity distribution then κ_{i} are again lines through the origin. Suppose X_{i} has expected claim count λ_{i}. Write the conditional expectation as an integral, expand the density of the compound Poisson by conditioning on the claim count, and then swap the sum and integral to see that $\kappa_{1}(x)=\mathrm{E}\left[X_{1} \mid X_{1}+X_{2}=x\right]=x \mathrm{E}\left[N\left(\lambda_{1}\right) /\left(N\left(\lambda_{1}\right)+N\left(\lambda_{2}\right)\right)\right]$ where $N(\lambda)$ are independent Poisson with mean λ. This example generalizes the iid case. Further conditioning on a common mixing variable extends the result to mixed Poisson frequencies where each aggregate can have a separate or shared mixing distribution. The common severity is essential. The result means that if a line of business is defined to be a group of policies that shares the same severity distribution, then premiums for policies within the line will have rates proportional to their expected claim counts.
4. A theorem of Efron says that if X_{i} are independent and have log-concave densities then all κ_{i} are nondecreasing, Saumard and Wellner [2014]. The multivariate normal example is a special case of Efron's theorem.

Denuit and Dhaene [2012] define an ex post risk sharing rule called the conditional mean risk allocation by taking $\kappa_{i}(x)$ to be the allocation to policy i when $X=x$. A series of recent papers, see Denuit and Robert [2020] and references therein, considers the properties of the conditional mean risk allocation focusing on its use in peer-to-peer insurance and the case when $\kappa_{i}(x)$ is linear in x.

5.5.9 Properties of the Natural Allocation

We now explore margin, equity, and return in total and by policy. We begin by considering them in total.
By definition the average return with assets a is

$$
\bar{\iota}(a):=\frac{\bar{M}(a)}{\bar{Q}(a)}
$$

where margin \bar{M} and equity \bar{Q} are the total margin and capital functions defined above.
The last formula has important implications. It tells us the investor priced expected return varies with the level of assets. For most distortions return decreases with increasing capital. In contrast, the standard RAROC models use a fixed average cost of capital, regardless of the overall asset level, Tasche [1999]. CAPM or the Fama-French three
factor model are often used to estimate the average return, with a typical range of 7 to 20 percent, Cummins and Phillips [2005]. A common question of working actuaries performing capital allocation is about so-called excess capital, if the balance sheet contains more capital than is required by regulators, rating agencies, or managerial prudence. Our model suggests that higher layers of capital are cheaper, but not free, addressing this concern.
The varying returns may seem inconsistent with Miller-Modigliani. But that says the cost of funding a given amount of capital is independent of how it is split between debt and equity; it does not say the average cost is constant as the amount of capital varies.

No-Undercut and Positive Margin for Independent Risks

The natural allocation has two desirable properties. It is always less than the stand-alone premium, meaning it satisfies the no-undercut condition of Denault [2001], and it produces non-negative margins for independent risks.

Proposition. Let $X=\sum_{i=1}^{n} X_{i}, X_{i}$ non-negative and independent, and let g be a distortion. Then

1. the natural allocation is never greater than the stand-alone premium, and
2. the natural allocation to every X_{i} contains a non-negative margin.

Since $\bar{P}_{i}=\mathrm{E}\left[\kappa_{i}(X) g^{\prime}(S(X))\right]$ we see the no-undercut condition holds if $\kappa_{i}(X)$ and $g^{\prime}(S(X))$ are comonotonic, and hence if κ_{i} is increasing, or if $\kappa_{i}(X)$ and X are positively correlated (recall $\mathrm{E}\left[g^{\prime}(S(X))\right]=1$). A policy i^{*} with increasing $\kappa_{i^{*}}$ is a capacity consuming line that always has a positive margin. However, it can occur that no κ_{i} is increasing.

Policy Level Properties, Varying with Asset Level

We start with a corollary which gives a nicely symmetric and computationally tractable expression for the natural margin allocation in the case of finite assets.

Corollary. The margin density for unit i at asset level a is given by

$$
M_{i}(a)=\beta_{i}(a) g(S(a))-\alpha_{i}(a) S(a)
$$

Proof. We can compute margin $\bar{M}_{i}(a)$ in $\bar{P}_{i}(a)$ by line as

$$
\begin{aligned}
\bar{M}_{i}(a) & =\bar{P}_{i}(a)-\bar{L}_{i}(a) \\
& =\int_{0}^{a} \beta_{i}(x) g(S(x))-\alpha_{i}(x) S(x) d x .
\end{aligned}
$$

Differentiating we get the margin density for unit i at a expressed in terms of α_{i} and β_{i} as shown.
Margin in the current context is the cost of capital, thus this is an important result. It allows us to compute economic value by unit and to assess static portfolio performance by unit-one of the motivations for performing capital allocation in the first place. In many ways it is also a good place to stop. Remember these results only assume we are using a distortion risk measure and have equal priority in default. We are in a static model, so questions of portfolio homogeneity are irrelevant. We are not assuming X_{i} are independent.
What can we say about by margins by unit? Since g is increasing and concave $P(a)=g(S(a)) \geq S(a)$ for all $a \geq 0$. Thus all asset layers contain a non-negative total margin density. It is a different situation by unit, where we can see

$$
M_{i}(a) \geq 0 \Longleftrightarrow \beta_{i}(a) g(S(a))-\alpha_{i}(a) S(a) \geq 0 \Longleftrightarrow \frac{\beta_{i}(a)}{\alpha_{i}(a)} \geq \frac{S(a)}{g(S(a))}
$$

The unit layer margin density is positive when β_{i} / α_{i} is greater than the all-unit layer loss ratio. Since the loss ratio is ≤ 1 there must be a positive layer margin density whenever $\beta_{i}(a) / \alpha_{i}(a)>1$. But when $\beta_{i}(a) / \alpha_{i}(a)<1$ it is possible the unit has a negative margin density. How can that occur and why does it make sense? To explore this we look at the shape of α and β in more detail.

It is important to remember why the Proposition does not apply: it assumes unlimited cover, whereas here $a<\infty$. With finite capital there are potential transfers between units caused by their behavior in default that overwhelm the
positive margin implied by the proposition. Also note the proposition cannot be applied to $X \wedge a=\sum_{i} X_{i}(a)$ because the unit payments are no longer independent.

In general we can make two predictions about margins.
Prediction 1: Lines where $\alpha_{i}(x)$ or $\kappa_{i}(x) / x$ increase with x will have always have a positive margin.
Prediction 2: A log-concave (thin tailed) unit aggregated with a non-log-concave (thick tailed) unit can have a negative margin, especially for lower asset layers.

Prediction 1 follows because the risk adjustment puts more weight on X_{i} / X for larger X and so $\beta_{i}(x) / \alpha_{i}(x)>1>$ $S(x) / g(S(x))$. Recall the risk adjustment is comonotonic with total losses X.

A thin tailed unit aggregated with thick tailed units will have $\alpha_{i}(x)$ decreasing with x. Now the risk adjustment will produce $\beta_{i}(x)<\alpha_{i}(x)$ and it is possible that $\beta_{i}(x) / \alpha_{i}(x)<S(x) / g(S(x))$. In most cases, $\alpha_{i}(x)$ approaches $\mathrm{E}\left[X_{i}\right] / x$ and $\beta_{i}(x) / \alpha_{i}(x)$ increases with x, while the layer loss ratio decreases-and margin increases-and the thin unit will eventually get a positive margin. Whether or not the thin unit has a positive total margin $\bar{M}_{i}(a)>0$ depends on the particulars of the units and the level of assets a. A negative margin is more likely for less well capitalized insurers, which makes sense because default states are more material and they have a lower overall dollar cost of capital. In the independent case, as $a \rightarrow \infty$ the proposition guarantees an eventually positive margins for all units.

These results are reasonable. Under limited liability, if assets and liabilities are pooled then the thick tailed unit benefits from pooling with the thin one because pooling increases the assets available to pay losses when needed. Equal priority transfers wealth from thin to thick in states of the world where thick has a bad event. But because thick dominates the total, the total losses are bad when thick is bad. The negative margin compensates the thin-tailed unit for transfers.

Another interesting situation occurs for asset levels within attritional loss layers. Most realistic insured loss portfolios are quite skewed and never experience very low loss ratios. For low loss layers, $S(x)$ is close to 1 and the layer at x is funded almost entirely by expected losses; the margin and equity density components are nearly zero. Since the sum of margin densities over component units equals the total margin density, when the total is zero it necessarily follows that either all unit margins are also zero or that some are positive and some are negative. For the reasons noted above, thin tailed units get the negative margin as thick tailed units compensate them for the improved cover the thick tail units obtain by pooling.
In conclusion, the natural margin by unit reflects the relative consumption of assets by layer, Mango [2005]. Low layers are less ambiguous to the provider and have a lower margin relative to expected loss. Higher layers are more ambiguous and have lower loss ratios. High risk units consume more higher layer assets and hence have a lower loss ratio. For independent units with no default the margin is always positive. But there is a confounding effect when default is possible. Because more volatile units are more likely to cause default, there is a wealth transfer to them. The natural premium allocation compensates low risk policies for this transfer, which can result in negative margins in some cases.

5.5.10 The Natural Allocation of Equity

Although we have a margin by unit, we cannot compute return by unit, or allocate frictional costs of capital, because we still lack an equity allocation, a problem we now address.

Definition. The natural allocation of equity to unit i is given by

$$
Q_{i}(a)=\frac{\beta_{i}(a) g(S(a))-\alpha_{i}(x) S(a)}{g(S(a))-S(a)} \times(1-g(S(a))) .
$$

Why is this allocation natural? In total the layer return at a is

$$
\iota(a):=\frac{M(a)}{Q(a)}=\frac{P(a)-S(a)}{1-P(a)}=\frac{g(S(a))-S(a)}{1-g(S(a))} .
$$

We claim that for a law invariant pricing measure the layer return must be the same for all units. Law invariance implies the risk measure is only concerned with the attachment probability of the layer at a, and not with the cause of loss within the layer. If return within a layer varied by unit then the risk measure could not be law invariant.

We can now compute capital by layer by unit, by solving for the unknown equity density $Q_{i}(a)$ via

$$
\iota(a)=\frac{M(a)}{Q(a)}=\frac{M_{i}(a)}{Q_{i}(a)} \Longrightarrow Q_{i}(a)=\frac{M_{i}(a)}{\iota(a)} .
$$

Substituting for layer return and unit margin gives the result.
Since $1-g(S(a))$ is the proportion of capital in the layer at a, the main allocation result says the allocation to unit i is given by the nicely symmetric expression

$$
\frac{\beta_{i}(a) g(S(a))-\alpha_{i}(x) S(a)}{g(S(a))-S(a)} .
$$

To determine total capital by unit we integrate the equity density

$$
\bar{Q}_{i}(a):=\int_{0}^{a} Q_{i}(x) d x
$$

And finally we can determine the average return to unit i at asset level a

$$
\bar{\iota}_{i}(a)=\frac{\bar{M}_{i}(a)}{\bar{Q}_{i}(a)}
$$

The average return will generally vary by unit and by asset level a. Although the return within each layer is the same for all units, the margin, the proportion of capital, and the proportion attributable to each unit all vary by a. Therefore average returns will vary by unit and a. This is in stark contrast to the standard industry approach, which uses the same return for each unit and implicitly all a. How these quantities vary by unit is complicated. Academic approaches emphasized the possibility that returns vary by unit, but struggled with parameterization, Myers and Cohn [1987].

This formula shows the average return by unit is an M_{i}-weighted harmonic mean of the layer returns given by the distortion g, viz

$$
\frac{1}{\overline{\iota_{i}(a)}}=\int_{0}^{a} \frac{1}{\iota(x)} \frac{M_{i}(x)}{\bar{M}_{i}(a)} d x
$$

The harmonic mean solves the problem that the return for lower layers of assets is potentially infinite (when $g^{\prime}(1)=$ 0). The infinities do not matter: at lower asset layers there is little or no equity and the layer is fully funded by the loss component of premium. When so funded, there is no margin and so the infinite return gets zero weight. In this instance, the sense of the problem dictates that $0 \times \infty=0$: with no initial capital there is no final capital regardless of the return.

5.5.11 Appendix: Notation and Conventions

An insurer has finite assets and limited liability and is a one-period stock company. At $t=0$ it sells its residual value to investors to raise equity. At time one it pays claims up to the amount of assets available. If assets are insufficient to pay claims it defaults. If there are excess assets they are returned to investors.

Total insured loss, or total risk, is described by a random variable $X \geq 0 . X$ reflects policy limits but is not limited by provider assets. $X=\sum_{i} X_{i}$ describes the split of losses by policy. F, S, f, and q are the distribution, survival, density, and (lower) quantile functions of X. Subscripts are used to disambiguate, e.g., $S_{X_{i}}$ is the survival function of $X_{i} . X \wedge a$ denotes $\min (X, a)$ and $X^{+}=\max (X, 0)$.
The letters S, P, M and Q refer to expected loss, premium, margin and equity, and a refers to assets. The value of survival function $S(x)$ is the loss cost of the insurance paying $1_{\{X>x\}}$, so the two uses of S are consistent. Premium equals expected loss plus margin; assets equal premium plus equity. All these quantities are functions of assets underlying the insurance.
We use the actuarial sign convention: large positive values are bad. Our concern is with quantiles $q(p)$ for p near 1 . Distortions are usually reversed, with $g(s)$ for small $s=1-p$ corresponding to bad outcomes. As far as possible we will use p in the context p close to 1 is bad and s when small s is bad.

Tail value at risk is defined for $0 \leq p<1$ by

$$
\operatorname{TVaR}_{p}(X)=\frac{1}{1-p} \int_{p}^{1} q(t) d t
$$

Prices exclude all expenses. The risk free interest rate is zero. These are standard simplifying assumptions, e.g. Ibragimov et al. [2010].

The terminology describing risk measures is standard, and follows Föllmer and Schied [2011]. We work on a standard probability space, Svindland [2010], Appendix. It can be taken as $\Omega=[0,1]$, with the Borel sigma-algebra and P Lebesgue measure. The indicator function on a set A is 1_{A}, meaning $1_{A}(x)=1$ if $x \in A$ and $1_{A}(x)=0$ otherwise.

5.6 Bodoff's Percentile Layer Capital Method

Objectives: Compare Bodoff with the natural allocation and show how to compute both in aggregate.
Audience: Those interested in current allocation methods and CAS Exam 9 candidates.
Prerequisites: Background on allocation and Bodoff's paper.

Contents:

- Helpful References
- Introduction
- Assumptions and Notation
- Three Possible Allocation Methods
- Percentile Layer Allocation: Definition
- Thought Experiments
- Thought Experiment Number 1
- Bodoff Examples 1-3
- Bodoff Example 4
- Bodoff Summary
- CAS Exam Question: Spring 2018 Question 15

5.6.1 Helpful References

- Bodoff [2007]
- Mildenhall and Major [2022]

5.6.2 Introduction

The abstract to Bodoff [2007], Capital Allocation by Percentile Layer reads:
This paper describes a new approach to capital allocation; the catalyst for this new approach is a new formulation of the meaning of holding Value at Risk (VaR) capital. This new formulation expresses the firm's total capital as the sum of many granular pieces of capital, or "percentile layers of capital." As a result, one must allocate capital separately on each layer and perform the capital allocation across all layers. The resulting capital allocation procedure, "capital allocation by percentile layer," exhibits several salient features. First, it allocates capital to all losses, rather than allocating capital only to extreme losses in the tail of the distribution. Second, despite allocating capital to this broad range of loss events, the proposed procedure does not allocate in proportion to average loss; rather, it allocates disproportionate capital to severe losses. Third, it allocates capital by relying neither upon esoteric parameters nor upon elusive risk preferences. Ultimately, on the practical plane, capital allocation by percentile layer produces allocations that are different from many other methods. Concomitantly, on the theoretical plane, capital allocation by percentile layer leads to new continuous formulas for risk load and utility.

Bodoff's paper is an important contribution to capital allocation and actuarial science. Its key insight is that layers of capital respond to a range of loss events and not just tail events and so it is not appropriate to focus solely on default states when allocating capital. Bodoff takes capital to mean total claims paying ability, comprised of equity and premium. Bodoff allocates capital by considering loss outcomes and assumes that expected loss, margin, premium, and equity all have the same allocation within each layer.

Less favorably, Bodoff blurs the distinction between events and outcomes. He allocates to identifiable events (windonly loss, etc.) rather than to outcomes. In examples, outcome amounts distinguish events. In the Lee diagram, events are on the horizontal axis and outcomes on the vertical axis.

5.6.3 Assumptions and Notation

The examples model two independent units X_{1} and X_{2}, usually wind and quake, with total $X=X_{1}+X_{2}$. F and S represent the distribution and survival function of X and q its lower quantile function. The capital (asset) requirement set equal to the (lower) $a:=p=0.99-\mathrm{VaR}$ capital

5.6.4 Three Possible Allocation Methods

Consider three allocations:

1. Conditional VaR: coVaR, method allocates using

$$
a=\mathrm{E}[X \mid X=a]=\mathrm{E}\left[X_{1} \mid X=a\right]+\mathrm{E}\left[X_{2} \mid X=a\right]
$$

2. Alternative conditional VaR: alt coVaR, method allocates using

$$
a=a \mathrm{E}\left[\left.\frac{X_{1}}{X} \right\rvert\, X \geq a\right]+a \mathrm{E}\left[\left.\frac{X_{2}}{X} \right\rvert\, X \geq a\right]
$$

3. Naive conditional TVaR: naive coTVaR, method allocates a proportional to $\mathrm{E}\left[X_{1} \mid X \geq a\right]$ and $\mathrm{E}\left[X_{2} \mid\right.$ $X \geq a]$
Bodoff's principal criticism of these methods is that they all ignore the possibility of outcomes $<a$.

- coVaR allocates based proportion of losses by unit on the events $\{X=a\}$ of exact size a. It ignores other events near $X=a$ and all events $X<a$, which seems unreasonable. The allocation is not numerically stable: in simulation output $\{X=a\}$ is often only a single event.
- alt coVaR allocates based proportion of losses by unit on the events $\{X \geq a\}$. It still ignores all events $<a$. It relies on the relationship

$$
\begin{aligned}
a & =a\left(\mathrm{E}\left[\left.\frac{X_{1}}{X} \right\rvert\, X \geq a\right]+a \mathrm{E}\left[\left.\frac{X_{2}}{X} \right\rvert\, X \geq a\right]\right) \\
& =a \alpha_{1}(a)+a \alpha_{2}(a)
\end{aligned}
$$

- naive coTVaR resorts to a pro rata kludge because $\mathrm{E}[X \mid X \geq x] \geq x$ and is usually $>x$. Pro rata adjustments signal the lack of a rigorous rationale and should be avoided. Note: what Bodoff calls TVaR is usually known as CTE.
- Alternative conditional TVaR: the coTVaR method (not considered by Bodoff but introduced by Mango, Venter, Kreps, Major) solves $a=\operatorname{TVaR}\left(p^{*}\right)$ for $p^{*} \leq p$ (we shall see below we really need to use expected shortfall, not TVaR). Then determine $a^{*}=q\left(p^{*}\right)$, the p^{*}-VaR and allocate using $a=\mathrm{E}\left[X \mid X \geq a^{*}\right]=$ $\mathrm{E}\left[X_{1} \mid X \geq a^{*}\right]+\mathrm{E}\left[X_{2} \mid X \geq a^{*}\right]$.
In addition, all methods can be criticized as actuarial allocation exercises without an economic motivation. They do not consider premium: additional assumptions needed to derive a premium from an asset or capital allocation, such as a target return on allocated capital. They just provide an allocation of premium plus capital, i.e., assets, and not a split between the two.

5.6.5 Percentile Layer Allocation: Definition

Bodoff introduces the percentile layer of capital, plc, allocation method to address the criticism that methods 1-4 all ignore events causing losses below the level of capital, whereas capital is certainly used to pay such losses. It allocates capital in the same proportion as losses for each layer.
In a one-dollar, all-or-nothing cover that attaches with probability $s=1-p$ at $x=q(p)(=p-\mathrm{VaR})$, under equal priority unit i receives a proportion $\alpha_{i}(x):=\mathrm{E}\left[\left.\frac{X_{i}}{X} \right\rvert\, X>x\right]$ of assets, conditional on a loss. Therefore, unconditional expected loss recoveries equal $\alpha_{i}(x) S(x)$, part of total layer losses $S(x)$. Allocating each layer of capital between 0 and a in the same way gives the percentile layer of capital plc allocation:

$$
a_{i}:=\int_{0}^{a} \alpha_{i}(x) d x=\int_{0}^{a} \mathrm{E}\left[\left.\frac{X_{i}}{X} \right\rvert\, X>x\right] d x
$$

By construction, $\sum_{i} a_{i}=a$. The plc allocation can be understood better by decomposing

$$
\begin{aligned}
a & =\int_{0}^{a} 1 d x \\
& =\int_{0}^{a} \alpha_{1}(x)+\alpha_{2}(x) d x \\
& =\int_{0}^{a} \alpha_{1}(x) S(x)+\alpha_{1}(x) F(x) d x+\int_{0}^{a} \alpha_{2}(x) S(x)+\alpha_{2}(x) F(x) d x \\
& =\left(\mathrm{E}\left[X_{1}(a)\right]+\int_{0}^{a} \alpha_{1}(x) F(x) d x\right)+\left(\mathrm{E}\left[X_{2}(a)\right]+\int_{0}^{a} \alpha_{2}(x) F(x) d x\right)
\end{aligned}
$$

It splits unfunded assets (assets in excess of expected losses) in the same proportion as losses in each asset layer, using $\alpha_{i}(x)$. plc says nothing about how to split the allocated unfunded capital $\int_{0}^{a} \alpha_{2}(x) F(x) d x$ into margin and equity. This is not surprising, since there are no pricing assumptions. The natural allocation introduces a pricing distortion to compute an allocation of premium, and hence margin.

There are six allocations considered by Bodoff, with the following allocations of assets to unit 1 .

1. pct $\mathrm{EX}: \mathrm{E}\left[X_{1}\right] / \mathrm{E}[X]$
2. coVaR: $\mathrm{E}\left[X_{1} \mid X=a\right]$
3. adj VaR: $a \mathrm{E}\left[\left.\frac{X_{1}}{X} \right\rvert\, X \geq a\right]$
4. naive cotvar: $a \frac{\mathrm{E}\left[X_{1} \mid X \geq a\right]}{\mathrm{E}[X \mid X \geq a]}$
5. coTVaR: $\mathrm{E}\left[X_{1} \mid X>a^{*}\right]$, where $a=\operatorname{TVaR}\left(p^{*}\right)$
6. plc: $\int_{0}^{a} \alpha_{i}(x) d x$, where $\alpha_{i}(x):=\mathrm{E}\left[\left.\frac{X_{i}}{X} \right\rvert\, X>x\right]$

5.6.6 Thought Experiments

Bodoff introduces four thought experiments:

1. Wind and quake, wind losses 0 or 99 , quake 0 or $100,0.2$ probability of a wind loss and 0.01 probability of a quake loss.
2. Wind and quake, wind 0 or 50 , quake 0 or 100 , same probabilities.

3 . Wind and quake, wind 0 or 5 , quake 0 or 100 , same probabilities.
4. Bernoulli / exponential compound distribution (see Bodoff Example 4.)

The units are independent. The next block of code sets up and validates Portfolio objects for each. The Bodoff portfolios are part of the base library and can be extracted with build.qlist.

```
In [1]: import pandas as pd
In [2]: from collections import OrderedDict
In [3]: from aggregate import build, qd
In [4]: from aggregate.extensions import bodoff_exhibit
In [5]: bodoff = list(build.qlist('.*Bodoff').program)
In [6]: ports = OrderedDict()
In [7]: for s in bodoff:
    ...: port = build(s)
    ...: port.name = port.name.replace('L.', '')
    ...: ports[port.name] = port
    ... :
In [8]: for port in ports.values():
    ...: if port.name != 'Bodoff4':
    ...: port.update(bs=1, log2=8, remove_fuzz=True, padding=1)
    ...: else:
    ...: port.update(bs=1/8, log2=16, remove_fuzz=True, padding=2)
    ...: port.density_df = port.density_df.apply(lambda x: np.round(x, 14))
    ...: qd(port)
    ...: print(port.name)
    ...: print('='*80 + '\n')
    ... :
        E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
wind1 }\begin{array}{llrlllll}{\mathrm{ Freq }}&{1}&{}&{0}&{0}&{2}&{19.8}&{-2.2204e-16 }
    Agg 19.8 19.8 -2.2204e-16 2 < 2 0
quake1 Freq
    Sev 5 5 8.8818e-16 4.3589 4.3589 4.1295 4.1295
    Agg 5 5 8.8818e-16 4.3589 4.3589 4.1295 4.1295
total Freq 2 0
    Sev 12.4 12.4 1.8 笽 (1.8 0
log2 = 8, bandwidth = 1, validation: not unreasonable.
Bodoff1
========================================================================================== 
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
wind2 Freq 1
    Sev 10 10 -2.2204e-16 10 2 0
    Agg 10 10 -2.2204e-16 2 2 0
quake2 Freq 1 
    Sev 5 5 8.8818e-16 4.3589 4.3589 4.1295 4.1295
    Agg 5 5 8.8818e-16 4.3589 4.3589 4.1295 4.1295
total Freq 2 0
    Sev 7.5 7.5 2.2204e-16 2.8087 2.8984
log2 = 8, bandwidth = 1, validation: not unreasonable.
Bodoff2
```

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
(continued from previous page)

| unit
 wind3 | X | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Freq | 1 | | | 0 | | | |
| | Sev | 1 | 1 | -2.2204e-16 | 2 | 2 | 1.5 | 1.5 |
| quake3 | Agg | 1 | 1 | -2.2204e-16 | 2 | 2 | 1.5 | 1.5 |
| | Freq | 1 | 0 | | | | | |
| | Sev | 5 | 5 | $8.8818 \mathrm{e}-16$ | 4.3589 | 4.3589 | 4.1295 | 4.1295 |
| total | Agg | 5 | 5 | $8.8818 \mathrm{e}-16$ | 4.3589 | 4.3589 | 4.1295 | 4.1295 |
| | Freq | 2 | 0 | | | | | |
| | Sev | 3 | 3 | $6.6613 \mathrm{e}-16$ | 5.2015 | | 5.9989 | |
| | Agg | 6 | 6 | 8.8818e-16 | 3.6477 | 3.6477 | 4.079 | 4.079 |

$\log 2=8$, bandwidth $=1$, validation: not unreasonable.
Bodoff3

| | | E [X] | Est E[X] | Err E[X] | CV (X) | Est CV(X) | Skew (X) | Est | Skew (X) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| unit | X | | | | | | | | |
| a | Freq | 0.25 | | | 2 | | 2 | | |
| | Sev | 4 | 3.9998 | -4.0689e-05 | 1 | 1.0001 | 2 | | 1.9995 |
| | Agg | 1 | 0.99996 | -4.0689e-05 | 2.8284 | 2.8286 | 4.2426 | | 4.2426 |
| b | Freq | 0.05 | | | 4.4721 | | 4.4721 | | |
| | Sev | 20 | 20 | -1.6276e-06 | 1 | 1 | 2 | | 2 |
| | Agg | 1 | 1 | -1.6276e-06 | 6.3246 | 6.3246 | 9.4868 | | 9.4868 |
| C | Freq | 0.05 | | | 4.4721 | | 4.4721 | | |
| | Sev | 100 | 100 | -6.5104e-08 | 1 | 1 | 2 | | 2 |
| | Agg | 5 | 5 | -6.5104e-08 | 6.3246 | 6.3246 | 9.4868 | | 9.4868 |
| total | Freq | 0.35 | | | 1.6903 | | 1.6903 | | |
| | Sev | 20 | 20 | -6.0917e-06 | 2.5467 | | 5.3022 | | |
| | Agg | 7 | 7 | -6.0918e-06 | 4.6247 | 4.6247 | 8.9162 | | 8.9162 |
| $\begin{aligned} & \log 2=16, \\ & \text { Bodoff4 } \end{aligned}$ | | andwi | $d t h=1 /$ | validatio | : not | unreasonab | | | |

5.6.7 Thought Experiment Number 1

There are four possible events ω, leading to the loss outcomes $X(\omega)$ laid out next.

| Event, ω | X_{1} | X_{2} | X | $\operatorname{Pr}(\omega)$ | F | S |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| No loss | 0 | 0 | 0 | 0.76 | 0.76 | 0.24 |
| Wind | 99 | 0 | 99 | 0.19 | 0.95 | 0.05 |
| Quake | 0 | 100 | 100 | 0.04 | 0.99 | 0.01 |
| Both | 99 | 100 | 199 | 0.01 | 1.00 | 0.00 |

Compute the allocation using all the methods. In the next block, EX shows expected unlimited loss by unit. sa VaR and sa TVaR show stand-alone 0.99 VaR and TVaR. The remaining rows display results for the methods just described. The apparent issue with the coTVaR method is caused by the probability mass at 100. A co ES allocation would re-scale the coTVaR allocation shown.

```
In [9]: port = ports['Bodoff1']
In [10]: reg_p = 0.99
In [11]: a = port.q(reg_p, 'lower')
In [12]: print(f'VaR assets = {a}')
VaR assets = 100.0
In [13]: basic = bodoff_exhibit(port, reg_p)
```

(continues on next page)

| In [14]: qd(basic, col_space=10) | | | |
| :--- | ---: | ---: | ---: |
| | wind1 | quake1 | total |
| method | | | |
| EX | 5 | 24.8 | 19.8 |
| sa VaR | 99 | 100 | 100 |
| sa TVaR | 99 | 100 | 199 |
| pct EX | 25.253 | 125.25 | 100 |
| coVaR | 0 | 100 | 100 |
| alt coVaR | 9.9497 | 90.05 | 100 |
| naive coTVaR | 16.528 | 83.472 | 100 |
| coTVaR | 82.5 | 20.833 | 103.33 |
| plc | 80.527 | 19.473 | 100 |

Graphs of the survival and allocation functions for Bodoff Example 1. Top row: survival functions, bottom row: $\alpha_{i}(x)$ allocation functions. Left side shows full range of $0 \leq x \leq 200$ and right side highlights the functions around the loss points, $96 \leq x \leq 103$.

```
In [15]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45), constrained_
@layout=True)
In [16]: ax0, ax1, ax2, ax3 = axs.flat
In [17]: df = port.density_df
In [18]: for ax in axs.flat[:2]:
    ....: (1 - df.query('(S>0 or p_total>0) and loss<=210').filter(regex='p_').
๑cumsum()).\
    ...: plot(drawstyle="steps-post", ax=ax, lw=1)
    ....: ax.lines[1].set(lw=2, alpha=.5)
    ....: ax.lines[2].set(lw=3, alpha=.5)
    ....: ax.grid(lw=.25)
    ....: ax.legend(loc='upper right')
    .... :
In [19]: ax0.set(ylim=(-0.025, .25), xlim=(-.5, 210), xlabel='Loss', ylabel=
\hookrightarrow'Survival function');
In [20]: ax1.set(ylim=(-0.025, .3), xlim=[96,103], xlabel='Loss (zoom)', ylabel=
\hookrightarrow'Survival function');
In [21]: for ax in axs.flat[2:]:
    ....: df.query('(S>0) and loss<=210').filter(regex='exi_xgta_[wq]').
@plot(drawstyle="steps-post", lw=1, ax=ax)
    ....: ax.lines[1].set(lw=2, alpha=.5)
    ....: ax.grid(lw=.25)
    ....: ax.legend(loc='upper right')
    .... :
In [22]: ax2.set(ylim=(-0.025, 1.025), xlabel='Loss', ylabel='$E[X_i/X | X]$');
In [23]: ax3.set(ylim=(-0.025, 1.025), xlim=(96,103), xlabel='Loss (zoom)', ylabel=
\hookrightarrow'$E[X_i/X | X]$');
```


Expected Shortfall (usually called TVaR) differs from Bodoff's Tail Value at Risk (generally called CTE) for a discrete distribution. TVaR/CTE is a jump function. ES is a continuous, increasing function taking all values between the mean and maximum value of X. The graph illustrates the functions for Bodoff Example 1.

```
In [24]: fig, ax = plt.subplots(1, 1, figsize=(3.5, 2.45), constrained_layout=True)
In [25]: ps = np.linspace(0, 1, 101)
In [26]: tp = port.tvar(ps)
In [27]: ax.plot(ps, tp, lw=1, label='ES');
In [28]: ax.plot(df.F, port.density_df.exgta_total, lw=1, label='TVaR', drawstyle=
\hookrightarrow'steps-post');
In [29]: ax.plot([0, .76], [port.ex/.24, port.ex/.24, ], c='C1', lw=1, label=None);
In [30]: ax.grid();
In [31]: ax.legend();
In [32]: ax.set(ylim=[-5, 205], xlabel='p', ylabel='ES or TVaR/CTE');
```


5.6.8 Bodoff Examples 1-3

Example 2 illustrates that plc can produce an answer that is different from expected losses. Example 3 it illustrates fungibility of pooled capital, with losses from X_{1} covered by the total premium. coTVaR suffers the same issues in Examples 2 and 3 as it does in Example 1.

```
In [33]: basic1 = bodoff_exhibit(ports['Bodoff1'], reg_p)
In [34]: basic2 = bodoff_exhibit(ports['Bodoff2'], reg_p)
In [35]: basic3 = bodoff_exhibit(ports['Bodoff3'], reg_p)
In [36]: basic_all = pd.concat((basic1, basic2, basic3), axis=1,
    ....: keys=[f'Ex {i}' for i in range(1,4)])
    .... :
In [37]: qd(basic_all, col_space=7)
```


5.6.9 Bodoff Example 4

The next table recreates the exhibit in Section 9.1 of Bodoff's paper. There are three units labelled a, b, and c. It shows the percent allocation of capital to each unit across different methods. Breakeven percentile equals the percentile equal to expected losses. Bodoff's calculation uses 10,000 simulations. The table shown here uses FFTs to obtain a close-to exact answer. The exponential distribution is borderline thick tailed, and so is quite hard to work with for both simulation methods and FFT methods.

```
In [38]: p4 = ports['Bodoff4']
In [39]: df91 = pd.DataFrame(columns=list('abc'), dtype=float)
In [40]: tv = p4.var_dict(.99, 'tvar')
In [41]: df91.loc['sa TVaR 0.99'] = np.array(list(tv.values())[:-1]) / sum(list(tv.
\hookrightarrowvalues())[:-1])
```

(continued from previous page)
In [42]: pbe $=$ float (p4.cdf(p4.ex))

In [43]: for p in $[.99, .95, .9, p b e]:$
....: tv $=$ p4.cotvar (p)
....: df91.loc[f'naive $\left.\operatorname{TVaR}\{p: .3 g\}^{\prime}\right]=\operatorname{tv}[:-1] / \operatorname{tv}[-1]$
. . . . :

In [44]: $v=\left(\left(p 4 . d e n s i t y \_d f . f i l t e r\left(r e g e x=' e x i \_x g t a \_[a b c] '\right)\right.\right.$.
.... shift(1).cumsum() * p4.bs).loc[p4.q(.99)]).values
....:

In [45]: df91.loc['plc'] = v / v.sum()

In [46]: df91.index.name $=$ 'line'
In [47]: qd(df91, col_space=10, float_format=lambda $\left.x: f^{\prime}\{x: .1 \%\}^{\prime}\right)$

line

sa TVaR 0.99 5.5\% 15.8\% 78.8\%
$\begin{array}{llll}\text { naive TVaR } 0.99 & 0.4 \% & 0.7 \% & 98.9 \%\end{array}$
naive TVaR 0.95 1.3\% 11.3\% 87.5\%
naive TVaR 0.9 6.7\% 14.7\% 78.6\%
naive TVaR 0.876 9.0\% 14.7\% 76.3\%
plc $4.5 \% \quad 9.6 \%$ 85.8\%

Pricing for Bodoff Example 4

Bodoff Example 4 is based on a three unit portfolio. Each unit has a Bernoulli $0 / 1$ frequency and exponential severity:

- Unit a has a 0.25 probability of a claim and 4 severity
- Unit b has a 0.05 probability of a claim and 20 severity
- Unit c has a 0.01 probability of a claim and 100 severity

All units have unlimited expectation 1.0
Bodoff does not consider pricing per se. His allocation can be considered as $P_{i}+Q_{i}$, with no opinion on the split between margin and equity. Making additional assumptions we can compare the plc capital allocation with other methods. Assume total roe $=0.1$ at $0.99-V a R$ capital standard. Set up the target return, premium, and regulatory capital threshold ($99 \% \mathrm{VaR}$):

```
In [48]: roe = 0.1
In [49]: reg_p = 0.99
In [50]: v = 1 / (1 + roe)
In [51]: d = 1 - v
In [52]: port = ports['Bodoff4']
In [53]: a = port.q(reg_p)
In [54]: el = port.density_df.at[a, 'lev_total']
In [55]: premium = v * el + d * a
In [56]: q = a - premium
```

```
In [57]: margin = premium - el
In [58]: roe, a, el, port.ex, premium, el / premium, q, margin / q
Out[58]:
(0.1,
164.875,
5.97612830432361,
6.999957357424143,
20.42148027665783,
0.29263932992920433,
144.45351972334217,
0.10000000000000003)
```

Calibrate pricing distortions to required return.

```
In [59]: port.calibrate_distortions(ROEs=[roe], Ps=[reg_p], strict='ordered');
In [60]: qd(port.distortion_df)
\hookrightarrowerror
a LR method
164.875 292.639m ссос 0.0099961 5.9761 20.421 0.14137 144.45 0.1 0.1
@ 0
4693e-10
\hookrightarrow9953e-06
\hookrightarrow904e-08
\hookrightarrow3553e-06
```

Allocate premium plus equity to each unit across different pricing methods. All methods except percentile layer capital calibrated to the same total premium and capital level. Distortions that price tail loss will allocate the most to unit c , the most volatile. More bowed distortions will allocate most to a. The three units have the same expected loss (last row). covar is covariance method; coVaR is conditional VaR. agg corresponds to the PIR approach and bod to Bodoff's methods. Only additive methods are shown. method ordered by allocation to unit a the least skewed; c is the most skewed.

```
In [61]: ad_ans = port.analyze_distortions(p=reg_p, kind='lower')
In [62]: basic = bodoff_exhibit(port, reg_p)
In [63]: qd(basic, col_space=10)
method
EX 
sa TVaR 18.42 52.989 264.94 267.26
pct EX 23.554 23.554 117.77 164.88
CoVaR 1.0864 2.7956 160.99 164.88
alt covaR 0.74288 1.3108 162.82 164.87
naive coTVaR 0.66867 1.1279 163.08 164.88
COTVaR 1.1127 7.0366 156.86 165.01
plc 7.4527 15.899 141.52 164.87
In [64]: ans = pd.concat((ad_ans.comp_df.xs('P', 0, 1) + ad_ans.comp_df.xs('Q', 0,
\hookrightarrow1),
```

(continued from previous page)

```
    ...: basic.rename(columns=dict(X='total')).iloc[3:]), keys=(
\hookrightarrow'agg', 'bod'))
    ....:
In [65]: if port.name[-1] in list('123'):
    ....: ans = ans.sort_values('X1')
    ...: bit = ans.query(' abs(total - @a) < 1e-3 and abs(X1 + X2 - total) < < 
41e-3 ').dropna()
    .... :
In [66]: if port.name[-1] not in list('123'):
    ....: ans = ans.sort_values('a')
    ...: bit = ans.query(' abs(total - @a) < 1e-2 and abs(a + b + c - total) <u
41e-2 ')
    .... :
In [67]: bit.index.names =['approach', 'method']
In [68]: qd(bit, col_space=10)
\begin{tabular}{llrrrr} 
& & a & b & cotal \\
approach & method & & & \\
bod & naive coTVaR & 0.66867 & 1.1279 & 163.08 & 164.88 \\
& alt coVaR & 0.74288 & 1.3108 & 162.82 & 164.87 \\
& coVaR & 1.0864 & 2.7956 & 160.99 & 164.88 \\
& plc & 7.4527 & 15.899 & 141.52 & 164.87 \\
& pct EX & 23.554 & 23.554 & 117.77 & 164.88
\end{tabular}
```

Premium for PIR and Bodoff methods, sorted by premium for a. All methods produce the same total premium by calibration. Very considerable differences are evident across the methods.

```
In [69]: basic.loc['EXa'] = \
    ....: port.density_df.filter(regex='exa_[abct]').loc[a].rename(index=lambda x:`
\hookrightarrowx.replace('exa_', ''))
In [70]: premium_df = basic.drop(index=['EX', 'sa TVaR', 'coTVaR'])
In [71]: premium_df = premium_df.loc['EXa'] * v + d * premium_df
In [72]: ans = pd.concat((ad_ans.comp_df.xs('P', 0, 1), premium_df),
    ....: keys=('agg', 'bod')).sort_values('a')
    ....:
In [73]: bit = ans.query(' abs(total - @premium) < 1e-2 and abs(a + b + c - total)
\hookrightarrow< 1e-2 ')
In [74]: bit.index.names =['approach', 'method']
In [75]: qd(bit, col_space=10, sparsify=False)
\begin{tabular}{llrrrr} 
& \multicolumn{1}{c}{ a } & b & cotal \\
approach & method & & & \\
bod & naive coTVaR & 0.96674 & 1.0069 & 18.448 & 20.421 \\
bod & alt coVaR & 0.97349 & 1.0236 & 18.424 & 20.421 \\
bod & coVaR & 1.0047 & 1.1585 & 18.258 & 20.421 \\
agg & Dist ph & 1.5177 & 2.1557 & 16.756 & 20.429 \\
bod & plc & 1.5835 & 2.3497 & 16.488 & 20.421 \\
agg & Dist wang & 1.8859 & 2.5978 & 15.944 & 20.428 \\
agg & Dist dual & 2.6728 & 3.2827 & 14.471 & 20.426 \\
bod & pct EX & 3.0472 & 3.0456 & 14.329 & 20.421
\end{tabular}
```

| agg | Dist tvar | 3.4054 | 3.3995 | 13.621 | 20.426 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Corresponding loss ratios (remember, these are cat lines).

```
In [76]: bit_lr = premium_df.loc['EXa'] / bit
In [77]: qd(bit_lr, col_space=10, sparsify=False,
    ....: float_format=lambda x: f'{x:.1%}')
    .... :
\begin{tabular}{llrrrr} 
approach & method & a & c & total \\
bod & naive coTVaR & \(103.1 \%\) & \(98.8 \%\) & \(21.6 \%\) & \(29.3 \%\) \\
bod & alt coVaR & \(102.4 \%\) & \(97.2 \%\) & \(21.6 \%\) & \(29.3 \%\) \\
bod & coVaR & \(99.2 \%\) & \(85.9 \%\) & \(21.8 \%\) & \(29.3 \%\) \\
agg & Dist ph & \(65.7 \%\) & \(46.1 \%\) & \(23.8 \%\) & \(29.3 \%\) \\
bod & plc & \(62.9 \%\) & \(42.3 \%\) & \(24.2 \%\) & \(29.3 \%\) \\
agg & Dist wang & \(52.8 \%\) & \(38.3 \%\) & \(25.0 \%\) & \(29.3 \%\) \\
agg & Dist dual & \(37.3 \%\) & \(30.3 \%\) & \(27.5 \%\) & \(29.3 \%\) \\
bod & pct EX & \(32.7 \%\) & \(32.7 \%\) & \(27.8 \%\) & \(29.3 \%\) \\
agg & Dist tvar & \(29.3 \%\) & \(29.3 \%\) & \(29.3 \%\) & \(29.3 \%\)
\end{tabular}
```


5.6.10 Bodoff Summary

Bodoff's methods allocate all capital like loss and do not distinguish expected loss, margin and equity. It does not get to a price. It is event-centric, allocating to events, but really allocating to peril=lines. Premium is not mentioned until Section 7 (of 10). Then, it uses the basic CCoC formula $P=v L+d a$ (eq. 8.2).

5.6.11 CAS Exam Question: Spring 2018 Question 15

An insurer has exposure to two independent perils, wind and earthquake:

- Wind has a 15% chance of a $\$ 5$ million loss, and an 85% chance of no loss.
- Earthquake has a 1% chance of a $\$ 15$ million loss, and a 99% chance of no loss.

Using the capital allocation by percentile layer methodology with a 99.5% VaR capital requirement, determine how much capital should be allocated to each peril.

Solution.

The last row gives the percentile layer capital.

```
In [78]: cas15 = build('port CASq15 '
    ....: 'agg X1 1 claim dsev [0, 5] [0.85, 0.15] fixed '
    ....: 'agg x2 1 claim dsev [0, 15] [0.99, 0.01] fixed ')
    .... :
In [79]: qd(cas15)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
X1 Freq 1
    Sev 0.75 0.75 2.2204e-16 2.3805 2.3805 1.9604 1.9604
    Agg 0.75 0.75 2.2204e-16 2.3805 2.3805 1.9604 1.9604
X2 Freq 1 0
    Sev 0.15 0.15 8.8818e-16 9.9499 9.9499 9.8494 9.8494
    Agg 0.15 0.15 8.8818e-16 9.9499 9.9499 9.8494 9.8494
total Freq 2
```

(continues on next page)
(continued from previous page)

```
log2 = 16, bandwidth = 1/128, validation: not unreasonable.
# cas15.update(bs=1, log2=8, remove_fuzz=True, padding=1)
In [80]: cas15.density_df = cas15.density_df.apply(lambda x: np.round(x, 10))
In [81]: basic = bodoff_exhibit(cas15, reg_p=.995)
In [82]: qd(basic, col_space=10)
method
EX
sa VaR 5 15 15
sa TVaR 
pct EX 12.5 2.5 15
coVaR 0 15 15
alt covaR 0.5625 14.438 15
naive coTVaR 0.71429 14.286 15
coTVaR 0.75 15 15.75
plc 5.0714 9.9286 15
In [83]: df = cas15.density_df.query('S > 0 or p_total > 0')
```

The calculation of plc as the integral of α for unit 1 is simply:

```
In [84]: df.exi_xgta_X1.shift(1, fill_value=0).cumsum().loc[15] * cas15.bs
Out[84]: 5.071372239500204
```


5.7 The Pollaczeck-Khinchine Formula

Objectives: Illustrate and compute Pollaczeck-Khinchine formula for probability of eventual ruin for a compound Poisson process.

Audience: Advanced users.
Prerequisites: Advanced risk theory.

Contents:

- Helpful References
- Classical Risk Theory and the Pollaczeck-Khinchine Formula
- FFT Computation
- Using The Pollaczeck-Khinchine Formula I
- Using The Pollaczeck-Khinchine Formula II
- Market Scale and Viability

5.7.1 Helpful References

- Embrechts et al. [1997] Section 1.2
- Mildenhall and Major [2022] sections 8.4.2 and 9.3 and references therein (largely reproduced here).

5.7.2 Classical Risk Theory and the Pollaczeck-Khinchine Formula

The Pollaczeck-Khinchine formula determines the probability of eventual ruin in a portfolio where claims are driven by a compound Poisson process, in terms of starting surplus and the premium rate. Losses are generated by a Poisson process with λ annual expected claims and iid severity X. Losses up to time t are given by

$$
A(t)=X_{1}+\cdots+X_{N(t)}
$$

where $N(t)$ is Poisson with mean λt. Expected loss per year equals $\lambda \mathrm{E}[X]$. Premium per year equals $(1+r) \lambda \mathrm{E}[X]$ where r is the ratio of profit to expected loss. The corresponding expected loss ratio is $1 /(1+r)$. If $r \leq 0$ then eventual ruin is certain, so assume $r>0$.

Define the integrated severity distribution by

$$
\begin{aligned}
F_{I}(x) & =\frac{1}{\mathrm{E}[X]} \int_{0}^{x} S(t) d t \\
& =\frac{\mathrm{LEV}(x)}{\mathrm{E}[X]} \\
& =1-\frac{\mathrm{E}\left[(X-x)^{+}\right]}{\mathrm{E}[X]}
\end{aligned}
$$

where S is the survival function of $X . F_{I}$ is a thicker tailed distribution than F. Let

$$
U_{u, r}(t)=u+(1+r) \lambda \mathrm{E}[X] t-A(t)
$$

denote accumulated surplus to time t given starting surplus u. U is called the surplus process. Finally, let

$$
\psi(u, r)=\operatorname{Pr}\left(U_{u, r}(t)<0 \text { for some } t \geq 0\right)
$$

be the probability of eventual ruin.
The Pollaczeck-Khinchine formula says that

$$
\psi(u, r)=1-\frac{r}{1+r} \sum_{n \geq 0}(1+r)^{-n} F_{I}^{n *}(u)
$$

where $F_{I}^{n *}$ is distribution of the sum of n independent variables with distribution F_{I}. Note that

$$
G(z)=\frac{r}{1+r} \sum_{n \geq 0} \frac{z^{n}}{(1+r)^{n}}=\frac{r}{1+r-z}
$$

is the probability generating function of a geometric distribution M with mean $1 / r$ and $\operatorname{Pr}(M=m)=\frac{r}{1+r} \frac{1}{(1+r)^{m}}$. Therefore $\psi(u)=\operatorname{Pr}(Y>u)$ where Y is an aggregate distribution with frequency M and severity F_{I}. A surprising consequence is that the probability of eventual ruin starting with no surplus, $\psi(0)=1-\operatorname{Pr}(Y=0)=1-\operatorname{Pr}(M=$ $0)=\frac{1}{1+r}$ equals the expected loss ratio!
Embrechts et al. [1997] Section 1.2 shows how to derive the Pollaczeck-Khinchine formula. The key step is to determine the distribution of $X-(1+r) T$ where T is the exponential waiting time between claims, and to observe that ruin can occur only at the moment of a claim.
The Pollaczeck-Khinchine formula gives combinations of u and r that are consistent with a top-down stability requirement expressed as a target probability of eventual ruin. Overlaying a cost of capital provides a link between r and u that determines a minimum viable market size. An example of this method is given below.

Because eventual is the same in days, weeks or years, $\psi_{X, m}(u)$ is independent of the expected claim count λ. In unit of time $1 / \lambda$ all portfolios have an expected claim count of one. Therefore $\psi^{-1}(p)$ gives a capital requirement
(risk measure) that is a function of severity and not frequency, i.e., it is independent of portfolio size. Unlike most risk measures, it does not regard small portfolios as more risky than large ones.

The Cramer-Lundberg formula is an approximation to ψ that applies for thin tailed severities. It says that

$$
\psi(u, r) \leq e^{-k u}
$$

where $k>0$ is a constant called the adjustment coefficient solving

$$
e^{k P}=\mathrm{E}\left[e^{k A(1)}\right]
$$

where $P=(1+r) \lambda \mathrm{E}[X]$ is the premium. Given a top-down stability requirement, we can work backwards from the Cramer-Lundberg formula to determine a premium.
Exercise. Show that if $k=-\log (p) / u$ and premium

$$
P=\frac{1}{k} \log \mathrm{E}\left[e^{k A(1)}\right]
$$

then the Cramer-Lundberg formula ensures the probability of eventual ruin is $\leq p$. The properties of P motivate the exponential premium. In turn, the approximation $P \approx \mathrm{E}[A(1)]+k \operatorname{Var}(A(1)) / 2$ motivates the variance principle.

Both the Cramer-Lundberg and Pollaczeck-Khinchine formulas assume independent and identically distributed severity and Poisson frequency. These can be reasonable assumptions for the loss process of a small portfolio. The case of a mixed Poisson can be decomposed as a mixture of pure Poisson processes.

5.7.3 FFT Computation

The distribution of Y can be computed using Fast Fourier transforms in the same way as any aggregate distribution. Some care is needed when the margin is very small because the claim count is very large. Aggregate includes pollaczeck_khinchine () to determine the integrated distribution F_{I} and convolve it with a geometric frequency.

5.7.4 Using The Pollaczeck-Khinchine Formula I

This section reproduces two examples from the risk vignette for the actuar package.
The first is based on a mean 10 Poisson compound with shape 2 gamma severity. The vignette uses matched-moments discretization and so our numbers do not exactly match, but they are very close. We build the compound, compute some quantiles and tvars, display the density (compare p.8-10). Then using a premium loading of 20% using the expected value premium (p.12), we reproduce the probabilities in Figure 5. Our computation is exact vs. using an approximation.

```
In [1]: from aggregate import build, qd
In [2]: import matplotlib.pyplot as plt
In [3]: a = build('agg Actuar 10 claims sev gamma 2 poisson'
    ...: , bs=0.5, log2=8)
    ...:
In [4]: qd(a)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 
Agg 20 19.999-7.4963e-05 0.3873 0.38801 0.5164 0.51634
log2 = 8, bandwidth = 1/2, validation: fails sev cv, agg cv.
```

(continued from previous page)

| In [6]: qd(pd. DataFrame | | |
| :---: | :---: | :---: |
| | if x | se f^{\prime} |
| | p | q |
| 0 | 0.250 | 14.5 |
| 1 | 0.500 | 19.5 |
| 2 | 0.750 | 25.0 |
| 3 | 0.900 | 30.5 |
| 4 | 0.950 | 34.0 |
| 5 | 0.975 | 37.0 |
| 6 | 0.990 | 41.0 |
| 7 | 0.995 | 43.5 |
| 8 | 0.999 | 49.5 |
| 9 | 1.000 | 115.5 |

In [7]: fig, axs = plt.subplots(1, 3, figsize=(3 * 3.5, 2.45), constrained_
\rightarrow layout=True)
In [8]: ax, ax0, ax1 = axs.flat
In [9]: a.density_df.F.plot(ax=ax, xlim=[0, 60], title='Po-Gamma distribution
\rightarrow function');
In [10]: qd(a.density_df.p_total.head(20).reset_index(drop=False), float_
\hookrightarrow format=lambda $x: f^{\prime} \quad\{x:<12.5 \mathrm{~g}\}^{\prime}$ if $0<x<.1$ else f'\{x:10.1f\}')
loss p_total
$0.0 \quad 5.9175 e-05$
$0.5 \quad 8.6904 e-05$
$1.0 \quad 0.00017152$
1.50 .00028809
$2.0 \quad 0.00045063$
2.50 .00066863
$3.0 \quad 0.0009508$
3.50 .0013052
$4.0 \quad 0.001739$
4.50 .0022578
$5.0 \quad 0.0028658$
5.50 .0035653
$6.0 \quad 0.0043564$
6.50 .0052372
$7.0 \quad 0.0062034$
7.50 .0072487
$8.0 \quad 0.0083649$
8.50 .0095419
$9.0 \quad 0.010768$
9.50 .01203
In [11]: qd(a.tvar([.9, .95, .99]))
$\left[\begin{array}{lll}35.02023434 & 38.14387968 & 44.6199146\end{array}\right]$
In [12]: ruins, find_us, mean, dfi = a.cramer_lundberg(.2)
In [13]: ax0.plot(np.cumsum(dfi), label='integrated')
Out [13]: [<matplotlib.lines.Line2D at 0x7fe3de20bfd0>]
In [14]: ax0.plot(a.density_df.p_sev.cumsum(), label='severity')
Out [14]: [<matplotlib.lines.Line2D at 0x7fe3de1d83d0>]
(continued from previous page)

```
In [15]: ax0.set(xlim=[0, 40], title='Severity and integrated severity`
\hookrightarrowdistributions')
Out[15]: [(0.0, 40.0), Text(0.5, 1.0, 'Severity and integrated severity`
\hookrightarrowdistributions')]
In [16]: ax0.legend(loc='lower right')
Out[16]: <matplotlib.legend.Legend at 0x7fe3dff0b9d0>
In [17]: ruins.plot(ax=ax1, xlim=[0, 50],
    ...: title='Probability of eventual ruin against starting surplus',
    ...: ylabel='Probability', xlabel='Starting surplus');
    .... :
```


The second uses a Pareto severity, where the integrated distribution can be computed exactly. The following code produces the exact values for the probability of eventual default against starting surplus. All the values fall in the range between lower and upper shown on p. 19.

```
In [18]: a = build('agg Actuar2 1 claim sev 4 * pareto 5 - 4 fixed')
In [19]: qd(a)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 1 1 -4.2872e-06 1.291 1.2907 4.6476 4.5872
Agg 1 1 -4.2872e-06 1.291 1.2907 4.6476 4.5872
log2 = 16, bandwidth = 1/512, validation: fails sev skew, agg skew.
In [20]: ruins, find_us, mean, dfi = a.cramer_lundberg(.2)
In [21]: ruins.name = 'Prob'
In [22]: bit = ruins.loc[np.arange(0, 51, 5)].to_frame()
In [23]: bit.index = bit.index.astype(int)
In [24]: bit.index.name = 'Initial surplus'
In [25]: qd(bit, ff=lambda x: f'{x:.5f}')
    Prob
Initial surplus
0 0.83306
5 0.42670
10 0.23477
15 0.13149
20 0.07439
25 0.04242
30 0.02435
35 0.01406
40 0.00818
```

| 45 | 0.00479 |
| :--- | :--- |
| 50 | 0.00282 |

The actual work, to get the answer as opposed to formatting the result, is only two lines of code in Aggregate (the first and third) vs. 8 in actuar R.

5.7.5 Using The Pollaczeck-Khinchine Formula II

This section illustrates the theory using a lognormal severity with a mean of 50,000 and a CV of $10(\sigma=2.15)$ corresponding to a moderately risky liability line. It compares starting surplus levels for different eventual ruin probabilities assuming a margin $r=0.1$ with a 1 million and 10 million occurrence limit. It also illustrates simulations of the surplus process in each case with starting surplus calibrated to a 0.05 probability of eventual ruin.

Set up the portfolio.

```
In [26]: port = build('port PZTest '
    ....: 'agg Limit1 '
    ...: '0.1 claims '
    ...: '1000000 xs 0 '
    ...: 'sev lognorm 50000 cv 10'
    ...: 'poisson'
    ...: 'agg Limit10 '
    ...: '0.1 claims '
    ...: '10000000 xs 0'
    ...: 'sev lognorm 50000 cv 10'
    ...: 'poisson'
    ...: , bs=500, log2=18, padding=1)
    .... :
In [27]: qd(port)
    E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
Limit1 Freq 
    Agg 3806.4 3806 -0.0001105 10.28 10.281 18.845 18.845
Limit10 Freq 
        Agg 4790 4789.6 -8.7807e-05 18.287 18.289 64.966 64.966
total Freq 
log2 = 18, bandwidth = 500, validation: fails sev mean, agg mean.
```

The left plots show the Pollaczeck-Khinchine formula starting surplus as a function of the eventual ruin probability with margin 0.1 on linear (solid) and \log (dashed) scales. The Cramer-Lundberg formula says that the probability of eventual ruin is approximately exponential, which is a straight line on a log scale.

The right column show 500 simulated surplus paths, with \times indicating ruin scenarios. Capital calibrated to 0.05 eventual ruin probability. Time and volume are symmetric in the model, so volume can be regarded as time for a fixed size portfolio or a varying sized portfolio for a fixed time or a combination. Scale indicates cumulative exposureyears.

```
In [28]: from aggregate.extensions.pir_figures import fig_9_1
In [29]: fig_9_1(port)
```


The right hand plots are computed here with only 100 samples, vs. 500 used in the book, and so the approximation is not as accurate.

These simulations show that the probability of eventual ruin is constrained by the buildup of surplus in most scenarios. Defaults occur early in the simulated history. This model could be appropriate for a mutual company-indeed some mutual companies have accumulated substantial amounts of capital. For a stock company, a more realistic approach adds dividends to manage capital.

5.7.6 Market Scale and Viability

Given severity X and ratio r of margin to expected loss, the Pollaczeck-Khinchine function ψ is monotone and hence invertible, allowing us to find $u_{X, r}(p)=\psi_{X, r}^{-1}(p)$, the starting capital necessary to guarantee probability p of eventual ruin.

The amount of margin equals $r \lambda \mathrm{E}[X]$, where λ is the annual expected claim count. Since the expected margin must pay the cost of capital, we get a market viability constraint

$$
r \lambda \mathbb{E}[X] \geq \iota u_{X, r}(p)
$$

where ι is the cost of capital. Each element is influenced by different factors:

- the hazard and contract design determines X,
- the insurance product market determines r,
- the capital markets determine ι, and
- a regulator or rating agency determines (or strongly influences) p.

There are two ways to apply this formula.
First, consider a diversifying unit, such as motor liability, where insurers grow by adding new, independent insureds with the same severity. Here, the formula gives a minimum size of market constraint

$$
\lambda \geq \iota \frac{u_{X, r}(p)}{r \mathrm{E}[X]}
$$

This function of four variables and λ is:

- Increasing and linear in ι : the market must be larger given more expensive capital.
- Decreasing in r : the market can be smaller with a higher margin.
- Decreasing in p : the market must be larger to support a stricter capital standard.
- Independent of expected severity (because ψ is homogeneous in $\mathrm{E}[X]$) but dependent on the shape of severity (which influences ψ).

It shows the natural scale using the lognormal example. Size, measured by expected annual claim count, is shown for a range of margins, limits, and stability constraints. If claim frequency is 5%, the table shows that a market with 1 M limits is reasonable for all p and r. For example, the strictest stability constraint $p=0.01$ and lowest margin rate $r=0.025$ needs 39,814 claims, or about 800,000 policies, to be viable. With a 10 M limit and same r, the market size needs to be $>100,000$ claims, or about 2.5 million policies, which is less achievable. However, if the margin rate increases to $r=0.1$, the market size reduces to 9,088 claims or about 180,000 policies.

| In [31]: df = natural_scale(port) | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| index 2 | 62144 is o | at of boun | ds for axi | (0 with s | ize 262144 | | | |
| In [32]: qd(df, float_format=lambda x: f'\{x:,.0f \}') | | | | | | | | |
| $\begin{aligned} & \text { Margin } \\ & \hookrightarrow 000 \mathrm{~m} \end{aligned}$ | | 25.000 m | 50.000 m | 75.000 m | 100.000 m | 150.000 m | 200.000 m | 250. |
| Limit | p | | | | | | | \checkmark |
| \hookrightarrow | | | | | | | | |
| 1.000 M | 10.000 m | 39,814 | 10,182 | 4,625 | 2,657 | 1,230 | 718 | - |
| $\hookrightarrow 477$ (40.000 m | | | | | | | | |
| | 50.000 m | 25,808 | 6,577 | 2,978 | 1,705 | 784 | 455 | \checkmark |
| $\hookrightarrow 300$ | | | | | | | | |
| | 100.000 m | 19,777 | 5,025 | 2,269 | 1,295 | 593 | 342 | - |
| $\hookrightarrow 225$ | | | | | | | | |
| | 250.000 m | 11,803 | 2,973 | 1,331 | 754 | 339 | 193 | \checkmark |
| $\hookrightarrow 124$ | | | | | | | | |
| 10.000M | 10.000 m | NaN | 33,612 | 15,552 | 9,088 | 4,335 | 2,600 | 1, |
| $\hookrightarrow 765$ | | | | | | | | |
| | 50.000 m | NaN | 21,571 | 9,916 | 5,758 | 2,714 | 1,610 | 1, |
| $\hookrightarrow 079$ | | | | | | | | |
| | 100.000 m | NaN | 16,386 | 7,489 | 4,324 | 2,015 | 1,182 | \checkmark |
| $\hookrightarrow 794$ | | | | | | | | |
| | 250.000 m | NaN | 9,531 | 4,280 | 2,427 | 1,101 | 614 | \checkmark |
| $\hookrightarrow 382$ | | | | | | | | |

Note: these numbers differ slightly from the book because of the update parameters used for port.
Second, consider a non-diversifying unit, writing catastrophe exposed business, where insurers grow by covering a greater proportion of each event. Severity becomes market share times an industry severity X, and the number of events is fixed. US hurricane reinsurance is an example. In this case, viability is independent of market share and is controlled by whether the inequality has a solution that is acceptable to both the product market and the capital market. Viability is harder to achieve

- with smaller λ : rare events are more difficult to insure,
- with lower p : higher quality insurance is more expensive,
- with higher ι : more costly capital, and
- with lower r because u increases quickly.

5.8 Calculations For Each aggregate Class

Objectives: Describe calculations performed by the Aggregate, Portfolio, Distortion, and Bounds classes.

Audience: Advanced users and programmers.
Prerequisites: DecL, general use of aggregate, probability.
See also: API Reference, A Ten Minute Guide to aggregate.

Contents:

- Helpful References
- 5_x_aggregate_calculations
- 5_x_portfolio_calculations
- Distortions and Spectral Risk Measures
- 5_x_bounds

5.8.1 Helpful References

- Mildenhall and Major [2022]
- Wang [1995]
- Wang [1996]
- Mildenhall [2022]

5.8.2 Aggregate Class Calculations

Todo: Discussion to follow.

5.8.3 Portfolio Class Calculations

A Portfolio is a collection of Aggregate objects. The class computes the densities of each aggregate component as well as the sum, and also computes the variables shown below. These variables are central to many allocation algorithms. All computations use FFTs to compute relevant convolutions and surface integrals. X_{i} (a represents recoveries to line i when total capital is a and lines have equal priority. It is given by $X_{i}(a)=X_{i}(X \wedge a) / X$: when $X \leq a$ line i is paid in full and $X_{i}(a)=X_{i}$ and when $X>a$ payments are a pro rata X_{i} / X share of available assets a. Hence expected recoveries are

$$
\begin{aligned}
\mathrm{E}\left[X_{i}(a)\right] & =\mathrm{E}\left[X_{i}(X \wedge a) / X\right] \\
& =\mathrm{E}\left[X_{i}(X \wedge a) / X \mid X \leq a\right] F(a)+\mathrm{E}\left[X_{i}(X \wedge a) / X \mid X>a\right] S(a) \\
& =\mathrm{E}\left[X_{i} \mid X \leq a\right] F(a)+a \mathrm{E}\left[X_{i} / X \mid X>a\right] S(a) \\
& =\mathrm{E}\left[X_{i} \mid X \leq a\right] F(a)+a \alpha_{i}(a) S(a)
\end{aligned}
$$

emphasizing the importance of knowing $\mathrm{E}\left[X_{i} / X \mid X\right]$.
Densities are computed using FFT in $O(n \log (n))$ time.

Table 5: Variables and computational complexity by line i

| Variable | Meaning | Computation | Complexity |
| :--- | :--- | :--- | :--- |
| All lines com-
 bined | | | |
| p_total | Density of $X=\sum_{i} X_{i}$ | FFT Convolution | $O(n)$ |
| exa_total | $\mathrm{E}[\min (X, a)]=\mathrm{E}[X \wedge a]$ | Cumsum of S | |
| exlea_total | $\mathrm{E}[X \mid X \leq a]$ | | |
| exgta_total | $\mathrm{E}[X \mid X>a]$ | | $O(n \log (n))$ |
| By line | | FFT computation of aggregate using
 MGF | |
| p_line | Density of X_{i} | Conv $x f_{i}(x), f_{\hat{i}}$ | $O(n)$ |
| exeqa_line | $\mathrm{E}\left[X_{i} \mid X=a\right]$ | Cumsum of S_{i} | $O(n)$ |
| lev_line | $\mathrm{E}\left[\min \left(X_{i}, a\right)\right]=\mathrm{E}\left[X_{i} \wedge a\right]$ | Conv $\mathrm{E}\left[X_{i} \wedge x\right], f_{\hat{i}}$ | |
| e2pri_line | $\mathrm{E}\left[X_{i, 2}(a)\right]$ | Cumsum of $E\left(X_{i} \mid X=x\right) f_{X}(x)$ | O |
| exlea_line | $\mathrm{E}\left[X_{i} \mid X \leq a\right]$ | Conditional expectation formula | |
| e_line | $\mathrm{E}\left[X_{i}\right]$ | Sum using conditional expectation | |
| exgta_line | $\mathrm{E}\left[X_{i} \mid X>a\right]$ | Cumsum of $\mathrm{E}\left[X_{i} \mid X=x\right] f_{X}(x) / x$ | |
| exi_x_line | $\mathrm{E}\left[X_{i} / X\right]$ | Conditional expectation formula | |
| exi_xlea_line | $\mathrm{E}\left[X_{i} / X \mid X \leq a\right]$ | Conditional expectation formula | |
| exi_xgta_line | $\mathrm{E}\left[X_{i} / X \mid X>a\right]$ | Stand-alone Expected Policyholder
 Deficit | |
| exa_line | $\mathrm{E}\left[X_{i}(a)\right]$ | Equal priority EPD | |
| epd_i_line | $\left(\mathrm{E}\left[X_{i}\right]-\mathrm{E}[X \wedge a)\right] / \mathrm{E}\left[X_{i}\right]$ | Second priority EPD | |
| epd_i_line | $\left(\mathrm{E}\left[X_{i}\right]-\mathrm{E}\left[X_{i}(a)\right] / \mathrm{E}\left[X_{i}\right]\right.$ | $\mathrm{E}\left[X_{i}\right]-\mathrm{E}\left[X_{i, 2}(a)\right] / \mathrm{E}\left[X_{i}\right]$ | |

For Total, All Lines X

- Density f computed by convolving each individual line using FFTs.
- F and S are computed from the cumulative sums of the density.
- exa_total $=\mathrm{E}[\min (X, a)]=\mathrm{E}[X \wedge a]$, also called lev_total for limited expected value, is computed as cumulative sums of S times bucket size. Note exa_total= lev_total.
- exlea_total $=\mathrm{E}[X \mid X \leq a]$ is computed using the relation $\mathrm{E}[X \wedge a]=\int_{0}^{a} t f(t) d t+a S(a)$ as

$$
\mathrm{E}[X \mid X \leq a]=\frac{1}{F(a)} \int_{0}^{a} t f(t) d t=\frac{\mathrm{E}[X \wedge a]-a S(a)}{F(a)}
$$

When $F(a)$ is very small these values are unreliable and so the first values are set equal to zero.

- exgta_total $=\mathrm{E}[X \mid X>a]$ is computed using the relation $\mathrm{E}[X]=\mathrm{E}[X \mid X \leq a] F(a)+\mathrm{E}[X \mid X>$ $a] S(a)$. Therefore

$$
\mathrm{E}[X \mid X>a]=\frac{\mathrm{E}[X]-\mathrm{E}[X \mid X \leq a] F(a)}{/ S(a)}
$$

For Individual Lines X_{i}

- Density and distributions as for total.
- exeqa_line $=\mathrm{E}\left[X_{i} \mid X=a\right]=\kappa_{i}(a)$ can be computed efficiently using FFTs in the case X_{i} are independent. Without loss of generality $X=X_{i}+\hat{X}_{i}$ where \hat{X}_{i} is the sum of all other lines ("not i "). Let $f_{x}\left(x_{i}, \hat{x}_{i}\right)$ be the conditional density of $X_{i}=x_{i}, \hat{X}_{i}=\hat{x}_{i}$ given $X=x$. Thus $f_{x}\left(x_{i}, \hat{x}_{i}\right)=f\left(x_{i}, \hat{x}_{i}\right) / f_{X}(x)$ where f is the bivariate density of X_{i} and \hat{X}_{i} and f_{X} is the unconditional density of X. Assuming independence between X_{i} and \hat{X}_{i} :

$$
\begin{aligned}
\mathrm{E}\left[X_{i} \mid X=a\right] & =\int_{0}^{a} x_{i} f_{a}\left(x_{i}, a-x_{i}\right) d x_{i} \\
& =\frac{1}{f_{X}(a)} \int_{0}^{a} x_{i} f_{i}\left(x_{i}\right) f_{\hat{i}}\left(a-x_{i}\right) d x_{i}
\end{aligned}
$$

showing $\mathrm{E}\left[X_{i} \mid X=a\right]$ is the convolution of the functions $x_{i} \mapsto x_{i} f_{i}\left(x_{i}\right)$ and $f_{\hat{i}}$. The convolution can be computed using FFTs. In the case $f_{X}(a)$ is very small these estimates may be numerically unreliable.

- exlea_line $=\mathrm{E}\left[X_{i} \mid X \leq a\right]$ is given by

$$
\begin{aligned}
\mathrm{E}\left[X_{i} \mid X \leq a\right] & =\mathrm{E}\left[\mathrm{E}\left(X_{i} \mid X \leq a\right] \mid X\right) \\
& =\int_{0}^{a} \mathrm{E}\left[X_{i} \mid X \leq a, X=x\right] f_{\{X \mid X \leq a\}}(x) d x \\
& =\frac{1}{F_{X}(a)} \int_{0}^{a} \mathrm{E}\left[X_{i} \mid X=x\right] f_{X}(x) d x
\end{aligned}
$$

can be computed for all a using the cumulative sums. Care is needed when a is so small that $F(a)$ is very small.

- exgta_line $=E\left(X_{i} \mid X \geq a\right)$ can be computed using $\mathrm{E}[X]=E\left(X_{i} \mid X \leq a\right) F(a)+\mathrm{E}\left[X_{i} \mid X>a\right] S(a)$. It could also be computed with a reverse cumulative sum.
- exi_x_line $=\mathrm{E}\left[X_{i} / X\right]$, the unconditional average proportion of losses from line i is computed as

$$
\begin{aligned}
\mathrm{E}\left[X_{i} / X\right] & =\mathrm{E}_{X}\left[\mathrm{E}\left[X_{i} / X \mid X\right]\right] \\
& =\mathrm{E}_{X}\left[\mathrm{E}\left[X_{i} \mid X\right] / X\right] \\
& =\int_{0}^{\infty} \mathrm{E}\left[X_{i} \mid X=x\right] x^{-1} f_{X}(x) d x .
\end{aligned}
$$

- exi_xlea_line $=\mathrm{E}\left[X_{i} / X \mid X \leq a\right]$ is computed using cumulative sums via

$$
\mathrm{E}\left[X_{i} / X \mid X \leq a\right]=\frac{1}{F(a)} \int_{0}^{a} \mathrm{E}\left[X_{i} \mid X=x\right] x^{-1} f_{X}(x) d x
$$

- exi_xgta_line $=\mathrm{E}\left[X_{i} / X \mid X>a\right]=\alpha_{i}(a)$ computed from $\mathrm{E}\left[X_{i} / X\right]$ and $\mathrm{E}\left[X_{i} / X \mid X \leq a\right]$ as usual.
- exa_line $=\mathrm{E}\left[X_{i}(a)\right]$ is the loss cost for line i using the equal priority rule. It is computed by conditioning on X

$$
\begin{aligned}
\mathrm{E}\left[X_{i}(a)\right] & =\mathrm{E}\left[X_{i}(a] \mid X \leq a\right) F(a)+\mathrm{E}\left[X_{i}(a] \mid X>a\right) S(a) \\
& =\mathrm{E}\left[X_{i} \mid X \leq a\right] F(a)+a \mathrm{E}\left[X_{i} / X \mid X>a\right] S(a)
\end{aligned}
$$

showing it is a simple weighted average of $\mathrm{E}\left[X_{i} \mid X \leq a\right]$ and $\mathrm{E}\left[X_{i} / X \mid X>a\right]$, both of which have already been computed. The computation could also be carried out using $\mathrm{E}\left[X_{i} ; X \leq a\right]$ and $\mathrm{E}\left[X_{i} / X ; X>a\right]$ which would avoid multiplying and dividing by F and S.

- e2pri_line $=\mathrm{E}\left[X_{i, 2}(a)\right]$ is the recovery to X_{i} when it is subordinate to \hat{X}_{i} and total assets $=a$. It can also be computed using FFTs. Assuming independence between the lines the recovery to line i given \hat{X}_{i} is

$$
X_{i, 2}\left(a, \hat{X}_{i}\right)=\max \left(0, \min \left(X_{i, 2}, a-\hat{X}_{i}\right)\right)=X_{i, 2} \wedge\left(a-\hat{X}_{i}\right)^{+}
$$

which can be computed as

$$
\begin{aligned}
\mathrm{E}\left[X_{i, 2}(a)\right] & =\mathrm{E}_{\hat{X}_{i}}\left[\mathrm{E}\left[X_{i, 2}(a) \mid \hat{X}_{i}\right]\right] \\
& =\mathrm{E}_{\hat{X}_{i}}\left[\mathrm{E}\left[X_{i} \wedge\left(a-\hat{X}_{i}\right)^{+} \mid \hat{X}_{i}\right]\right] \\
& =\int_{0}^{a} \mathrm{E}\left[X_{i} \wedge(a-x) \mid \hat{X}_{i}=x\right) f_{\hat{i}}(x) d x \\
& =\int_{0}^{a} \mathrm{E}\left[X_{i} \wedge(a-x)\right] f_{\hat{i}}(x) d x
\end{aligned}
$$

showing $\mathrm{E}\left[X_{i, 2}(a)\right]$ is the convolution of the functions $x \mapsto \mathrm{E}\left[X_{i} \wedge x\right]$ and $f_{\hat{i}}$, i.e. of the limited expected values of X_{i} on a stand-alone basis and the density of \hat{X}_{i}.

- epd_i_line are the expected policyholder deficits of line with assets a. When $i=1$ the computation is for the standalone line, when $i=1$ for the line with equal priority and when $i=2$ for the line with second priority relative to all other lines. The calculation are all simple

$$
\begin{aligned}
& \operatorname{epd}_{0}\left(X_{i}, a\right)=\frac{\mathrm{E}\left[X_{i}\right]-\mathrm{E}\left[X_{i} \wedge a\right]}{\mathrm{E}\left[X_{i}\right]} \\
& \operatorname{epd}_{1}\left(X_{i}, a\right)=\frac{\mathrm{E}\left[X_{i}\right]-\mathrm{E}\left[X_{i}(a)\right]}{\mathrm{E}\left[X_{i}\right]} \\
& \operatorname{epd}_{2}\left(X_{i}, a\right)=\frac{\mathrm{E}\left[X_{i}\right]-\mathrm{E}\left[X_{i, 2}(a)\right]}{\mathrm{E}\left[X_{i}\right]}
\end{aligned}
$$

The upshot of these calculations is that all the required values, for all levels of capital a can be computed in time $O(m n \log (n))$ where m is the number of lines of business and n is the length of the vector used to discretize the underlying distributions. Without using FFTs the calculations would take $O\left(m n^{2}\right)$. Since n is typically in the range 2^{10} to 2^{20} FFTs provide a huge speed-up. Using simple simulations would be completely impractical for the delicate calculations involved.

The calculation of $\mathrm{E}\left[X_{i}(a)\right]=\mathrm{E}\left[X_{i} \mid X \leq a\right] F(a)+a \mathrm{E}\left[X_{i} / X \mid X>a\right] S(a)$ depends critically on the fact that the same values $\mathrm{E}\left[X_{i} \mid X=x\right]$ and $\mathrm{E}\left[X_{i} / X \mid X>a\right]$ are used for all values of a. Only the weights $F(a)$ and $S(a)$ change with a. As a result $\mathrm{E}\left[X_{i}(a)\right]$ can be computed in one sweep of length n. If different values were required for each value of a the complexity would jump up to $O\left(m n \times n^{2}\right)$ (or $O(m n \times n \log (n))$ if it is possible to use FFTs). This is unfortunately the situation when one line is collateralized because the ratio of capital to collateral determines the allocation of assets in insolvency.

Now we compute the impact of applying a distortion g to the underlying probabilities, i.e. discuss premium allocations. Let E_{g} denote expected values with respect to the distorted probabilities defined by g.

Table 6: Variables and computational complexity by line i, with distorted probabilities. Complexity refers to additional complexity beyond values already computed.

| Variable | Meaning | Computation | Complexity |
| :--- | :--- | :--- | :--- |
| gS, gF | $g(S(x))$ and $1-g(S(x))$ | | $O(n)$ |
| gp_total | Estimate
 $-d g(S(x)) / d x$ | Difference of $g(S)$ | $O(n)$ |
| exag_total | $\mathrm{E}_{g}[X \wedge a]$ | Cumulative sum of $g(S)$ | $O(n)$ |
| exag_line | $\mathrm{E}_{g}\left[X_{i}(a)\right]$ | See below | $O(n)$ |

- exag_total is easy to compute as the cumulative sums of $g(S)$
- exag_line is computed as

$$
\begin{aligned}
\mathrm{E}_{g}\left[X_{i}(a)\right] & =\mathrm{E}\left[X_{i} \frac{X \wedge a}{X} g^{\prime} S(X)\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[\left.X_{i} \frac{X \wedge a}{X} g^{\prime} S(X) \right\rvert\, X\right]\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[X_{i} \mid X\right] 1_{\{X \leq a\}} g^{\prime} S(X)\right]+a \mathrm{E}\left[\frac{\mathrm{E}\left[X_{i} \mid X\right]}{X} 1_{\{X>a\}} g^{\prime} S(X)\right] \\
& =\int_{0}^{a} \mathrm{E}\left[X_{i} \mid X=x\right] g^{\prime}(S(x)) f_{X}(x) d x+\int_{a}^{\infty} \mathrm{E}\left[X_{i} \mid X=x\right] x^{-1} g^{\prime} S(x) f_{X}(x) d x
\end{aligned}
$$

The first integral is computed as a cumulative sum of its terms, the second is computed as a reverse cumulative sum, both using exeqa. This expectation can also be expressed using $\beta_{i}(a)$.

- If g has a probability mass at $s=0$ then how are the masses dealt with?

Finally we discuss computing the impact of line specific collateral.
Computing the impact of collateral on recoveries. Computes the expected recoveries to line X_{i} when there are assets a but line i has collateral $c \leq a$. This calculation, alas, cannot be performed quickly using FFTs. It has to be computed mirroring the three way split of the default zone: no default, default and line i just paid full collateral (which requires $X_{i}<c x / a$ where x is total loss), and line i is paid its usual pro rata proportion of assets.

5.8.4 Distortion Class Calculations

Todo: Documentation to follow.

5.8.5 Bounds Class Calculations

Todo: Documentation to follow.

5.9 Working With Samples

Objectives: Describe working with samples including the switcheroo trick, the Iman-Conover algorithm and the re-arrangement algorithm.

Audience: Advanced users and programmers.
Prerequisites: DecL, general use of aggregate, probability. Probability, measures of association, multivariate distributions, matrix algebra.
See also: 5_x_iman_conover, 5_x_rearrangement_algorithm, Working With Samples, API Reference, and A Ten Minute Guide to aggregate.

Contents:

- Helpful References
- Using Samples and The Switcheroo Trick
- The Iman-Conover Method
- The Rearrangement Algorithm

5.9.1 Helpful References

- Conover [1999]
- Mildenhall [2005]
- Puccetti and Ruschendorf [2012]
- Embrechts et al. [2013]
- Mildenhall and Major [2022], Section 4.2.5.

5.9.2 Using Samples and The Switcheroo Trick

[^0]
5.9.3 The Iman-Conover Method

Basic Idea

Here is the basic idea of the Iman-Conover method. Given samples of n values from two known marginal distributions X and Y and a desired correlation ρ between them, re-order the samples to have the same rank order as a reference distribution, of size $n \times 2$, with linear correlation ρ. Since linear correlation and rank correlation are typically close, the re-ordered output will have approximately the desired correlation structure. What makes the IC method work so effectively is the existence of easy algorithms to determine samples from reference distributions with prescribed linear correlation structures.

Theoretical Derivation

Suppose that M is an n element sample from an r dimensional multivariate distribution, so M is an $n \times r$ matrix. Assume that the columns of M are uncorrelated, have mean zero, and standard deviation one. Let M^{\prime} denote the transpose of M. These assumptions imply that the correlation matrix of the sample M can be computed as $n^{-1} M^{\prime} M$, and because the columns are independent, $n^{-1} \mathrm{M}^{\prime} \mathrm{M}=\mathrm{id}$. (There is no need to scale the covariance matrix by the row and column standard deviations because they are all one. In general $n^{-1} \mathrm{M}^{\prime} \mathrm{M}$ is the covariance matrix of M .)
Let S be a correlation matrix, i.e. S is a positive semi-definite symmetric matrix with 1's on the diagonal and all elements ≤ 1 in absolute value. In order to rule out linearly dependent variables assume S is positive definite. These assumptions ensure S has a Choleski decomposition

$$
\mathrm{S}=\mathrm{C}^{\prime} \mathrm{C}
$$

for some upper triangular matrix C, see Golub Golub or Press et al. Set $T=M C$. The columns of T still have mean zero, because they are linear combinations of the columns of M which have zero mean by assumption. It is less obvious, but still true, that the columns of T still have standard deviation one. To see why, remember that the covariance matrix of T is

$$
n^{-1} \mathrm{~T}^{\prime} \mathrm{T}=n^{-1} \mathrm{C}^{\prime} \mathrm{M}^{\prime} \mathrm{MC}=\mathrm{C}^{\prime} \mathrm{C}=\mathrm{S},
$$

since $n^{-1} \mathrm{M}^{\prime} \mathrm{M}=\mathrm{id}$ is the identity by assumption. Now S is actually the correlation matrix too because the diagonal is scaled to one, so the covariance and correlation matrices coincide. The process of converting M , which is easy to simulate, into T , which has the desired correlation structure S , is the theoretical basis of the IC method.

It is important to note that estimates of correlation matrices, depending on how they are constructed, need not have the mathematical properties of a correlation matrix. Therefore, when trying to use an estimate of a correlation matrix in an algorithm, such as the Iman-Conover, which actually requires a proper correlation matrix as input, it may be necessary to check the input matrix does have the correct mathematical properties.
Next we discuss how to make $n \times r$ matrices M , with independent, mean zero columns. The basic idea is to take n numbers a_{1}, \ldots, a_{n} with $\sum_{i} a_{i}=0$ and $n^{-1} \sum_{i} a_{i}^{2}=1$, use them to form one $n \times 1$ column of M , and then to copy it r times. Finally randomly permute the entries in each column to make them independent as columns of random variables. Iman and Conover call the a_{i} "scores". They discuss several possible definitions for the scores, including scaled versions of $a_{i}=i$ (ranks) and a_{i} uniformly distributed. They note that the shape of the output multivariate distribution depends on the scores. All of the examples in their paper use normal scores. We will discuss normal scores here, and consider alternatives in Section 1.4.1.

Given that the scores will be based on normal random variables, we can either simulate n random standard normal variables and then shift and re-scale to ensure mean zero and standard deviation one, or we can use a stratified sample from the standard normal, $a_{i}=\Phi^{-1}(i /(n+1))$. By construction, the stratified sample has mean zero which is an advantage. Also, by symmetry, using the stratified sample halves the number of calls to Φ^{-1}. For these two reasons we prefer it in the algorithm below.

The correlation matrix of M, constructed by randomly permuting the scores in each column, will only be approximately equal to id because of random simulation error. In order to correct for the slight error which could be introduced Iman and Conover use another adjustment in their algorithm. Let $\mathrm{EE}=n^{-1} \mathrm{M}^{\prime} \mathrm{M}$ be the actual correlation matrix of M and let $E E=F^{\prime} F$ be the Choleski decomposition of $E E$, and define $T=M F^{-1} C$. The columns of

T have mean zero, and the covariance matrix of T is

$$
\begin{aligned}
n^{-1} \mathrm{~T}^{\prime} \mathrm{T} & =n^{-1} \mathrm{C}^{\prime} \mathrm{F}^{\prime-1} \mathrm{M}^{\prime} \mathrm{MF}^{-1} \mathrm{C} \\
& =\mathrm{C}^{\prime} \mathrm{F}^{\prime-1} \mathrm{EEF}^{-1} \mathrm{C} \\
& =\mathrm{C}^{\prime} \mathrm{F}^{\prime-1} \mathrm{~F}^{\prime} \mathrm{FF}^{-1} \mathrm{C} \\
& =\mathrm{C}^{\prime} \mathrm{C} \\
& =\mathrm{S}
\end{aligned}
$$

and hence T has correlation matrix exactly equal to S, as desired. If $E E$ is singular then the column shuffle needs to be repeated.

Now the reference distribution T with exact correlation structure S is in hand, all that remains to complete the IC method is to re-order the each column of the input distribution X to have the same rank order as the corresponding column of T .

Algorithm

Here is a more algorithmic description of the IC method. The description uses normal scores and the Choleski method to determine the reference distribution. As we discussed above, it is possible to make other choices in place of these and they are discussed in Section 1.4. We will actually present two versions of the core algorithm. The first, called "Simple Algorithm" deals with the various matrix operations at a high level. The second "Detailed Algorithm" takes a more sophisticated approach to the matrix operations, including referencing appropriate Lapack routines. Lapack is a standard set of linear algebra functions. Software vendors provide very high performance implementations of Lapack, many of which are used in CPU benchmarks. Several free Windows implementations are available on the web. The reader should study the simple algorithm first to understand what is going in the IC method. In order to code a high performance implementation you should follow the steps outlined in the detailed algorithm. Both algorithms have the same inputs and outputs.

An $n \times r$ matrix X consisting of n samples from each of r marginal distributions, and a desired correlation matrix S .
The IC method does not address how the columns of X are determined. It is presumed that the reader has sampled from the appropriate distributions in some intelligent manner. The matrix S must be a correlation matrix for linearly independent random variables, so it must be symmetric and positive definite. If S is not symmetric positive semidefinite the algorithm will fail at the Choleski decomposition step. The output is a matrix T each of whose columns is a permutation of the corresponding column of X and whose approximate correlation matrix is S .

1. Make one column of scores $a_{i}=\Phi^{-1}(i /(n+1))$ for $i=1, \ldots, n$ and rescale to have standard deviation one.
2. Copy the scores r times to make the score matrix M .
3. Randomly permute the entries in each column of M.
4. Compute the correlation matrix $\mathrm{EE}=n^{-1} \mathrm{M}^{\prime} \mathrm{M}$ of M .
5. Compute the Choleski decomposition $E E=F^{\prime} F$ of $E E$.
6. Compute the Choleski decomposition $\mathrm{S}=\mathrm{C}^{\prime} \mathrm{C}$ of the desired correlation matrix S .
7. Compute $\mathrm{T}=\mathrm{MF}^{-1} \mathrm{C}$. The matrix T has exactly the desired correlation structure.
8. Let Y be the input matrix X with each column reordered to have exactly the same rank ordering as the corresponding column of T.
9. Compute the Choleski decomposition of $S, S=C^{\prime} C$, with C upper triangular. If the Choleski algorithm fails then S is not a valid correlation matrix. Flag an error and exit. Checking S is a correlation matrix in Step 1 avoids performing wasted calculations and allows the routine to exit as quickly as possible. Also check that all the diagonal entries of S are 1 so S has full rank. Again flag an error and exit if not. The Lapack routine DPOTRF can use be used to compute the Choleski decomposition. In the absence of Lapack, $\mathbf{C}=\left(c_{i j}\right)$ can be computed recursively using

$$
c_{i j}=\frac{s_{i j}-\sum_{k=1}^{j-1} c_{i k} c_{j k}}{\sqrt{1-\sum_{k=1}^{j-1} c_{j k}^{2}}}
$$

for $1 \leq i \leq j \leq n$-since all the diagonal elements of S equal one. The empty sum $\sum_{0}^{0}=0$ and for $j>i$ the denominator equals $c_{i i}$ and the elements of C should be calculated from left to right, top to bottom. See Wang or Herzog.
10. Let $m=\lfloor n / 2\rfloor$ be the largest integer less than or equal to $n / 2$ and $v_{i}=\Phi^{-1}(i /(2 m+1))$ for $i=1, \ldots, m$.
11. If n is odd set

$$
\mathbf{v}=\left(v_{m}, v_{m-1}, \ldots, v_{1}, 0,-v_{1}, \ldots,-v_{m}\right)
$$

and if n is even set

$$
\mathbf{v}=\left(v_{m}, v_{m-1}, \ldots, v_{1},-v_{1}, \ldots,-v_{m}\right)
$$

Here we have chosen to use normal scores. Other distributions could be used in place of the normal, as discussed in Section 1.4.1. Also note that by taking advantage of the symmetry of the normal distribution halves the number of calls to Φ^{-1} which is relatively computationally expensive. If multiple calls will be made to the IC algorithm then store v for use in future calls.
12. Form the $n \times r$ score matrix M from r copies of the scores vector \mathbf{v}.
13. Compute $m_{x x}=n^{-1} \sum_{i} v_{i}^{2}$, the variance of v . Note that $\sum_{i} v_{i}=0$ by construction.
14. Randomly shuffle columns $2, \ldots, r$ of the score matrix.
15. Compute the correlation matrix EE of the shuffled score matrix M . Each column of M has mean zero, by construction, and variance $m_{x x}$. The correlation matrix is obtained by dividing each element of $\mathrm{M}^{\prime} \mathrm{M}$ by $m_{x x}$. The matrix product can be computed using the Lapack routine DGEMM. If EE is singular repeat step 6.
16. Determine Choleski decomposition $E E=F^{\prime} F$ of $E E$ using the Lapack routine DPOTRF. Because EE is a correlation matrix it must be symmetric and positive definite and so is guaranteed to have a Choleski root.
17. Compute $F^{-1} C$ using the Lapack routine DTRTRS to solve the linear equation $F A=C$ for A. Solving the linear equation avoids a time consuming matrix inversion and multiplication. The routine DTRTRS is optimized for upper triangular input matrices.
18. Compute the correlated scores $\mathrm{T}=\mathrm{MF}^{-1} \mathrm{C}=\mathrm{MA}$ using DGEMM. The matrix T has exactly the desired correlation structure.
19. Compute the ranks of the elements of T . Ranks are computed by indexing the columns of T as described in Section 8.4 of Press et al. Let $r(k)$ denote the index of the k th ranked element of T.
20. Let Y be the $n \times r$ matrix with i th column equal to the i th column of the input matrix X given the same rank order as T . The re-ordering is performed using the ranks computed in the previous step. First sort the input columns into ascending order if they are not already sorted and then set $\mathrm{Y}_{i, k}=\mathrm{X}_{i, r(k)}$.
The output of the algorithm is a matrix Y each of whose columns is a permutation of the corresponding column of the input matrix X . The rank correlation matrix of Y is identical to that of a multivariate distribution with correlation matrix S .

Simple Example of Iman-Conover

Having explained the IC method, we now give a simple example to explicitly show all the details. The example will work with $n=20$ samples and $r=4$ different marginals. The marginals are samples from four lognormal
distributions, with parameters $\mu=12,11,10,10$ and $\sigma=0.15,0.25,0.35,0.25$. The input matrix is
$X=\left(\begin{array}{llll}123,567 & 44,770 & 15,934 & 13,273 \\ 126,109 & 45,191 & 16,839 & 15,406 \\ 138,713 & 47,453 & 17,233 & 16,706 \\ 139,016 & 47,941 & 17,265 & 16,891 \\ 152,213 & 49,345 & 17,620 & 18,821 \\ 153,224 & 49,420 & 17,859 & 19,569 \\ 153,407 & 50,686 & 20,804 & 20,166 \\ 155,716 & 52,931 & 21,110 & 20,796 \\ 155,780 & 54,010 & 22,728 & 20,968 \\ 161,678 & 57,346 & 24,072 & 21,178 \\ 161,805 & 57,685 & 25,198 & 23,236 \\ 167,447 & 57,698 & 25,393 & 23,375 \\ 170,737 & 58,380 & 30,357 & 24,019 \\ 171,592 & 60,948 & 30,779 & 24,785 \\ 178,881 & 66,972 & 32,634 & 25,000 \\ 181,678 & 68,053 & 33,117 & 26,754 \\ 184,381 & 70,592 & 35,248 & 27,079 \\ 206,940 & 72,243 & 36,656 & 30,136 \\ 217,092 & 86,685 & 38,483 & 30,757 \\ 240,935 & 87,138 & 39,483 & 35,108\end{array}\right)$

Note that the marginals are all sorted in ascending order. The algorithm does not actually require pre-sorting the marginals but it simplifies the last step.

The desired target correlation matrix is

$$
\mathrm{S}=\left(\begin{array}{cccc}
1.000 & 0.800 & 0.400 & 0.000 \\
0.800 & 1.000 & 0.300 & -0.200 \\
0.400 & 0.300 & 1.000 & 0.100 \\
0.000 & -0.200 & 0.100 & 1.000
\end{array}\right)
$$

The Choleski decomposition of S is

$$
\mathrm{C}=\left(\begin{array}{cccc}
1.000 & 0.800 & 0.400 & 0.000 \\
0.000 & 0.600 & -0.033 & -0.333 \\
0.000 & 0.000 & 0.916 & 0.097 \\
0.000 & 0.000 & 0.000 & 0.938
\end{array}\right)
$$

Now we make the score matrix. The basic scores are $\Phi^{-1}(i / 21)$, for $i=1, \ldots, 20$. We scale these by 0.868674836252965 to get a vector v with standard deviation one. Then we combine four v's and shuffle randomly
to get

$$
\mathbf{M}=\left(\begin{array}{cccc}
-1.92062 & 1.22896 & -1.00860 & -0.49584 \\
-1.50709 & -1.50709 & -1.50709 & 0.82015 \\
-1.22896 & 1.92062 & 0.82015 & -0.65151 \\
-1.00860 & -0.20723 & 1.00860 & -1.00860 \\
-0.82015 & 0.82015 & 0.34878 & 1.92062 \\
-0.65151 & -1.22896 & -0.65151 & 0.20723 \\
-0.49584 & -0.65151 & 1.22896 & -0.34878 \\
-0.34878 & -0.49584 & -0.49584 & -0.06874 \\
-0.20723 & -1.00860 & 0.20723 & 0.65151 \\
-0.06874 & 0.49584 & 0.06874 & -1.22896 \\
0.06874 & -0.34878 & -1.22896 & 0.49584 \\
0.20723 & 0.34878 & 0.65151 & 0.34878 \\
0.34878 & -0.06874 & -0.20723 & 1.22896 \\
0.49584 & -1.92062 & -0.82015 & -0.20723 \\
0.65151 & 0.20723 & 1.92062 & -1.92062 \\
0.82015 & 1.00860 & 1.50709 & 1.50709 \\
1.00860 & -0.82015 & -1.92062 & 1.00860 \\
1.22896 & 1.50709 & 0.49584 & -1.50709 \\
1.50709 & 0.06874 & -0.06874 & 0.06874 \\
1.92062 & 0.65151 & -0.34878 & -0.82015
\end{array}\right) .
$$

As described in Section 1.1, M is approximately independent. In fact M has covariance matrix

$$
\mathrm{EE}=\left(\begin{array}{cccc}
1.0000 & 0.0486 & 0.0898 & -0.0960 \\
0.0486 & 1.0000 & 0.4504 & -0.2408 \\
0.0898 & 0.4504 & 1.0000 & -0.3192 \\
-0.0960 & -0.2408 & -0.3192 & 1.0000
\end{array}\right)
$$

and EE has Choleski decomposition

$$
F=\left(\begin{array}{cccc}
1.0000 & 0.0486 & 0.0898 & -0.0960 \\
0.0000 & 0.9988 & 0.4466 & -0.2364 \\
0.0000 & 0.0000 & 0.8902 & -0.2303 \\
0.0000 & 0.0000 & 0.0000 & 0.9391
\end{array}\right)
$$

Thus $\mathrm{T}=\mathrm{MF}^{-1} \mathrm{C}$ is given by

$$
\mathrm{T}=\left(\begin{array}{cccc}
-1.92062 & -0.74213 & -2.28105 & -1.33232 \\
-1.50709 & -2.06697 & -1.30678 & 0.54577 \\
-1.22896 & 0.20646 & -0.51141 & -0.94465 \\
-1.00860 & -0.90190 & 0.80546 & -0.65873 \\
-0.82015 & -0.13949 & -0.31782 & 1.76960 \\
-0.65151 & -1.24043 & -0.27999 & 0.23988 \\
-0.49584 & -0.77356 & 1.42145 & 0.23611 \\
-0.34878 & -0.56670 & -0.38117 & -0.14744 \\
-0.20723 & -0.76560 & 0.64214 & 0.97494 \\
-0.06874 & 0.24487 & -0.19673 & -1.33695 \\
0.06874 & -0.15653 & -1.06954 & 0.14015 \\
0.20723 & 0.36925 & 0.56694 & 0.51206 \\
0.34878 & 0.22754 & -0.06362 & 1.19551 \\
0.49584 & -0.77154 & 0.26828 & 0.03168 \\
0.65151 & 0.62666 & 2.08987 & -1.21744 \\
0.82015 & 1.23804 & 1.32493 & 1.85680 \\
1.00860 & 0.28474 & -1.23688 & 0.59246 \\
1.22896 & 1.85260 & 0.17411 & -1.62428 \\
1.50709 & 1.20294 & 0.39517 & 0.13931 \\
1.92062 & 1.87175 & -0.04335 & -0.97245
\end{array}\right) .
$$

An easy calculation will verify that T has correlation matrix S , as required.

To complete the IC method we must re-order each column of X to have the same rank order as T. The first column does not change because it is already in ascending order. In the second column, the first element of Y must be the 14th element of X, the second the 20th, third 10th and so on. The ranks of the other elements are the transpose of

$$
\left(\begin{array}{cccccccccc}
14 & 20 & 10 & 18 & 11 & 19 & 17 & 13 & 15 & 8 \\
12 & 6 & 9 & 16 & 5 & 3 & 7 & 2 & 4 & 1 \\
20 & 19 & 16 & 4 & 14 & 13 & 2 & 15 & 5 & 12 \\
17 & 6 & 11 & 8 & 1 & 3 & 18 & 9 & 7 & 10 \\
18 & 6 & 15 & 14 & 2 & 8 & 9 & 13 & 4 & 19 \\
10 & 7 & 3 & 12 & 17 & 1 & 5 & 20 & 11 & 16
\end{array}\right)
$$

and the resulting re-ordering of X is
$\mathbf{T}=\left(\begin{array}{llll}123,567 & 50,686 & 15,934 & 16,706 \\ 126,109 & 44,770 & 16,839 & 25,000 \\ 138,713 & 57,685 & 17,620 & 19,569 \\ 139,016 & 47,453 & 35,248 & 20,166 \\ 152,213 & 57,346 & 20,804 & 30,757 \\ 153,224 & 45,191 & 21,110 & 24,019 \\ 153,407 & 47,941 & 38,483 & 23,375 \\ 155,716 & 52,931 & 17,859 & 20,796 \\ 155,780 & 49,420 & 33,117 & 27,079 \\ 161,678 & 58,380 & 22,728 & 15,406 \\ 161,805 & 54,010 & 17,265 & 23,236 \\ 167,447 & 66,972 & 32,634 & 24,785 \\ 170,737 & 57,698 & 24,072 & 30,136 \\ 171,592 & 49,345 & 30,357 & 20,968 \\ 178,881 & 68,053 & 39,483 & 16,891 \\ 181,678 & 72,243 & 36,656 & 35,108 \\ 184,381 & 60,948 & 17,233 & 26,754 \\ 206,940 & 86,685 & 25,393 & 13,273 \\ 217,092 & 70,592 & 30,779 & 21,178 \\ 240,935 & 87,138 & 25,198 & 18,821\end{array}\right)$.

The rank correlation matrix of Y is exactly S . The actual linear correlation is only approximately equal to S . The achieved value is

$$
\left(\begin{array}{cccc}
1.00 & 0.85 & 0.26 & -0.11 \\
0.85 & 1.00 & 0.19 & -0.20 \\
0.26 & 0.19 & 1.00 & 0.10 \\
-0.11 & -0.20 & 0.10 & 1.00
\end{array}\right)
$$

a fairly creditable performance given the input correlation matrix and the very small number of samples $n=20$. When used with larger sized samples the IC method typically produces a very close approximation to the required correlation matrix, especially when the marginal distributions are reasonably symmetric.

Extensions of Iman-Conover

Following through the explanation of the IC method shows that it relies on a choice of multivariate reference distribution. A straightforward method to compute a reference is to use the Choleski decomposition method Equation ([coolA]) applied to certain independent scores. The example in Section 1.3 used normal scores. However nothing prevents us from using other distributions for the scores provided they are suitably normalized to have mean zero and standard deviation one.

Another approach to IC is to use a completely different multivariate distribution as reference. There are several other families of multivariate distributions, including the elliptically contoured distribution family (which includes the normal and t as a special cases) and multivariate Laplace distribution, which are easy to simulate from. Changing scores is actually an example of changing the reference distribution; however, for the examples we consider the exact form of the new reference is unknown.

Alternative Scores

The choice of score distribution has a profound effect on the multivariate distribution output by the IC method. The basic Iman-Conover algorithm uses normally distributed scores. We now show the impact of using exponentially and uniformly distributed scores.

The next figure shows three bivariate distributions with identical marginal distributions (shown in the lower right hand plot), the same correlation coefficient of 0.643 ± 0.003 but using normal scores (top left), exponential scores (top rigtht) and uniform scores (lower left). The input correlation to the IC method was 0.65 in all three cases and there are 1000 pairs in each plot. Here the IC method produced bivariate distributions with actual correlation coefficient extremely close to the requested value.

The normal scores produce the most natural looking bivariate distribution, with approximately elliptical contours. The bivariate distributions with uniform or exponential scores look unnatural, but it is important to remember that if all you know about the bivariate distribution are the marginals and correlation coefficient all three outcomes are possible.

Fig. 1: Bivariate distributions with normal, uniform and exponential scores.
Figure MISSING shows the distribution of the sum of the two marginals for each of the three bivariate distributions and for independent marginals. The sum with exponential scores has a higher kurtosis (is more peaked) than with
normal scores. As expected all three dependent sums have visibly thicker tails than the independent sum.
Iman and Conover considered various different score distributions in their paper. They preferred normal scores as giving more natural looking, elliptical contours. Certainly, the contours produced using exponential or uniform scores appear unnatural. If nothing else they provide a sobering reminder that knowing the marginal distributions and correlation coefficient of a bivariate distribution does not come close to fully specifying it!

Multivariate Reference Distributions

The IC method needs some reference multivariate distribution to determine an appropriate rank ordering for the input marginals. So far we have discussed using the Choleski decomposition trick in order to determine a multivariate normal reference distribution. However, any distribution can be used as reference provided it has the desired correlation structure. Multivariate distributions that are closely related by formula to the multivariate normal, such as elliptically contoured distributions and asymmetric Laplace distributions, can be simulated using the Choleski trick.

Elliptically contoured distributions are a family which extends the normal. For a more detailed discussion see Fang and Zhang. The multivariate t-distribution and symmetric Laplace distributions are in the elliptically contoured family. Elliptically contoured distributions must have characteristic equations of the form

$$
\Phi(\mathrm{t})=\exp \left(i \mathrm{t}^{\prime} \mathrm{m}\right) \phi\left(\mathrm{t}^{\prime} \mathrm{St}\right)
$$

for some $\phi: \mathrm{R} \rightarrow \mathrm{R}$, where m is an $r \times 1$ vector of means and S is a $r \times r$ covariance matrix (nonnegative definite and symmetric). In one dimension the elliptically contoured distributions coincide with the symmetric distributions. The covariance is S, if it is defined.

If S has rank r then an elliptically contoured distribution x has a stochastic representation

$$
\mathbf{x}=\mathrm{m}+R \mathbf{\top}^{\prime} \mathbf{u}^{(r)}
$$

where T is the Choleski decomposition of S , so $\mathrm{S}=\mathrm{T}^{\prime} \mathrm{T}, \mathrm{u}^{(r)}$ is a uniform distribution on the sphere in R^{r}, and R is a scale factor independent of $u^{(r)}$. The idea here should be clear: pick a direction on the sphere, adjust by T , scale by a distance R and finally translate by the means m . A uniform distribution on a sphere can be created as $\mathrm{x} /\|\mathrm{x}\|$ where x has a multivariate normal distribution with identity covariance matrix. (By definition, $\|\mathrm{x}\|^{2}=\sum_{i} x_{i}^{2}$ has a χ_{r}^{2} distribution.) Uniform vectors $\mathbf{u}^{(r)}$ can also be created by applying a random orthogonal matrix to a fixed vector $(1,0, \ldots, 0)$ on the sphere. Diaconis describes a method for producing random orthogonal matrices.

The t-copula with ν degrees of freedom has a stochastic representation

$$
\mathrm{x}=\mathrm{m}+\frac{\sqrt{\nu}}{\sqrt{S}} \mathrm{z}
$$

where $S \sim \chi_{\nu}^{2}$ and z is multivariate normal with means zero and covariance matrix S . Thus one can easily simulate from the multivariate t by first simulating multivariate normals and then simulating an independent S and multiplying.

The multivariate Laplace distribution is discussed in Kotz, Kozubowski and Podgorski. It comes in two flavors: symmetric and asymmetric. The symmetric distribution is also an elliptically contoured distribution. It has characteristic function of the form

$$
\Phi(\mathrm{t})=\frac{1}{1+\mathrm{t}^{\prime} \mathrm{St} / 2}
$$

where S is the covariance matrix. To simulate, use the fact that $\sqrt{W} \times$ has a symmetric Laplace distribution if W is exponential and X a multivariate normal with covariance matrix S .
The multivariate asymmetric Laplace distribution has characteristic function

$$
\Psi(\mathrm{t})=\frac{1}{1+\mathrm{t}^{\prime} \mathrm{St} / 2-i \mathrm{~m}^{\prime} \mathrm{t}}
$$

To simulate from WHAT, use the fact that

$$
\mathrm{m} W+\sqrt{W} \mathrm{X}
$$

has a symmetric Laplace distribution if W is exponential and X a multivariate normal with covariance matrix S and means zero. The asymmetric Laplace is not an elliptically contoured distribution.

The next figure compares IC samples produced using a normal copula to those produced with a t-copula. In both cases the marginals are normally distributed with mean zero and unit standard deviation. The t-copula has $\nu=2$ degrees of freedom. In both figures the marginals are uncorrelated, but in the right the marginals are not independent. The t-copula has pinched tails, similar to Venter's Heavy Right Tailed copulas.

Fig. 2: IC samples produced from the same marginal and correlation matrix using the normal and t copula reference distributions.

Algorithms for Extended Methods

In Section 1.4 .2 we described how the IC method can be extended by using different reference multivariate distributions. It is easy to change the IC algorithm to incorporate different reference distributions for t-copulas and asymmetric Laplace distributions. Follow the detailed algorithm to step 10. Then use the stochastic representation to simulate from the scaling distribution for each row and multiply each component by the resulting number, resulting in an adjusted T matrix. Then complete steps 11 and 12 of the detailed algorithm.

Comparison With the Normal Copula Method

By the normal copula method we mean the following algorithm, described in Wang or Herzog.
A set of correlated risks $\left(X_{1}, \ldots, X_{r}\right)$ with marginal cumulative distribution functions F_{i} and Kendall's tau $\tau_{i j}=$ $\tau\left(X_{i}, X_{j}\right)$ or rank correlation coefficients $r\left(X_{i}, X_{j}\right)$.

1. Convert Kendall's tau or rank correlation coefficient to correlation using

$$
\rho_{i j}=\sin \left(\pi \tau_{i j} / 2\right)=2 \sin \left(\pi r_{i j} / 6\right)
$$

and construct the Choleski decomposition $\mathrm{S}=\mathrm{C}^{\prime} \mathrm{C}$ of $\mathrm{S}=\left(\rho_{i j}\right)$.
2. Generate r standard normal variables $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{r}\right)$.
3. $\operatorname{Set} Z=Y C$.
4. Set $u_{i}=\Phi\left(Z_{i}\right)$ for $i=1, \ldots, r$.
5. Set $X_{i}=F_{i}^{-1}\left(u_{i}\right)$.

The vectors $\left(X_{1}, \ldots, X_{r}\right)$ form a sample from a multivariate distribution with prescribed correlation structure and marginals F_{i}.

The Normal Copula method works because of the following theorem from Wang.
[wangThm] Assume that $\left(Z_{1}, \ldots, Z_{k}\right)$ have a multivariate normal joint probability density function given by

$$
f\left(z_{1}, \ldots, z_{k}\right)=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left(-\mathbf{z}^{\prime} \Sigma^{-1} \mathbf{z} / 2\right)
$$

$\mathbf{z}=\left(z_{1}, \ldots, z_{k}\right)$, with correlation coefficients $\Sigma_{i j}=\rho_{i j}=\rho\left(Z_{i}, Z_{j}\right)$. Let $H\left(z_{1}, \ldots, z_{k}\right)$ be their joint cumulative distribution function. Then

$$
C\left(u_{1}, \ldots, u_{k}\right)=H\left(\Phi^{-1}\left(u_{1}\right), \ldots, \Phi^{-1}\left(u_{k}\right)\right)
$$

defines a multivariate uniform cumulative distribution function called the normal copula.
For any set of given marginal cumulative distribution functions F_{1}, \ldots, F_{k}, the set of variables

$$
X_{1}=F_{1}^{-1}\left(\Phi\left(Z_{1}\right)\right), \ldots, X_{k}=F_{1}^{-1}\left(\Phi\left(Z_{k}\right)\right)
$$

have a joint cumulative function

$$
F_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right)=H\left(\Phi^{-1}\left(F_{x}\left(u_{1}\right)\right), \ldots, \Phi^{-1}\left(F_{k}\left(u_{k}\right)\right)\right.
$$

with marginal cumulative distribution functions F_{1}, \ldots, F_{k}. The multivariate variables (X_{1}, \ldots, X_{k}) have Kendall's tau

$$
\tau\left(X_{i}, X_{j}\right)=\tau\left(Z_{i}, Z_{j}\right)=\frac{2}{\pi} \arcsin \left(\rho_{i j}\right)
$$

and Spearman's rank correlation coefficients

$$
\operatorname{rkCorr}\left(X_{i}, X_{j}\right)=\operatorname{rkCorr}\left(Z_{i}, Z_{j}\right)=\frac{6}{\pi} \arcsin \left(\rho_{i j} / 2\right)
$$

In the normal copula method we simulate from H and then invert using ([ncm]). In the IC method with normal scores we produce a sample from H such that $\Phi\left(z_{i}\right)$ are equally spaced between zero and one and then, rather than invert the distribution functions, we make the j th order statistic from the input sample correspond to $\Phi(z)=j /(n+1)$ where the input has n observations. Because the j th order statistic of a sample of n observations from a distribution F approximates $F^{-1}(j /(n+1))$ we see the normal copula and IC methods are doing essentially the same thing.

While the normal copula method and the IC method are confusingly similar there are some important differences to bear in mind. Comparing and contrasting the two methods should help clarify how the two algorithms are different.

1. Wang [1998] shows the normal copula method corresponds to the IC method when the latter is computed using normal scores and the Choleski trick.
2. The IC method works on a given sample of marginal distributions. The normal copula method generates the sample by inverting the distribution function of each marginal as part of the simulation process.
3. Though the use of scores the IC method relies on a stratified sample of normal variables. The normal copula method could use a similar method, or it could sample randomly from the base normals. Conversely a sample could be used in the IC method.
4. Only the IC method has an adjustment to ensure that the reference multivariate distribution has exactly the required correlation structure.
5. IC method samples have rank correlation exactly equal to a sample from a reference distribution with the correct linear correlation. Normal copula samples have approximately correct linear and rank correlations.
6. An IC method sample must be taken in its entirety to be used correctly. The number of output points is fixed by the number of input points, and the sample is computed in its entirety in one step. Some IC tools (@Risk, SCARE) produce output which is in a particular order. Thus, if you sample the nth observation from multiple simulations, or take the first n samples, you will not get a random sample from the desired distribution. However, if you select random rows from multiple simulations (or, equivalently, if you randomly permute the rows output prior to selecting the n th) then you will obtain the desired random sample. It is important to be aware of these issues before using canned software routines.
7. The normal copula method produces simulations one at a time, and at each iteration the resulting sample is a sample from the required multivariate distribution. That is, output from the algorithm can be partitioned and used in pieces.

In summary remember these differences can have material practical consequences and it is important not to misuse IC method samples.

Theoretical Underpinnings of the Iman-Conover Method

The theoretical foundations of the Iman-Conover method are elegantly justified by Vitale's Theorem Vitale [1990]. We will state Vitale's theorem, explain its relationship to the IC method, and sketch the proof. The result should give a level of comfort to practitioners using a simulation approach to modeling multivariate distributions. It is not necessary to follow the details laid out here in order to understand and use the IC method, so the uninterested reader can skip the rest of the section. The presentation we give follows Vitale's original paper Vitale [1990] closely.

Functional dependence and independence between two random variables are clearly opposite ends of the dependence spectrum. It is therefore surprising that Vitale's Theorem says that any bivariate distribution (U, V) can be approximated arbitrarily closely by a functionally dependent pair $(U, T U)$ for a suitable transformation T.
In order to explain the set up of Vitale's theorem we need to introduce some notation. Let n be a power of 2. An interval of the form $((j-1) / n, j / n)$ for some $n \geq 1$ and $1 \leq j \leq n$ is called a dyadic interval of rank n. An invertible (Borel) measure-preserving map which maps by translation on each dyadic interval of rank n is called a permutation of rank n. Such a T just permutes the dyadic intervals, so there is a natural correspondence between permutations of n elements and transformations T. If the permutation of dyadic intervals has a single cycle (has order n in the symmetric group) then T is called a cyclic permutation.

Theorem. (Vitale) Let U and V be uniformly distributed variables. There is a sequence of cyclic permutations T_{1}, T_{2}, \ldots such that $\left(U, T_{n} U\right)$ converges in distribution to (U, V) as $n \rightarrow \infty$.
Recall convergence in distribution means that the distribution function of $\left(U, T_{n} U\right)$ tends to that of (U, V) at all points of continuity as $n \rightarrow \infty$.

The proof of Vitale's theorem is quite instructive and so we give a detailed sketch.
The proof is in two parts. The first constructs a sequence of arbitrary permutations T_{n} with the desired property. The second part shows it can be approximated with cyclic permutations. We skip the second refinement.
Divide the square $[0,1] \times[0,1]$ into sub-squares. We will find a permutation T such that the distributions of (U, V) and $(U, T U)$ coincide on sub-squares. Reducing the size of the sub-squares will prove the result.

Fix n, a power of two. Let $I_{j}=((j-1) / n, j / n), j=1, \ldots, n$. We will find an invertible permutation T such that

$$
\operatorname{Pr}\left(U \in I_{j}, T U \in I_{k}\right)=\operatorname{Pr}\left(U \in I_{j}, V \in I_{k}\right):=p_{j k}
$$

for $j, k=1, \ldots, n$. Define

$$
\begin{aligned}
& I_{j 1}=\left((j-1) / n,(j-1) / n+p_{j 1}\right) \\
& I_{j 2}=\left((j-1) / n+p_{j 1},(j-1) / n+p_{j 1}+p_{j 2}\right) \\
& I_{j n}=\left((j-1) / n+p_{j 1}+\cdots+p_{j, n-1}, j / n\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{I}_{j 1}=\left((j-1) / n,(j-1) / n+p_{1 j}\right) \\
& \tilde{I}_{j 2}=\left((j-1) / n+p_{1 j},(j-1) / n+p_{1 j}+p_{2 j}\right) \\
& \tilde{I}_{j n}=\left((j-1) / n+p_{1 j}+\cdots+p_{n-1, j}, j / n\right) .
\end{aligned}
$$

By construction the measure of $I_{j k}$ equals the measure of $\tilde{I}_{k j}$. The invertible map T which sends each $I_{j k}$ to $\tilde{I}_{k j}$ by translation is the map we need because

$$
\begin{aligned}
\operatorname{Pr}\left(U \in I_{j}, T(U) \in I_{k}\right) & =\operatorname{Pr}\left(U \in I_{j}, U \in T^{-1}\left(I_{k}\right)\right) \\
& =\operatorname{Pr}\left(U \in I_{j} \cap T^{-1}\left(\bigcup_{l} \tilde{I}_{k l}\right)\right) \\
& =\operatorname{Pr}\left(U \in \bigcup_{l} I_{j} \cap I_{l k}\right) \\
& =\operatorname{Pr}\left(U \in I_{j k}\right) \\
& =p_{j k}
\end{aligned}
$$

since the only $I_{l k}$ which intersects I_{j} is $I_{j k}$ by construction, and U is uniform. The transformation T is illustrated schematically in Table 1 for $n=3$. The fact 3 is not a power of 2 does not invalidate the schematic!

| I_{3} | $\begin{aligned} & \tilde{I}_{33} \\ & \tilde{I}_{32} \\ & \tilde{I}_{31} \end{aligned}$ | | | p_{13} | | | p_{23} | | | p_{33} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I_{2} | $\begin{aligned} & \hline \tilde{I}_{23} \\ & \tilde{I}_{22} \\ & \tilde{I}_{22} \\ & \hline \end{aligned}$ | | p_{12} | | | p_{22} | | | p_{32} | |
| I_{1} | $\begin{aligned} & \hline \hline \tilde{I}_{13} \\ & \tilde{I}_{12} \\ & \tilde{I}_{11} \\ & \hline \end{aligned}$ | p_{11} | | | p_{21} | | | p_{31} | | |
| | | I_{11} | I_{12} | I_{13} | I_{21} | I_{22} | I_{13} | I_{31} | I_{32} | I_{33} |
| | | | I_{1} | | | I_{2} | | | I_{3} | |

If each $p_{j k}$ is a dyadic rational then T is a permutation of the interval. If not then we approximate and use some more heavy duty results (a 1946 theorem of Birkhoff on representation by convex combinations of permutation matrices) to complete the proof.

Vitale's theorem can be extended to non-uniform distributions.
Corollary. (Vitale) Let U and V be arbitrary random variables. There is a sequence of functions S_{1}, S_{2}, \ldots such that $\left(U, S_{n} U\right)$ converges in distribution to (U, V) as $n \rightarrow \infty$.

Let F be the distribution function of U and G for V. Then $F(U)$ and $G(V)$ are uniformly distributed. Apply Vitale's theorem to get a sequence of functions T_{n}. Then $S_{n}=G^{-1} T_{n} F$ is the required transformation.

5.9.4 The Rearrangement Algorithm

The Rearrangement Algorithm (RA) is a practical and straightforward method to determine the worst-VaR sum. The RA works by iteratively making each marginal crossed (counter-monotonic) with the sum of the other marginal distributions. It is easy to program and suitable for problems involving hundreds of variables and millions of simulations.

The Rearrangement Algorithm was introduced in Puccetti and Ruschendorf [2012] and subsequently improved in Embrechts et al. [2013].

Algorithm Input: Input samples are arranged in a matrix $\tilde{X}=\left(x_{i j}\right)$ with $i=1, \ldots, M$ rows corresponding to the simulations and $j=1, \ldots, d$ columns corresponding to the different marginals. VaR probability parameter p. Accuracy threshold $\epsilon>0$ specifies convergence criterion.

Algorithm Steps

1. Sort each column of \tilde{X} in descending order.
2. Set $N:=\lceil(1-p) M\rceil$.
3. Create matrix X as the $N \times d$ submatrix of the top N rows of \tilde{X}.
4. Randomly permute rows within each column of X.

5. Do Loop

- Create a new matrix Y as follows. For column $j=1, \ldots, d$:
- Create a temporary matrix V_{j} by deleting the j th column of X
- Create a column vector v whose i th element equals the sum of the elements in the i th row of V_{j}
- Set the j th column of Y equal to the j th column of X arranged to have the opposite order to v, i.e., the largest element in the j th column of X is placed in the row of Y corresponding to the smallest element in v, the second largest with second smallest, etc.
- Compute y, the $N \times 1$ vector with i th element equal to the sum of the elements in the i th row of Y.
- Compute x from X similarly.
- Compute $y^{*}:=\min (y)$, the smallest element of y.
- Compute $x^{*}:=\min (x)$.
- If $y^{*}-x^{*} \geq \epsilon$ then set $X:=Y$ and repeat the loop.
- If $y^{*}-x^{*}<\epsilon$ then break from the loop.

6. Stack Y on top of the $(M-N) \times d$ submatrix of $M-N$ bottom rows of \tilde{X}.
7. Output: The result approximates the worst VaR_{p} arrangement of \tilde{X}.

Only the top N values need special treatment; all the smaller values can be combined arbitrarily because they aren't included in the worst- VaR rearrangement. Given that X consists of the worst $1-p$ proportion of each marginal, the required estimated VaR_{p} is the least row sum of Y, that is y^{*}. In implementation, x^{*} can be carried forward as the y^{*} from the previous iteration and not recomputed. The statistics x^{*} and y^{*} can be replaced with the variance of the row-sums of X and Y and yield essentially the same results.

Embrechts et al. [2013] report that while there is no analytic proof the algorithm always works, it performs very well based on examples and tests where we can compute the answer analytically.

Worked Example

Setup. Compute the worst $\mathrm{VaR}_{0.99}$ of the sum of lognormal distributions with mean 10 and coefficient of variations 1,2 , and 3 by applying the Rearrangement Algorithm to a stratified sample of $N=40$ observations at and above the 99th percentile for the matrix X.
Solution. The table below shows the input and output of the Rearrangement Algorithm.

Table 7: Starting X is shown in the first three columns x_{0}, x_{1}, x_{2}. The column Sum shows the row sums $x_{0}+x_{1}+x_{2}$ corresponding to a comonotonic ordering. These four columns are all sorted in ascending order. The right-hand three columns, s_{0}, s_{1}, s_{2} are the output, with row sum given in the Max VaR column. The worst-case $\mathrm{VaR}_{0.99}$ is the minimum of the last column, 352.8. It is 45 percent greater than the additive VaR of 242.5 . Only a sample from each marginal's largest 1 percent values is shown since smaller values are irrelevant to the calculation.

| x_{0} | x_{1} | x_{2} | Sum | s_{0} | s_{1} | s_{2} | Max VaR |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 49.0 | 85.6 | 107.9 | 242.5 | 87.1 | 124.6 | 141.1 | 352.8 |
| 49.4 | 86.6 | 109.5 | 245.6 | 70.8 | 113.6 | 169.3 | 353.7 |
| 49.9 | 87.7 | 111.2 | 248.8 | 98.8 | 127.9 | 127.4 | 354.1 |
| 50.3 | 88.9 | 112.9 | 252.1 | 79.9 | 118.8 | 155.5 | 354.1 |
| 50.7 | 90.0 | 114.7 | 255.5 | 83.1 | 107.1 | 164.3 | 354.5 |
| 51.2 | 91.3 | 116.6 | 259.1 | 92.1 | 139.7 | 122.8 | 354.6 |
| 51.6 | 92.6 | 118.6 | 262.8 | 67.7 | 135.4 | 151.5 | 354.7 |
| 52.1 | 93.9 | 120.6 | 266.6 | 108.8 | 116.1 | 129.8 | 354.7 |
| 52.6 | 95.3 | 122.8 | 270.7 | 62.8 | 105.1 | 186.9 | 354.8 |
| 53.2 | 96.7 | 125.0 | 274.9 | 63.9 | 170.6 | 120.6 | 355.0 |
| 53.7 | 98.3 | 127.4 | 279.3 | 69.2 | 111.3 | 174.6 | 355.1 |
| 54.3 | 99.9 | 129.8 | 284.0 | 72.7 | 144.5 | 138.1 | 355.3 |
| 54.9 | 101.5 | 132.4 | 288.8 | 59.9 | 101.5 | 194.1 | 355.5 |
| 55.5 | 103.3 | 135.2 | 293.9 | 127.5 | 103.3 | 125.0 | 355.8 |
| 56.1 | 105.1 | 138.1 | 299.3 | 60.8 | 162.6 | 132.4 | 355.9 |
| 56.8 | 107.1 | 141.1 | 305.0 | 66.3 | 109.1 | 180.5 | 355.9 |
| 57.5 | 109.1 | 144.4 | 311.1 | 61.8 | 149.8 | 144.4 | 356.0 |
| 58.3 | 111.3 | 147.9 | 317.5 | 65.0 | 155.8 | 135.2 | 356.0 |
| 59.1 | 113.6 | 151.5 | 324.3 | 74.8 | 121.6 | 159.7 | 356.1 |
| 59.9 | 116.1 | 155.5 | 331.5 | 77.1 | 131.5 | 147.9 | 356.5 |
| 60.8 | 118.8 | 159.7 | 339.3 | 59.1 | 179.9 | 118.6 | 357.5 |

Table 7 - continued from previous page

| x_{0} | x_{1} | x_{2} | Sum | s_{0} | s_{1} | s_{2} | Max VaR |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 61.8 | 121.6 | 164.3 | 347.7 | 58.3 | 99.9 | 202.0 | 360.1 |
| 62.8 | 124.6 | 169.3 | 356.7 | 57.5 | 191.1 | 116.6 | 365.3 |
| 63.9 | 127.9 | 174.6 | $\mathbf{3 6 6 . 4}$ | 56.8 | 98.3 | 210.9 | 366.0 |
| 65.0 | 131.5 | 180.5 | 377.0 | 56.1 | 96.7 | 221.0 | 373.9 |
| 66.3 | 135.4 | 186.9 | 388.7 | 55.5 | 205.1 | 114.7 | 375.4 |
| 67.7 | 139.7 | 194.1 | 401.5 | 54.9 | 95.3 | 232.7 | 382.9 |
| 69.2 | 144.5 | 202.0 | 415.7 | 54.3 | 223.3 | 112.9 | 390.5 |
| 70.8 | 149.8 | 210.9 | 431.6 | 53.7 | 93.9 | 246.3 | 393.9 |
| 72.7 | 155.8 | 221.0 | 449.5 | 53.2 | 92.6 | 262.5 | 408.2 |
| 74.8 | 162.6 | 232.7 | 470.1 | 52.6 | 248.7 | 111.2 | 412.5 |
| 77.1 | 170.6 | 246.3 | 494.0 | 52.1 | 91.3 | 282.3 | 417.7 |
| 79.9 | 179.9 | 262.5 | 522.3 | 51.2 | 288.1 | 109.5 | 448.8 |
| 83.1 | 191.1 | 282.3 | 556.5 | 51.6 | 90.0 | 307.2 | 448.9 |
| 87.1 | 205.1 | 307.2 | 599.4 | 50.7 | 88.9 | 340.0 | 479.6 |
| 92.1 | 223.3 | 340.0 | 655.5 | 50.3 | 87.7 | 386.6 | 524.6 |
| 98.8 | 248.7 | 386.6 | 734.1 | 49.9 | 366.9 | 107.9 | 524.7 |
| 108.8 | 288.1 | 461.1 | 858.0 | 49.4 | 86.6 | 461.1 | 597.2 |
| 127.5 | 366.9 | 615.7 | 1110.1 | 49.0 | 85.6 | 615.7 | 750.3 |

The table illustrates the worst-case VaR may be substantially higher than when the marginals are perfectly correlated, here 45 percent higher at 352.8 vs. 242.5. The form of the output columns shows the two part structure. There is a series of values up to 356 involving moderate sized losses from each marginal with approximately the same total. The larger values of the rearrangement are formed from a large value from one marginal combined with smaller values from the other two.

The bold entry 366.4 indicates when the comonotonic sum of marginals exceeds the worst $0.99-\mathrm{VaR}$ arrangement.
Performing the same calculation with $N=1000$ samples from the largest 1 percent of each marginal produces an estimated worst VaR of 360.5 .

The following code replicates this calculation in aggregate. The answer relies on random seeds and is slightly different from the table above.

```
In [1]: import aggregate as agg
In [2]: import numpy as np
In [3]: import pandas as pd
In [4]: import scipy.stats as ss
In [5]: ps = np.linspace(0.99, 1, 40, endpoint=False)
In [6]: params = {i: agg.mu_sigma_from_mean_cv(10, i) for i in [1,2,3]}
In [7]: df = pd.DataFrame({f'x_{i}': ss.lognorm(params[i][1],
    ...: scale=np.exp(params[i][0])).isf(1-ps)
    ...: for i in [1,2,3]}, index=ps)
    ... :
In [8]: df_ra = agg.rearrangement_algorithm_max_VaR(df)
In [9]: agg.qd(df_ra, float_format=lambda x: f'{x:.1f}', max_rows=100)
    x_1 x_2 x_3 total
30 75.3 120.1 157.6 352.9
11 69.7 117.4 166.5 353.6
25 68.2 151.4 134.3 353.8
```

(continues on next page)

| 6 | 87.6 | 146.0 | 120.2 | 353.9 |
| :--- | ---: | ---: | ---: | ---: |
| 39 | 77.7 | 122.9 | 153.6 | 354.2 |
| 24 | 66.8 | 141.2 | 146.4 | 354.4 |
| 3 | 63.2 | 129.3 | 161.9 | 354.4 |
| 34 | 71.3 | 106.3 | 176.9 | 354.6 |
| 7 | 60.4 | 172.3 | 122.3 | 355.0 |
| 21 | 99.4 | 112.6 | 143.1 | 355.0 |
| 23 | 73.2 | 110.4 | 171.5 | 355.0 |
| 18 | 128.2 | 102.7 | 124.5 | 355.4 |
| 37 | 64.3 | 108.3 | 182.8 | 355.5 |
| 10 | 61.3 | 157.4 | 137.0 | 355.7 |
| 19 | 109.5 | 114.9 | 131.6 | 356.0 |
| 17 | 62.2 | 104.5 | 189.3 | 356.0 |
| 4 | 80.4 | 126.0 | 149.9 | 356.3 |
| 16 | 83.7 | 132.9 | 140.0 | 356.6 |
| 15 | 65.5 | 164.3 | 126.8 | 356.6 |
| 28 | 59.5 | 101.0 | 196.5 | 357.1 |
| 0 | 92.6 | 136.9 | 129.1 | 358.7 |
| 31 | 58.7 | 181.7 | 118.3 | 358.7 |
| 29 | 58.0 | 99.4 | 204.6 | 361.9 |
| 1 | 57.3 | 193.0 | 116.4 | 366.7 |
| 20 | 56.6 | 97.9 | 213.6 | 368.0 |
| 13 | 55.9 | 96.4 | 223.8 | 376.1 |
| 38 | 55.3 | 207.1 | 114.5 | 377.0 |
| 2 | 54.7 | 95.0 | 235.6 | 385.3 |
| 9 | 54.1 | 225.5 | 112.8 | 392.4 |
| 14 | 53.6 | 93.7 | 249.3 | 396.5 |
| 36 | 53.0 | 92.4 | 265.7 | 411.1 |
| 33 | 52.5 | 251.0 | 111.1 | 414.6 |
| 26 | 52.0 | 91.1 | 285.6 | 428.8 |
| 8 | 51.6 | 290.7 | 109.5 | 451.8 |
| 27 | 51.1 | 89.9 | 310.8 | 451.8 |
| 5 | 50.7 | 88.8 | 343.9 | 483.4 |
| 35 | 50.3 | 370.1 | 107.9 | 528.2 |
| 32 | 49.8 | 87.7 | 391.0 | 528.5 |
| 12 | 49.4 | 86.6 | 466.1 | 602.1 |
| 22 | 49.0 | 85.6 | 622.1 | 756.7 |
| | | | | |

There are several important points to note about the Rearrangement Algorithm output and the failure of subadditivity it induces. They mirror the case $d=2$.

- The dependence structure does not have right tail dependence.
- In Table 1, the comonotonic sum is greater than the maximum VaR sum for the top 40 percent observations, above 366.4. The algorithm output is tailored to a specific value of p and does not work for other $p \mathrm{~s}$. It produces relatively thinner tails for higher values of p than the comonotonic copula.
- The algorithm works for any non-trivial marginal distributions-it is universal.
- The implied dependence structure specifies only how the larger values of each marginal are related; any dependence structure can be used for values below VaR_{p}.

The Rearrangement Algorithm gives a definitive answer to the question "Just how bad could things get?" and perhaps provides a better base against which to measure diversification effect than either independence or the comonotonic copula. While the multivariate structure it reveals is odd and specific to p, it is not wholly improbable. It pinpoints a worst-case driven by a combination of moderately severe, but not extreme, tail event outcomes. Anyone who remembers watching their investment portfolio during a financial crisis has seen that behavior before! It is a valuable additional feature for any risk aggregation software.

DESIGN AND DEVELOPMENT

6.1 Help Structure

Fig. 1: Documentation roadmap.
The documentation is structured around application, access, implementation, and theory.

- Application: destinations, where you can go with the code and problems you can solve.
- User Guides, problem sections
- Access: operating manual, how you access the functions you need to solve your problems
- User Guides, problem sections
- API Reference, traditional API reference documentation
- Dec Language Reference
- Implementation: how the functionality is coded; algorithms.
- Technical Guides
- Theory: the underlying mathematics.
- Technical Guides

6.2 Design Philosophy

- Work at the correct speed order...
- ...but don't worry about speed until it becomes a problem
- Save everything until space becomes an issue
- Offer sensible defaults for (almost) everything
- Separate internal naming from user naming and offer standard dataframe renamer dictionaries
- Use sensible number formats

6.3 History

I have built several iterations of software to work with aggregate distributions.

- Late 1990s: a Matlab tool for CNA Re with a graphical interface. Computed aggregates by business unit and the portfolio total. Used to discover the shocking fact there was only a 53 percent chance of achieving plan...which is obvious in hindsight but was a surprise at the time.
- Late 1990s: a C++ version of the Matlab code called SADCo in 1997-99. This code sits behind MALT. It won the CAS award for an online contribution.
- Early 2000s: another C++ version with an implementation of the Iman-Conover method to combine aggregates with correlation using the (gasp) normal copula, SCARE. Used by SCOR.
- 2003-2005: I worked on Aon Re Services' simulation based tools called the ALG (Aggregate Loss Generator) which simulated losses, and Prime/Re which manipulated the simulations and applied various reinsurance structures. ALG used a shared mixing variables approach to correlation.
- Late 2000s: At Aon Re, I also built related tools
- The Levy measure maker
- A simple approach to multi-year modeling based on re-scaling a base year, convolving using FFTs and tracking (and stopping) in default scenarios
- 2010s: At Aon Benfield, I was involved with ReMetrica, a very sophisticated, general purpose DFA/ERM simulation tool.

INTRODUCTION

aggregate builds approximations to compound (aggregate) probability distributions quickly and accurately. It can be used to solve insurance, risk management, and actuarial problems using realistic models that reflect underlying frequency and severity. It delivers the speed and accuracy of parametric distributions to situations that usually require simulation, making it as easy to work with an aggregate (compound) probability distribution as the lognormal. aggregate includes an expressive language called DecL to describe aggregate distributions and is implemented in Python under an open source BSD-license.
This help document is in six parts plus a bibliography.

Get up and running: installation, aggregate "hello world", and a glimpse into the functionality.

[^1]

How to solve real-world actuarial problems using aggregate.
User Guides

API Reference

Documentation for every class and function, for developers and more advanced users.
API Reference

alg Units

4500 premium at $65 \% \mathrm{~V}$
1000×5 see lognormal 50 cu 225 mixed gamma 0.35

DecL Reference

The Dec Language (DecL) for specifying aggregate distributions.
DecL Reference

$$
\begin{aligned}
& M_{N}(z)=M_{N}\left(\log M_{x}(t)\right) \\
& \left.C P\left(\lambda_{1} \sum_{i} \omega_{i} F_{i}\right)=\theta\right) \operatorname{cP}\left(\lambda \omega_{i} F_{i}\right) \\
& E\left[X_{i} z\right]=E\left[E\left[x_{i} \mid x\right] \cdot z\right] \\
& \text { echnical Guides }
\end{aligned}
$$

Probability theory background and the numerical implementation methods employed by aggregate.
Technical Guides

Design philosophy, competing products, future development ideas, and historical perspective.
Development

BIBLIOGRAPHY

[Ace02] Carlo Acerbi. Spectral measures of risk: A coherent representation of subjective risk aversion. Journal of Banking \& Finance, 26(7):1505-1518, jul 2002. URL: http://linkinghub.elsevier.com/retrieve/pii/ S0378426602002819, doi:10.1016/S0378-4266(02)00281-9.
[ABT17] Hansjörg Albrecher, Jan Beirlant, and Jozef L Teugels. Reinsurance: Actuarial and Statistical Aspects. John Wiley \& Sons, 2017.
[AD88] RR Anderson and Wemin Dong. Pricing catastrophe reinsurance with reinstatement provisions using a catastrophe model. Casualty Actuarial Society Forum, pages 303-322, 1988.
[AGK19] Richard Arratia, Larry Goldstein, and Fred Kochman. Size bias for one and all. Probability Surveys, 16:1-61, 2019. arXiv:1308.2729, doi:10.1214/13-PS221.
[Bah15] David Bahnemann. Distributions for Actuaries. Casualty Actuarial Society Mongraphs No. 2, 2015. ISBN 9780962476280 . URL: www.casact.org.
[BN90] R.A. Bear and K.J. Nemlick. Pricing the impact of adjustable features and loss sharing provisions of reinsurance treaties. Proceedings of the Casualty Actuarial Society, 77(147):86-87, 1990. doi:10.1016/0167-6687(93)91078-9.
[Ber97] Stefan Bernegger. The Swiss Re exposure curves and the MBBEFD distribution class. ASTIN Bulletin, 27(1):99-111, 1997.
[Ber83] J Bertram. Calculations of aggregate claims distributions in case of negative risk sums. In 17th ASTIN Colloquium, Lindau, Germany. 1983.
[Bil86] Patrick Billingsley. Probability and Measure. J. Wiley and Sons, second edition, 1986.
[Bod07] Neil M. Bodoff. Capital Allocation by Percentile Layer. Variance, 3(1):13-30, 2007.
[BTWuthrich17] Tim J. Boonen, Andreas Tsanakas, and Mario V. Wüthrich. Capital allocation for portfolios with non-linear risk aggregation. Insurance: Mathematics and Economics, 72:95-106, 2017. doi:10.1016/j.insmatheco.2016.11.003.
[BV10] Jonathan M Borwein and Jon D Vanderwerff. Convex Functions - Construction, Characterizations and Counterexamples. Cambridge University Press, 2010. ISBN 9780521850056.
[BGH+97] Newton Bowers, Hans Gerber, James Hickman, Donald Jones, and Cecil Nesbitt. Actuarial Mathematics. Society of Actuaries, 1997. doi:10.2307/253313.
[BPVS07] Paul J Brehm, Geoffrey R Perry, Gary G Venter, and E Witcraft Susan. Enterprise risk analysis for property \& liability insurance companies. Guy Carpenter \& Company, LLC, 2007.
[But94] Robert P Butsic. Solvency Measurement for Property-Liability Risk-Based Capital Applications. The Journal of Risk and Insurance, 61(4):656-690, 1994. URL: http://www.jstor.org/stable/253643\% 5Cnhttp://www.jstor.org/page/.
[Buhlmann84] Hans Bühlmann. Numerical evaluation of the compound Poisson distribution: Recursion or fast fourier transform? Scandinavian Actuarial Journal, 1984(2):116-126, 1984. doi:10.1080/03461238.1984.10413759.
[CJP13] Luciano Campi, Elyès Jouini, and Vincent Porte. Efficient portfolios in financial markets with proportional transaction costs. Mathematics and Financial Economics, 7(3):281-304, 2013. doi:10.1007/s11579-013-0099-4.
[CD03] G. Carlier and R. A. Dana. Core of convex distortions of a probability. Journal of Economic Theory, 113(2):199-222, 2003. doi:10.1016/S0022-0531(03)00122-4.
[CM99] Peter Carr and Dilip Madan. Option valuation using the fast Fourier transform. The Journal of Computational Finance, 2(4):61-73, 1999. doi:10.21314/jcf.1999.043.
[Car13] Robert L Carter. Reinsurance. Springer Science \& Business Media, 2013.
[CO11] Alexander Cherny and Dmitri Orlov. On two approaches to coherent risk contribution. Mathematical Finance, 21(3):557-571, 2011. doi:10.1111/j.1467-9965.2010.00441.x.
[Cla14] David R Clark. Basics of Reinsurance Pricing Actuarial Study Note. CAS Study Note, 2014. URL: http://www.casact.org/library/studynotes/Clark_2014.pdf.
[CT04] David R Clark and Charles A Thayer. A primer on the exponential family of distributions. Casualty Actuarial Society Spring Forum, pages 117-148, 2004. URL: papers2://publication/uuid/ C7FF0B8F-F767-4F09-9714-F0D3711A30D8.
[Con99] W J Conover. Practical nonparametric statistics. John Wiley and Sons, third edition, 1999.
[CS73] P. C. Consul and L. R. Shenton. Some interesting properties of Lagrangian distributions. Communications in Statistics, 2(3):263-272, 1973. doi:10.1080/03610927308827073.
[CODonnell09] Christopher L. Culp and Kevin J. O'Donnell. Catastrophe reinsurance and risk capital in the wake of the credit crisis. The Journal of Risk Finance, 10(5):430-459, 2009. URL: http://www.emeraldinsight. com/10.1108/15265940911001367, doi:10.1108/15265940911001367.
[CP05] J. David Cummins and Richard D. Phillips. Estimating the Cost of Equity Capital for Property-Liability Insurers. Journal of Risk and Insurance, 72(3):441-478, 2005. URL: http://onlinelibrary.wiley.com/ doi/10.1111/j.1539-6975.2005.00132.x/full.
[DPP93] Chris D Daykin, Teivo Pentikainen, and Martti Pesonen. Practical risk theory for actuaries. Chapman and Hall/CRC, 1993.
[Del00] Freddy Delbaen. Coherent risk measures (Pisa Notes). Pisa Notes, 24(4):733-739, 2000. doi:10.1007/BF02809088.
[Den01] Michel Denault. Coherent allocation of risk capital. The Journal of Risk, 4(1):1-34, 2001. URL: ftp: //ftp.sam.math.ethz.ch/pub/risklab/papers/CoherentAllocation.pdf, doi:10.21314/jor.2001.053.
[Den19] Michel Denuit. Size-biased transform and conditional mean risk sharing, with application to p2p insurance and tontines. ASTIN Bulletin, 49(3):591-617, 2019. doi:10.1017/asb.2019.24.
[DD12] Michel Denuit and Jan Dhaene. Convex order and comonotonic conditional mean risk sharing. Insurance: Mathematics and Economics, 51(2):265-270, 2012. URL: http://dx.doi.org/10.1016/j. insmatheco.2012.04.005, doi:10.1016/j.insmatheco.2012.04.005.
[DHR22] Michel Denuit, Peter Hieber, and Christian Y. Robert. Mortality Credits Within Large Survivor Funds. ASTIN Bulletin, 52(3):813-834, 2022. doi:10.1017/asb.2022.13.
[DR20] Michel M. Denuit and C Y Robert. Risk Reduction by Conditional Mean Risk Sharing With Application to Collaborative Insurance. Technical Report, UC Louvain, 2020.
[DKLT12] Jan Dhaene, Alexander Kukush, Daniel Linders, and Qihe Tang. Remarks on quantiles and distortion risk measures. European Actuarial Journal, 2(2):319-328, 2012.
[DHardleG12] Jin Chuan Duan, Wolfgang Karl Härdle, and James E. Gentle. Handbook of computational finance. Handbook of Computational Finance, pages 1-804, 2012. doi:10.1007/978-3-642-17254-0.
[EGrubelP93] P. Embrechts, R. Grübel, and S. M. Pitts. Some applications of the fast Fourier transform algorithm in insurance mathematics. Statistica Neerlandica, 47(1):59-75, 1993. doi:10.1111/j.14679574.1993.tb01406.x.
[EF09] Paul Embrechts and Marco Frei. Panjer recursion versus FFT for compound distributions. Mathematical Methods of Operations Research, 69(3):497-508, 2009. doi:10.1007/s00186-008-0249-2.
[EKluppelbergM97] Paul Embrechts, Claudia Klüppelberg, and Thomas Mikosch. Modelling Extremal Events. Springer Verlag, Berlin Heidelberg, 1997. doi:10.1007/978-3-642-33483-2.
[EPR13] Paul Embrechts, Giovanni Puccetti, and Ludger Ruschendorf. Model uncertainty and VaR aggregation. Journal of Banking and Finance, 37(8):2750-2764, 2013. doi:10.1016/j.jbankfin.2013.03.014.
[Fel71] William Feller. An Introduction to Probability Theory and its Applications, Volume 2. J. Wiley and Sons, second edition, 1971. ISBN 0471257095.
[FMPP19] Ginda Fisher, Lawrence McTaggart, Jill Petker, and Rebecca Pettingell. Individual Risk Rating Study Note. CAS Exam 8 Study Note, 2019.
[FollmerS11] Hans Föllmer and Alexander Schied. Stochastic finance: an introduction in discrete time. Walter de Gruyter, third edit edition, 2011.
[FollmerS16] Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time. Walter de Gruyter, Berlin, Boston, fourth edition, 2016. ISBN 9788578110796. arXiv:arXiv:1011.1669v3, doi:10.1017/CBO9781107415324.004.
[Ger82] Hans U. Gerber. On the numerical evaluation of the distribution of aggregate claims and its stop-loss premiums. Insurance Mathematics and Economics, 1(1):13-18, 1982. doi:10.1016/0167-6687(82)90016-6.
[Gra97] Jan Grandell. Mixed poisson processes. Volume 77. CRC Press, 1997.
[GS07] Helmut Grundl and Hato Schmeiser. Capital allocation for insurance companies-What Good Is It? Journal of Risk and Insurance, 2007. URL: http://www.jstor.org/stable/2691539.
[GrubelH99] Rudolf Grübel and Renate Hermesmeier. Computation of Compound Distributions I: Aliasing Errors and Exponential Tilting. Astin Bulletin, 29(2):197-214, 1999. doi:10.2143/AST.29.2.504611.
[GrubelH00] Rudolf Grübel and Renate Hermesmeier. Computation of Compound Distributions II: Discretization Errors and Richardson Extrapolation. ASTIN Bulletin, 30(2):309-332, 2000. doi:10.2143/AST.30.2.504638.
[HM83] Philip E Heckman and Glenn G Meyers. The calculation of aggregate loss distributions from claim severity and claim count distributions. Proceedings of the Casualty Actuarial Society, pages 49-66, 1983.
[HC03] David L Homer and David R Clark. Insurance Applications of Bivariate Distributions. Proceedings of the Casualty Actuarial Society, 90(iid):274-307, 2003. URL: http://www.casact.org/pubs/proceed/ proceed03/03274.pdf.
[HF96] Rob J. Hyndman and Yanan Fan. Sample Quantiles in Statistical Packages. American Statistician, 50(4):361-365, 1996. doi:10.1080/00031305.1996.10473566.
[Hurlimann86] W. Hürlimann. Error Bounds for Stop-loss Premiums Calculated with the Fast Fourier Transform. Scandinavian Actuarial Journal, 1986(2):107-113, 1986. doi:10.1080/03461238.1986.10413798.
[IJW10] Rustam Ibragimov, Dwight Jaffee, and Johan Walden. Pricing and Capital Allocation for Multiline Insurance Firms. Journal of Risk and Insurance, 77(3):551-578, mar 2010. URL: http://doi.wiley. com/10.1111/j.1539-6975.2010.01353.x, doi:10.1111/j.1539-6975.2010.01353.x.
[Jew22a] Stephen Jewson. Application of uncertain hurricane climate change projections to catastrophe risk models. Stochastic Environmental Research and Risk Assessment, 2022. URL: https://doi.org/10.1007/ s00477-022-02198-y, doi:10.1007/s00477-022-02198-y.
[Jew22b] Stephen Jewson. Projections of Changes in U.S. Hurricane Damage Due to Projected Changes in Hurricane Frequencies. submitted, 2022.
[JKK05] Norman L Johnson, Samuel Kotz, and Adrienne W Kemp. Univariate discrete distributions. John Wiley \& Sons, 2005.
[JK01] Elyès Jouini and Hédi Kallal. Efficient trading strategies in the presence of market frictions. Review of Financial Studies, 14(2):343-369, 2001. doi:10.1093/rfs/14.2.343.
[Jorgensen97] Bent Jørgensen. The theory of dispersion models. CRC Press, 1997.
[KGDD08] Rob Kaas, Marc Goovaerts, Jan Dhaene, and Michel Denuit. Modern Actuarial Risk Theory. Springer, 2008. ISBN 978-3-540-70992-3. arXiv:arXiv:1011.1669v3, doi:10.1007/978-3-540-70998-5.
[KPW19] Stuart A Klugman, Harry H Panjer, and Gordon E Willmot. Loss Models: From Data to Decisions. Volume 715. John Wiley \& Sons, 5 edition, 2019.
[Kus01] Shigeo Kusuoka. On law invariant coherent risk measures. Advances in Mathematical Economics, 3:8395, 2001. URL: http://link.springer.com/chapter/10.1007/978-4-431-67891-5_4.
[Korner22] Thomas William Körner. Fourier analysis. Cambridge university press, 2022.
[Loe55] Michel Loeve. Probability Theory. D. Van Nostrand Company, 1955. ISBN 9780486814889. doi:10.1137/1006078.
[Loe17] Michel Loeve. Probability theory. Courier Dover Publications, 2017.
[Lud91] Stephen J Ludwig. An Exposure Rating Approach to Pricing Excess-Of-Loss Reinsurance. Proceedings of the Casualty Actuarial Society, 1991.
[Luk70] Eugene Lukacs. Characteristic Functions. Griffin, London, 2 edition, 1970.
[LS09] Xiaolin Luo and Pavel V Shevchenko. Computing Tails of Compound Distributions Using Direct Numerical Integration. Journal of Computational Finance, 13(2):1-33, 2009.
[LS11] Xiaolin Luo and Pavel V Shevchenko. A Short Tale of Long Tail Integration. Numerical Algorithms, 56(4):577-590, 2011. arXiv:arXiv:1005.1705v1.
[Maj18] John A. Major. Distortion Measures on Homogeneous Financial Derivatives. Insurance: Mathematics and Economics, 79:82-91, 2018. URL: http://www.ssrn.com/abstract=2972955http://linkinghub. elsevier.com/retrieve/pii/S0167668717303384, doi:10.2139/ssrn. 2972955.
[MM20] John A. Major and Stephen J. Mildenhall. Pricing and Capital Allocation for Multiline Insurance Firms With Finite Assets in an Imperfect Market. Arxiv, pages 1-33, 2020. URL: http://arxiv.org/abs/2008. 12427, arXiv:2008.12427.
[MAKL95] Paul Malliavin, Hélène Airault, Leslie Kay, and Gérard Letac. Integration and probability. Volume 157. Springer Science \& Business Media, 1995.
[Man05] Donald Mango. Insurance Capital as a Shared Asset. Astin Bulletin, 35(2):471-486, 2005. URL: https: //www.beanactuary.com/pubs/forum/06fforum/577.pdf.
[MMAB13] Donald Mango, John Major, Avraham Adler, and Claude Bunick. Capital Tranching: A RAROC Approach to Assessing Reinsurance Cost Effectiveness. Variance, 7(September):82-91, 2013. URL: http://www.actuaries.org.uk/sites/all/files/documents/pdf/ capital-tranching-raroc-approach-assessing-reinsurance-cost-effectiveness.pdf.
[MM04] Massimo Marinacci and Luigi Montrucchio. A characterization of the core of convex games through Gateaux derivatives. Journal of Economic Theory, 116(2):229-248, 2004. URL: http://dx.doi.org/10. 1016/S0022-0531(03)00258-8, doi:10.1016/S0022-0531(03)00258-8.
[MPFV02] Ana J Mata, D Ph, Brian Fannin, and Mark A Verheyen. Pricing Excess of Loss Treaty with Loss Sensitive Features: An Exposure Rating Approach. In General Insurance Convention. 2002.
[MN19] Peter McCullagh and John A Nelder. Generalized linear models. Routledge, 2019.
[McG69] John S McGuinness. Is "probable maximum loss" (PML) a useful concept? Proceedings of Casualty Actuarial Society, LVI(May):31-48, 1969.
[McK14] Henry McKean. Probability: the classical limit theorems. Cambridge University Press, 2014.
[MR06] Christian Menn and Svetlozar T Rachev. Calibrated FFT-based density approximations for α-stable distributions. Computational Statistics and Data Analysis, 50(8):1891-1904, 2006. doi:10.1016/j.csda.2005.03.004.
[Mey96] Glenn G Meyers. The competitive market equilibrium risk load formula for catastrophe ratemaking. PCAS, pages 563-600, 1996.
[Mey19] Glenn G Meyers. A Cost of Capital Risk Margin Formula For Non-Life Insurance Liabilities. Variance, 12(2):186-198, 2019.
[Mil04] Stephen J Mildenhall. A Note on the Myers and Read Capital Allocation Formula. North American Actuarial Journal, 8(2):32-44, 2004. URL: http://library.soa.org/library-pdf/naaj0402_3.pdf.
[Mil05] Stephen J Mildenhall. Correlation and Aggregate Loss Distributions With An Emphasis On The ImanConover Method. Casualty Actuarial Society Forum, 2005.
[Mil17] Stephen J. Mildenhall. Actuarial Geometry. Risks, 2017. doi:10.3390/risks5020031.
[Mil22] Stephen J. Mildenhall. Similar Risks Have Similar Prices: A Useful and Exact Quantification. Insurance: Mathematics and Economics, 105:203-210, 2022. URL: https://doi.org/10.1016/j.insmatheco. 2022.04.006, doi:10.1016/j.insmatheco.2022.04.006.
[MM22a] Stephen J. Mildenhall and John A. Major. Pricing Insurance Risk: Theory and Practice. John Wiley \& Sons, Inc., 2022.
[MM22b] Stephen J. Mildenhall and John A. Major. Pricing Insurance Risk: Theory and Practice. John Wiley \& Sons, Inc., 2022. ISBN 9781119130536.
[MP98] Moshe Arye Milevsky and Steven E. Posner. Asian Options, the Sum of Lognormals, and the Reciprocal Gamma Distribution. Journal of Financial and Quantitative Analysis, 33(3):409-422, 1998.
[MWJHF17] Kirsten Mitchell-Wallace, Matthew Jones, John Hillier, and Matthew Foote. Natural Catastrophe Risk Managment and Modeling - A Practitioner's Guide. Wiley-Blackwell, 2017.
[MC87] Stewart C Myers and Richard A Cohn. A discounted cash flow approach to property-liability insurance rate regulation. In Fair Rate of Return in Property-Liability Insurance, pages 55-78. Springer, 1987.
[MReadJr01] Stewart C Myers and James A Read Jr. Capital allocation for insurance companies. Journal of Risk and Insurance, 68(4):545-580, 2001. URL: http://www.jstor.org/stable/2691539.
[PW92] Harry H Panjer and Gordon E Willmot. Insurance risk models. Society of Actuaries, 1992.
[PL83] Harry H. Panjer and B. W. Lutek. Practical aspects of stop-loss calculations. Insurance: Mathematics and Economics, 2:159-177, 1983.
[PPP01] Dmitry E Papush, Gary S Patrik, and Felix Podgaits. Approximations of the Aggregate Loss Distribution. Casualty Actuarial Society Forum, Winter:175-186, 2001. URL: http://www.casact.org/pubs/ forum/01wforum/01wf 175.pdf.
[PPZ21] Dmitry E Papush, Aleksey S Popelyukhin, and Jasmine G Zhang. Approximating the Aggregate Loss Distribution. Variance, 14(2):1-10, 2021.
[Par15] Pietro Parodi. Pricing in General Insurance. CRC Press, 2015. ISBN 9781466581487.
[PCA98] Richard D. Phillips, J. David Cummins, and Franklin Allen. Financial Pricing of Insurance in the Multiple-Line Insurance Company. Journal of Risk and Insurance, 65(4):597-636, 1998. URL: http://www.jstor.org/stable/253804http://www.jstor.org/stable/10.2307/253804http://www.jstor. org/stable/253804\%5Cnhttp://www.jstor.org/stable/10.2307/253804, doi:10.2307/253804.
[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C. Cambridge University Press, 2nd editio edition, 1992. ISBN 0521431085.
[PR12] Giovanni Puccetti and Ludger Ruschendorf. Computation of sharp bounds on the distribution of a function of dependent risks. Journal of Computational and Applied Mathematics, 236(7):1833-1840, 2012. URL: http://dx.doi.org/10.1016/j.cam.2011.10.015, doi:10.1016/j.cam.2011.10.015.
[Rob92] John P. Robertson. The computation of aggregate loss distributions. Proceedings of the Casualty Actuarial Society, 79(150):57-133, 1992.
[RR14] R. T. Rockafellar and J. O. Royset. Random variables, monotone relations, and convex analysis. Mathematical Programming, 148(1-2):297-331, 2014. doi:10.1007/s10107-014-0801-1.
[SW14] Adrien Saumard and Jon A. Wellner. Log-concavity and strong log-concavity: a review. Statistics Surveys, $8: 45-114,2014$. arXiv:1404.5886, doi:10.1214/14-SS107.
[ST08] P Schaller and G Temnov. Efficient and Precise Computation of Convolutions: Applying FFTs to Heavy Tailed Distributions. Computational Methods in Applied Mathematics, 8(2):187-200, 2008.
[SDRuszczynski09] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on Stochastic Programming. Number May. Society for Industrial and Applied Mathematics, 2009. ISBN 978-0-89871-687-0. URL: http://epubs.siam.org/doi/book/10.1137/1.9780898718751, arXiv:arXiv:1011.1669v3, doi:10.1137/1.9780898718751.
[She06] Michael Sherris. Solvency, capital allocation, and fair rate of return in insurance. Journal of Risk and Insurance, 73(1):71-96, 2006. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2006. 00166.x/full.
[She 10] Pavel V. Shevchenko. Calculation of aggregate loss distributions. Journal of Operational Risk, 5(2):340, 2010. URL: http://arxiv.org/abs/1008.1108, arXiv:1008.1108.
[SS11] Elias M Stein and Rami Shakarchi. Fourier analysis: an introduction. Volume 1. Princeton University Press, 2011.
[SW71] Elias M Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean spaces. Volume 1. Princeton university press, 1971.
[Str97] Robert W. Strain. Reinsurance. Robert W. Strain Publishing \& Seminars, Incorporated, 1997.
[Str86] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.
[Svi10] Gregor Svindland. Continuity properties of law-invariant (quasi-)convex risk functions on $\$ \mathrm{~L} \wedge$ infty $\$$. Mathematics and Financial Economics, 3(1):39-43, 2010. doi:10.1007/s11579-010-0026-x.
[Tas99] Dirk Tasche. Risk contributions and performance measurement. Report of the Lehrstuhl fur mathematische Statistik, TU Munchen, pages 1-26, 1999. URL: http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.68.9393\&rep=rep1 \&type=pdf.
[TW08] Grigory Temnov and Richard Warnung. A Comparison of Loss Aggregation Methods for Operational Risk. Journal of Operational Risk, 3(1):1-22, 2008.
[Ter13] Audrey Terras. Harmonic analysis on symmetric spaces-Euclidean Space, the Sphere, and the Poincar \backslash Ve Upper Half-Plane. Springer Science \& Business Media, 2013.
[TB03] Andreas Tsanakas and Christopher Barnett. Risk capital allocation and cooperative pricing of insurance liabilities. Insurance: Mathematics and Economics, 33(2):239-254, 2003. doi:10.1016/S0167-6687(03)00137-9.
[VMK06] Gary G. Venter, John A. Major, and Rodney E. Kreps. Marginal Decomposition of Risk Measures. ASTIN Bulletin, 36(2):375-413, oct 2006. URL: http://poj.peeters-leuven.be/content.php?url= article\&id=2017927, doi:10.2143/AST.36.2.2017927.
[Ver04] R J Verrall. Bayesian Generalized Linear Model for the Bornhuetter-Furguson Method of Claims Reserving. North American Actuarial Journal, 8(3):67-89, 2004.
[Vit90] Richard A. Vitale. On stochastic dependence and a class of degenerate distributions. Lecture NotesMonograph Series, pages 459-469, 1990. URL: http://projecteuclid.org/euclid.lnms/1215457581.
[Wan95] Shaun S. Wang. Insurance pricing and increased limits ratemaking by proportional hazards transforms. Insurance: Mathematics and Economics, 17(1):43-54, 1995. URL: http://dx.doi.org/10.1016/ 0167-6687(95)00010-P, doi:10.1016/0167-6687(95)00010-P.
[Wan96] Shaun S. Wang. Premium Calculation by Transforming the Layer Premium Density. ASTIN Bulletin, 26(01):71-92, 1996. URL: https://www.cambridge.org/core/product/identifier/ S0515036100003214/type/journal_article, doi:10.2143/AST.26.1.563234.
[Wan98] Shaun S. Wang. Aggregation of correlated risk portfolios: models and algorithms. Proceedings of the Casualty Actuarial society, pages 848-939, 1998. URL: http://www.casact.com/pubs/proceed/ proceed98/980848.pdf.
[Wan00] Shaun S. Wang. A Class of Distortion Operators for Pricing Financial and Insurance Risks. The Journal of Risk and Insurance, 67(1):15-36, 2000. doi:10.2307/253675.
[Wan02] Shaun S. Wang. A Universal Framework for Pricing Financial and Insurance Risks. ASTIN Bulletin, 32(2):213-234, 2002. doi:10.2143/AST.32.2.1027.
[Wil91] David Williams. Probability with martingales. Cambridge university press, 1991.
[WK16] Huon Wilson and Uri Keich. Accurate pairwise convolutions of non-negative vectors via FFT. Compиtational Statistics and Data Analysis, 101:300-315, 2016. URL: http://dx.doi.org/10.1016/j.csda.2016. 03.010, doi:10.1016/j.csda.2016.03.010.
[Woo02] G. Woo. Natural Catastrophe Probable Maximum Loss. British Actuarial Journal, 8(5):943-959, 2002. doi:10.1017/s1357321700004037.
[vCerny04] Aleš Černý. Introduction to Fast Fourier Transform in Finance. Journal of Derivatives, 12(1):73-88, 2004.
[AonBenfield15] Aon Benfield. Insurance Risk Study, Ed. 10. Technical Report, Aon Limited, 2015.
[DeWaegenaereKL03] Anja De Waegenaere, Robert Kast, and Andre Lapied. Choquet pricing and equilibrium. Insurance: Mathematics and Economics, 32:359-370, 2003. doi:10.1016/S0167-6687(03)00116-1.

```
a
aggregate.bounds, 343
aggregate.constants, 335
aggregate.extensions, 347
aggregate.extensions.basic, 347
aggregate.extensions.case_studies, 347
aggregate.extensions.figures, 349
aggregate.extensions.pentagon, 348
aggregate.extensions.pir_figures, 350
aggregate.extensions.test_suite, 352
aggregate.parser,280
aggregate.portfolio,316
aggregate.spectral, 336
aggregate.underwriter, 279
aggregate.utilities,321
```


Symbols

\qquad () (aggregate.bounds.Bounds method), 339
__init__() (aggregate.distributions.Aggregate method), 286
__init__() (aggregate.distributions.Frequency method), 282
__init__() (aggregate.distributions.Severity method), 282
__init__() (aggregate.portfolio.Portfolio method),
\qquad 297
__init__() (aggregate.spectral.Distortion method), 336
__init__() (aggregate.underwriter.Underwriter method), 275
__init__() (aggregate.utilities.Answer method), 321
__init__() (aggregate.utilities.AxisManager method), 320
__init__() (aggregate.utilities.GreatFormatter method), 321
__init__() (aggregate.utilities.MomentAggregator method), 317
__init__() (aggregate.utilities.MomentWrangler method), 319
__init_() (aggregate.utilities.sEngFormatter method), 333
_apply_reins_work()
(aggregate.distributions.Aggregate method), 287
_asdict () (aggregate.utilities.GCN method), 321
_interpreter_work() gate.underwriter.Underwriter method), 275
_make () (aggregate.utilities.GCN class method), 321
_make_factorial() gate.utilities.MomentWrangler method), 319
_make_var_tvar() (aggregate.portfolio.Portfolio method), 297
_reins_audit_df_work()
(aggregate.distributions.Aggregate method), 287
_replace() (aggregate.utilities.GCN method), 321
_repr_html_() (aggregate.distributions.Aggregate method), 287
_repr_html_() (aggregate.portfolio.Portfolio method), 297
_repr_html_() (aggregate.utilities.Answer method), 321

A

a (aggregate.extensions.pentagon.pent_ans attribute), 349
accounting_economic_balance_sheet() (aggregate.portfolio.Portfolio method), 297
add_defaults() (in module aggregate.extensions.case_studies), 347
add_exa() (aggregate.portfolio.Portfolio method), 297
add_exa_details() (aggregate.portfolio.Portfolio method), 298
add_exa_sample() (aggregate.portfolio.Portfolio method), 298
add_f1s() (aggregate.utilities.MomentAggregator method), 317
add_fs() (aggregate.utilities.MomentAggregator method), 317
add_fs2() (aggregate.utilities.MomentAggregator method), 318
adjusting_layer_losses() (in module aggregate.extensions.figures), 349
agg_from_fs() (aggregate.utilities.MomentAggregator static method), 318
agg_from_fs2() (aggregate.utilities.MomentAggregator static method), 318
Aggregate (class in aggregate.distributions), 286
aggregate.bounds module, 343
aggregate.constants
module, 335
aggregate.extensions module, 347
aggregate.extensions.basic module, 347
aggregate.extensions.case_studies module, 347
aggregate.extensions.figures
module, 349
aggregate.extensions.pentagon module, 348
aggregate.extensions.pir_figures module, 350
aggregate.extensions.test_suite module, 352
aggregate.parser module, 280

```
aggregate.portfolio
    module,316
aggregate.spectral
    module, 336
aggregate.underwriter
    module, 279
aggregate.utilities
    module, 321
aggregate_error_analysis() (aggre-
```

 gate.distributions.Aggregate method), 287
 analysis_collateral()
gate.portfolio.Portfolio method), 298
analysis_priority()
gate.portfolio.Portfolio method), 298
analyze_distortion() (aggre-
gate.portfolio.Portfolio method), 299
analyze_distortion_add_comps() (aggre-
gate.portfolio.Portfolio method), 300
analyze_distortion_plots()
gate.portfolio.Portfolio method), 300
analyze_distortions()
gate.portfolio.Portfolio method), 301
Answer (class in aggregate.utilities), 321
apply_agg_reins() (aggre-
gate.distributions.Aggregate method), 287
apply_distortion() (aggre-
gate.distributions.Aggregate method), 287
apply_distortion()
gate.portfolio.Portfolio method), 301
apply_distortions()
gate.portfolio.Portfolio method), 302
apply_occ_reins() (aggre-
gate.distributions.Aggregate method), 288
approx_ccoc () (in module aggregate.spectral), 339
approximate () (aggregate.distributions.Aggregate
method), 288
approximate() (aggregate.portfolio.Portfolio
method), 302
approximate_work() (in module aggre-
gate.utilities), 321
as_severity() (aggregate.portfolio.Portfolio
method), 302
audits () (aggregate.portfolio.Portfolio method), 302
available_distortions()
(aggre-
gate.spectral.Distortion class method), 336
average_distortion() (aggre-
gate.spectral.Distortion static method), 336
AxisManager (class in aggregate.utilities), 320
axiter_factory() (in module aggregate.utilities),
321
B
bagged_distortion()
(aggre-
gate.spectral.Distortion static method), 337
best_bucket () (aggregate.portfolio.Portfolio
method), 302
biv_contour_plot ()
gate.portfolio.Portfolio method), 303
bivariate_density_plots() (in module aggregate.extensions.case_studies), 347
block_iman_conover() (in module aggregate.utilities), 322
bodoff () (aggregate.portfolio.Portfolio method), 303
Bounds (class in aggregate.bounds), 339, 343
build() (aggregate.underwriter.Underwriter method), 276

C

calibrate()
(aggre-
gate.extensions.case_studies.ClassicalPremium method), 347
calibrate_blends ()
(aggre-
gate.portfolio.Portfolio method), 303
calibrate_distortion() (aggregate.portfolio.Portfolio method), 304
calibrate_distortions() (aggre-
gate.portfolio.Portfolio method), 304
cdf () (aggregate.distributions.Aggregate method), 288
cdf () (aggregate.portfolio.Portfolio method), 305
ceded (aggregate.utilities.GCN attribute), 321
check 01 () (in module aggregate.portfolio), 316
ClassicalPremium (class in aggregate.extensions.case_studies), 347
cloud_view() (aggregate.bounds.Bounds method), 339, 343
COC (aggregate.extensions.pentagon.pent_ans attribute), 348
code () (in module aggregate.extensions.pentagon), 348
collapse() (aggregate.portfolio.Portfolio method), 305
column_names () (aggregate.utilities.MomentAggregator static method), 318
compute_weight () (aggregate.bounds.Bounds method), 340, 343
compute_weights () (aggregate.bounds.Bounds method), 340, 344
convex_example() (aggregate.spectral.Distortion static method), 337
convex_points() (in module aggregate.portfolio), 316
cotvar () (aggregate.portfolio.Portfolio method), 305
cramer_lundberg ()
(aggre-
gate.distributions.Aggregate method), 288
create_from_sample() (aggregate.portfolio.Portfolio static method), 305
cumulate_moments() (aggregate.utilities.MomentAggregator static method), 318
curlyBrace() (in module aggregate.extensions.pir_figures), 350
cv_to_shape () (aggregate.distributions.Severity method), 283

D
density_df (aggregate.distributions.Aggregate prop-
erty), 289
density_sample() (aggregate.portfolio.Portfolio method), 305
describe (aggregate.distributions.Aggregate property), 289
describe (aggregate.portfolio.Portfolio property), 305
dimensions() (aggregate.utilities.AxisManager method), 320
dir() (aggregate.underwriter.Underwriter method), 276
discretization_agg_example() (in module aggregate.extensions.figures), 349
discretization_sev_example() (in module aggregate.extensions.figures), 349
discretize() (aggregate.distributions.Aggregate method), 289
Distortion (class in aggregate.spectral), 336
distortion() (aggregate.bounds.Bounds method), 340, 344
distortion_df (aggregate.portfolio.Portfolio property), 305
distortions_from_params() (aggregate.spectral.Distortion static method), 337
distribution()
(aggregate.extensions.case_studies.ClassicalPremium method), 347
dual_distortion() (in module aggregate.extensions.figures), 349

E

easy_formatter() (in module aggregate.utilities), 323
easy_update() (aggregate.distributions.Aggregate method), 289
enhance_debugfile()
(aggregate.parser.UnderwritingParser static method), 280
entropy_fit() (aggregate.distributions.Aggregate method), 290
epd_2_assets (aggregate.portfolio.Portfolio property), 305
equal_risk_epd() (aggregate.portfolio.Portfolio method), 305
equal_risk_var_tvar() (aggregate.portfolio.Portfolio method), 306
error() (aggregate.parser.UnderwritingParser method), 280
estimate_agg_percentile() (in module aggregate.utilities), 323
explain_validation() gate.distributions. Aggregate method), 290
explain_validation() (aggregate.portfolio.Portfolio method), 306
explain_validation() (in module aggregate.utilities), 323
extract_sort_order() (in module aggregate.extensions.case_studies), 348

F
factory() (aggregate.underwriter.Underwriter method), 276
fig_10_3() (in module aggregate.extensions.pir_figures), 351
fig_10_5() (in module aggregate.extensions.pir_figures), 351
fig_10_6() (in module aggregate.extensions.pir_figures), 351
fig_4_1() (in module aggregate.extensions.pir_figures), 351
freq_pmf() (aggregate.distributions.Aggregate method), 290
Frequency (class in aggregate.distributions), 280
frequency_examples() (in module aggregate.utilities), 323
friendly() (in module aggregate.utilities), 323
from_DataFrame() (aggregate.portfolio.Portfolio static method), 306
from_dict_of_aggs()
(aggregate.portfolio.Portfolio static method), 306
from_Excel() (aggregate.portfolio.Portfolio static method), 306
ft () (aggregate.portfolio.Portfolio method), 306
ft () (in module aggregate.utilities), 324

G

g_dual () (aggregate.spectral.Distortion method), 337 g_ins_stats() (in module aggregate.extensions.case_studies), 348
g_insurance_statistics() (in module aggregate.extensions.figures), 349
g_risk_appetite() (in module aggregate.extensions.figures), 349
gamma () (aggregate.portfolio.Portfolio method), 307
gamma_fit () (in module aggregate.utilities), 324
GCN (class in aggregate.utilities), 321
get_fmts () (in module aggregate.utilities), 324
get_fsa_stats()
(aggregate.utilities.MomentAggregator method), 318
getAxSize() (in module aggregate.extensions.pir_figures), 351
gh_example() (in module aggregate.extensions.figures), 349
good_grid() (aggregate.utilities.AxisManager static method), 320
gradient() (aggregate.portfolio.Portfolio method), 307
grammar () (in module aggregate.parser), 280
GreatFormatter (class in aggregate.utilities), 321
grid() (aggregate.utilities.AxisManager method), 320
grid_size() (aggregate.utilities.AxisManager method), 320
gross (aggregate.utilities.GCN attribute), 321
H
html_info_blob()
(aggre-
gate.distributions.Aggregate method), 290 html_title() (in module aggregate.utilities), 324

|

ic_noise () (in module aggregate.utilities), 324
ic_rank () (in module aggregate.utilities), 324
ic_reorder () (in module aggregate.utilities), 324
ic_t_noise() (in module aggregate.utilities), 324
ift () (aggregate.portfolio.Portfolio method), 308
ift () (in module aggregate.utilities), 324
illustrate()
(aggregate.extensions.case_studies.ClassicalPremium method), 347
iman_conover() (in module aggregate.utilities), 325 integral_by_doubling() (in module aggregate.utilities), 325
interpret_program() (aggregate.underwriter.Underwriter 276
interpreter_file() gate.underwriter.Underwriter 276
interpreter_line() gate.underwriter.Underwriter 277
interpreter_list() gate.underwriter.Underwriter 277
int rospect () (in module aggregate.utilities), 325

J

j son () (aggregate.distributions.Aggregate method), 290
json () (aggregate.portfolio.Portfolio method), 308

K

kaplan_meier() (in module aggregate.utilities), 325
kaplan_meier_np() (in module aggregate.utilities), 326
knobble_fonts() (in module aggregate.utilities), 326

L

L (aggregate.extensions.pentagon.pent_ans attribute), 348
limits() (aggregate.distributions.Aggregate method), 290
limits() (aggregate.portfolio.Portfolio method), 308
line_renamer (aggregate.portfolio.Portfolio property), 308
list () (aggregate.utilities.Answer method), 321
ln_fit () (in module aggregate.utilities), 326
log_test () (in module aggregate.utilities), 326
logarithmic_theta() (in module aggregate.utilities), 326
logger_level() (aggregate.underwriter.Underwriter static method), 277
logger_level () (in module aggregate.utilities), 326
lognorm_approx() (in module aggregate.utilities), 327
lognorm_lev () (in module aggregate.utilities), 327
LR (aggregate.extensions.pentagon.pent_ans attribute), 348

M
M (aggregate.extensions.pentagon.pent_ans attribute), 349 macro_market_graphs() (in module aggregate.extensions.case_studies), 348
make_all() (aggregate.portfolio.Portfolio method), 308
make_array () (in module aggregate.portfolio), 316
make_audit_df() (aggregate.portfolio.Portfolio method), 308
make_awkward() (in module aggregate.portfolio), 317
make_ceder_netter() (in module aggregate.utilities), 327
make_corr_matrix() (in module aggregate.utilities), 328
make_figure() (aggregate.utilities.AxisManager static method), 320
make_mosaic_figure() (in module aggregate.utilities), 328
make_possible_pentagons() (in module aggregate.extensions.pentagon), 348
make_ps () (aggregate.bounds.Bounds method), 340, 344
make_tvar_function() (aggregate.bounds.Bounds method), 341, 344
make_var_tvar() (in module aggregate.utilities), 328
mean_to_scale() (aggregate.distributions.Severity method), 283
merton_perold() (aggregate.portfolio.Portfolio method), 308
mixing_convergence() (in module aggregate.extensions.figures), 349
module
aggregate.bounds, 343
aggregate.constants, 335
aggregate.extensions, 347
aggregate.extensions.basic, 347
aggregate.extensions.case_studies, 347
aggregate.extensions.figures, 349
aggregate.extensions.pentagon, 348
aggregate.extensions.pir_figures, 350
aggregate.extensions.test_suite, 352
aggregate.parser, 280
aggregate.portfolio, 316
aggregate.spectral, 336
aggregate.underwriter, 279
aggregate.utilities, 321
MomentAggregat or (class in aggregate.utilities), 317
moments () (aggregate.utilities.MomentAggregator method), 319
moments_to_mcvsk() (aggregate.utilities.MomentAggregator method), 319
MomentWrangler (class in aggregate.utilities), 319
moms () (aggregate.distributions.Severity method), 284
moms_analytic() (in module aggregate.utilities), 328
more () (aggregate.distributions.Aggregate method), 290
more () (aggregate.portfolio.Portfolio method), 308
more() (aggregate.underwriter.Underwriter method), 277
more () (in module aggregate.utilities), 329
mu_sigma_from_mean_cv() (in module aggregate.utilities), 329
multi_premium_capital() gate.portfolio.Portfolio method), 308
mv () (in module aggregate.utilities), 329

N

natural_profit_segment_plot() (aggregate.portfolio.Portfolio method), 309
natural_scale() (in module aggregate.extensions.pir_figures), 352
net (aggregate.utilities.GCN attribute), 321
nice () (aggregate.utilities.Answer static method), 321
nice_multiple() (in module aggregate.utilities), 329
nice_program() (aggregate.portfolio.Portfolio method), 309

P

P (aggregate.extensions.pentagon.pent_ans attribute), 349
p_star() (aggregate.bounds.Bounds method), 341, 344
parse_note () (in module aggregate.utilities), 329
parse_note_ex() (in module aggregate.utilities), 329
partial_e () (in module aggregate.utilities), 330
partial_e_numeric() (in module aggregate.utilities), 330
pdf () (aggregate.distributions.Aggregate method), 291
pdf() (aggregate.portfolio.Portfolio method), 309
ped_distortion() (aggregate.bounds.Bounds method), 341, 345
pent_ans (class in aggregate.extensions.pentagon), 348
percentiles() (aggregate.portfolio.Portfolio method), 309
picks() (aggregate.distributions.Aggregate method), 291
picks_work() (in module aggregate.utilities), 330
plot () (aggregate.distributions.Aggregate method), 291
plot () (aggregate.distributions.Severity method), 285
plot () (aggregate.portfolio.Portfolio method), 309
plot () (aggregate.spectral.Distortion method), 337
plot_lee () (in module aggregate.bounds), 346
plot_max_min () (in module aggregate.bounds), 346
pmf () (aggregate.distributions.Aggregate method), 291
pmf () (aggregate.portfolio.Portfolio method), 309
pollaczeck_khinchine() (aggregate.distributions.Aggregate method), 291
Portfolio (class in aggregate.portfolio), 297
power_variance_family() (in module aggregate.extensions.figures), 349
ppf () (aggregate.distributions.Aggregate method), 291
pprint () (in module aggregate.utilities), 330
pprint_ex () (in module aggregate.utilities), 330
pprogram (aggregate.distributions.Aggregate property), 292
pprogram (aggregate.portfolio.Portfolio property), 309
pprogram_html (aggregate.distributions.Aggregate property), 292
pprogram_html (aggregate.portfolio.Portfolio property), 309
PQ (aggregate.extensions.pentagon.pent_ans attribute), 349
premium_capital() (aggregate.portfolio.Portfolio method), 309
preprocess() (aggregate.parser.UnderwritingLexer static method), 279
price() (aggregate.distributions.Aggregate method), 292
price() (aggregate.extensions.case_studies.ClassicalPremium method), 347
price() (aggregate.portfolio.Portfolio method), 309
price() (aggregate.spectral.Distortion method), 338
price2() (aggregate.spectral.Distortion method), 338
price_ccoc() (aggregate.portfolio.Portfolio method), 310
prices() (aggregate.extensions.case_studies.ClassicalPremium method), 347
pricing() (in module aggregate.extensions.case_studies), 348
pricing_bounds() (aggregate.portfolio.Portfolio method), 310
pricing_exhibit() (aggregate.extensions.case_studies.ClassicalPremium method), 347
principal_extreme_distortion_analysis() (aggregate.bounds.Bounds method), 341, 345
print_fig() (aggregate.utilities.AxisManager static method), 320
profit_segment_plot() (aggregate.portfolio.Portfolio method), 310

Q

Q (aggregate.extensions.pentagon.pent_ans attribute), 349
q () (aggregate.distributions.Aggregate method), 292
q () (aggregate.portfolio.Portfolio method), 311
q_sev() (aggregate.distributions.Aggregate method), 292
qd () (in module aggregate.utilities), 331
qdp () (in module aggregate.utilities), 331
qlist() (aggregate.underwriter.Underwriter method), 277
qshow() (aggregate.underwriter.Underwriter method), 277
quick_price() (aggregate.bounds.Bounds method), 342, 345

R

random_corr_matrix() (in module aggregate.utilities), 331
read_database() gate.underwriter.Underwriter 277
rearrangement_algorithm_max_VaR() (in module aggregate.utilities), 331
recommend_bucket () (aggregate.distributions.Aggregate method), 292
recommend_bucket() (aggregate.portfolio.Portfolio method), 311
reinsurance_audit_df (aggregate.distributions.Aggregate property), 293
reinsurance_description() (aggregate.distributions.Aggregate method), 293
reinsurance_df (aggregate.distributions.Aggregate property), 293
reinsurance_kinds()
(aggre-
gate.distributions.Aggregate method), 293
reinsurance_occ_layer_df (aggregate.distributions.Aggregate property), 293
reinsurance_occ_plot() (aggregate.distributions.Aggregate method), 293
reinsurance_report_df (aggre gate.distributions.Aggregate property), 293
remove_fuzz() (aggregate.portfolio.Portfolio method), 311
remove_trailing_zeros() (aggregate.utilities.sEngFormatter method), 333
renamer (aggregate.portfolio.Portfolio property), 311
report () (aggregate.portfolio.Portfolio method), 311
report_df (aggregate.distributions.Aggregate property), 293
rescale() (aggregate.distributions.Aggregate method), 293
round_bucket () (in module aggregate.utilities), 332 run_test_suite() (aggregate.underwriter.Underwriter method), 277

S

s_gs_distortion() (aggregate.spectral.Distortion static method), 338
safe_lookup() (aggregate.underwriter.Underwriter method), 277
sample() (aggregate.distributions.Aggregate method), 294
sample() (aggregate.portfolio.Portfolio method), 311
sample_compare() (aggregate.portfolio.Portfolio method), 311
sample_density_compare() (aggre-
save () (aggregate.portfolio.Portfolio method), 311
savings_charge() (in module aggregate.extensions.figures), 350
scatter() (aggregate.portfolio.Portfolio method), 312
sEngFormatter (class in aggregate.utilities), 333
sensible_jump() (in module aggregate.utilities), 333
set_a_p () (aggregate.portfolio.Portfolio method), 312
sev (aggregate.distributions.Aggregate property), 294
Severity (class in aggregate.distributions), 282
severity_error_analysis() (aggregate.distributions.Aggregate method), 294
sf () (aggregate.distributions.Aggregate method), 294
sf () (aggregate.portfolio.Portfolio method), 312
sgamma_fit () (in module aggregate.utilities), 333
show () (aggregate.underwriter.Underwriter method), 277
show_enhanced_exhibits() (aggregate.portfolio.Portfolio method), 312
show_fig() (in module aggregate.utilities), 334
similar_risks_example() (in module aggregate.bounds), 346
similar_risks_graphs_sa() (in module aggregate.bounds), 346
size_figure() (aggregate.utilities.AxisManager static method), 320
sln_fit () (in module aggregate.utilities), 334
snap () (aggregate.distributions. Aggregate method), 294
snap () (aggregate.portfolio.Portfolio method), 312
spec (aggregate.distributions.Aggregate property), 294
spec (aggregate.portfolio.Portfolio property), 312
spec_ex (aggregate.distributions.Aggregate property), 294
spec_ex (aggregate.portfolio.Portfolio property), 312
stand_alone_pricing() (aggregate.portfolio.Portfolio method), 312
stand_alone_pricing_work() (aggregate.portfolio.Portfolio method), 312
static_moments_to_mcvsk() (aggregate.utilities.MomentAggregator static method), 319
statistics (aggregate.distributions.Aggregate property), 294
statistics (aggregate.portfolio.Portfolio property), 313
stats_series()
(aggregate.utilities.MomentAggregator method), 319
style_df () (in module aggregate.utilities), 334
subsets () (in module aggregate.utilities), 334
summary () (aggregate.utilities.Answer method), 321
suptitle_and_tight() (in module aggregate.utilities), 334

T

test() (aggregate.spectral.Distortion class method), gate.portfolio.Portfolio method), 311
test_suite_file (aggre- var() (aggregate.portfolio.Portfolio method), 315 gate.underwriter.Underwriter property), var_dict() (aggregate.distributions.Aggregate 278 method), 296
test_var_tvar() (in module aggregate.utilities), var_dict() (aggregate.portfolio.Portfolio method), 334
tidy () (aggregate.utilities.AxisManager method), 320
tidy_up () (aggregate.utilities.AxisManager static method), 320
tm_renamer (aggregate.portfolio.Portfolio property), 313
trim_df () (aggregate.portfolio.Portfolio method), 313
tvar () (aggregate.distributions.Aggregate method), 294
tvar () (aggregate.portfolio.Portfolio method), 313
tvar_array() (aggregate.bounds.Bounds method), 342, 345
tvar_cloud() (aggregate.bounds.Bounds method), 342, 345
tvar_hinges() (aggregate.bounds.Bounds method), 342, 346
tvar_sev() (aggregate.distributions.Aggregate method), 295
tvar_threshold() (aggregate.portfolio.Portfolio method), 313
tvar_weights() (in module aggregate.spectral), 339
tvar_with_bound () (aggregate.bounds.Bounds method), 342, 346
tweedie_convert () (in module aggregate.utilities), 335
tweedie_density () (in module aggregate.utilities), 335
twelve_plot () (aggregate.portfolio.Portfolio method), 313

\bigcup

uat () (aggregate.portfolio.Portfolio method), 314
uat_differential() (aggregate.portfolio.Portfolio method), 314
uat_interpolation_functions() (aggregate.portfolio.Portfolio method), 314
Underwriter (class in aggregate.underwriter), 275
UnderwritingLexer (class in aggregate.parser), 279
UnderwritingParser (class in aggregate.parser), 279
universal_renamer() (in module aggregate.extensions.case_studies), 348
update () (aggregate.distributions.Aggregate method), 295
update () (aggregate.portfolio.Portfolio method), 314
update_work() (aggregate.distributions.Aggregate method), 295
urn() (in module aggregate.extensions.case_studies), 348

V

valid (aggregate.distributions.Aggregate property), 296
valid (aggregate.portfolio.Portfolio property), 315
Validation (class in aggregate.constants), 335

[^0]: Todo: Documentation to follow.

[^1]: Getting Started

