
aggregate Documentation
Release 0.22.0

Stephen J. Mildenhall

Jan 23, 2024

CONTENTS

1 Getting Started 1
1.1 Installation . 1
1.2 Source Code . 1
1.3 Prerequisites . 1
1.4 License . 1
1.5 Dependencies . 1
1.6 Help Parameters and Examples . 2
1.7 Help Structure . 2
1.8 Help Coding Conventions . 2
1.9 Numbers and Units . 3
1.10 aggregate Hello World . 3

2 User Guides 5
2.1 Student . 6

2.1.1 What Is an Aggregate Probability Distribution? . 6
2.1.2 Formal Construction . 7
2.1.3 Simple Example . 7
2.1.4 Exercise - Test Your Understanding . 9
2.1.5 Dice Rolls . 10
2.1.6 Summary of Objects Created by DecL . 14

2.2 Actuarial Student . 14
2.2.1 Realistic Insurance Example . 15
2.2.2 College and Exam Questions . 16
2.2.3 Advantages of Modeling with Aggregate Distributions 17
2.2.4 Summary of Objects Created by DecL . 18

2.3 A Ten Minute Guide to aggregate . 18
2.3.1 Principal Classes . 19
2.3.2 The Underwriter Class . 20
2.3.3 How aggregate Represents Distributions . 24
2.3.4 The Severity Class . 24
2.3.5 The Aggregate Class . 30
2.3.6 The Distortion Class . 37
2.3.7 The Portfolio Class . 38
2.3.8 Estimating Bucket Size for Discretization . 40
2.3.9 Methods and Properties Common To Aggregate and Portfolio Classes 42
2.3.10 Additional PortfolioMethods . 53
2.3.11 Extensions . 61
2.3.12 Summary of Objects Created by DecL . 61

2.4 The Dec Language . 61
2.4.1 DecL Design and Purpose . 62
2.4.2 The Exposure Clause . 64
2.4.3 The Limits Sub-Clause . 65
2.4.4 The Severity Clause . 65
2.4.5 The Frequency Clause . 70

i

2.4.6 Mixed Severity Distributions . 71
2.4.7 Limit Profiles . 80
2.4.8 Vectorization: Limit Profiles and Mixed Severity . 81
2.4.9 The Reinsurance Clauses . 84
2.4.10 The Note Clause . 86
2.4.11 The tweedie Keyword . 86
2.4.12 Summary of Objects Created by DecL . 93

2.5 Individual Risk Pricing . 94
2.5.1 Helpful References . 94
2.5.2 Insurance Charge and Insurance Savings in Aggregate 94
2.5.3 Summary of Objects Created by DecL . 99

2.6 Reinsurance Pricing . 99
2.6.1 Helpful References . 100
2.6.2 Basic Examples . 100
2.6.3 Modes of Reinsurance Analysis . 105
2.6.4 Reinsurance Functions . 105
2.6.5 Casualty Exposure Rating . 109
2.6.6 Property Risk Exposure Rating . 111
2.6.7 Variable Features . 116
2.6.8 Inwards Analysis of Bear and Nemlick Variable Features 116
2.6.9 Outwards Analysis . 130
2.6.10 Summary of Objects Created by DecL . 137

2.7 Reserving . 138
2.7.1 Helpful References . 138
2.7.2 Modeling the Current Accident Year, Case and IBRN Reserves 138
2.7.3 The Resolution of Reserve Uncertainty Over Time . 138

2.8 Catastrophe Modeling . 138
2.8.1 Helpful References . 139
2.8.2 Jewson’s US Wind PML Estimates . 139
2.8.3 Jewson’s US Wind Climate Change Estimates . 144
2.8.4 ILW Pricing . 148
2.8.5 Secondary Uncertainty . 150
2.8.6 Summary of Objects Created by DecL . 151

2.9 Capital Modeling and Risk Management . 151
2.9.1 Helpful References . 152
2.9.2 Conditional Expectation as a Risk Management and Visualization Device 152

2.10 Strategy and Portfolio Management . 152
2.10.1 Helpful References . 152
2.10.2 Margin Allocation Using Spectral Risk Measures . 152

2.11 Case Studies . 152
2.11.1 PIR Case Studies . 153
2.11.2 Creating a Case Study . 154
2.11.3 Case Study Factory Arguments . 155
2.11.4 PIR Case Specifications . 155
2.11.5 Defining a Custom Case Study . 160
2.11.6 Standard Case Study Exhibits . 160

2.12 Working With Samples . 162
2.12.1 Helpful References . 162
2.12.2 Samples and Densities . 162
2.12.3 Samples from aggregate Object . 162
2.12.4 Applying the Iman-Conover Algorithm . 167
2.12.5 Applying the Re-Arrangement Algorithm . 168
2.12.6 Creating a Portfolio From a Sample . 170
2.12.7 Using Samples and the Switcheroo Trick . 171
2.12.8 Summary of Objects Created by DecL . 174

2.13 Published Problems and Examples . 174
2.13.1 Grübel and Hermesmeier (1999) . 174
2.13.2 Embrechts and Frei (2009) . 176

ii

2.13.3 Denuit (2019 and 2022) . 179
2.13.4 Loss Data Analytics Book . 183
2.13.5 Loss Models Book . 200
2.13.6 Bahnemann Monograph . 234
2.13.7 Enterprise Risk Analysis . 251
2.13.8 Other Papers . 264

3 API Reference 275
3.1 Underwriter Module . 275

3.1.1 Underwriter Class . 275
3.1.2 Other Underwriter functions . 279

3.2 Parser Module . 279
3.2.1 Lexer Class . 279
3.2.2 Parser Class . 279
3.2.3 Remaining Functions . 280

3.3 Distributions Module . 280
3.3.1 Frequency Class . 280
3.3.2 Severity Class . 282
3.3.3 Aggregate Class . 286

3.4 Portfolio Module . 297
3.4.1 Portfolio Class . 297
3.4.2 Other Portfolio functions . 316

3.5 Utilities . 317
3.5.1 Moment Aggregator Class . 317
3.5.2 Moment Wrangler Class . 319
3.5.3 Axis Manager Class . 320
3.5.4 Utilities Module . 321
3.5.5 Constants . 335

3.6 Distortion Module . 336
3.7 Bounds Module . 339
3.8 Extensions . 347

3.8.1 Basic . 347
3.8.2 Case Study Support . 347
3.8.3 Pentagon . 348
3.8.4 Samples . 349
3.8.5 Figures . 349
3.8.6 PIR Figures . 350
3.8.7 Test Suite . 352

4 Dec Language Reference 353
4.1 Pre-Processing . 353
4.2 Lexer Term Definitions . 353
4.3 Dec Language Grammar Specification . 355
4.4 Test Suite Programs . 358
4.5 sly Parser . 365

5 Technical Guides 367
5.1 Probability Background . 367

5.1.1 Helpful References . 367
5.1.2 Types . 368
5.1.3 Severity Distributions . 368
5.1.4 Frequency Distributions . 369
5.1.5 Moment Generating Functions . 370
5.1.6 Mixed Frequency Distributions . 371
5.1.7 Aggregate Distributions . 375
5.1.8 Shifted Gamma and Lognormal Distributions . 376
5.1.9 Appendix: Selected scipy.stats Discrete Random Variables 377
5.1.10 Appendix: scipy.stats Continuous Random Variables 379

5.2 Quantiles and Related Risk Measures . 399

iii

5.2.1 Helpful References . 399
5.2.2 Quantiles . 399
5.2.3 Value at Risk . 401
5.2.4 The Failure of VaR to be Subadditive . 401
5.2.5 Tail VaR and Related Risk Measures . 402

5.3 Insurance Probability . 404
5.3.1 Helpful References . 404
5.3.2 Occurrence and Aggregate Probable Maximal Loss . 404
5.3.3 Self-Insurance Plan Stop-Loss Insurance . 406
5.3.4 Adjusting Layer Loss Picks . 407
5.3.5 The Tweedie Distribution . 409
5.3.6 Excess Frequency Distributions . 410
5.3.7 When Is Severity Irrelevant? . 411

5.4 Numerical Methods and FFT Convolution . 413
5.4.1 Helpful References . 413
5.4.2 Overview . 414
5.4.3 Digital Representation of Distributions . 417
5.4.4 Fourier Transform Convolution Algorithm . 427
5.4.5 Floating Point Arithmetic and Rounding Errors . 437

5.5 Distortions and Spectral Risk Measures . 440
5.5.1 Helpful References . 440
5.5.2 Distortion Function and Spectral Risk Measures . 440
5.5.3 Layer Densities . 441
5.5.4 Portfolio Pricing with Spectral Risk Measures . 443
5.5.5 The Equal Priority Default Rule . 446
5.5.6 Expected Loss Payments at Different Asset Levels . 447
5.5.7 The Natural Allocation Premium . 448
5.5.8 Properties of Alpha, Beta, and Kappa . 450
5.5.9 Properties of the Natural Allocation . 450
5.5.10 The Natural Allocation of Equity . 452
5.5.11 Appendix: Notation and Conventions . 453

5.6 Bodoff’s Percentile Layer Capital Method . 454
5.6.1 Helpful References . 454
5.6.2 Introduction . 454
5.6.3 Assumptions and Notation . 455
5.6.4 Three Possible Allocation Methods . 455
5.6.5 Percentile Layer Allocation: Definition . 456
5.6.6 Thought Experiments . 456
5.6.7 Thought Experiment Number 1 . 458
5.6.8 Bodoff Examples 1-3 . 461
5.6.9 Bodoff Example 4 . 461
5.6.10 Bodoff Summary . 465
5.6.11 CAS Exam Question: Spring 2018 Question 15 . 465

5.7 The Pollaczeck-Khinchine Formula . 466
5.7.1 Helpful References . 467
5.7.2 Classical Risk Theory and the Pollaczeck-Khinchine Formula 467
5.7.3 FFT Computation . 468
5.7.4 Using The Pollaczeck-Khinchine Formula I . 468
5.7.5 Using The Pollaczeck-Khinchine Formula II . 471
5.7.6 Market Scale and Viability . 472

5.8 Calculations For Each aggregate Class . 474
5.8.1 Helpful References . 474
5.8.2 Aggregate Class Calculations . 474
5.8.3 Portfolio Class Calculations . 474
5.8.4 Distortion Class Calculations . 478
5.8.5 Bounds Class Calculations . 478

5.9 Working With Samples . 478
5.9.1 Helpful References . 478

iv

5.9.2 Using Samples and The Switcheroo Trick . 478
5.9.3 The Iman-Conover Method . 479
5.9.4 The Rearrangement Algorithm . 490

6 Design and Development 495
6.1 Help Structure . 495
6.2 Design Philosophy . 496
6.3 History . 496

7 Introduction 497

Bibliography 501

Python Module Index 509

Index 511

v

vi

CHAPTER

ONE

GETTING STARTED

1.1 Installation

To install from PyPI

pip install aggregate

See https://pypi.org/project/aggregate/.

1.2 Source Code

The source code is hosted on GitHub, https://github.com/mynl/aggregate.

1.3 Prerequisites

This help assumes you know how to program in Python, understand probability, and are familiar with the concept
of an aggregate distribution. Awareness of insurance terminology such as limit, attachment and deductible, and the
material covered in SOA exam STAM, CAS exam MAS I, or IFOA CS-2 is helpful.

1.4 License

BSD 3.

1.5 Dependencies

See pyproject.toml. Requirements are split between those needed to run the project, and a larger set needed to build
the documentation.
Apart from sly and titlecase, all run-dependencies are standard.

1

https://pypi.org/project/aggregate/
https://github.com/mynl/aggregate
https://www.soa.org/education/exam-req/edu-exam-stam-detail/
https://www.casact.org/exam/exam-mas-i-modern-actuarial-statistics-i
https://www.actuaries.org.uk/curriculum_entity/curriculum_entity/8

aggregate Documentation, Release 0.22.0

1.6 Help Parameters and Examples

Warning: All parameters are fabrications. They try to be realistic (or at least not materially unrealistic) but are
not intended to be applied to real-world pricing. They are for educational purposes only.

1.7 Help Structure

This help is structured around access, application, theory, and implementation. There are six parts.
1. Getting Started (this document).
2. User Guides, explaining how to access functionality and practical guides explaining how to apply it.
3. API Reference: all functions, classes, methods, and properties.
4. Dec Language Reference: syntax and grammar.
5. Technical Guides, covering the underlying theory and its specific implementation.
6. Design and Development, giving some history, the design philosophy, and ideas for future development.

There is also a Bibliography.

1.8 Help Coding Conventions

Throughout the help, you will see input code inside code blocks such as:

import pandas as pd
pd.DataFrame({'A': [1, 2, 3]})

or:

In [1]: import pandas as pd

In [2]: pd.DataFrame({'A': [1, 2, 3]})
Out[2]:

A
0 1
1 2
2 3

The first block is a standard Python input, while in the second the In [1]: indicates the input is inside a notebook.
In Jupyter Notebooks the last line is printed and plots are shown inline.
For example:

In [3]: a = 1

In [4]: a
Out[4]: 1

is equivalent to:

a = 1
print(a)

The Python line continuation \ is used to create compact input.

2 Chapter 1. Getting Started

https://jupyter.org

aggregate Documentation, Release 0.22.0

1.9 Numbers and Units

You can choose your own units. The examples include numbers interpreted in ones, thousands, andmillions. Amounts
are broadly calibrated to make sense in USD, EUR, and GBP.

1.10 aggregate Hello World

The only object you need to import to get started is build. The quick display function qd is a nice-to-have utility
function that handles printing with sensible defaults. It is used extensively throughout.

In [5]: from aggregate import build, qd

In [6]: build
Out[6]:
underwriter Rory
version 0.22.0
knowledge 145 programs
update True
log2 16
debug False
validation_eps 0.0001
site dir ~/aggregate/databases
default dir ~/checkouts/readthedocs.org/user_builds/aggregate/checkouts/
↪→stable/aggregate/agg

help
build.knowledge list of all programs
build.qshow(pat) show programs matching pattern
build.show(pat) build and display matching pattern

build is a Underwriter object. It allows you to create all other objects and includes a library of examples, called
the knowledge.
Using build you can create an Aggregate object using an DecL program. For example, the program:

agg Eg1 dfreq [1:5] dsev [1:3]

creates an aggregate distribution called Eg1. The frequency distribution is 1, 2, 3, 4, or 5, all equally likely, and the
severity is 1, 2, or 3, also equally likely. The mean frequency is 3, the mean severity 2, and hence the aggregate has
a mean of 6. It is built and displayed like so:

In [7]: a = build('agg Eg1 dfreq [1:5] dsev [1:3]')

In [8]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3 0.4714 0
Sev 2 2 0 0.40825 0.40825 6.5268e-15 3.2634e-15
Agg 6 6 -9.992e-16 0.52705 0.52705 0.25298 0.25298
log2 = 5, bandwidth = 1, validation: fails sev skew.

The DecL program:

agg Eg2 5 claims 1000 xs 0 sev lognorm 50 cv 4 poisson

creates a realistic insurance portfolio, with 5 expected claims, severity sampled from a 1000 xs 0 layer of a lognormal
with mean 50 and CV 4 and Poisson frequency.

1.9. Numbers and Units 3

aggregate Documentation, Release 0.22.0

Aggregate objects act like a discrete probability distribution. There are properties for themean, standard deviation,
coefficient of variation (cv), and skewness.

In [9]: a.agg_m, a.agg_sd, a.agg_cv, a.agg_skew
Out[9]: (6.0, 3.1622776601683795, 0.5270462766947299, 0.2529822128134703)

They have probability mass, cumulative distribution, survival, and quantile (inverse of distribution) functions.

In [10]: a.pmf(6), a.cdf(5), a.sf(6), a.q(a.cdf(6)), a.q(0.5)
Out[10]: (0.102880658436214, 0.4650205761316873, 0.4320987654320987, 6.0, 6.0)

It is easy to check some of these calculations. The probability of the minimum outcome of one equals 1/15 (1/5 for
a frequency of 1 and 1/3 for a severity of 1) and the maximum outcome of 15 equals 1/1215 (1/5 for a frequency of
5 and (1/3)**5 to draw severity of 3 on each). The object returns the correct values.

In [11]: a.pmf(1), 1/15, a.pmf(15), 1/5/3**5, 5*3**5
Out[11]:
(0.06666666666666668,
0.06666666666666667,
0.0008230452674897143,
0.000823045267489712,
1215)

Creating an object automatically adds its specification to the knowledge, with name Eg1. Use build.knowledge
to view the knowledge dataframe.

In [12]: qd(build.knowledge.head(), line_width=73, max_colwidth=50, justify='left')

program \
kind name
agg A.Dice00 agg A.Dice00 dfreq [1:6] dsev [1] note{The...

A.Dice01 agg A.Dice01 dfreq [1] dsev [1:6] note{Sam...
A.Dice02 agg A.Dice02 dfreq [2] dsev [1:6] note{Sum...
A.Dice03 agg A.Dice03 dfreq [5] dsev [1:6] note{Sum...
A.Dice04 agg A.Dice04 dfreq [1:6] dsev [1:6] note{S...

spec
kind name
agg A.Dice00 {'name': 'A.Dice00', 'freq_name': 'empirical',...

A.Dice01 {'name': 'A.Dice01', 'freq_name': 'empirical',...
A.Dice02 {'name': 'A.Dice02', 'freq_name': 'empirical',...
A.Dice03 {'name': 'A.Dice03', 'freq_name': 'empirical',...
A.Dice04 {'name': 'A.Dice04', 'freq_name': 'empirical',...

In [13]: qd(build.knowledge.query('name == "Eg1"'), line_width=73, max_colwidth=50,
↪→ justify='left')

program \
kind name
agg Eg1 agg Eg1 dfreq [1:5] dsev [1:3]

spec
kind name
agg Eg1 {'name': 'Eg1', 'freq_name': 'empirical', 'fre...

The User Guides contain more details and examples.

4 Chapter 1. Getting Started

CHAPTER

TWO

USER GUIDES

The User Guides show how to access aggregate functionality and apply it to solve actuarial problems. It alternates
between access-oriented reference guides and problem and application based practice guides. New users should start
reading the Student or Actuarial Student guide and scan through A Ten Minute Guide to aggregate. See Technical
Guides for the theory and implementation details. Sections in the guides marked Details can be skipped. There is
some duplication between sections to make them independent.

1. Student (practice): Introduction to aggregate distributions using simple discrete examples for actuarial science
majors and short-term actuarial modeling exam candidates; get started using aggregate.

2. Actuarial Student (practice): Introduce the aggregate library for working with aggregate probability distri-
butions in the context of actuarial society exams (SOA exam STAM, CAS exam MAS I, or IFOA CS-2) and
university courses in (short-term) actuarial modeling.

3. A TenMinute Guide to aggregate (reference): A whirlwind introduction—don’t expect to understand everything
the first time, but you will see what you can achieve with the package. Read in parallel with the Student or
Actuarial Student practice guides. Follows the pandas model, a long 10 minutes.

4. The Dec Language (reference): Introduce the Dec Language (DecL) used to specify aggregate distributions in
familiar insurance terminology.

5. Individual Risk Pricing (practice): Applications of the Aggregate class to individual risk pricing, including
LEVs, ILFs, layering, and the insurance charge and savings (Table L, M), illustrated using problems from CAS
Part 8.

6. Reinsurance Pricing (practice): Applications of theAggregate class to reinsurance exposure rating, including
swings and slides, aggregate stop loss and swing rated programs, illustrated using problems from CAS Parts 8
and 9.

7. Reserving (practice, placeholder): Applications of the Aggregate class to reserving, including models of
loss emergence and determining ranges for IBNR and case reserves.

8. Catastrophe Modeling (practice): Applications of the Aggregate class to catastrophe risk evaluation and
pricing using thick-tailed Poisson Pareto and lognormal models, including occurrence and aggregate PMLs
(OEP, AEP) and layer loss costs. Covers material on CAS Parts 8 and 9.

9. Capital Modeling and Risk Management (practice, placeholder): Application of the Portfolio class to cap-
ital modeling, including VaR, TVaR, and risk visualization and quantification. Covers material on CAS Part
9.

10. Strategy and Portfolio Management (practice, placeholder): Application of the Portfolio and and Dis-
tortion classes to strategy and portfolio management, including margin (capital) allocation, determining
benchmark pricing within a portfolio using alternative pricing methodologies, and the evaluation of reinsur-
ance.

11. Case Studies (practice): Using aggregate to reproduce the case study exhibits from the book Pricing Insur-
ance Risk and build similar exhibits for your own cases.

12. WorkingWith Samples (reference): How to sample from aggregate and how to a build a Portfolio from
a sample. Inducing correlation in a sample using the Iman-Conover algorithm and determining the worst-VaR
rearrangement using the rearrangement algorithm.

5

https://www.soa.org/education/exam-req/edu-exam-stam-detail/
https://www.casact.org/exam/exam-mas-i-modern-actuarial-statistics-i
https://www.actuaries.org.uk/curriculum_entity/curriculum_entity/8
https://pandas.pydata.org/docs/user_guide/10min.html
https://www.wiley.com/en-us/Pricing+Insurance+Risk:+Theory+and+Practice-p-9781119755678
https://www.wiley.com/en-us/Pricing+Insurance+Risk:+Theory+and+Practice-p-9781119755678

aggregate Documentation, Release 0.22.0

13. Published Problems and Examples (practice): aggregate solutions to a wide selection of problems and
examples from books (Loss Models, Loss Data Analytics), actuarial exam study notes, and academic papers.
Demonstrates the method of solution and verifies the correctness of aggregate calculations.

Guides marked practice are problem and application based and give possible driving destinations; those marked
reference are access-based and describe how to unlock the car, start the engine, and engage a gear.
Guides marked placeholder are work in progress, often just a sketch of planned content.

2.1 Student

Objectives: Introduction to aggregate distributions using simple discrete examples for actuarial science majors and
short-term actuarial modeling exam candidates; get started using aggregate.
Audience: New user, with no knowledge of aggregate distributions or insurance terminology.
Prerequisites: Basic probability theory; Python and pandas programming.
See also: Actuarial Student.
Contents:

1. What Is an Aggregate Probability Distribution?

2. Formal Construction

3. Simple Example

4. Exercise - Test Your Understanding

5. Dice Rolls

6. Summary of Objects Created by DecL

2.1.1 What Is an Aggregate Probability Distribution?

An aggregate probability distribution describes the sum of a random number of identically distributed outcome
random variables. The distribution of the number called the frequency distribution and of the outcome the severity
distribution.
Examples.

1. Total losses from insurance claims from a portfolio of policies: frequency equals the number of claims and the
severity outcome is the amount of each claim.

2. Larvae per unit area (Neyman 1939): frequency is the number of egg clusters per unit area and severity is the
number of larvae per egg cluster.

3. Number of vehicle occupants passing a point on the road: frequency is the number of vehicles passing the point
and severity is the number of occupants per vehicle.

4. Total transaction value in an exchange: frequency is the number of transactions and severity is the amount of
each transaction.

Aggregate distributions are used in many fields and go by different names, including compound distributions, gener-
alized distributions, and stopped-sum distributions.

6 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

2.1.2 Formal Construction

Let N be a discrete random variable taking non-negative integer values. Its outcomes give the frequency (number)
of events. Let Xi be a series of independent, identically distributed (iid) severity random variables modeling an
outcome. An aggregate distribution is the distribution of the random sum

A = X1 + · · ·+XN .

N is called the frequency component of the aggregate and X the severity.
An observation from A is realized by:

1. Sample (or simulate) an outcome n from N

2. For i = 1, . . . , n, sample Xi

3. Return A := X1 + · · ·+Xn

It is usual to assume that X and N are independent. Check this assumption is reasonable for your use case; it is
not always appropriate. For example, consider modeling hourly takings from a shop checkout till as the number of
customers served (frequency) and the amount spent by each customer (severity). Larger orders take longer to tabulate
and so frequency is negatively correlated with severity. Example 4 above assumes large orders on an exchange are
transacted as quickly as small ones.

2.1.3 Simple Example

Frequency N can equal 1, 2, or 3, with probabilities 1/2, 1/4, and 1/4.
Severity X can equal 1, 2, or 4, with probabilities 5/8, 1/4, and 1/8.
Aggregate A = X1 + · · ·+XN .
Exercise.

1. What are the expected value and CV of N?
2. What are the expected value and CV of X?
3. What are the expected value and CV of A?
4. What possible values can A take? What are the probabilities of each?

Important: Stop and solve the exercise!

The exercise is not difficult, but it requires careful bookkeeping and attention to detail. It would soon become im-
practical to solve by hand if there were more outcomes for frequency or severity. This is where aggregate comes
in. It can solve exercise in the following few lines of code, which we now go through step-by-step.
The first line imports build and a helper “quick display” function qd. You almost always want to start this way.

In [1]: from aggregate import build, qd

The next three lines specify the aggregate using a Dec Language (DecL) program to describe its frequency and severity
components.

In [2]: a01 = build('agg Student:01 '
...: 'dfreq [1 2 3] [1/2 1/4 1/4] '
...: 'dsev [1 2 4] [5/8 1/4 1/8]')
...:

The DecL program has three parts:
• agg is a keyword and Student:01 is a user-selected name. Names must start with a letter and can include
numbers and colons. This clause declares that we are building an aggregate distribution.

2.1. Student 7

aggregate Documentation, Release 0.22.0

• dfreq is a keyword to specify the frequency distribution. The next two blocks of numbers are the outcomes
[1 2 3] and their probabilities [1/2 1/4 1/4]. Commas are optional in the lists and only division
arithmetic is supported.

• dsev is a keyword to specify the a discrete severity distribution. It has the same outcomes-probabilities form
as dfreq.

The program string is only one line long because Python automatically concatenates strings within parenthesis; it is
split up for clarity. It is recommended that DecL programs be split in this way. Note the spaces at the end of each
line, see 10 mins formatting.
Use qd to print a dataframe of statistics that answer the first three questions: the mean and CV for the frequency
(Freq), severity (Sev) and aggregate (Agg) distributions.

In [3]: qd(a01)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.75 0.4738 0.49338
Sev 1.625 1.625 0 0.61056 0.61056 1.5719 1.5719
Agg 2.8438 2.8437 -1.1102e-16 0.66144 0.66144 1.0808 1.0808
log2 = 5, bandwidth = 1, validation: not unreasonable.

The columns E[X], CV(X), and Skew(X) report the mean, CV, and skewness for each component computed ana-
lytically or very accurately with numerical integration. The columns Est E[X], Est CV(X), and Est Skew(X)
are computed numerically by aggregate. For discrete models they equal the analytic answer because the only
errors introduced by aggregate come from discretizing the severity distribution. That is also why there are no es-
timates for frequency. Err E[X] shows the error (difference, not relative error) in the mean. This handy dataframe
can be accessed directly via the property a01.describe. The note log2 = 5, bs = 1 describe the inner
workings, discussed in REF.
It remains to give the aggregate probability mass function. It is available in the dataframe a01.density_df. Here
are the probability masses, and distribution and survival functions evaluated for all possible aggregate outcomes.

In [4]: qd(a01.density_df.query('p_total > 0')[['p_total', 'F', 'S']])

p_total F S
loss
1.0 0.3125 0.3125 0.6875
2.0 0.22266 0.53516 0.46484
3.0 0.13916 0.67432 0.32568
4.0 0.15137 0.82568 0.17432
5.0 0.068359 0.89404 0.10596
6.0 0.056152 0.9502 0.049805
7.0 0.029297 0.97949 0.020508
8.0 0.0097656 0.98926 0.010742
9.0 0.0073242 0.99658 0.003418
10.0 0.0029297 0.99951 0.00048828
12.0 0.00048828 1 0

The possible outcomes range from 1 (frequency 1, outcome 1) to 12 (frequency 3, all outcomes 4). It is easy to check
the reported probabilities are correct. It is impossible to obtain an outcome of 11.
For extra credit, here is a plot of the pmf, cdf, and the outcome Lee diagram, showing the severity and aggregate.
These are produced automatically by a01.plot() from the density_df dataframe.

In [5]: a01.plot()

8 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

2.1.4 Exercise - Test Your Understanding

Frequency: 1, 2 or 3 events; 50% chance of 1 event, 25% chance of 2, and 25% chance of 3.
Severity: 1, 2, 4, 8 or 16, each with equal probability.

1. What is the average frequency?
2. What is the average severity?
3. What are the average aggregate?
4. What is the aggregate coefficient of variation?
5. Tabulate the probability of all possible aggregate outcomes.

First, try by hand and then using aggregate.
Here is the aggregate solution. The probability clause in dsev can be omitted when all outcomes are equally
likely. The moments and CVs are shown in the table.

In [6]: a02 = build('agg Student:02 '
...: 'dfreq [1 2 3] [.5 .25 .25] '
...: 'dsev [1 2 4 8 16] ')
...:

In [7]: qd(a02)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.75 0.4738 0.49338
Sev 6.2 6.2 -1.1102e-16 0.87988 0.87988 0.88905 0.88905
Agg 10.85 10.85 -1.1102e-16 0.81663 0.81663 1.0066 1.0066
log2 = 7, bandwidth = 1, validation: not unreasonable.

All possible aggregate outcomes are shown next. The largest outcome of 48 has probability 1/4 * (1/5)**3 = 1/500
= 0.002.

In [8]: qd(a02.density_df.query('p_total > 0')[['p_total', 'F', 'S']])

p_total F S
loss
1.0 0.1 0.1 0.9
2.0 0.11 0.21 0.79
3.0 0.022 0.232 0.768
4.0 0.116 0.348 0.652
5.0 0.026 0.374 0.626
6.0 0.028 0.402 0.598
7.0 0.012 0.414 0.586
8.0 0.116 0.53 0.47
9.0 0.026 0.556 0.444
10.0 0.032 0.588 0.412
11.0 0.012 0.6 0.4

(continues on next page)

2.1. Student 9

aggregate Documentation, Release 0.22.0

(continued from previous page)
12.0 0.028 0.628 0.372
...
21.0 0.012 0.882 0.118
22.0 0.012 0.894 0.106
24.0 0.028 0.922 0.078
25.0 0.012 0.934 0.066
26.0 0.012 0.946 0.054
28.0 0.012 0.958 0.042
32.0 0.016 0.974 0.026
33.0 0.006 0.98 0.02
34.0 0.006 0.986 0.014
36.0 0.006 0.992 0.008
40.0 0.006 0.998 0.002
48.0 0.002 1 -2.2204e-16

In [9]: a02.plot()

2.1.5 Dice Rolls

This section presents a series of examples involving dice rolls. The early examples are useful because you know the
answer and can see aggregate is correct.

One Dice Roll

The DecL program for one dice roll.

In [10]: one_dice = build('agg Student:01Dice '
....: 'dfreq [1] '
....: 'dsev [1:6]')
....:

In [11]: one_dice.plot()

In [12]: qd(one_dice)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 3.5 3.5 0 0.48795 0.48795 0 2.8529e-15
Agg 3.5 3.5 0 0.48795 0.48795 0 8.5588e-15
log2 = 4, bandwidth = 1, validation: not unreasonable.

10 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Two Dice Rolls

The program for two dice rolls produces a triangular aggregate distribution, as shown in the table and illustrated in
the graph (left, probability mass function in blue).

In [13]: import numpy as np

In [14]: two_dice = build('agg Student:02Dice '
....: 'dfreq [2] '
....: 'dsev [1:6]')
....:

In [15]: two_dice.plot()

In [16]: qd(two_dice)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0
Sev 3.5 3.5 0 0.48795 0.48795 0 2.8529e-15
Agg 7 7 -3.3307e-16 0.34503 0.34503 0 -4.0346e-14
log2 = 5, bandwidth = 1, validation: not unreasonable.

In [17]: bit = two_dice.density_df.query('p_total > 0')[['p_total', 'F', 'S']]

In [18]: bit['36p'] = np.round(bit.p_total * 36)

In [19]: bit['36p'] = bit['36p'].astype(int)

In [20]: qd(bit)

p_total F S 36p
loss
2.0 0.027778 0.027778 0.97222 1
3.0 0.055556 0.083333 0.91667 2
4.0 0.083333 0.16667 0.83333 3
5.0 0.11111 0.27778 0.72222 4
6.0 0.13889 0.41667 0.58333 5
7.0 0.16667 0.58333 0.41667 6
8.0 0.13889 0.72222 0.27778 5
9.0 0.11111 0.83333 0.16667 4
10.0 0.083333 0.91667 0.083333 3
11.0 0.055556 0.97222 0.027778 2
12.0 0.027778 1 -2.2204e-16 1

2.1. Student 11

aggregate Documentation, Release 0.22.0

Twelve Dice Rolls

The aggregate program for twelve dice rolls, which is much harder to compute by hand!

In [21]: twelve_dice = build('agg Student:12Dice '
....: 'dfreq [12] '
....: 'dsev [1:6]')
....:

In [22]: qd(twelve_dice)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 12 0
Sev 3.5 3.5 0 0.48795 0.48795 0 2.8529e-15
Agg 42 42 1.9984e-15 0.14086 0.14086 0 1.4337e-11
log2 = 8, bandwidth = 1, validation: not unreasonable.

The distribution compared to a moment-matched normal approximation. fz is a scipy.stats normal random
variable created using the approximate method. The last two plots show very good convergence to the central
limit theorem normal distribution.

In [23]: import matplotlib.pyplot as plt

In [24]: fz = twelve_dice.approximate('norm')

In [25]: df = twelve_dice.density_df[['p_total', 'F', 'S']]

In [26]: df['normal'] = np.diff(fz.cdf(df.index + 0.5), prepend=0)

In [27]: qd(df.iloc[32:52])

p_total F S normal
loss
32.0 0.016609 0.054298 0.9457 0.016196
33.0 0.021737 0.076034 0.92397 0.021233
34.0 0.027592 0.10363 0.89637 0.027054
35.0 0.033997 0.13762 0.86238 0.033502
36.0 0.04069 0.17831 0.82169 0.040322
37.0 0.04733 0.22564 0.77436 0.047165
38.0 0.05353 0.27917 0.72083 0.05362
39.0 0.058887 0.33806 0.66194 0.059245
40.0 0.063026 0.40109 0.59891 0.063621
41.0 0.065643 0.46673 0.53327 0.0664
42.0 0.066539 0.53327 0.46673 0.067353
43.0 0.065643 0.59891 0.40109 0.0664
44.0 0.063026 0.66194 0.33806 0.063621
45.0 0.058887 0.72083 0.27917 0.059245
46.0 0.05353 0.77436 0.22564 0.05362
47.0 0.04733 0.82169 0.17831 0.047165

(continues on next page)

12 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
48.0 0.04069 0.86238 0.13762 0.040322
49.0 0.033997 0.89637 0.10363 0.033502
50.0 0.027592 0.92397 0.076034 0.027054
51.0 0.021737 0.9457 0.054298 0.021233

In [28]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
↪→layout=True); \

....: ax0, ax1 = axs.flat; \

....: df[['p_total', 'normal']].plot(xlim=[22, 64], ax=ax0); \

....: ax0.set(ylabel='pmf'); \

....: df[['p_total', 'normal']].cumsum().plot(xlim=[22, 64], ax=ax1);

....:

In [29]: ax1.set(ylabel='Distribution');

A Dice Roll of Dice Rolls

The last example is a dice roll of dice rolls: throw a dice, then throw that many dice and add up the dots. The result
range from 1 (throw 1 first, then 1 again) to 36 (throw 6 first, then 6 for each of the six die).

In [30]: dd = build('agg Student:DD '
....: 'dfreq [1:6] '
....: 'dsev [1:6]')
....:

In [31]: qd(dd)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3.5 0.48795 0
Sev 3.5 3.5 0 0.48795 0.48795 0 2.8529e-15
Agg 12.25 12.25 1.5543e-15 0.55328 0.55328 0.28689 0.28689
log2 = 7, bandwidth = 1, validation: not unreasonable.

In [32]: dd.plot()

The largest outcome of 36 has probability 6**-7. See below for a check of the accuracy. Work out the probability
of 6 or 7 to better appreciate the work performed by aggregate! Why is there a sudden drop between 6 and 7 in
the (blue) probability mass function (left hand plot)?

2.1. Student 13

aggregate Documentation, Release 0.22.0

In [33]: import pandas as pd

In [34]: a, e = (1/6)**7, dd.density_df.loc[36, 'p_total']

In [35]: pd.DataFrame([a, e, e/a-1],
....: index=['Actual worst', 'Computed worst', 'error'],
....: columns=['value'])
....:

Out[35]:
value

Actual worst 3.572245e-06
Computed worst 3.572245e-06
error 1.178835e-12

We return to this example in Reinsurance Pricing.

2.1.6 Summary of Objects Created by DecL

Objects created by build() in this guide.

In [36]: from aggregate import pprint_ex

In [37]: for n, r in build.qlist('^Student:').iterrows():
....: pprint_ex(r.program, split=20)
....:

2.2 Actuarial Student

Objectives: Introduce the aggregate library for working with aggregate probability distributions in the context of
actuarial society exams (SOA exam STAM, CAS examMAS I, or IFOA CS-2) and university courses in (short-term)
actuarial modeling.
Audience: Actuarial science university students and actuarial analysts.
Prerequisites: Familiarity with aggregate probability distributions as covered on actuarial society exams and basic
insurance terminology from insurance company operations.
See also: Student for a more basic introduction; User Guides for other applications.
Contents:

1. Realistic Insurance Example

2. College and Exam Questions

3. Advantages of Modeling with Aggregate Distributions

4. Summary of Objects Created by DecL

14 Chapter 2. User Guides

https://www.soa.org/education/exam-req/edu-exam-stam-detail/
https://www.casact.org/exam/exam-mas-i-modern-actuarial-statistics-i
https://www.actuaries.org.uk/curriculum_entity/curriculum_entity/8

aggregate Documentation, Release 0.22.0

2.2.1 Realistic Insurance Example

Assumptions. You are given the following information about a book of trucking liability insurance business.
1. Premium equals 2000 and the expected loss ratio equals 67.5%.
2. Ground-up severity has been fit to a lognormal distribution with a mean of 100 and CV (coefficient of variation)

of 1.75.
3. All policies have a limit of 1000 with no deductible or retention.
4. Frequency is modeled using a Poisson distribution.

You model aggregate losses using the collective risk model.
Questions. Model aggregate losses using the collective risk model and compute the following:

1. The expected insured severity and expected claim count.
2. The aggregate expected value, standard deviation, CV, and skewness.
3. The probability aggregate losses exceed the premium.
4. The probability aggregate losses exceed 2500
5. The expected value of aggregate losses limited to 2500
6. The expected policyholder deficit in excess of 2500

Answers.
Build an aggregate object using simple DecL program. The dataframe a01.describe gives the answers to ques-
tions 1 and 2. It printed and formatted automatically by qd(a01). Note the validation report in the last line.

In [1]: from aggregate import build, qd

In [2]: a01 = build('agg Actuary:01 '
...: '2000 premium at 0.675 lr '
...: '1000 xs 0 '
...: 'sev lognorm 100 cv 1.75 '
...: 'poisson')
...:

In [3]: qd(a01)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 13.948 0.26776 0.26776
Sev 96.788 96.788 8.8983e-11 1.4339 1.4339 3.5491 3.5491
Agg 1350 1350 -6.8412e-11 0.46809 0.46809 0.88368 0.88368
log2 = 16, bandwidth = 1/8, validation: not unreasonable.

The survival function a01.sf answers 3 and 4. qd is used to print with reasonable defaults. The dataframe a01.
density_df computes limited expected values (levs) and expected policyholder deficit indexed by loss level, and
other values. Querying it answers 5 and 6.

In [4]: qd(a01.sf(2000), a01.sf(2500))
0.14971
0.053466

In [5]: qd(a01.density_df.loc[[2500], ['F', 'S', 'lev', 'epd']])

F S lev epd
loss
2500.0 0.94653 0.053466 1327.7 0.016541

2.2. Actuarial Student 15

aggregate Documentation, Release 0.22.0

2.2.2 College and Exam Questions

College courses and the early actuarial exams often ask purely technical questions. Using assumptions from the
Realistic Insurance Example answer the following.

1. Compute the severity lognormal parameters mu and sigma.
2. Compute the expected insured severity and expected claim count.
3. Compute the probability the aggregate exceeds the premium using the following matched moment approxima-

tions:
1. Normal
2. Gamma
3. Lognormal
4. Shifted gamma
5. Shifted lognormal

4. Using the aggregate and a lognormal approximation, compute:
1. The probability losses exceed 2500
2. The expected value of losses limited to 2500
3. The expected value of losses in excess of 2500

The code below provides all the answers. mu_sigma_from_mean_cv computes the lognormal parameters—one
of the most written macro in actuarial science! Start by applying it to the given severity parameters to answer question
1.

In [6]: from aggregate import mu_sigma_from_mean_cv

In [7]: import pandas as pd

In [8]: print(mu_sigma_from_mean_cv(50, 1.25))
(3.441531333195883, 0.9700429601128635)

The function a01.approximate parameterizes all the requested matched moment approximations, returning
frozen scipy.stats distribution objects that expose cdf methods. The Aggregate class object a also has a
cdf method. Using these functions, we can assemble a dataframe to answer question 3.

In [9]: fz = a01.approximate('all')

In [10]: fz['agg'] = a01

In [11]: df = pd.DataFrame({k: v.sf(2000) for k, v in fz.items()}.items(),
....: columns=['Approximation', 'Value']
....:).set_index("Approximation")
....:

In [12]: df['Error'] = df.Value / df.loc['agg', 'Value'] - 1

In [13]: qd(df.sort_values('Value'))

Value Error
Approximation
lognorm 0.13445 -0.1019
slognorm 0.14456 -0.03437
gamma 0.14689 -0.018844
sgamma 0.14745 -0.015088
agg 0.14971 0
norm 0.15183 0.014183

16 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

The function lognorm_lev computes limited expected values for the lognormal. It is used to assemble a dataframe
to answer question 4. In this case, the lognormal approximation EPD is over 50% higher than the more accurate
estimate provided by aggregate.

In [14]: from aggregate import lognorm_lev

In [15]: mu, sigma = mu_sigma_from_mean_cv(a01.agg_m, a01.agg_cv)

In [16]: lev = lognorm_lev(mu, sigma, 1, 2500)

In [17]: lev_agg = a01.density_df.loc[2500, 'lev']

In [18]: default = a01.agg_m - lev

In [19]: epd = default / a01.est_m

In [20]: default_agg = a01.est_m - lev_agg

In [21]: bit = pd.DataFrame((lev, default, lev_agg, default_agg, epd, default_agg /
↪→ a01.agg_m),

....: index=pd.Index(['Lognorm LEV', 'Lognorm Default', 'Agg LEV',

....: 'Agg Default', 'Lognorm EPD', 'Agg EPD'],

....: name='Item'),

....: columns=['Value'])

....:

In [22]: qd(bit)

Value
Item
Lognorm LEV 1319.5
Lognorm Default 30.495
Agg LEV 1327.7
Agg Default 22.331
Lognorm EPD 0.022589
Agg EPD 0.016541

2.2.3 Advantages of Modeling with Aggregate Distributions

Aggregate distributions provide a powerful modeling paradigm. It separates the analysis of frequency and severity.
Different datasets can be used for each. KPW list seven advantages.

1. Only the expected claim count changes with volume. The severity distribution is a characteristic of the line of
business.

2. Inflation impacts ground-up severity but not claim count. The situation is more complicated when limits and
deductibles apply.

3. Coverage terms impact occurrence limits and deductibles, which affect ground-up severity.
4. The impact on claims frequencies of changing deductibles is better understood.
5. Severity curves can be estimated from homogeneous data. Kaplan-Meier and related methods can adjust for

censoring and truncation caused by limits and deductibles.
6. Retained, insured, ceded, and net losses can be modeled consistently.
7. Understanding properties of frequency and severity separately illuminates the shape of the aggregate.

2.2. Actuarial Student 17

aggregate Documentation, Release 0.22.0

2.2.4 Summary of Objects Created by DecL

Objects created by build() in this guide.

In [23]: from aggregate import pprint_ex

In [24]: for n, r in build.qlist('^Actuary:').iterrows():
....: pprint_ex(r.program, split=20)
....:

2.3 A Ten Minute Guide to aggregate

Objectives: A whirlwind introduction—don’t expect to understand everything the first time, but you will see what
you can achieve with the package. Follows the pandas model, a long 10 minutes.
Audience: A new user.
Prerequisites: Python programming; aggregate distributions. Read in conjunction with Student or Actuarial Student
practice guides.
See also: API Reference, The Dec Language.
Contents:

1. Principal Classes

2. The Underwriter Class

• Object Creation Using DecL and build()

• Important: Formatting a DecL Program

• Object Creation from the Knowledge Database

• Underwriter Behind the Scenes

3. How aggregate Represents Distributions

4. The Severity Class

5. The Aggregate Class

• Creating an Aggregate Distribution

• Aggregate Quick Diagnostics

• Aggregate Algorithm in Detail

• Basic Probability Functions

• Mixtures

• Accessing Severity in an Aggregate

• Reinsurance

6. The Distortion Class

7. The Portfolio Class

8. Estimating Bucket Size for Discretization

• Hyper-parameters log2 and bs

• Estimating and Testing bs For Aggregate Objects

• Estimating and Testing bs For Portfolio Objects

9. Methods and Properties Common To Aggregate and Portfolio Classes

18 Chapter 2. User Guides

https://pandas.pydata.org/docs/user_guide/10min.html

aggregate Documentation, Release 0.22.0

• The info Dataframe

• The describe Dataframe

• The density_df Dataframe

• The statistics Series and Dataframe

• The report_df Dataframe

• The spec and spec_ex Dictionaries

• The DecL Program

• The update() Method

• Statistical Functions

• The plot() Method

• The price() Method

• The snap() Method

• The approximate() Method

10. Additional Portfolio Methods

• Conditional Expected Values

• Calibrate Distortions

• Analyze Distortions

• Twelve Plot

11. Extensions

12. Summary of Objects Created by DecL

2.3.1 Principal Classes

The aggregate package makes working with aggregate probability distributions as straightforward as working
with parametric distributions even though their densities rarely have closed-form expressions. It is built around five
principal classes.

1. The Underwriter class keeps track of everything in its knowledge dataframe, interprets Dec Language
(DecL, pronounced like deckle, /ˈdɛk(ə)l/) programs, and acts as a helper.

2. The Severity class models a size of loss distribution (a severity curve).
3. The Aggregate class models a single unit of business, such as a line, business unit, geography, or operating

division.
4. The Distortion class provides a distortion function, the basis of a spectral risk measure.
5. The Portfolio class models multiple units. It extends the functionality in Aggregate, adding pricing,

calibration, and allocation capabilities.
There is also a Frequency class that Aggregate derives from, but it is rarely used standalone, and a Bounds
class for advanced users.

2.3. A Ten Minute Guide to aggregate 19

aggregate Documentation, Release 0.22.0

2.3.2 The Underwriter Class

The Underwriter class is an interface into the computational functionality of aggregate. It does two things:
1. Creates objects using the DecL language, and
2. Maintains a library of DecL object specifications called the knowledge. New objects are automatically added

to the knowledge.
To get started, import build, a pre-configured Underwriter and qd(), a quick-display function. Import the
usual suspects too, for good measure.

In [1]: from aggregate import build, qd

In [2]: import pandas as pd, numpy as np, matplotlib.pyplot as plt

Printing build reports its name, the number of objects in its knowledge, and other information about hyper-
parameter default values. site_dir is where various outputs will be stored. default_dir is for internal package
data. The build object loads an extensive test suite of DecL programs with over 130 entries.

In [3]: build
Out[3]:
underwriter Rory
version 0.22.0
knowledge 146 programs
update True
log2 16
debug False
validation_eps 0.0001
site dir ~/aggregate/databases
default dir ~/checkouts/readthedocs.org/user_builds/aggregate/checkouts/
↪→stable/aggregate/agg

help
build.knowledge list of all programs
build.qshow(pat) show programs matching pattern
build.show(pat) build and display matching pattern

Object Creation Using DecL and build()

The Underwriter class interprets DecL programs (The Dec Language). These allow severities, aggregates and port-
folios to be created using standard insurance language.
For example, to build an Aggregate using DecL and report key statistics for frequency, severity, and aggregate,
needs just two commands.

In [4]: a01 = build('agg TenM:01 100 claims 100 xs 0 sev lognorm 10 cv 1.25 poisson
↪→')

In [5]: qd(a01)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 100 0.1 0.1
Sev 9.918 9.918 2.8334e-10 1.1639 1.1639 3.4165 3.4165
Agg 991.8 991.8 -4.5175e-10 0.15345 0.15345 0.28923 0.28923
log2 = 16, bandwidth = 1/32, validation: not unreasonable.

DecL is supposed to be human-readable, so I hope you can guess the meaning of the DecL code (TenM:01 is just
a label):

20 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

agg TenM:01 5 claims 1000 xs 0 sev lognorm 50 cv 4 poisson

The units are 1000s of USD, EUR, or GBP.
DecL is a custom language, created to describe aggregate distributions. Alternatives are to use positional arguments
or key word arguments in function calls. The former are confusing because there are so many. The latter are verbose,
because of the need to specify the parameter name. DecL is a concise, expressive, flexible, and powerful alternative.

Important: Formatting a DecL Program

Important: All DecL programs are one line long.

It is best to break a DecL program up to make it more readable. The fact that Python automatically concatenates
strings between parenthesis makes this easy. The program above is always entered in the help as:

a01 = build('agg TenM:01 '
'100 claims '
'100 xs 0 '
'sev lognorm 10 cv 1.25 '
'poisson')

which Python makes equivalent to:

a01 = build('agg TenM:01 100 claims 100 xs 0 sev lognorm 10 cv 1.25 poisson')

as originally entered. Pay attention to spaces at the end of each line! Entering:

a01 = build('agg TenM:01'
'100 claims'
'100 xs 0'
'sev lognorm 10 cv 1.25'
'poisson')

produces:

a01 = build('agg TenM:01100 claims100 xs 0sev lognorm 10 cv 1.25poisson')

which results in syntax errors.
DecL includes a Python newline \. All programs in the help are entered so they can be cut and pasted.

Object Creation from the Knowledge Database

The knowledge dataframe is a database of DecL programs and a parsed dictionaries to create objects. build loads
an extensive library by default. Users can create and load their own databases, allowing them to share common
parameters for

• severity (size of loss) curves,
• aggregate distributions (e.g., industry losses in major classes of business, or total catastrophe losses from major
perils), and

• portfolios (e.g., an insurer’s reference portfolio or educational examples like Bodoff’s examples and Pricing
Insurance Risk case studies).

It is indexed by object kind (severity, aggregate, portfolio) and name, and accessed as the read-only property build.
knowledge. Here are the first five rows of the knowledge loaded by build.

2.3. A Ten Minute Guide to aggregate 21

aggregate Documentation, Release 0.22.0

In [6]: qd(build.knowledge.head(), justify="left", max_colwidth=60)

program \
kind name
agg A.Dice00 agg A.Dice00 dfreq [1:6] dsev [1] note{The roll of a...

A.Dice01 agg A.Dice01 dfreq [1] dsev [1:6] note{Same as previ...
A.Dice02 agg A.Dice02 dfreq [2] dsev [1:6] note{Sum of the ro...
A.Dice03 agg A.Dice03 dfreq [5] dsev [1:6] note{Sum of the ro...
A.Dice04 agg A.Dice04 dfreq [1:6] dsev [1:6] note{Sum of a di...

spec
kind name
agg A.Dice00 {'name': 'A.Dice00', 'freq_name': 'empirical', 'freq_a':...

A.Dice01 {'name': 'A.Dice01', 'freq_name': 'empirical', 'freq_a':...
A.Dice02 {'name': 'A.Dice02', 'freq_name': 'empirical', 'freq_a':...
A.Dice03 {'name': 'A.Dice03', 'freq_name': 'empirical', 'freq_a':...
A.Dice04 {'name': 'A.Dice04', 'freq_name': 'empirical', 'freq_a':...

A row in the knowledge can be accessed by name using build. This example models the roll of a single die.

In [7]: print(build['A.Dice00'])
kind agg
name A.Dice00
spec <class 'dict'>
program agg A.Dice00 dfreq [1:6] dsev [1] note{The roll of␣
↪→a single dice.}
object <class 'NoneType'>

The argument 'A.Dice00' is passed through to the underlying dataframe’s getitem.
A row in the knowledge can be created as a Python object using:

In [8]: aDice = build('A.Dice00')

In [9]: qd(aDice)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3.5 0.48795 0
Sev 1 1 0 0 0
Agg 3.5 3.5 4.4409e-16 0.48795 0.48795 0 4.85e-14
log2 = 4, bandwidth = 1, validation: not unreasonable.

The argument in this case is passed through to the method Underwriter.build(), which first looks for A.
Dice00 in the knowledge. If it fails, it tries to interpret its argument as a DecL program.
The method build.qlist() (quick list) searches the knowledge using a regex (regular expression) applied to the
names, and returning a dataframe of specifications. build.qshow() (quick show) just displays them.

In [10]: build.qshow('Dice')

program ␣
↪→

name ␣
↪→

A.Dice00 agg A.Dice00 dfreq [1:6] dsev [1] note{The roll of a single␣
↪→dice.}
A.Dice01 agg A.Dice01 dfreq [1] dsev [1:6] note{Same as previous␣
↪→example.}
A.Dice02 agg A.Dice02 dfreq [2] dsev [1:6] note{Sum of the rolls of␣
↪→two dice.}
A.Dice03 agg A.Dice03 dfreq [5] dsev [1:6] note{Sum of the rolls of␣

(continues on next page)

22 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
↪→five dice.}
A.Dice04 agg A.Dice04 dfreq [1:6] dsev [1:6] note{Sum of a dice roll␣
↪→of dice rolls}
A.Dice05 agg A.Dice05 dfreq [1:4] dsev [1:16] note{Something you can't␣
↪→do easily by hand}

The method build.show() also searches the knowledge using a regex applied to the names, but it creates and
plots each match by default. Be careful not to create too many objects! Try running:

build.show('Dice')

Add argument return_df=True to return a list of created objects and a dataframe containing information about
each.

Underwriter Behind the Scenes

This section should be skipped the first time through.
Each object has a kind property and a name property, and it can be manifest as a DecL program, a dictionary
specification, or a Python class instance. The class can be updated or not updated. In detail:

1. kind equals sev for a Severity, agg for a Aggregate, port for a Portfolio, and distortion for a Dis-
tortion (dist could be distribution);

2. name is assigned to the object by the user; it is different from the Python variable name holding the object;
3. spec is a (derived) dictionary specification;
4. program is the DecL program as a text string; and
5. object is the actual Python object, an instance of a class.

Underwriter.write() is a low-level creator function. It takes a DecL program or knowledge item name as
input.

• It searches the knowledge for the argument and returns it if it finds one object. It throws an error if the name
is not unique. If the name is not in the knowledge it continues.

• It calls Underwriter.interpret_program() to pre-process the DecL and then lex and parse it one
line at a time.

• It looks up occurrences of sev.ID, agg.ID (ID is an object name) in the knowledge and replaces them with
their definitions.

• It calls Underwriter.factory() to create any objects and update them if requested.
• It returns a list of Answer objects, with kind, name, spec, program, and object attributes.

Underwriter.write_file() reads a file and passes it to Underwriter.write(). It is a convenience
function.
The Underwriter.build() method wraps the Underwriter.write() and provides sensible defaults to
shield the user from its internal details. build takes the following steps:

• It calls write() with update=False.
• It then estimates sensible hyper-parameters and uses them to update() the object’s discrete distribution. It
tries to distinguish discrete output distributions from continuous or mixed ones.

• If the DecL program produces only one output, it strips it out of the answer returned by write and returns
just that object.

• If the DecL program produces only one portfolio output (but possibly other non-portfolio objects), it returns
just that.

2.3. A Ten Minute Guide to aggregate 23

aggregate Documentation, Release 0.22.0

Underwriter.interpret_program() interprets DecL programs and matches themwith the parsed specs in
an Answer(kind, name, spec, program, object=None) object. It adds the result to the knowledge.
Underwriter.factory() takes an Answer argument and updates it by creating the relevant object and up-
dating it if build.update is True.
A set of methods called interpreter_xxx() run DecL programs through parser for debugging purposes, but
do not create any output or add anything to the knowledge.

• Underwriter.interpreter_line() works on one line.
• Underwriter.interpreter_file() works on each line in a file.
• Underwriter.interpreter_list() works on each item in a list.
• Underwriter._interpreter_work() does the actual parsing.

2.3.3 How aggregate Represents Distributions

A distribution is represented as a discrete numerical approximation. To “know or compute a distribution” means that
we have a discrete stair-step approximation to the true distribution function that jumps (is supported) only on integer
multiples of a fixed bandwidth or bucket size b (called bs in the code). The distribution is represented by b and a
vector of probabilities (p0, p1, . . . , pn−1) with the interpretation

Pr(X = kb) = pk.

All subsequent computations assume that this approximation is the distribution. For example, moments are esti-
mated using

E[Xr] = b
∑
k

krpk.

See Digital Representation of Distributions for more details.

2.3.4 The Severity Class

The Severity class derives from scipy.stats.rv_continuous, see scipy help. It contains a member
stats.rv_continuous variable fz that is the ground-up unlimited severity and it adds support for limits and
attachments. For example, the cdf function is coded:

def _cdf(self, x, *args):
if self.conditional:

return np.where(x >= self.limit, 1,
np.where(x < 0, 0,

(self.fz.cdf(x + self.attachment) -
(1 - self.pattach)) / self.pattach))

else:
return np.where(x < 0, 0,

np.where(x == 0, 1 - self.pattach,
np.where(x > self.limit, 1,

self.fz.cdf(x + self.attachment, *args))))

Severity can determine its shape parameter from a CV analytically for lognormal, gamma, inverse gamma, and
inverse Gaussian distributions, and attempts to use a Newton-Raphson method to determine it for all other one-shape
parameter distributions. (The CV is adjusted using the scale factor for zero parameter distributions.) Once the shape
is known, it uses scaling to produce the required mean. Warning: The numerical methods are not always reliable.
Severity computes layer moments analytically for the lognormal, Pareto, and gamma, and uses numerical inte-
gration of the quantile function (isf) for all other distributions. These estimates can become unreliable for very
thick tailed distributions. It uses self.fz.stats('mvs') and the object limit to determine if the requested
moment actually exists before attempting numerical integration.

24 Chapter 2. User Guides

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.html

aggregate Documentation, Release 0.22.0

Severity has a plot() method that graphs the density, log density, cdf, and quantile (Lee) functions.
A Severity can be created using DecL using any of the following five forms.

1. sev NAME sev.BUILDIN_ID is a knowledge lookup for BUILTIN_ID
2. sev NAME DISTNAME SHAPE1 <SHAPE2> where DISTAME is the name of any scipy.stats

continuous random variable with zero, one, or two shape parameters, see the DecL/list of distributions.
3. sev NAME SCALE * DISTNAME SHAPE1 <SHAPE2> + LOC

4. sev NAME DISTNAME MEAN cv CV

5. sev NAME SCALE * DISTNAME MEAN cv CV + LOC or sev NAME SCALE * DISTNAME
MEAN cv CV - LOC

Either or both of SCALE and LOC can be present. In the mean and CV form, the mean refers to the unshifted,
unscaled mean, but the CV refers to the shifted and scaled CV— because you usually want to control the overall CV.
Example.
lognorm 80 cv 0.5 results in an unshifted lognormal with mean 80 and CV 0.5.

In [11]: s0 = build(f'sev TenM:Sev.1 '
....: 'lognorm 80 cv .5')
....:

In [12]: mf, vf = s0.fz.stats(); m, v = s0.stats()

In [13]: s0.plot(figsize=(2*3.5, 2*2.45+0.15), layout='AB\nCD');

In [14]: plt.gcf().suptitle(f'{s0.name}, mean {m:.2f}, CV {v**.5/m:.2f} ({mf:.2f},
↪→{vf**.5/mf:.2f})');

In [15]: print(m,v,mf,vf)
79.99999999999997 1599.999999999991 80.00000000000001 1600.0000000000002

Combining scaling, shifts, and mean/cv entry like so 10 * lognorm 1 cv 0.5 + 70 results in a distribution
with mean 10 * 1 + 70 = 80, a standard deviation of 10 * 0.5 = 5, and a cv of 5 / 80.

In [16]: s1 = build(f'sev TenM:Sev.2 '
....: '10 * lognorm 1 cv .5 + 70')
....:

(continues on next page)

2.3. A Ten Minute Guide to aggregate 25

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [17]: mf, vf = s1.fz.stats(); m, v = s1.stats()

In [18]: s1.plot(figsize=(2*3.5, 2*2.45+0.15), layout='AB\nCD');

In [19]: plt.gcf().suptitle(f'{s1.name}, mean {m:.2f}, CV {v**.5/m:.2f} ({mf:.2f},
↪→{vf**.5/mf:.2f})');

In [20]: print(m,v,mf,vf)
80.00000002527862 25.000006201477845 80.0 25.000000000000004

Examples.
This example compares the shapes of gamma, inverse Gaussian, lognormal, and inverse gamma severities with the
same mean and CV. First, a short function to create the examples.

In [21]: def plot_example(dist_name):
....: s = build(f'sev TenM:{dist_name.title()} '
....: f'{dist_name} 10 cv .5')
....: m, v, sk, k = s.fz.stats('mvsk')
....: s.plot(figsize=(2*3.5, 2*2.45+0.15), layout='AB\nCD')
....: plt.gcf().suptitle(f'{dist_name.title()}, mean {m:.2f}, '
....: f'CV {v**.5/m:.2f}, skew {sk:.2f}, kurt {k:.2f}')
....:

Execute on the desired distributions.

In [22]: plot_example('gamma')

In [23]: plot_example('invgauss')

In [24]: plot_example('lognorm')

In [25]: plot_example('invgamma')

26 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

2.3. A Ten Minute Guide to aggregate 27

aggregate Documentation, Release 0.22.0

Examples.
This example show the impact of adding a limit and attachment. Limits and attachments determine exposure in
DecL and they belong to the Aggregate specification. DecL cannot be used to set the limit and attachment of a
Severity object. One way to apply them is to create an aggregate with a fixed frequency of one claim. By default,
the severity is conditional on a loss to the layer.

In [26]: limit, attach = 15, 5

In [27]: s2 = build(f'agg TenM:SevLayer 1 claim {limit} xs {attach} sev gamma 10␣
↪→cv .5 fixed')

In [28]: m, v, sk, k = s2.sevs[0].fz.stats('mvsk')

In [29]: s2.sevs[0].plot(n=401, figsize=(2*3.5, 2*2.45+0.3), layout='AB\nCD')

In [30]: plt.gcf().suptitle(f'Ground-up severity\nGround-up gamma mean {m:.2f}, CV
↪→{v**0.5/m:.2f}, skew {sk:.2f}, kurt {k:.2f}\n'

....: f'{limit} xs {attach} excess layer mean {s2.est_m:.2f},
↪→ CV {s2.est_cv:.2f}, skew {s2.est_skew:.2f}, kurt {k:.2f}');

....:

28 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

A Severity can be created directly using args and kwargs. Here is an example. It also shows the impact of
making the severity unconditional (on a loss to the layer). Start by creating the conditional (default) severity and
plotting it.

In [31]: from aggregate import Severity

In [32]: s3 = Severity('gamma', attach, limit, 10, 0.5)

In [33]: s3.plot(n=401, figsize=(2*3.5, 2*2.45+0.15), layout='AB\nCD')

In [34]: m, v = s3.stats()

In [35]: plt.gcf().suptitle(f'{limit} xs {attach} excess layer mean {m:.2f}, CV
↪→{v**.5/m:.2f}');

Next, create an unconditional version. The lower pdf is scaled down by the probability of attaching the layer, and
the left end of the cdf shifted up by the probability of not attaching the layer. These probabilities are given by the
underlying fz object’s sf and cdf.

2.3. A Ten Minute Guide to aggregate 29

aggregate Documentation, Release 0.22.0

In [36]: s4 = Severity('gamma', attach, limit, 10, 0.5, sev_conditional=False)

In [37]: s4.plot(figsize=(2*3.5, 2*2.45+0.15), layout='AB\nCD')

In [38]: m, v = s4.stats()

In [39]: plt.gcf().suptitle(f'Unconditional {limit} xs {attach} excess layer mean
↪→{m:.2f}, CV {v**.5/m:.2f}');

In [40]: print(f'Probability of attaching layer {s4.fz.cdf(attach):.3f}')
Probability of attaching layer 0.143

Although Severity accepts a weight argument, it does not actually support weighted severities. It models only one
component. Aggregate handles weighted severities by creating a separate Severity for each component.

2.3.5 The Aggregate Class

Creating an Aggregate Distribution

Aggregate objects can be created in three ways:
1. Generally, they are created using DecL by Underwriter.build(), as shown in Object Creation Using

DecL and build().
2. Objects in the knowledge can be created by name.
3. Advanced users and programmers can create Aggregate objects directly using kwargs, see Aggregate

Class.
Example.
This example uses build() to make an Aggregate with a Poisson frequency, mean 5, and gamma severity with
mean 10 and CV 1 . It includes more discussion than the example above. The line breaks improve readability but are
cosmetic.

In [41]: a02 = build('agg TenM:02 '
....: '5 claims '
....: 'sev gamma 10 cv 1 '

(continues on next page)

30 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: 'poisson')
....:

In [42]: qd(a02)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 5 0.44721 0.44721
Sev 10 10 -2.5431e-08 1 1 2 2
Agg 50 50 -2.5432e-08 0.63246 0.63246 0.94868 0.94868
log2 = 16, bandwidth = 1/128, validation: not unreasonable.

qd displays the dataframe a.describe. This example fails the aliasing validation test because the aggregate mean
error is suspiciously greater than the severity. (Run with logger level 20 for more diagnostics.) However, it passes
both the severity mean and aggregate mean tests.

Aggregate Quick Diagnostics

The quick display reports a set of quick diagnostics, showing
• Exact E[X] and estimated Est E[X] frequency, severity, and aggregate statistics.
• Relative errors Err E[X] for the means.
• Coefficient of variation CV(X) and estimated CV, Est CV(X)

• Skewness Skew(X) and estimated skewness, Est Skew(X)

The line below the table shows the (log to base 2) of the number of buckets used, log2 and the bucket size bs used
in discretization.
These statistics make it easy to see if the numerical estimation is invalid. Look for a small error in the mean and close
second (CV) and third (skew) moments. The last item validation: not unreasonable shows the model
did not fail any tests. The test should be interpreted like a null hypothesis; you expect it to be True and are worried
when it is False.
In this case, the aggregate mean error is too high because the discretization bucket size bs is too small. Update with
a larger bucket.

In [43]: a02.update(bs=1/128)

In [44]: qd(a02)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 5 0.44721 0.44721
Sev 10 10 -2.5431e-08 1 1 2 2
Agg 50 50 -2.5432e-08 0.63246 0.63246 0.94868 0.94868
log2 = 16, bandwidth = 1/128, validation: not unreasonable.

2.3. A Ten Minute Guide to aggregate 31

aggregate Documentation, Release 0.22.0

Aggregate Algorithm in Detail

Here’s the aggregate FFT convolution algorithm stripped down to bare essentials and coded in raw Python to
show you what happens behind the curtain. The algorithm steps are:

1. Inputs
• Severity distribution cdf. Use scipy.stats.
• Frequency distribution probability generating function. For a Poisson with mean λ the PGF is P(z) =
exp(λ(z − 1)).

• The bucket size b. Use the value simple.bs.
• The number of buckets n = 2log2 . Use the default log2=16 found in simple.log2.
• A padding parameter, equal to 1 by default, from simple.padding.

2. Discretize the severity cdf.
3. Apply the FFT to discrete severity with padding to size 2**(log2 + padding).
4. Apply the frequency pgf to the FFT.
5. Apply the inverse FFT to create is a discretized version of the aggregate distribution and output it.

Let’s recreate the following simple example. The variable names for themeans and shape are for clarity. sev_shape
is σ for a lognormal.

In [45]: from aggregate import build, qd

In [46]: en = 50

In [47]: sev_scale = 10

In [48]: sev_shape = 0.8

In [49]: simple = build('agg Simple '
....: f'{en} claims '
....: f'sev {sev_scale} * lognorm {sev_shape} '
....: 'poisson')
....:

In [50]: qd(simple)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 50 0.14142 0.14142
Sev 13.771 13.771 -2.4063e-09 0.94683 0.94683 3.6893 3.6892
Agg 688.56 688.56 -9.4705e-09 0.19476 0.19476 0.36935 0.36933
log2 = 16, bandwidth = 1/32, validation: not unreasonable.

The next few lines of code implement the FFT convolution algorithm. Start by importing the probability distribution
and FFT routines. rfft and irfft take the FFT and inverse FFT of real input.

In [51]: import numpy as np

In [52]: from scipy.fft import rfft, irfft

In [53]: import scipy.stats as ss

Pull parameters from simple to match calculations, step 1. n_pad is the length of the padded vector used in the
convolution to manage aliasing.

32 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [54]: bs = simple.bs

In [55]: log2 = simple.log2

In [56]: padding = simple.padding

In [57]: n = 1 << log2

In [58]: n_pad = 1 << (log2 + padding)

In [59]: sev = ss.lognorm(sev_shape, scale=sev_scale)

Use the round method and the survival function to discretize, completing step 2.

In [60]: xs = np.arange(0, (n + 1) * bs, bs)

In [61]: discrete_sev = -np.diff(sev.sf(xs - bs / 2))

The next line of code carries out algorithm steps 3, 4, and 5! All the magic happens here. The forward FFT adds
padding, but the answer must be unpadded manually, with the final [:n].

In [62]: agg = irfft(np.exp(en * (rfft(discrete_sev, n_pad) - 1)))[:n]

Plots to compare the two approaches. They are spot on!

In [63]: import matplotlib.pyplot as plt

In [64]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45),
....: constrained_layout=True); \
....: ax0, ax1 = axs.flat; \
....: simple.density_df.p_total.plot(lw=2, label='Aggregate', ax=ax0); \
....: ax0.plot(xs[:-1], agg, lw=1, label='By hand'); \
....: ax0.legend(); \
....: simple.density_df.p_total.plot(lw=2, label='Aggregate', ax=ax1); \
....: ax1.plot(xs[:-1], agg, lw=1, label='By hand'); \
....: ax1.legend();
....:

In [65]: ax1.set(yscale='log');

The very slight difference for small loss values arises because build removes numerical fuzz, setting values below
machine epsilon (about 2e-16) to zero, explaining why the blue aggregate line drops off vertically on the left.

2.3. A Ten Minute Guide to aggregate 33

aggregate Documentation, Release 0.22.0

Basic Probability Functions

AnAggregate object acts like a discrete probability distribution. There are properties for the aggregate and severity
mean, standard deviation, coefficient of variation, and skewness, both computed exactly and numerically estimated.

In [66]: print(a02.agg_m, a02.agg_sd, a02.agg_cv, a02.agg_skew)
50.0 31.622776601683793 0.6324555320336759 0.9486832980505139

In [67]: print(a02.est_m, a02.est_sd, a02.est_cv, a02.est_skew)
49.9999987284203 31.622777003581923 0.6324555561559914 0.9486832857144013

In [68]: print(a02.sev_m, a02.sev_sd, a02.sev_cv, a02.sev_skew)
10.0 10.0 1.0 2.0

In [69]: print(a02.est_sev_m, a02.est_sev_sd, a02.est_sev_cv, a02.est_sev_skew)
9.99999974568674 10.000000508623474 1.0000000762936754 1.9999996947979108

They have probability mass, cumulative distribution, survival, and quantile (inverse of distribution) functions.

In [70]: a02.pmf(60), a02.cdf(50), a02.sf(60), a02.q(a02.cdf(60)), a02.q(0.5)
Out[70]: (7.923645058165983e-05, 0.5639640504996987, 0.3244107518264777, 60.0, 44.
↪→90625)

The pdf, cdf, and sf for the underlying severity are also available.

In [71]: a02.sev.pdf(60), a02.sev.cdf(50), a02.sev.sf(60)
Out[71]: (0.00024787521766663585, 0.9932620530009145, 0.002478752176666357)

Note: Aggregate and Portfolio objects need to be updated after they have been created. Updating builds out
discrete numerical approximations, analogous to simulation. By default, build() handles updating automatically.

Warning: Always use bucket sizes that have an exact binary representation (integers, 1/2, 1/4, 1/8, etc.) Never
use 0.1 or 0.2 or other numbers that do not have an exact float representation, see REF.

Mixtures

An Aggregate can have a mixed severity. The mixture can include different distributions, parameters, shifts, and
locations.

In [72]: a03 = build('agg TenM:03 '
....: '25 claims '
....: 'sev [gamma lognorm invgamma] [5 10 10] cv [0.5 0.75 1.5] '
....: '+ [0 10 20] wts [.5 .25 .25] '
....: 'mixed gamma 0.5'
....: , bs=1/16)
....:

In [73]: qd(a03)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 25 0.53852 1.0028
Sev 15 14.999 -3.7467e-05 0.90907 0.89065 inf 9.9075
Agg 375 374.99 -3.8034e-05 0.56838 0.5672 inf 1.0698
log2 = 16, bandwidth = 1/16, validation: fails sev cv, agg cv.

34 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

An Aggregate canmodel multiple units at once, and allow them to share mixing variables. This induces correlation
between the components, see the report dataframe. All parts of the specification can vary, including limits and
attachments (not shown). This case differentiated from a mixed severity by having no weights.

In [74]: a04 = build('agg TenM:04 '
....: '[500 250 100] premium at [.8 .7 .5] lr '
....: 'sev [gamma lognorm invgamma] [5 10 10] cv [0.5 0.75 1.5] '
....: 'mixed gamma 0.5'
....: , bs=1/8)
....:

In [75]: qd(a04)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 102.5 0.50966 1.0002
Sev 6.0976 6.0975 -6.5732e-06 0.89437 0.87819 inf 43.583
Agg 625 625 -6.6355e-06 0.51726 0.51699 inf 1.0208
log2 = 16, bandwidth = 1/8, validation: fails sev cv.

Accessing Severity in an Aggregate

The attribute Aggregate.sevs is an array of the Severity objects. Usually, it contains only one distribution
but when severity is a mixture it contains one for each mixture component. It can be iterated over. Each Severity
object wraps a scipy.stats continuous random variable called fz that represents ground-up severity. The args
are its shape variable(s) and kwds its scale and location variables. This is most interesting when the object has a mixed
severity.

In [76]: for s in a03.sevs:
....: print(s.sev_name, s.fz.args, s.fz.kwds)
....:

gamma (4.0,) {'scale': 1.25, 'loc': 0.0}
lognorm (0.6680472308365775,) {'scale': 8.0, 'loc': 10.0}
invgamma (2.4444444444444446,) {'scale': 14.444444444444446, 'loc': 20.0}

The property a03.sev is a namedtuple exposing the exact weighted pdf, cdf, and sf of the underlying Sever-
ity objects.

In [77]: a03.sev.pdf(20), a03.sev.cdf(20), a03.sev.sf(20)
Out[77]: (0.014150102336136361, 0.657658211871339, 0.342341788128661)

The component weights are proportional to a03.en and a03.sev.cdf is computed as

In [78]: (np.array([s.cdf(20) for s in a03.sevs]) * a03.en).sum() / a03.en.sum()
Out[78]: 0.6576582118713391

The following are equal using the defaut discretization method.

In [79]: a03.density_df.loc[20, 'F_sev'], a03.sev.cdf(20 + a03.bs/2)
Out[79]: (0.6580993598330426, 0.6580993598330431)

2.3. A Ten Minute Guide to aggregate 35

aggregate Documentation, Release 0.22.0

Reinsurance

Aggregate objects can apply per occurrence and aggregate reinsurance using clauses
• occurrence net of [limit] xs]attach]

• occurrence net of [pct] so [limit] xs [attach], where so stands for “share of”
• occurrence ceded to [limit] xs]attach]

• and so forth.
Examples.
Gross distribution: a triangular aggregate created as the sum of two uniform distribution on 1, 2,…, 10.

In [80]: a05g = build('agg TenM:05g dfreq [2] dsev [1:10]')

In [81]: qd(a05g)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0
Sev 5.5 5.5 0 0.52223 0.52223 0 0
Agg 11 11 -3.3307e-16 0.36927 0.36927 0 -6.1064e-14
log2 = 6, bandwidth = 1, validation: not unreasonable.

Apply 3 xs 7 occurrence reinsurance to cap individual losses at 7. a05no is the net of occurrence distribution.

In [82]: a05no = build('agg TenM:05no dfreq [2] dsev [1:10] '
....: 'occurrence net of 3 xs 7')
....:

In [83]: qd(a05no)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0
Sev 5.5 4.9 -0.10909 0.52223 0.44197 0 -0.52103
Agg 11 9.8 -0.10909 0.36927 0.31252 0 -0.36842
log2 = 6, bandwidth = 1, validation: n/a, reinsurance.

Warning: The describe dataframe always reports gross analytic statistics (E[X], CV(X), Skew(X)) and
the requested net or ceded estimated statistics (Est E[X], Est CV(X), Est Skew(X)). Look at the gross
portfolio first to check computational accuracy. Net and ceded “error” report the difference to analytic gross.

Add an aggregate 4 xs 8 reinsurance cover on the net of occurrence distribution. a05n is the final net distribution.

In [84]: a05n = build('agg TenM:05n dfreq [2] dsev [1:10] '
....: 'occurrence net of 3 xs 7 '
....: 'aggregate net of 4 xs 8')
....:

In [85]: qd(a05n)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0
Sev 5.5 4.9 -0.10909 0.52223 0.44197 0 -0.52103
Agg 11 7.84 -0.28727 0.36927 0.20781 0 -1.2676
log2 = 6, bandwidth = 1, validation: n/a, reinsurance.

See The plot() Method for plots of the different distributions.

36 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

2.3.6 The Distortion Class

See Distortions and Spectral Risk Measures and PIR Chapter 10.5 for more information about distortions.
A Distortion can be created using DecL. It object has methods for g, the distortion function, along with its dual
g_dual(s)=1-g(1-s) and inverse g_inv. The plot() method shows g (above the diagonal) and g_inv
(below).

In [86]: d06 = build('distortion TenM:06 dual 3')

In [87]: qd(d06.g(.2), d06.g_inv(.2), d06.g_dual(0.2),
....: d06.g(.8), d06.g_inv(.992), d06)
....:

0.488
0.071682
0.008
0.992
0.8
Dual Moment, 3.000

In [88]: d06.plot();

The Distortion class can create distortions from a number of parametric families.

In [89]: from aggregate import Distortion

In [90]: Distortion.available_distortions(False, False)
Out[90]:
('ph',
'wang',
'cll',
'lep',
'ly',
'clin',
'dual',
'ccoc',
'tvar',
'bitvar',
'convex',
'tt')

Run the command:

Distortion.test()

for graphs of samples from each available family. tt is not a distortion because it is not concave. It is included for
historical reasons.

2.3. A Ten Minute Guide to aggregate 37

aggregate Documentation, Release 0.22.0

2.3.7 The Portfolio Class

A Portfolio object models a portfolio (book, block) of units (accounts, lines, business units, regions, profit
centers), each represented as an Aggregate. It uses FFTs to convolve (add) the unit distributions. By default, all
the units are assumed to be independent, though there are ways to adjust this. REF. The independence assumption
is not as bad as it may appear; its effect can be ameliorated by selecting units carefully and sharing mixing variables
appropriately (see REF for further discussion).
Portfolio objects have all of the attributes and methods of a Aggregate and add methods for pricing and
allocation to units.
The DecL for a portfolio is simply:

port NAME AGG1 <AGG2> <AGG3> ...

where AGG1 is an aggregate specification. Portfolios can have one or more units. The DecL can be split over multiple
lines if each aggregate begins on a new line and is indented by a tab (like a Python function).
Example.
Here is a three-unit portfolio built using a DecL program. The line breaks and horizontal spacing are cosmetic since
Python just concatenates the input.

In [91]: p07 = build('port TenM:07 '
....: 'agg A '
....: '100 claims '
....: '10000 xs 0 '
....: 'sev lognorm 100 cv 1.25 '
....: 'poisson '
....: 'agg B '
....: '150 claims '
....: '2500 xs 5 '
....: 'sev lognorm 50 cv 0.9 '
....: 'mixed gamma .6 '
....: 'agg Cat '
....: '2 claims '
....: '1e5 xs 0 '
....: 'sev 500 * pareto 1.8 - 500 '
....: 'poisson'
....: , approximation='exact', padding=2)
....:

In [92]: qd(p07)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
A Freq 100 0.1 0.1

Sev 100 100 -1.1973e-08 1.2498 1.2498 5.6619 5.6617
Agg 10000 10000 -1.1973e-08 0.16006 0.16007 0.4082 0.40819

B Freq 150 0.60553 1.2001
Sev 45.213 45.212 -1.2825e-05 0.99517 0.99528 3.4345 3.4335
Agg 6781.9 6781.8 -1.2825e-05 0.61096 0.61096 1.2009 1.2009

Cat Freq 2 0.70711 0.70711
Sev 616.02 616.02 -9.7399e-07 3.1331 3.1331 23.278 23.278
Agg 1232 1232 -4.3508e-06 2.3256 2.3254 14.837 14.828

total Freq 252 0.36266 1.1783
Sev 71.484 71.483 -4.9016e-06 2.7998 172.51
Agg 18014 18013 -2.6963e-05 0.29343 0.29322 2.9528 2.925

log2 = 16, bandwidth = 2, validation: not unreasonable.

The portfolio units are called A, B and Cat. Printing using qd shows p07.describe, which concatenates each
unit’s describe and adds the same statistics for the total.

38 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

• Unit A has 100 (expected) claims, each pulled from a lognormal distribution with mean of 30 and coefficient of
variation 1.25 within the layer 100 xs 0 (i.e., losses are limited at 100). The frequency distribution is Poisson.

• Unit B is similar.
• The Cat unit is has expected frequency of 2 claims from the indicated limit, with severity given by a Pareto
distribution with shape parameter 1.8, scale 500, shifted left by 500. This corresponds to the usual Pareto with
survival function S(x) = (500/(500 + x))1.8 = (1 + x/500)−1.8 for x ≥ 0.

The portfolio total (i.e., the sum of the units) is computed using FFTs to convolve (add) the unit’s aggregate dis-
tributions. All computations use the same discretization bucket size; here the bucket-size bs=2. See For Portfolio
Objects.
A Portfolio object acts like a discrete probability distribution, the same as an Aggregate. There are properties
for the mean, standard deviation, coefficient of variation, and skewness, both computed exactly and numerically
estimated.

In [93]: print(p07.agg_m, p07.agg_sd, p07.agg_cv, p07.agg_skew)
18013.930242377213 5285.799078302742 0.29342841940555886 2.9527686953572805

In [94]: print(p07.est_m, p07.est_sd, p07.est_cv, p07.est_skew)
18013.444535983497 5281.917148512574 0.29322082947331163 2.9249704103192653

They have probability mass, cumulative distribution, survival, and quantile (inverse of distribution) functions.

In [95]: p07.pmf(12000), p07.cdf(11000), p07.sf(12000), p07.q(p07.cdf(12000)), p07.
↪→q(0.5)
Out[95]:
(9.80844644134903e-05,
0.031240713459624474,
0.930037600482374,
12000.0,
17176.0)

The names of the units in a Portfolio are in a list called p07.unit_names or p07.unit_names_ex
including total. The Aggregate objects in the Portfolio can be iterated over.

In [96]: for u in p07:
....: print(u.name, u.agg_m, u.est_m)
....:

A 9999.982520635798 9999.982400907693
B 6781.909658669757 6781.822680927324
Cat 1232.038063071656 1232.0327026845005

2.3. A Ten Minute Guide to aggregate 39

aggregate Documentation, Release 0.22.0

2.3.8 Estimating Bucket Size for Discretization

Selecting an appropriate bucket size bs is critical to obtaining accurate results. This is a hard problem that may have
hindered broad adoption of FFT-based methods.
See Numerical Methods and FFT Convolution for further discussion.

Hyper-parameters log2 and bs

The hyper-parameters log2 and bs control numerical calculations. log2 equals the log to base 2 of the number
of buckets used and bs equals the bucket size. These values are printed by qd.

Estimating and Testing bs For Aggregate Objects

For an Aggregate, recommend_bucket() uses a shifted lognormal method of moments fit and takes the
recommend_p percentile as the right-hand end of the discretization. By default recommend_p=0.999, but for
thick tailed distributions it may be necessary to use a value closer to 1. recommend_bucket() also considers
any limits: ideally limits are multiples of the bucket size.
The recommended value of bs should rounded up to a binary fraction (denominator is a power of 2) using
utilities.round_bucket().
Aggregate also includes two functions for assessing bs, one based on the overall error and one based on looking
at each severity component.
Aggregate.aggregate_error_analysis() updates the object at a range of different bs values and re-
ports the total absolute (strictly, signed absolute error) and relative error as well as an upper bound bs/2 on the
absolute value of the discretization error. log2 must be input and, optionally, the log base 2 of the smallest bucket
to model. It then models six doublings of the input bucket. If no bucket is input, it models three doublings up and
down from the rounded recommend_bucket() suggestion. The output table shows:

• The actual (agg, m) and estimated (est, m) means, from the describe dataframe.
• The implied absolute (abs, m) and relative (rel, m) errors in the mean.
• (rel, h) shows the maximum relative severity discretization error, which equals bs / 2 divided by the
average severity.

• (rel, total), equal to the sum of (rel, h) and rel m.
Thick tailed distributions can favor a large bucket size without regard to the impact on discretization; accounting for
the impact of bs / 2 is a countervailing force.

In [97]: qd(a04.aggregate_error_analysis(16), sparsify=False, col_space=9)

view agg est abs rel rel rel
stat m m m m h total
bs
0.03125 625 624.71 -0.28786 -0.00046057 0.0025625 -0.0030231
0.06250 625 624.99 -0.011699 -1.8718e-05 0.005125 -0.0051437
0.12500 625 625 -0.0041472 -6.6355e-06 0.01025 -0.010257
0.25000 625 625 -0.0015133 -2.4212e-06 0.0205 -0.020502
0.50000 625 625 -0.00050174 -8.0278e-07 0.041 -0.041001
1.00000 625 625 0.0026758 4.2813e-06 0.082 0.082004
2.00000 625 625.14 0.13828 0.00022125 0.164 0.16422

Aggregate.severity_error_analysis() performs a detailed error analysis of each severity component.
It reports:

• The name, limit, attachment, and truncation point for each severity component.
• S the probability the component (or total losses) exceed the truncation.
• sum_p the sum of discrete probabilities, which can be < 1 if normalize=False.

40 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

• wt the weight of the component and en the corresponding claim count.
• agg_mean and agg_wt the aggregate mean contribution from the component (sums to the overall mean),
and the each component’s proportion of the total. The loss weight can differ drastically from the count weight.

• mean and est_mean the analytic and estimated severity by component and the corresponding abs and rel
error.

• trunc_error the truncation error by component (tail integral) and relative truncation error.
• The h_error based on bs / 2 by component, a (conservative) upper bound on discretization error and the
relative error compared to the component mean.

• h2_adj and rel_h2_adj estimate a second order adjustment to the numerical mean. They give a better
idea of the discretization error.

In [98]: qd(a04.severity_error_analysis(), line_width=75)

name limit attachment trunc S sum_p wt en \
0 gamma inf 0 8192 0 1 0.78049 80
1 lognorm inf 0 8192 1.5989e-25 1 0.17073 17.5
2 invgamma inf 0 8192 5.9297e-08 1 0.04878 5
3 total inf 0 8192 8.6388e-08 1 1 102.5

agg_mean agg_wt mean est_mean abs rel \
0 400 0.64 5 5 1.5997e-10 3.1994e-11
1 175 0.28 10 10 -1.6414e-12 -1.6414e-13
2 50 0.08 10 9.9992 -0.00082165 -8.2165e-05
3 625 1 6.0976 6.0975 -4.008e-05 -6.5732e-06

trunc_error rel_trunc_error h_error rel_h_error h2_adj \
0 -0 -0 0.0625 0.0125 5.1607e-09
1 -8.8373e-23 -8.8373e-24 0.0625 0.00625 1.0915e-14
2 -0.00033646 -3.3646e-05 0.0625 0.00625 1.1514e-14
3 -1.6408e-05 -2.6909e-06 0.0625 0.01025 4.0279e-09

rel_h2_adj
0 1.0321e-09
1 1.0915e-15
2 1.1514e-15
3 6.6058e-10

Generally there is either discretization or truncation error. Look for one of them to dominate. Discretization error is
solved with a smaller bucket; truncation with a larger. When the two conflict, add more buckets by increasing log2.

Estimating and Testing bs For Portfolio Objects

For a Portfolio, the right hand end of the distribution is estimated using the square root of sum of squares (proxy
independent sum) of the right hand ends of each unit.
The method port.recommend_bucket() suggests a reasonable bucket size.

In [99]: print(p07.recommend_bucket().iloc[:, [0,3,6,10]])
bs10 bs13 bs16 bs20

line
A 18.545709 2.318214 0.289777 0.018111
B 43.766975 5.470872 0.683859 0.042741
Cat 143.204295 17.900537 2.237567 0.139848
total 205.516978 25.689622 3.211203 0.2007

In [100]: p07.best_bucket(16)
Out[100]: 2

2.3. A Ten Minute Guide to aggregate 41

aggregate Documentation, Release 0.22.0

The column bsN corresponds to discretizing with 2**N buckets. The rows show suggested bucket sizes by unit and
in total. For example with N=16 (i.e., 65,536 buckets) the suggestion is 2.19. It is best the bucket size is a divisor of
any limits or attachment points. best_bucket() takes this into account and suggests 2.
To test bs, run the tests above on each unit.

2.3.9 Methods and Properties Common To Aggregate and Portfolio Classes

Aggregate and Portfolio both have the following methods and properties. See Aggregate Class and Portfolio
Class for full lists.

• info and describe are dataframes with statistics and other information; they are printed with the object.
• density_df a dataframe containing estimated probability distributions and other expected value informa-
tion.

• The statistics dataframe shows analytically computed mean, variance, CV, and sknewness for each unit
and in total.

• report_df are dataframewith information to test if the numerical approximations appear valid. Numerically
estimated statistics are prefaced est_ or empirical.

• log2 and bs hyper-parameters that control numerical calculations.
• spec a dictionary containing the kwargs needed to recreate each object. For example, if a is an Aggre-
gate object, then Aggregate(**a.spec) creates a new copy.

• spec_ex a dictionary that appends hyper-parameters to spec including log2 and bs.
• program the DecL program used to create the object. Blank if the object has been created directly. (A given
object can often be created in different ways by DecL, so there is no obvious reverse mapping from the spec.)

• renamer a dictionary used to rename columns of member dataframes to be more human readable.
• update() a method to run the numerical calculation of probability distributions.
• recommend_bucket() to recommend the value of bs.
• Common statistical functions including pmf, cdf, sf, the quantile function (value at risk) and tail value at risk.
• Statistical functions: pdf, cdf, sf, quantile, value at risk, tail value at risk, and so on.
• plot()method to visualize the underlying distributions. Plots the pmf and log pmf functions and the quantile
function. All the data is contained in density_df and the plots are created using pandas standard plotting
commands.

• price() to apply a distortion (spectral) risk measure pricing rule with a variety of capital standards.
• snap() to round an input number to the index of density_df.
• approximate() to create an analytic approximation.
• sample() pulls samples, see Samples from aggregate Object.

The info Dataframe

The info dataframe contains information about the frequency and severity stochastic models, how the object was
computed, and any reinsurance applied (none in this case).

In [101]: print(a05n.info)
aggregate object name TenM:05n
claim count 2.00
frequency distribution empirical
severity distribution dhistogram, unlimited.
bs 1
log2 6

(continues on next page)

42 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
padding 1
sev_calc discrete
normalize True
approximation exact
validation_eps 0.0001
reinsurance occurrence and aggregate
occurrence reinsurance net of 100% share of 3 xs 7 per occurrence
aggregate reinsurance net of 100% share of 4 xs 8 in the aggregate.
validation n/a, reinsurance

In [102]: print(p07.info)
portfolio object name TenM:07
aggregate objects 3
bs 2
log2 16
padding 2
sev_calc discrete
normalize True
last update 2024-01-23T15:11:25
hash 35bed9f3483dda16

The describe Dataframe

The describe dataframe contains gross analytic and estimated (net or ceded) statistics. When there is no reinsur-
ance, comparison of analytic and estimated moments provides a test of computational accuracy (first case). It should
always be reviewed after updating. When there is reinsurance, empirical is net (second case).

In [103]: qd(a05g.describe)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Est␣
↪→Skew(X)
X ␣
↪→

Freq 2 NaN NaN 0 NaN NaN NaN ␣
↪→NaN
Sev 5.5 5.5 0 0.52223 0.52223 0 0 ␣
↪→0
Agg 11 11 -3.3307e-16 0.36927 0.36927 0 0 -6.1064e-
↪→14

In [104]: with pd.option_context('display.max_columns', 15):
.....: print(a05n.describe)
.....:

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Est␣
↪→Skew(X)
X ␣
↪→

Freq 2.0 NaN NaN 0.000000 NaN NaN NaN ␣
↪→NaN
Sev 5.5 4.90 -0.109091 0.522233 0.441968 -0.153697 0.0 -0.
↪→521027
Agg 11.0 7.84 -0.287273 0.369274 0.207810 -0.437247 0.0 -1.
↪→267573

In [105]: qd(p07.describe)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) ␣
↪→Est Skew(X)

(continues on next page)

2.3. A Ten Minute Guide to aggregate 43

aggregate Documentation, Release 0.22.0

(continued from previous page)
unit X ␣
↪→

A Freq 100 NaN NaN 0.1 NaN NaN 0.1 ␣
↪→ NaN

Sev 100 100 -1.1973e-08 1.2498 1.2498 1.0689e-05 5.6619 ␣
↪→ 5.6617

Agg 10000 10000 -1.1973e-08 0.16006 0.16007 6.5169e-06 0.4082 ␣
↪→ 0.40819
B Freq 150 NaN NaN 0.60553 NaN NaN 1.2001 ␣
↪→ NaN

Sev 45.213 45.212 -1.2825e-05 0.99517 0.99528 0.00010815 3.4345 ␣
↪→ 3.4335

Agg 6781.9 6781.8 -1.2825e-05 0.61096 0.61096 1.913e-06 1.2009 ␣
↪→ 1.2009
Cat Freq 2 NaN NaN 0.70711 NaN NaN 0.70711 ␣
↪→ NaN

Sev 616.02 616.02 -9.7399e-07 3.1331 3.1331 1.118e-06 23.278 ␣
↪→ 23.278

Agg 1232 1232 -4.3508e-06 2.3256 2.3254 -7.109e-05 14.837 ␣
↪→ 14.828
total Freq 252 NaN NaN 0.36266 NaN NaN 1.1783 ␣
↪→ NaN

Sev 71.484 71.483 -4.9016e-06 2.7998 NaN NaN 172.51 ␣
↪→ NaN

Agg 18014 18013 -2.6963e-05 0.29343 0.29322 -0.00070746 2.9528 ␣
↪→ 2.925

Printing the object using qd add log2, bs, and validation information.

The density_df Dataframe

The density_df dataframe contains a wealth of information. It has 2**log2 rows and is indexed by the out-
comes, all multiples of bs. Columns containing p are the probability mass function, of the aggregate or severity.

• the aggregate and severity pmf (called p and duplicated as p_total for consistency with Portfolio ob-
jects), log pmf, cdf and sf

• the aggregate lev (duplicated as exa)
• exlea (less than or equal to a) which equals E[X | X ≤ a] as a function of loss
• exgta (greater than) which equals E[X | X > a]

In an Aggregate, p and p_total are identical, the latter included for consistency with Portfolio output. F
and S are the cdf and sf (survival function). lev and exa are identical and equal the limited expected value at the
loss level. Here are the first five rows.

In [106]: print(a05g.density_df.shape)
(64, 17)

In [107]: print(a05g.density_df.columns)
Index(['loss', 'p_total', 'p', 'p_sev', 'log_p', 'log_p_sev', 'F', 'F_sev', 'S',
↪→'S_sev', 'lev', 'exa', 'exlea', 'e',

'epd', 'exgta', 'exeqa'],
dtype='object')

In [108]: with pd.option_context('display.max_columns', a05g.density_df.shape[1]):
.....: print(a05g.density_df.head())
.....:

loss p_total p p_sev log_p log_p_sev F F_sev S S_sev ␣
↪→lev exa exlea e epd \

(continues on next page)

44 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
loss ␣
↪→

0.0 0.0 0.00 0.00 0.0 -inf -inf 0.00 0.0 1.00 1.0 0.
↪→00 0.00 NaN 11.0 1.000000
1.0 1.0 0.00 0.00 0.1 -inf -2.302585 0.00 0.1 1.00 0.9 1.
↪→00 1.00 NaN 11.0 0.909091
2.0 2.0 0.01 0.01 0.1 -4.605170 -2.302585 0.01 0.2 0.99 0.8 2.
↪→00 2.00 2.000000 11.0 0.818182
3.0 3.0 0.02 0.02 0.1 -3.912023 -2.302585 0.03 0.3 0.97 0.7 2.
↪→99 2.99 2.666667 11.0 0.728182
4.0 4.0 0.03 0.03 0.1 -3.506558 -2.302585 0.06 0.4 0.94 0.6 3.
↪→96 3.96 3.333333 11.0 0.640000

exgta exeqa
loss
0.0 11.000000 0.0
1.0 11.000000 1.0
2.0 11.090909 2.0
3.0 11.257732 3.0
4.0 11.489362 4.0

The Portfolio version is more exhaustive. It includes a variety of columns for each unit, suffixed _unit, and for
the complement of each unit (sum of everything but that unit) suffixed _ημ_unit. The totals are suffixed _total.
The most important columns are exeqa_unit, Conditional Expected Values. All the column names and a subset
of density_df are shown next.

In [109]: print(p07.density_df.shape)
(65536, 46)

In [110]: print(p07.density_df.columns)
Index(['loss', 'p_A', 'p_B', 'p_Cat', 'p_total', 'F', 'S', 'exa_total', 'lev_total
↪→', 'exlea_total', 'e_total',

'exgta_total', 'exeqa_total', 'exeqa_A', 'lev_A', 'exlea_A', 'e_A', 'exgta_A
↪→', 'exi_x_A', 'exi_xlea_A',

'exi_xgta_A', 'exi_xeqa_A', 'exa_A', 'exeqa_B', 'lev_B', 'exlea_B', 'e_B',
↪→'exgta_B', 'exi_x_B', 'exi_xlea_B',

'exi_xgta_B', 'exi_xeqa_B', 'exa_B', 'exeqa_Cat', 'lev_Cat', 'exlea_Cat',
↪→'e_Cat', 'exgta_Cat', 'exi_x_Cat',

'exi_xlea_Cat', 'exi_xgta_Cat', 'exi_xeqa_Cat', 'exa_Cat', 'exi_xlea_sum',
↪→'exi_xgta_sum', 'exi_xeqa_sum'],

dtype='object')

In [111]: with pd.option_context('display.max_columns', p07.density_df.shape[1]):
.....: print(p07.density_df.filter(regex=r'[aipex012]_A').head())
.....:

p_A exeqa_A exlea_A e_A exgta_A exi_x_A exi_xlea_A exi_
↪→xgta_A exi_xeqa_A exa_A
0.0 0.0 0.0 0.0 9999.982401 9999.982401 0.585913 0.0 0.
↪→585913 0.0 0.000000
2.0 0.0 0.0 0.0 9999.982401 9999.982401 0.585913 NaN 0.
↪→585913 0.0 1.171827
4.0 0.0 0.0 0.0 9999.982401 9999.982401 0.585913 NaN 0.
↪→585913 0.0 2.343653
6.0 0.0 0.0 0.0 9999.982401 9999.982401 0.585913 NaN 0.
↪→585913 0.0 3.515480
8.0 0.0 0.0 0.0 9999.982401 9999.982401 0.585913 NaN 0.
↪→585913 0.0 4.687306

2.3. A Ten Minute Guide to aggregate 45

aggregate Documentation, Release 0.22.0

The statistics Series and Dataframe

The statistics dataframe shows analytically computed mean, variance, CV, and sknewness. It is indexed by
• severity name, limit and attachment,
• freq1, freq2, freq3 non-central frequency moments,
• sev1, sev2, sev3 non-central severity moments, and
• the mean, cv and skew(ness).

It applies to the gross outcome when there is reinsurance, so the results for a05g and a05no are the same.

In [112]: oco = ['display.width', 150, 'display.max_columns', 15,
.....: 'display.float_format', lambda x: f'{x:.5g}']
.....:

In [113]: with pd.option_context(*oco):
.....: print(a05g.statistics)
.....: print('\n')
.....: print(p07.statistics)
.....:

name TenM:05g
component measure
limit inf
attachment None
sevcv param 0
el 11
prem 0
lr 0
freq ex1 2

ex2 4
ex3 8
mean 2
cv 0
skew NaN

sev ex1 5.5
ex2 38.5
ex3 302.5
mean 5.5
cv 0.52223
skew 0

agg ex1 11
ex2 137.5
ex3 1875.5
mean 11
cv 0.36927
skew 0

mix cv [2.0]
wt 1

A B Cat total
component measure
freq ex1 100 150 2 252

ex2 10100 30750 6 71856
ex3 1.0301e+06 7.9868e+06 22 2.3216e+07
mean 100 150 2 252
cv 0.1 0.60553 0.70711 0.36266
skew 0.1 1.2001 0.70711 1.1783

sev ex1 100 45.213 616.02 71.484
ex2 25621 4068.7 4.1047e+06 45166
ex3 1.674e+07 6.7987e+05 1.7449e+11 1.3919e+09

(continues on next page)

46 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
mean 100 45.213 616.02 71.484
cv 1.2498 0.99517 3.1331 2.7998
skew 5.6619 3.4345 23.278 172.51

agg ex1 10000 6781.9 1232 18014
ex2 1.0256e+08 6.3163e+07 9.7273e+06 3.5244e+08
ex3 1.0785e+12 7.4665e+11 3.8119e+11 7.7915e+12
mean 10000 6781.9 1232 18014
cv 0.16006 0.61096 2.3256 0.29343
skew 0.4082 1.2009 14.837 2.9528
limit 10000 2500 1e+05 1e+05
P99.9e 15944 27628 41971 56972

The report_df Dataframe

The report_df dataframe combines information from statistics with estimated moments to test if the nu-
merical approximations appear valid. It is an expanded version of describe. Numerically estimated statistics are
prefaced est or empirical.

In [114]: with pd.option_context(*oco):
.....: print(a05g.report_df)
.....: print('\n')
.....: print(p07.report_df)
.....:

view 0 independent mixed empirical error
statistic
name TenM:05g TenM:05g TenM:05g
limit inf inf inf
attachment 0 0
el 11 11 11
freq_m 2 2 2
freq_cv 0 0 0
freq_skew
sev_m 5.5 5.5 5.5 5.5 0
sev_cv 0.52223 0.52223 0.52223 0.52223 0
sev_skew 0 0 0 0
agg_m 11 11 11 11 -3.3307e-16
agg_cv 0.36927 0.36927 0.36927 0.36927 0
agg_skew 0 0 0 -6.1064e-14 -inf

unit A B Cat total
statistic
freq_m 100 150 2 252
freq_cv 0.1 0.60553 0.70711 0.36266
freq_skew 0.1 1.2001 0.70711 1.1783
sev_m 100 45.213 616.02 71.484
sev_cv 1.2498 0.99517 3.1331 2.7998
sev_skew 5.6619 3.4345 23.278 172.51
agg_m 10000 6781.9 1232 18014
agg_emp_m 10000 6781.8 1232 18013
agg_m_err -1.1973e-08 -1.2825e-05 -2.7692e-05 -2.6963e-05
agg_cv 0.16006 0.61096 2.3256 0.29343
agg_emp_cv 0.16007 0.61096 2.3249 0.29322
agg_cv_err 6.5168e-06 1.9129e-06 -0.00027305 -0.00070746
agg_skew 0.4082 1.2009 14.837 2.9528
agg_emp_skew 0.40819 1.2009 14.818 2.925
agg_skew_err -1.3542e-05 1.6687e-08 -0.0012766 -0.0094143
agg_emp_kurt 0.40604 2.1621 381.65 33.187
P99.0_emp 14206 19834 10246 33586
P99.6_emp 14956 22626 16610 38304

2.3. A Ten Minute Guide to aggregate 47

aggregate Documentation, Release 0.22.0

The report_df provides extra information when there is a mixed severity.

In [115]: with pd.option_context(*oco):
.....: print(a03.report_df)
.....:

view 0 1 2 independent mixed empirical error
statistic
name TenM:03 TenM:03 TenM:03 TenM:03 TenM:03
limit inf inf inf inf inf
attachment 0 0
el 62.5 125 187.5 375 375
freq_m 12.5 6.25 6.25 25 25
freq_cv 0.57446 0.64031 0.64031 0.36572 0.53852
freq_skew 1.0097 1.0307 1.0307 0.66199 1.0028
sev_m 5 20 30 15 15 14.999 -3.7467e-05
sev_cv 0.5 0.375 0.50002 0.90907 0.90907 0.89065 -0.020261
sev_skew 1 2.6716 inf inf inf 9.9075 -1
agg_m 62.5 125 187.5 375 375 374.99 -3.8034e-05
agg_cv 0.59161 0.65765 0.67082 0.41265 0.56838 0.5672 -0.0020722
agg_skew 1.0238 1.0613 inf inf inf 1.0698 -1

The dataframe shows statistics for each mixture component, columns 0,1,2, their sum if they are added indepen-
dently and their sum if there is a shared mixing variable, as there is here. The common mixing induces correlation
between the mix components, acting to increases the CV and skewness, often dramatically.

The spec and spec_ex Dictionaries

The spec dictionary contains the input information needed to create each object. For example, if a is an Aggre-
gate, then Aggregate (**a.spec) creates a new copy. spec_ex appends meta-information to spec about
hyper-parameters.

In [116]: from pprint import pprint

In [117]: pprint(a05n.spec)
{'agg_kind': 'net of',
'agg_reins': [(1.0, 4.0, 8.0)],
'exp_attachment': None,
'exp_el': 0,
'exp_en': -1,
'exp_limit': inf,
'exp_lr': 0,
'exp_premium': 0,
'freq_a': array([2.]),
'freq_b': array([1.]),
'freq_name': 'empirical',
'freq_p0': nan,
'freq_zm': False,
'name': 'TenM:05n',
'note': '',
'occ_kind': 'net of',
'occ_reins': [(1.0, 3.0, 7.0)],
'sev_a': nan,
'sev_b': 0,
'sev_conditional': True,
'sev_cv': 0,
'sev_lb': 0,
'sev_loc': 0,
'sev_mean': 0,
'sev_name': 'dhistogram',
'sev_pick_attachments': None,
'sev_pick_losses': None,

(continues on next page)

48 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
'sev_ps': array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]),
'sev_scale': 0,
'sev_ub': inf,
'sev_wt': 1,
'sev_xs': array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])}

The DecL Program

The program property returns the DecL program used to create the object. It is blank if the object was not created
using DecL. The helper function pprint_ex() pretty prints a program.

In [118]: from aggregate import pprint_ex

In [119]: pprint_ex(a05n.program, split=20)
Out[119]: 'agg TenM:05n\n dfreq [2]\n dsev [1:10]\n occurrence net of 3 xs 7\n ␣
↪→aggregate net of 4 xs 8'

In [120]: pprint_ex(p07.program, split=20)
Out[120]: 'port TenM:07\n agg A\n 100 claims 10000 xs 0\n sev lognorm 100␣
↪→cv 1.25\n poisson\n agg B\n 150 claims 2500 xs 5\n sev lognorm 50 cv 0.
↪→9\n mixed gamma .6\n agg Cat\n 2 claims 1e5 xs 0\n sev 500 * pareto 1.
↪→8 - 500\n poisson'

The update() Method

After anAggregate or aPortfolio object has been created it needs to be updated to populate itsdensity_df
dataframe. build() automatically updates the objects it creates with default hyper-parameter values. Sometimes
it is necessary to re-update with different hyper-parameters. The update() method takes arguments log2=13,
bs=0, and recommend_p=0.999. The first two control the number and size of buckets. When bs==0 it is
estimated using the method recommend_bucket(). If bs!=0 then recommend_p is ignored.
Further control over updating is available, as described in REF.

Statistical Functions

Aggregate and Portfolio objects include basic mean, CV, standard deviation, variance, and skewness statistics
as attributes. Those prefixed agg are based on exact calculations:

• agg_m, agg_cv, agg_sd, agg_var, and agg_skew
and prefixed est are based on the estimated numerical statistics:

• est_m, est_cv, est_sd, est_var, and est_skew.
In addition, Aggregate has similar series prefixed sev and est_sev for the exact and estimated numerical
severity. These attributes are just conveniences; they are all available in (or derivable from) report_df.
Aggregate and Portfolio objects act like scipy.stats (continuous) frozen random variable objects and
include the following statistical functions.

• pmf() the probability mass function
• pdf() the probability density function—broadly interpreted—defined as the pmf divided by bs
• cdf() the cumulative distribution function
• sf() the survival function
• q() the quantile function (left inverse cdf), also known as value at risk
• tvar() tail value at risk function

2.3. A Ten Minute Guide to aggregate 49

aggregate Documentation, Release 0.22.0

• var_dict() a dictionary of tail statistics by unit and in total
We aren’t picky about whether the density is technically a density when the aggregate is actually mixed or discrete.
The discrete output (density_df.p_*) is interpreted as the distribution, so none of the statistical functions is
interpolated. For example:

In [121]: qd(a05g.pmf(2), a05g.pmf(2.2), a05g.pmf(3), a05g.cdf(2), a05g.cdf(2.2))
0.01
0
0.02
0.01
0.01

In [122]: print(1 - a05g.cdf(2), a05g.sf(2))
0.99 0.99

In [123]: print(a05g.q(a05g.cdf(2)))
2.0

The last line illustrates that q() and cdf() are inverses. The var_dict() function computes tail statistics for
all units, return in a dictionary.

In [124]: p07.var_dict(0.99), p07.var_dict(0.99, kind='tvar')
Out[124]:
({'A': 14206.0, 'B': 19834.0, 'Cat': 10246.0, 'total': 33586.0},
{'A': 15025.781065024481,
'B': 22845.87765881529,
'Cat': 20360.45124669143,
'total': 41763.10848610794})

The plot() Method

The plot() method provides basic visualization. There are three plots: the pdf/pmf for severity and the aggregate
on the left. The middle plot shows log density for continuous distributions and the distribution function for discrete
ones (selected when bs==1 and the mean is < 100). The right plot shows the quantile (or VaR or Lee) plot.
The reinsurance examples below show the discrete output format. The plots show the gross, net of occurrence, and net
severity and aggregate pmf (left) and cdf (middle), and the quantile (Lee) plot (right). The property a05g.figure
returns the last figure made by the object as a convenience. You could also use plt.gcf().

In [125]: a05g.plot()

In [126]: a05g.figure.suptitle('Gross - discrete format');

In [127]: a05no.plot()

In [128]: a05no.figure.suptitle('Net of occurrence');

In [129]: a05n.plot()

In [130]: a05n.figure.suptitle('Net of occurrence and aggregate');

50 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Continuous distributions substitute the log density for the distribution in the middle.

In [131]: a03.plot()

In [132]: a03.figure.suptitle('Continuous format');

A Portfolio object plots the density and log density of each unit and the total.

In [133]: p07.plot()

In [134]: p07.figure.suptitle('Portfolio plot');

2.3. A Ten Minute Guide to aggregate 51

aggregate Documentation, Release 0.22.0

The price() Method

The price() method computes the risk adjusted expected value (technical price net of expenses) of losses limited
by capital at a specified VaR threshold. Suppose the 99.9%ile outcome is used to specify regulatory assets a.

In [135]: qd(a03.q(0.999))
1358

The risk adjustment is specified by a spectral risk measure corresponding to an input distortion. Distortions can be
built using DecL, see The Distortion Class. price() applies toX ∧ a. It returns expected limited losses L, the risk
adjusted premium P, the margin M = P - L, the capital Q = a - P, the loss ratio, leverage as premium to capital
PQ, and return on capital ROE.

In [136]: qd(a03.price(0.999, d06).T)

line TenM:03
statistic
L 374.82
P 558.25
M 183.43
Q 799.75
a 1358
LR 0.67142
PQ 0.69802
ROE 0.22936

When price() is applied to a Portfolio, it returns the total premium and its (lifted) natural allocation to each
unit, see PIR Chapter 14, along with all the other statistics in a dataframe. Losses are allocated by equal priority in
default.

In [137]: qd(p07.price(0.999, d06).df.T)

distortion Dual Moment, 3.000
unit A B Cat total
statistic
L 9997.3 6779.8 1212.4 17990
P 10448 9874.5 1913.8 22236
M 450.25 3094.7 701.35 4246.2
Q 7656.6 10203 12817 30662
a 18104 20078 14731 52898
LR 0.9569 0.68659 0.63352 0.80904
PQ 1.3645 0.96781 0.14932 0.72519
COC 0.058806 0.30332 0.054721 0.13848

The ROE varies by unit, reflecting different consumption and cost of capital by layer. The less risky unit A runs at
a higher loss ratio (cheaper insurance) but higher ROE than unit B because it consumes more expensive, equity-like
lower layer capital but less capital overall (higher leverage).

52 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

The snap() Method

snap() rounds an input number to the index of density_df. It selects the nearest element.

The approximate() Method

The approximate() method creates an analytic approximation fit using moment matching. Normal, lognormal,
gamma, shifted lognormal, and shifted gamma distributions can be fit, the last two requiring three moments. To fit
all five and return a dictionary call with argument "all".

In [138]: fzs = a03.approximate('all')

In [139]: d = pd.DataFrame({k: fz.stats('mvs') for k, fz in fzs.items()},
.....: index=pd.Index(['mean', 'var', 'skew'], name='stat'),
.....: dtype=float)
.....:

In [140]: qd(d)

norm gamma lognorm sgamma slognorm
stat
mean 374.99 374.99 374.99 374.99 374.99
var 45238 45238 45238 45238 45238
skew 0 1.1344 1.8841 1.0698 1.0698

2.3.10 Additional Portfolio Methods

Conditional Expected Values

A Portfolio object’s density_df includes a slew of values to allocate capital (please don’t) or margin (please
do). These all rely on what Mildenhall and Major [2022] call the κ function, defined for a sum X =

∑
iXi as the

conditional expectation

κi(x) = E[Xi | X = x].

Notice that
∑

i κi(x) = x, hinting at its allocation application. See PIR Chapter 14.3 for an explanation of why κ is
so useful. In short, it shows which units contribute to bad overall outcomes. It is in density_df as the columns
exeqa_unit, read as the “expected value given X eq(uals) a”.
Here are some κ values and graph for p07. Looking the log density plot on the right shows that unit B dominates for
moderately large events, but Cat dominates for the largest events.

In [141]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45)); \
.....: ax0, ax1 = axs.flat; \
.....: lm = [-1000, 65000]; \
.....: bit = p07.density_df.filter(regex='exeqa_[ABCt]').rename(
.....: columns=lambda x: x.replace('exeqa_', '')).sort_index(axis=1); \
.....: bit.index.name = 'Loss'; \
.....: bit.plot(xlim=lm, ylim=lm, ax=ax0); \
.....: ax0.set(title=r'$E[X_i\mid X]$', aspect='equal'); \
.....: ax0.axhline(bit['B'].max(), lw=.5, c='C7');
.....:

In [142]: p07.density_df.filter(regex='p_[ABCt]').rename(
.....: columns=lambda x: x.replace('p_', '')).plot(ax=ax1, xlim=lm,␣

↪→logy=True);
.....:

In [143]: ax1.set(title='Log density');

(continues on next page)

2.3. A Ten Minute Guide to aggregate 53

aggregate Documentation, Release 0.22.0

(continued from previous page)

In [144]: bit['Pct A'] = bit['A'] / bit.index

In [145]: qd(bit.loc[:lm[1]:1024])

A B Cat total Pct A
Loss
0.0 0 0 0 0 NaN
2048.0 0 0 0 2048 0
4096.0 3729.8 307.48 58.741 4096 0.91059
6144.0 5419.3 602.16 122.54 6144 0.88205
8192.0 6911.6 1062.4 217.99 8192 0.8437
10240.0 8133.9 1757.5 348.62 10240 0.79432
12288.0 9041.7 2735.6 510.69 12288 0.73582
14336.0 9655.4 3986.6 694.09 14336 0.6735
16384.0 10048 5445.7 890.17 16384 0.61329
18432.0 10299 7035.3 1098 18432 0.55874
20480.0 10464 8692.1 1324.3 20480 0.51092
22528.0 10576 10370 1582.2 22528 0.46946
...
40960.0 10622 17734 12604 40960 0.25932
43008.0 10551 16531 15926 43008 0.24532
45056.0 10477 15060 19519 45056 0.23253
47104.0 10408 13547 23149 47104 0.22096
49152.0 10349 12178 26625 49152 0.21055
51200.0 10301 11051 29847 51200 0.20119
53248.0 10264 10185 32799 53248 0.19276
55296.0 10236 9545.6 35515 55296 0.18511
57344.0 10214 9085.2 38045 57344 0.17812
59392.0 10197 8755.1 40440 59392 0.17169
61440.0 10184 8516 42740 61440 0.16575
63488.0 10172 8339.2 44976 63488 0.16023

The thin horizontal line at the maximum value of exeqa_B (left plot) shows that κB is not increasing. Unit B
contributes more to moderately bad outcomes than Cat, but in the tail Cat dominates.
Usingfilter(regex=...) to select columns fromdensity_df is a helpful idiom. The total column is labeled
_total. Using upper case for unit names makes them easier to select.

54 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Calibrate Distortions

The calibrate_distortions() method calibrates distortions to achieve requested pricing for the total loss.
Pricing can be requested by loss ratio or return on capital (ROE). Asset levels can be specified in monetary terms,
or as a probability of non-exceedance. To calibrate the usual suspects (constant cost of capital, proportional hazard,
dual, Wang, and TVaR) to achieve a 15% return with a 99.6% capital level run:

In [146]: p07.calibrate_distortions(Ps=[0.996], ROEs=[0.15], strict='ordered');

In [147]: qd(p07.distortion_df)

S L P PQ Q COC param error
a LR method
38304.0 0.871293 ccoc 0.0039991 17962 20615 1.1654 17689 0.15 0.15 0

ph 0.0039991 17962 20615 1.1654 17689 0.15 0.61919 1.095e-09
wang 0.0039991 17962 20615 1.1654 17689 0.15 0.51526 4.7105e-06
dual 0.0039991 17962 20615 1.1654 17689 0.15 2.0031 -2.8012e-09
tvar 0.0039991 17962 20615 1.1654 17689 0.15 0.37271 9.7863e-06

In [148]: pprint(p07.dists)
{'ccoc': ccoc (0.14999999999999997, 0),
'dual': dual (2.003099750057873),
'ph': ph (0.6191915749880643),
'tvar': tvar (0.37271484907821667),
'wang': wang (0.5152633577003828)}

The answer is returned in the dist_ans dataframe. The requested distortions are all single parameter, returned in
the param column. The last column gives the error in achieved premium. The attribute p07.dists is a dictionary
with keys distortion types and values Distortion objects. See PIR REF for more discussion.

Analyze Distortions

The analyze_distortions()method applies the distortions in p07.dists at a given capital level and sum-
marizes the implied (lifted) natural allocations across units. Optionally, it applies a number of traditional (bullshit)
pricing methods. The answer dataframe includes premium, margin, expected loss, return, loss ratio and leverage
statistics for each unit and method. Here is a snippet, again at the 99.6% capital level.

In [149]: ans = p07.analyze_distortions(p=0.996)

In [150]: print(ans.comp_df.xs('LR', axis=0, level=1).
.....: to_string(float_format=lambda x: f'{x:.1%}'))
.....:

line A B Cat total
Method
Dist ccoc 109.8% 103.8% 24.0% 87.1%
Dist dual 96.9% 77.8% 75.4% 87.1%
Dist ph 99.0% 80.6% 56.4% 87.1%
Dist tvar 96.3% 77.8% 77.8% 87.1%
Dist wang 97.7% 78.6% 67.7% 87.1%
EL 87.1% 87.1% 87.1% 87.1%
EPD 96.0% 78.3% 10.3% 58.6%
EqRiskEPD 99.7% 90.7% 38.4% 87.1%
EqRiskTVaR 95.7% 83.5% 58.0% 87.1%
EqRiskVaR 95.5% 82.7% 61.0% 87.1%
MerPer 97.9% 88.9% 66.0% 91.5%
ScaledEPD 107.9% 99.5% 26.3% 87.1%
ScaledTVaR 99.0% 85.3% 46.3% 87.1%
ScaledVaR 99.3% 84.9% 46.5% 87.1%
TVaR 94.3% 78.0% 38.0% 80.1%
VaR 93.9% 76.6% 37.3% 79.2%

(continues on next page)

2.3. A Ten Minute Guide to aggregate 55

aggregate Documentation, Release 0.22.0

(continued from previous page)
coTVaR 99.1% 83.5% 49.3% 87.1%
covar 97.6% 80.6% 60.5% 87.1%

Twelve Plot

The twelve_plot() method produces a detailed analysis of the behavior of a two unit portfolio. To run it, build
the portfolio and calibrate some distortions. Then apply one of the distortions (to compute an augmented version of
density_df with pricing information). We give two examples.
First, the case of a thin-tailed and a thick-tailed unit. Here, the thick tailed line benefits from pooling at low capital lev-
els, resulting in negative margins to the thin-tail line in compensation. At moderate to high capital levels the total mar-
gin for both lines is positive. Assets are 12.5. The argument efficient=False in apply_distortion()
includes extra columns in density_df that are needed to compute the plot.

In [151]: p09 = build('port TenM:09 '
.....: 'agg X1 1 claim sev gamma 1 cv 0.25 fixed '
.....: 'agg X2 1 claim sev 0.7 * lognorm 1 cv 1.25 + 0.3 fixed'
.....: , bs=1/1024)
.....:

In [152]: qd(p09)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
X1 Freq 1 0

Sev 1 1 -5.5511e-16 0.25 0.25 0.5 0.5
Agg 1 1 -5.5511e-16 0.25 0.25 0.5 0.5

X2 Freq 1 0
Sev 1 0.99999 -1.0796e-05 0.875 0.87452 5.7031 5.603
Agg 1 0.99999 -1.0796e-05 0.875 0.87452 5.7031 5.603

total Freq 2 0
Sev 1 0.99999 -5.398e-06 0.64348 7.1845
Agg 2 2 -5.8107e-06 0.45501 0.45476 5.0802 4.9869

log2 = 16, bandwidth = 1/1024, validation: fails sev skew, agg skew.

In [153]: print(f'Asset P value {p09.cdf(12.5):.5g}')
Asset P value 0.99958

In [154]: p09.calibrate_distortions(ROEs=[0.1], As=[12.5], strict='ordered');

In [155]: qd(p09.distortion_df)

S L P PQ Q COC param ␣
↪→error
a LR method ␣
↪→

12.5 0.676722 ccoc 0.00041558 1.9985 2.9531 0.30933 9.5469 0.1 0.1 ␣
↪→ 0

ph 0.00041558 1.9985 2.9531 0.30933 9.5469 0.1 0.51152 1.998e-
↪→08

wang 0.00041558 1.9985 2.9531 0.30933 9.5469 0.1 0.88394 1.6577e-
↪→06

dual 0.00041558 1.9985 2.9531 0.30933 9.5469 0.1 4.4902 -2.0466e-
↪→10

tvar 0.00041558 1.9985 2.9531 0.30933 9.5469 0.1 0.71207 6.2397e-
↪→06

In [156]: p09.apply_distortion('dual', efficient=False);

(continues on next page)

56 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [157]: fig, axs = plt.subplots(4, 3, figsize=(3 * 3.5, 4 * 2.45), constrained_
↪→layout=True)

In [158]: p09.twelve_plot(fig, axs, p=0.999, p2=0.999)

There is a lot of information here. We refer to the charts as (r, c) for row r = 1, 2, 3, 4 and column c = 1, 2, 3,
starting at the top left. The horizontal axis shows the asset level in all charts except (3, 3) and (4, 3), where it shows
probability, and (1, 3) where it shows loss. Blue represents the thin tailed unit, orange thick tailed and green total.
When both dashed and solid lines appear on the same plot, the solid represent risk-adjusted and dashed represent
non-risk-adjusted functions. Here is the key.

• (1, 1) shows density for X1, X2 and X = X1 +X2; the two units are independent. Both units have mean 1.
• (1, 2): log density; comparing tail thickness.
• (1, 3): the bivariate log-density. This plot illustrates where (X1, X2) lives. The diagonal lines show X = k
for different k. These show that large values of X correspond to large values of X2, with X1 about average.

• (2, 1): the form of κi is clear from looking at (1, 3). κ1 peaks above 1.0 around x = 2 and hereafter it declines
to 1.0. κ2 is monotonically increasing.

• (2, 2): The αi functions. For small x the expected proportion of losses is approximately 50/50, since the means
are equal. As x increases X2 dominates. The two functions sum to 1.

2.3. A Ten Minute Guide to aggregate 57

aggregate Documentation, Release 0.22.0

• (2, 3): The thicker lines are βi and the thinner lines αi from (2, 2). Since α1 decreases β1(x) ≤ α1(x). This
can lead to X1 having a negative margin in low asset layers. X2 is the opposite.

• (3, 1): illustrates premium and margin determination by asset layer forX1. For low asset layers α1(x)S(x) >
β1(x)g(S(x)) (dashed above solid) corresponding to a negative margin. Beyond about x = 1.38 the lines
cross and the margin is positive.

• (4, 1): shows the same thing for X2. Since α2 is increasing, β2(x) > α2(x) for all x and so all layers get a
positive margin. The solid line β2gS is above the dashed α2S line.

• (3, 2): the layer margin densities. For low asset layers premium is fully funded by loss with zero overall margin.
X2 requires a positive margin andX1 a negative one, reflecting the benefit the thick unit receives from pooling
in low layers. The overall margin is always non-negative. Beyond about x = 1.5, X1’s margin is also positive.

• (4, 2): the cumulative margin in premium by asset level. Total margin is zero in low dollar-swapping layers
and then increases. It is always non-negative. The curves in this plot are the integrals of those in (3, 2) from 0
to x.

• (3, 3): shows stand-alone loss (1−S(x), x) = (p, q(p)) (dashed) and premium (1−g(S(x)), x) = (p, q(1−
g−1(1− p)) (solid, shifted left) for each unit and total. The margin is the shaded area between the two. Each
set of three lines (solid or dashed) does not add up vertically because of diversification. The same distortion g is
applied to each unit to the stand-alone SXi

. It is calibrated to produce a 10 percent return overall. On a stand-
alone basis, calculating capital by unit to the same return period as total, X1 is priced to a 77.7 percent loss
ratio and X2 52.5 percent, producing an average 62.7 percent, vs. 67.6 percent on a combined basis. Returns
are 37.5 percent and 9.4 percent respectively, averaging 11.5 percent, vs 10 percent on a combined basis, see
stand-alone analysis below.

• (4, 3): shows the natural allocation of loss and premium to each unit. The total (green) is the same as (3, 3).
For each i, dashed shows (p,E[Xi | X = q(p)]), i.e. the expected loss recovery conditioned on total losses
X = q(p), and solid shows (p,E[Xi | X = q(1 − g−1(1 − p))]), i.e. the natural premium allocation. Here
the solid and dashed lines add up vertically: they are allocations of the total. Looking vertically above p, the
shaded areas show how the total margin at that loss level is allocated between lines. X1 mostly consumes assets
at low layers, and the blue area is thicker for small p, corresponding to smaller total losses. For p close to 1,
large total losses, margin is dominated by X2 and in fact X1 gets a slight credit (dashed above solid). The
change in shape of the shaded margin area for X1 is particularly evident: it shows X1 benefits from pooling
and requires a lower overall margin.

There may appear to be a contradiction between figures (3, 2) and (4, 3) but it should be noted that a particular p
value in (4, 3) refers to different events on the dotted and solid lines.
Plots (3, 3) and (4, 3) explain why the thick unit requires relatively more margin: its shape does not change when it
is pooled withX1. In (3, 3) the green shaded area is essentially an upwards shift of the orange, and the orange areas
in (3, 3) and (3, 4) are essentially the same. This means that adding X1 has virtually no impact on the shape of X2;
it is like adding a constant. This can also be seen in (4, 3) where the blue region is almost a straight line.
Applying the same distortion on a stand-alone basis produces:

In [159]: a = p09.stand_alone_pricing(p09.dists['dual'], p=p09.cdf(12.5))

In [160]: print(a.iloc[:8])
line X1 X2 sop total
method stat
sa Dual Moment, 4.490 L 0.999956 0.998459 1.998414 1.998459

LR 0.777176 0.525226 0.626922 0.676722
M 0.286697 0.902547 1.189244 0.954686
P 1.286652 1.901006 3.187658 2.953145
PQ 1.681666 0.198284 0.307915 0.309332
Q 0.765106 9.587275 10.352381 9.546855
ROE 0.374715 0.094140 0.114876 0.100000
a 2.051758 11.488281 13.540039 12.500000

The lifted natural allocation (diversified pricing) is given next. These numbers are so different than the stand-alone
because X2 has to compensate X1 for the transfer of wealth in default states. When there is a large loss, it is caused
by X2 and so X2 receives a disproportionate share of the assets in default.

58 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [161]: a2 = p09.analyze_distortion('dual', ROE=0.1, p=p09.cdf(12.5))

In [162]: print(a2.pricing.unstack(1).droplevel(0, axis=0).T)
line X1 X2 total

stat
12.5 L 0.999920 0.998539 1.998459

LR 0.908669 0.538958 0.676722
M 0.100502 0.854183 0.954686
P 1.100422 1.852722 2.953145
PQ 0.888570 0.222992 0.309332
Q 1.238419 8.308458 9.546855
ROE 0.081154 0.102809 0.100000

The second portfolio has been selected with two thick tailed units. A appears riskier at lower return periods and B at
higher. Pricing is calibrated to a 15% ROE at a 99.6% capital level.

In [163]: p10 = build('port TenM:10 '
.....: 'agg A '
.....: '30 claims '
.....: '1000 xs 0 '
.....: 'sev gamma 25 cv 1.5 '
.....: 'mixed delaporte 0.75 0.6 '
.....: 'agg B '
.....: '5 claims '
.....: '20000 xs 20 '
.....: 'sev lognorm 25 cv 3.0 '
.....: 'poisson'
.....: , bs=1)
.....:

In [164]: qd(p10)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
A Freq 30 0.7719 3.5645

Sev 25 24.989 -0.00045632 1.5 1.501 3 2.9984
Agg 750 749.66 -0.00045632 0.81904 0.81911 3.2482 3.2478

B Freq 5 0.44721 0.44721
Sev 55.582 55.58 -3.0222e-05 2.3472 2.3473 18.671 18.671
Agg 277.91 277.9 -3.0222e-05 1.141 1.141 6.9737 6.9737

total Freq 35 0.66471 3.5156
Sev 29.369 29.359 -0.00034112 2.0855 27.142
Agg 1027.9 1027.6 -0.00034112 0.67253 0.67256 2.9521 2.9519

log2 = 16, bandwidth = 1, validation: fails sev mean, agg mean.

In [165]: p10.calibrate_distortions(ROEs=[0.15], Ps=[0.996], strict='ordered');

In [166]: qd(p10.distortion_df)

S L P PQ Q COC param ␣
↪→error
a LR method ␣
↪→

4596.0 0.68709 ccoc 0.0039969 1023.3 1489.3 0.47937 3106.7 0.15 0.15 ␣
↪→0

ph 0.0039969 1023.3 1489.3 0.47937 3106.7 0.15 0.57953 3.9482e-
↪→06

wang 0.0039969 1023.3 1489.3 0.47937 3106.7 0.15 0.64115 3.716e-
↪→06

dual 0.0039969 1023.3 1489.3 0.47937 3106.7 0.15 2.6459 ␣
↪→0

tvar 0.0039969 1023.3 1489.3 0.47937 3106.7 0.15 0.52695 8.0193e-

(continues on next page)

2.3. A Ten Minute Guide to aggregate 59

aggregate Documentation, Release 0.22.0

(continued from previous page)
↪→06

Apply the dual distortion and then create the twelve plot.

In [167]: p10.apply_distortion('dual', efficient=False);

In [168]: fig, axs = plt.subplots(4, 3, figsize=(3 * 3.5, 4 * 2.45), constrained_
↪→layout=True)

In [169]: p10.twelve_plot(fig, axs, p=0.999995, p2=0.999999)

Applying the same distortion on a stand-alone basis produces:

In [170]: assets = p10.q(0.996)

In [171]: a = p10.stand_alone_pricing(p10.dists['dual'], p=p10.cdf(assets))

In [172]: print(a.iloc[:8])
line A B sop total
method stat
sa Dual Moment, 2.646 L 745.845783 274.056275 1019.902058 1023.266475

LR 0.652332 0.590524 0.634487 0.687090

(continues on next page)

60 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
M 397.506631 190.033998 587.540629 466.008721
P 1143.352413 464.090274 1607.442687 1489.275195
PQ 0.383850 0.309206 0.358840 0.479371
Q 2978.647587 1500.909726 4479.557313 3106.724805
ROE 0.133452 0.126613 0.131160 0.150000
a 4122.000000 1965.000000 6087.000000 4596.000000

The lifted natural allocation (diversified pricing) is given next.

In [173]: a2 = p10.analyze_distortion('dual', ROE=0.1, p=p10.cdf(assets))

In [174]: print(a2.pricing.unstack(1).droplevel(0, axis=0).T)
line A B total

stat
4596.0 L 746.454112 276.812363 1023.266475

LR 0.752826 0.776418 0.759066
M 245.081324 79.712633 324.793957
P 991.535436 356.524996 1348.060432
PQ 0.379589 0.560741 0.415051
Q 2612.128741 635.810828 3247.939568
ROE 0.093824 0.125372 0.100000

2.3.11 Extensions

Theextensions sub-package contains additional classes and functions that are either peripheral to themain project
or still under development (and subject to change). Currently, extensions includes:

• case_studies for creating and managing PIR case studies (see Case Studies).
• pir_figures for creating various exhibits and figures in PIR.
• figures for creating various other exhibits and figures.
• samples includes functions for working with samples and executing a switcheroo. Eventually, these will be
integrated into Portfolio.

2.3.12 Summary of Objects Created by DecL

Each of the objects created by build() is automatically stored in the knowledge. We can list them out now.

In [175]: from aggregate import pprint_ex

In [176]: for n, r in build.qlist('^TenM:').iterrows():
.....: pprint_ex(r.program, split=20)
.....:

2.4 The Dec Language

Objectives: Introduce the Dec Language (DecL) used to specify aggregate distributions in familiar insurance ter-
minology.
Audience: User who wants to use DecL to build realistic aggregates.
Prerequisites: Familiar with using build. Probability theory behind aggregate distributions. Insurance and rein-
surance terminology.
See also: Reinsurance Pricing, and Dec Language Reference.

2.4. The Dec Language 61

aggregate Documentation, Release 0.22.0

Notation: <item> denotes an optional term. See the note 10 mins formatting for important information about how
DecL programs are formatted and laid out in the help.
Contents:

2.4.1 DecL Design and Purpose

The Dec Language, or simply DecL, is designed to make it easy to go from “Dec page to distribution” — hence the
name. An insurance policy’s Declarations page spells out key coverage terms and conditions such as the limit and
deductible, effective date, named insured, and covered property. A reinsurance slip performs the same functions.
Coverage expressed concisely in words on a Dec page is often incomplete and hard to program. Consider the decla-
ration

“Aggregate losses from trucking policy with a premium of 2000, a limit of 1000, and no deductible.”
To estimate the distribution of outcomes for this policy, the actuary must:

1. Estimate the priced loss ratio on the policy to determine the loss pick (expected loss) as premium times loss
ratio. Say they select 67.5%.

2. Select a suitable trucking ground-up severity curve, say lognormal with mean 100 and CV 1.75.
3. Compute the expected conditional layer severity for the layer 1000 xs 0.
4. Divide severity into the loss pick to determine the expected claim count.
5. Select a suitable frequency distribution, say Poisson.
6. Calculate a numerical approximation to the resulting compound-Poisson aggregate distribution

A DecL program takes care of many of these details. The DecL program corresponding to the trucking policy is
simply:

agg Trucking \
2000 premium at 0.675 lr \
1000 xs 0 \
sev lognorm 100 cv 1.75 \
poisson

It specifies the loss ratio and distributions selected in steps 1, 2 and 5; these require actuarial judgment and cannot
be automated. Based on this input, the aggregate package computes the rest of steps 1, 3, 4, and 6. The details
of the program are explained in the rest of this chapter.

Note: All DecL programs are one-line long. The program above uses a Python \ line break so that the code above
can be cut and pasted as an argument to build using a triple quoted string. See 10 mins formatting.

Specifying a Realistic Aggregate Distribution

The trucking example hints at the complexity of specifying a realistic insurance aggregate distribution. Abstracting
the details, a complete specification has seven parts:

1. A name
2. The exposure, optionally including occurrence limits and deductibles
3. The ground-up severity distribution
4. Occurrence reinsurance (optional)
5. The frequency distribution
6. Aggregate reinsurance (optional)

62 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

7. Additional notes (optional)
DecL follows the same pattern:

agg name \
exposure <limit> \
severity \
<occurrence re> \
<frequency> \
<aggregate re> \
<note>

where <...> denotes an optional clause. All programs are one-line long and horizontal white space is ignored.
DecL programs are built (interpreted) using the build function. Python automatically concatenates strings between
parenthesis (no need for \), making it is easiest and clearest to enter a program as:

build('agg Trucking '
'2000 premium at 0.675 lr '
'1000 xs 0 '
'sev lognorm 100 cv 1.75 '
'poisson')

The entries in this example are as follows.
• agg is the DecL keyword used to create an aggregate distribution. Keywords are part of the language, like
if/then/else in VBA, R or Python, or select in SQL.

• Trucking is a string name. It can contain letters and numbers and periods and must start with a letter. It is
case sensitive. It cannot contain an underscore. It cannot be a DecL keyword. E.g., Motor, NE.Region,
Unit.A but not 12Line or NE_Region.

• The exposure clause is 2000 premium at 0.675 lr 1000 xs 0. (Percent notation is acceptable:
the loss ratio can be entered as 67.5% lr.) It determines the volume of insurance, see The Exposure Clause.
It includes 1000 xs 0, an optional layers subclause to set policy occurrence limits and deductibles.

• The severity clause sev lognorm 100 cv 1.75 determines the ground-up severity, see severity. sev
is a keyword

• The frequency clause, poisson, specifies the frequency distribution, see frequency.
The occurrence re, aggregate re and note clauses are omitted. See 2_agg_class_reinsurance_clause and The Note
Clause.
aggregate automatically computes the expected claim count from the premium, expected loss ratio, and average
severity.
Python f-strings allow variables to be passed into DecL programs, f'sev lognorm {x} cv {cv}.

Alternative Specifications

There are two other specifications for different situations that reference a distribution from the knowledge database.
The first simply refers to the object by name, prefixing it with agg.. Thus:

agg.Trucking

refers to the Trucking example above.
The second allows the flexibility to provide a new name for the object:

agg NewTruckingAccount agg.Trucking

These forms are mostly used in portfolios. See the Dec Language Reference.
The rest of this Chapter describes the basic features of each clause.

2.4. The Dec Language 63

aggregate Documentation, Release 0.22.0

2.4.2 The Exposure Clause

The exposure clause has two parts: exposures and an optional layers sub-clause described in The Limits Sub-Clause.
It specifies the volume of insurance. There are five forms:

1. Expected loss
2. Premium and loss ratio
3. Exposure and rate
4. Claim count
5. Using the dfreq keyword to enter the frequency distribution directly

Examples:

1000 loss
1000 premium at 0.7 lr
5 exposure at 2000 rate
123 claims
dfreq [1 2 3] [3/4 3/16 1/16]

• 1000 loss directly specifies expected loss. The claim count is derived from average severity. It is typical
for an actuary to estimate the loss pick and select a severity curve, and then derive frequency.

• 1000 premium at 0.7 lr directly specifies premium and a loss ratio. Expected losses equal the product.
The claim count is again derived from severity. Actuaries often take plan premiums and apply loss ratio picks
to determine losses, rather than starting with a loss pick. This idiom supports that approach.

• 5 exposure at 2000 rate directly specifies exposure and a loss rate. It is analogous to the loss ratio
form. Actuaries often know exposure and unit rates (per vehicle, per 100 insured value, per location). This
idiom supports that approach.

• 123 claims directly specifies the expected claim count; the last letter s on claims is optional, allowing
1 claim. Expected losses equal claim count times average severity.

• dfreq [1 2 3] [3/4 3/16 1/16] specifies frequency outcomes and probabilities directly. It is
described in Non-Parametric Frequency Distributions.

All values in the first three specifications can be vectorized, see Vectorization: Limit Profiles and Mixed Severity.

Determining Expected Claim Count

Variables are used in the following order to determine overall expected losses.
• If count is given it is used and loss is derived from severity.
• Else if loss is given, then count is derived from the severity.
• Else if either pp premium at xx lr or ee exposure at rr rate is given, then the loss is derived
by multiplication and counts from severity.

• In all cases, if premium is given the loss ratio is computed
These choices present no ambiguity when using DecL. But the input arguments could conflict if you create the object
directly.
By default, claim count is conditional on a loss to the layer, but severity can have a mass at zero. The severity can be
specified to be unconditional, see Unconditional Severity.
Details.
In terms of exp_en, exp_el, exp_premium, and exp_lr the second and third steps are:

exp_el = np.where(exp_el > 0, exp_el, exp_premium * exp_lr)

64 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

i.e., expected losses are used if given and premium times loss ratio used if not. All these values default to 0. At this
point the object must know either loss or claim count:

assert np.all(exp_el > 0 or exp_en > 0)

Then
• If exp_en is input, it determines the expected claim count; expected losses determined from expected severity
• Else if exp_el > 0 then it is used as expected loss and claim count determined from severity

Finally,
• If exp_prem > 0 then the the loss ratio is computed
• Else if exp_lr > 0 the premium is computed

Thus, if only exp_en or exp_loss is entered, the object knows loss, but not premium or loss ratio.

2.4.3 The Limits Sub-Clause

The optional limits sub-clause specifies policy occurrence limits and deductibles.
Examples:

100 xs 0
inf xs 100
750 xs 250
1 xs 1

• 100 xs 0 applies an occurrence limit of 100.
• inf xs 100 applies a deductible of 100 and no limit.
• 750 xs 250 is an excess layer, with limit 750 and deductible 250.
• 1 xs 1 is also an excess layer of 1 xs 1.

inf denotes infinity, for an unlimited layer. Both xs and x are acceptable.
Multiple layers can be entered at once using vectors.

2.4.4 The Severity Clause

The severity clause specifies the ground-up severity distribution, or “severity curve” as it is sometimes known. It
is a very flexible clause. Its design follows the scipy.stats package’s specification of random variables using
shape, location, and scale factors, see probability background. The syntax is different for non-parametric discrete
distributions and parametric continuous distributions.

Non-Parametric Severity Distributions

Discrete distributions (supported on a finite number of outcomes) can be directly entered as a severity using the dsev
keyword followed by two equal-length row vectors. The first gives the outcomes and the (optional) second gives the
probabilities.

dsev [outcomes] <[probabilities]>

The horizontal layout is irrelevant and commas are optional. If the probabilities vector is omitted then all
probabilities are set equal to the reciprocal of the length of the outcomes vector. A Python-like colon notation is
available for ranges. Probabilities can be entered as fractions, but no other arithmetic operation is supported.
Examples:

2.4. The Dec Language 65

aggregate Documentation, Release 0.22.0

dsev [0 9 10] [0.5 0.3 0.2]
dsev [0 9 10]
dsev [1:6]
dsev [0:100:25]
dsev [1:6] [1/4 1/4 1/8 1/8 1/8 1/8]

• dsev [0 9 10] [0.5 0.3 0.2] is a severity with a 0.5 chance of taking the value 0, 0.3 chance of
9, and 0.2 of 10.

• dsev [0 9 10] gives equally likely outcomes of 0, 9, or 10.
• dsev [1:6] gives equally likely outcomes 1, 2, 3, 4, 5, 6. Unlike Python (but like pandas.DataFrame.
loc) the right-hand limit is included.

• dsev [0:100:25] gives qually likely outcomes 0, 25, 50, 100.
• dsev [1:6] [1/4 1/4 1/8 1/8 1/8 1/8] gives outcomes 1 or 2 with probability 0.25 or 3-6 with
probability 0.125.

Warning: Use binary fractions (denominator a power of two) to avoid rounding errors!

Details

A dsev clause is converted by the parser into a dhistogram step distribution:

sev dhistogram xps [outcomes] [probabilities]

In rare cases you want a continuous (ogive, piecewise linear distribution) version:

sev chistogram xps [outcomes] [probabilities]

When executed, these are both converted into a scipy.stats histogram class.
Discrete severities, specified using thedsev keyword, are implemented using a scipy.statsrv_historgram
object, which is actually continuous. They work by concentrating the probability in small intervals just to the left of
each knot point (to make the function right continuous). Given:

dsev [xs] [ps]

where xs and ps are the vectors of outcomes and probabilities, internally aggregate creates:

xss = np.sort(np.hstack((xs - 2 ** -30, xs)))
pss = np.vstack((ps1, np.zeros_like(ps1))).reshape((-1,), order='F')[:-1]
fz_discr = ss.rv_histogram((pss, xss))

The value 2**-30 needs to be smaller than the bucket size resolution, i.e., enough not to “split the bucket”. The
mass is to the left of the knot to make a right continuous function (the approximation ramps up before the knot).
Generally histograms are downsampled, not upsampled, so this is not a restriction.
A dsev statement is translated into the more general:

sev dhistorgram xps [xs] [ps]

where dhistrogram creates a discrete histogram (as above) and the xps keyword prefixes inputting the knots and
probabilities. It is also possible to specify the input severity as a continuous histogram that is uniform on (xk, xk+1].
The discrete probabilities are pk = P (xk < X ≤ xk+1). To create a rv_histogram variable is much easier, just use:

sev chistorgram xps [xs] [ps]

which is translated into:

66 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

xs2 = np.hstack((xs, xs[-1] + xs[1]))
fz_cts = ss.rv_histogram((ps2, xs2))

The code adds an additional knot at the end to create enough differences (there are only two differences between three
points). The Sidebar: Continuous Discretization uses a chistogram.
The discrete method is appropriate when the distribution will be used and interpreted as fully discrete, which is the
assumption the FFT method makes and the default. The continuous method is useful if the distribution will be used
to create a scipy.stats rv_histogram variable. If the continuous method is interpreted as discrete and if the mean is
computed as

∑
i pkxk, which is appropriate for a discrete variable, then it will be under-estimated by b/2.

Parametric Severity

A parametric distribution can be specified in two ways:

sev DIST_NAME MEAN cv CV
sev DIST_NAME <SHAPE1> <SHAPE2>

where
• sev is a keyword indicating the severity specification,
• DIST_NAME is the scipy.stats distribution name, see scipy.stats Continuous Random Variables,
• MEAN is the expected loss,
• cv (lowercase) is a keyword indicating entry of the CV,
• CV is the loss coefficient of variation, and
• SHAPE1, SHAPE2 are the (optional) shape variables.

The first form enters the expected ground-up severity and CV directly. It is available for distributions with only
one shape parameter and the beta distribution on [0, 1]. aggregate uses a formula (lognormal, gamma, beta) or
numerical method (all other one shape parameter distributions) to solve for the shape parameter to achieve the correct
CV and then scales to the desired mean. The second form directly enters the shape variable(s). Shape parameters
entered for zero parameter distributions are ignored.
Example. Entering sev lognorm 10 cv 0.2 produces a lognormal distribution with a mean of 10 and a CV
of 0.2. Entering lognorm 0.2 produces a lognormal with µ = 0 and σ = 0.2, which can then be scaled and
shifted.
DIST_NAME can be any zero, one, or two shape parameter scipy.stats continuous distribution. They have
(mostly) easy to guess names. For example:

• Distributions with no shape parameters include: norm, Gaussian normal; unif, uniform; and expon, the
exponential.

• Distributions with one shape parameter include: pareto, lognorm, gamma, invgamma, loggamma,
and weibull_min the Weibull.

• Distributions with two shape parameters include: beta and gengamma, the generalized gamma.
See scipy.stats Continuous Random Variables for a full list and list of distributions for details of each.
Details.
dhistogram and chistogram create discrete (point mass) and continuous (ogive) empirical distributions.
chistogram is rarely used and dhistogram is easier to input using dsev, Non-Parametric Severity Distri-
butions.

2.4. The Dec Language 67

aggregate Documentation, Release 0.22.0

Shifting and Scaling Severity

A parametric severity clause can be transformed by scaling and location factors, following the scipy.stats
scale and loc syntax. Location is a shift or translation. The syntax is:

sev SCALE * DISTNAME SHAPE + LOC
sev SCALE * DISTNAME SHAPE - LOC

For zero parameter distributions SHAPE is omitted. Two parameter distributions are entered sev SCALE *
DISTNAME SHAPE1 SHAPE2 + LOC.
Examples.

• sev lognorm 10 cv 3: lognormal, mean 10, CV 0.
• sev 10 * lognorm 1.75: lognormal, 10X , X ∼ lognormal(µ = 0, σ = 1.75)

• sev 10 * lognorm 1.75 + 20: lognormal, 10X + 20

• sev 10 * lognorm 1 cv 3 + 50: lognormal: 10Y + 50, Y ∼ lognormal mean 1, CV 3
• sev 100 * pareto 1.3 - 100: Pareto, shape α = 3, scale λ = 100.
• sev 100 * pareto 1.3: Single parameter Pareto for x ≥ 100, Shape (α) 3, scale (λ) 100
• sev 50 * norm + 100: normal, mean (location) 100, standard deviation (scale) 50. No shape parameter.
• sev 5 * expon: exponential, mean (scale) 5. No shape parameter.
• sev 5 * uniform + 1: uniform between 1 and 6, scale 5, location 1. No shape parameters.
• sev 50 * beta 2 3: beta: 50Z, Z ∼ β(2, 3), shape parameters 2, 3, scale 50.

With this parameterization, the Pareto has survival function S(x) = (100/(100 + x))1.3.
The scale and location parameters can be vectors.

Warning: dsev severities cannot be shifted or scaled. If that is required use a Python f-string to adjust the
outcomes:
f'dsev [{{5 * outcomes + 10}}] [probabilities]'

Warning: Shifting left (negative shift) must be written with space sev 10 * lognorm 1.5 - 10 not
sev 10 * lognorm 1.5 -10. The lexer binds uniary minus to the number, so the latter omits the operator.
sev 10 * lognorm 1.5 + -10, sev 10 * lognorm 1.5 +10 and sev 10 * lognorm
1.5 + 10 are all acceptable because there is no unary +. This is a known bug and is insidious: the -10 will be
interpreted as a second shape parameter and ignored. You will not get the answer you expect.

Unconditional Severity

The severity clause is entered ground-up. It is converted to a distribution conditional on a loss to the layer if there
is a limits sub-clause. Thus, for an excess layer y xs a, the severity used to create the aggregate has a distribution
X | X > a, where X is specified in the sev clause. For a ground-up (or missing) layer there is no adjustment.
The default behavior can be over-ridden by adding ! after the severity distribution.
Example.
The default behavior uses severity conditional to the layer. In this example, the conditional layer severity is 6.

68 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [1]: from aggregate import build, qd

In [2]: cond = build('agg DecL:Conditional '
...: '1 claim '
...: '12 xs 8 '
...: 'sev 20 * uniform '
...: 'fixed')
...:

In [3]: qd(cond)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 6 6 -9.992e-16 0.57735 0.57735 -8.2046e-15 -9.0251e-14
Agg 6 6 -9.992e-16 0.57735 0.57735 -9.5721e-15 -9.0251e-14
log2 = 16, bandwidth = 1/2048, validation: fails sev skew, agg skew.

To specify unconditional severity, append ! to the severity clause. The unconditional layer severity is only 3.6 because
there is just a 60% chance of attaching the layer. In the last line, uncd.sevs[0].fz is sev 20 * uniform
ground-up.

In [4]: uncd = build('agg DecL:Unconditional '
...: '1 claim '
...: '12 xs 8 '
...: 'sev 20 * uniform ! '
...: 'fixed')
...:

In [5]: qd(uncd)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 3.6 3.6 -1.1102e-16 1.1055 1.1055 0.65784 0.65784
Agg 3.6 3.6 -1.1102e-16 1.1055 1.1055 0.65784 0.65784
log2 = 16, bandwidth = 1/2048, validation: not unreasonable.

In [6]: print(uncd.sevs[0].fz.sf(8), uncd.agg_m / cond.agg_m)
0.6 0.6

scipy.stats Continuous Random Variables

All scipy.stats continuous random variable classes can be used as severity distributions, see scipy.stats Severity
Distributions for a complete list. As always, with great power comes great responsibility.

Warning: The user must determine if a severity distribution is appropriate, aggregate will not check! Only
specified zero parameter (uniform, exponential, normal) and two parameter () distributions are allowed, but all
one parameter distributions will work. However, any zero parameter distribution can be called with a dummy
argument, that is ignored. Be careful out there!

2.4. The Dec Language 69

aggregate Documentation, Release 0.22.0

2.4.5 The Frequency Clause

The exposure and severity clauses determine the expected claim count. The frequency clause specifies the other
particulars of the claim count distribution. As with severity, the syntax is different for non-parametric and parametric
distributions.

Non-Parametric Frequency Distributions

An exposure clause:

dfreq [outcomes] <[probabilities]>

directly specifies the frequency distribution. The outcomes and probabilities are specified as in Non-
Parametric Severity Distributions. There is no need for a frequency clause at the end.
Examples.

agg A dfreq [1 2 3] [.5 3/8 1/8] sev lognorm 50 cv 1.75
agg A dfreq [1 2 3] [.5 3/8 1/8] dsev [1:11]

The first specifies a frequency distribution with outcomes 1, 2, or 3 occurring with probabilities 0.5, 0.375, and 0.125
respectively. Probabilities can be entered as decimals or fractions. The second combines a non-parametric frequency
and severity.

Parametric Frequency Distributions

The following parametric frequency distributions are supported. Remember that the exposure clause determines the
expected claim count.

• poisson, no additional parameters required.
• geometric, no additional parameters required.
• fixed, no additional parameters required, expected claim count must be an integer.
• bernoulli, no additional parameters required; expected claim count must be ≤ 1.
• binomial SHAPE, the shape parameter sets p and n = E[N]/p.
• neyman SHAPE (or neymana or neymanA), the Neyman A Poisson-compound Poisson. The shape vari-
able gives the average number of claimants per claim. See JKK and Consul and Shenton [1973].

• pascal SHAPE1 SHAPE2 (the generalized Poisson-Pascal, see REF), where SHAPE1 gives the cv and
SHAPE2 the number of claims per occurrence.

Example.

agg A 100 claims sev lognorm 50 cv 0.75 poisson
agg A 100 claims sev lognorm 50 cv 0.75 mixed gamma 0.2

specifies a Poisson frequency. and negative binomial frequency respectively. For the latter, frequency CV equals (1
+ .2**2 * 100) ** .5 / 10 = 0.22361.

70 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Mixed-Poisson Frequency Distributions

AG-mixed Poisson frequency (seeMixed Frequency Distributions), whereG has expectation 1, can be specified using
the mixed keyword, followed by the name and shape parameters of the mixing distribution:

mixed DIST_NAME SHAPE1 <SHAPE2>

SHAPE1 specifies cv of the mixing distribution. The following mixing distributions are supported:
• gamma SHAPE1 is a gamma-Poisson, i.e., negative binomial. Since the mix mean (shape times scale) equals
one αβ = 1 and hence the mix variance equals c := α = (cv)−2, which is sometimes called the contagion.
The negative binomial variance equals n(1 + cn).

• delaporte SHAPE1 SHAPE2, a shifted gamma and the second parameter equals the proportion of certain
claims (which determines a minimum claim count).

• ig SHAPE1 the inverse Gaussian distribution
• sig SHAPE1 SHAPE2 the shifted inverse Gaussian, parameter 2 as for Delaporte.
• beta SHAPE1 a beta-Poisson with mean 1 and cv SHAPE1. Use with caution.
• sichel SHAPE1 SHAPE2 is Sichel’s (generalized inverse Gaussian) distribution with SHAPE2 equal to λ.

– sichel.gamma SHAPE1 is the same as Delaporte
– sichel.ig SHAPE1 is the same as a shifted inverse Gaussian.

Example.

agg A 100 claims sev lognorm 50 cv 0.75 mixed gamma 0.2

specifies a negative binomial (gamma-mixed Poisson) frequency respectively. The variance equals 100× (1+0.22×
100) and the CV equals (1 + .2**2 * 100) ** .5 / 10 = 0.22361.

Warning: Fixed frequency will accept non-integer input, but will not return a distribution (it will have negative
probabilities). Be careful!

Zero Modification and Zero Truncation

Todo: Not yet implemented.

2.4.6 Mixed Severity Distributions

Prerequisites: Examples use build and qd, and basic Aggregate output.
The variables in the severity clause (scale, location, distribution ID, shape parameters, mean and CV) can be vectors
to create a mixed severity distribution. All elements are broadcast against one-another.
Example:

sev lognorm 1000 cv [0.75 1.0 1.25 1.5 2] wts [0.4, 0.2, 0.1, 0.1, 0.1]

expresses a mixture of five lognormals, each with a mean of 1000 and CVs equal to 0.75, 1.0, 1.25, 1.5, and 2, and
with weights 0.4, 0.2, 0.1, 0.1, 0.1. Equal weights are expressed as wts=5, or the relevant number of components
(note equals sign). A missing weights clause is interpreted as giving each severity weight 1 which results in five times
the total loss. Commas in the lists are optional.

2.4. The Dec Language 71

aggregate Documentation, Release 0.22.0

Warning: Weights are applied to exposure, and their meaning depends on how exposure is entered.

If exposure is given by claim count, then the weights apply to claim count. This gives the usual mixture of severity
curves. However, if exposure is entered as loss or premium times a loss ratio, then the weights give the proportion
of expected loss, not the claim count. Make sure the weights are appropriate to the way exposure is expressed.
For example, if the mixture is used to split small and large claims, then an 80/20 split small/large claim counts may
well correspond to a 20/80 split of expected losses (Pareto rule of thumb).
Example.
This example illustrates the different behaviors of wts. The weights adjust claim counts for each mixture component
when exposures are given by claims.

In [1]: from aggregate import build, qd

In [2]: a01 = build('agg DecL:01 '
...: '100 claims '
...: '5000 xs 0 '
...: 'sev lognorm [10 20 50 75 100] '
...: 'cv [0.75 1.0 1.25 1.5 2] '
...: 'wts [0.4, 0.25, 0.15, 0.1, 0.1] '
...: 'poisson'
...: , bs=1/2, approximation='exact')
...:

In [3]: qd(a01)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 100 0.1 0.1
Sev 33.978 33.978 2.5414e-09 2.3807 2.3807 15.161 15.161
Agg 3397.8 3397.8 2.5414e-09 0.25822 0.25822 1.2927 1.2927
log2 = 16, bandwidth = 1/2, validation: not unreasonable.

Mixed severity with Poisson frequency is the same as the sum of five independent components. The report_df
shows the mixture details.

In [4]: qd(a01.report_df.iloc[:, :-3])

view 0 1 2 3 4 independent
statistic
name DecL:01 DecL:01 DecL:01 DecL:01 DecL:01 DecL:01
limit 5000 5000 5000 5000 5000 5000
attachment 0 0 0 0 0 0
el 400 500 750 749.93 997.86 3397.8
freq_m 40 25 15 10 10 100
freq_cv 0.15811 0.2 0.2582 0.31623 0.31623 0.1
freq_skew 0.15811 0.2 0.2582 0.31623 0.31623 0.1
sev_m 10 20 50 74.993 99.786 33.978
sev_cv 0.75 1 1.2498 1.4942 1.9175 2.3807
sev_skew 2.6719 4 5.6619 7.1636 8.3826 15.161
agg_m 400 500 750 749.93 997.86 3397.8
agg_cv 0.19764 0.28284 0.41329 0.56857 0.68386 0.25822
agg_skew 0.30882 0.56568 1.054 1.7191 2.224 1.2927

This aggregate can also be built as a Portfolio.

In [5]: a02 = build(
...: 'port DecL:02 '
...: 'agg Unit1 40 loss 5000 xs 0 sev lognorm 10 cv 0.75 poisson '
...: 'agg Unit2 25 loss 5000 xs 0 sev lognorm 20 cv 1.00 poisson '

(continues on next page)

72 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
...: 'agg Unit3 15 loss 5000 xs 0 sev lognorm 50 cv 1.25 poisson '
...: 'agg Unit4 10 loss 5000 xs 0 sev lognorm 75 cv 1.50 poisson '
...: 'agg Unit5 10 loss 5000 xs 0 sev lognorm 100 cv 2.00 poisson '
...: , bs=1/2, approximation='exact')
...:

In [6]: qd(a02)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
Unit1 Freq 4 0.5 0.5

Sev 10 10 8.9604e-09 0.75 0.75014 2.6719 2.6704
Agg 40 40 8.9606e-09 0.625 0.62504 0.97656 0.97653

Unit2 Freq 1.25 0.89443 0.89443
Sev 20 20 -9.7705e-09 1 1 4 3.9997
Agg 25 25 -9.7705e-09 1.2649 1.2649 2.5298 2.5298

Unit3 Freq 0.3 1.8257 1.8257
Sev 50 50 -1.0074e-09 1.2498 1.2498 5.6619 5.6618
Agg 15 15 -1.0074e-09 2.9224 2.9224 7.4526 7.4526

Unit4 Freq 0.13335 2.7385 2.7385
Sev 74.993 74.993 -4.0382e-10 1.4942 1.4942 7.1636 7.1635
Agg 10 10 -4.0383e-10 4.9237 4.9237 14.887 14.887

Unit5 Freq 0.10021 3.1589 3.1589
Sev 99.786 99.786 1.1018e-08 1.9175 1.9175 8.3826 8.3826
Agg 10 10 1.1019e-08 6.8313 6.8313 22.216 22.216

total Freq 5.7836 0.41582 0.41582
Sev 17.29 17.29 2.0519e-09 2.2699 26
Agg 100 100 2.031e-09 1.0314 1.0314 8.7339 8.7338

log2 = 16, bandwidth = 1/2, validation: not unreasonable.

Actual frequency equals total frequency times weight. Setting wts=5 results in equal weights, here 0.2.

In [7]: a03 = build('agg DecL:03 '
...: '100 claims '
...: '5000 xs 0 '
...: 'sev lognorm [10 20 50 75 100] '
...: 'cv [0.75 1.0 1.25 1.5 2] '
...: ' wts=5 '
...: 'poisson'
...: , bs=1/2, approximation='exact')
...:

In [8]: qd(a03)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 100 0.1 0.1
Sev 50.956 50.956 3.5836e-09 2.1341 2.1341 11.891 11.891
Agg 5095.6 5095.6 3.5835e-09 0.23568 0.23568 0.99494 0.99494
log2 = 16, bandwidth = 1/2, validation: not unreasonable.

Missing weights are set to 1, resulting in five times loss. This behavior is generally not what you want!

In [9]: a04 = build('agg DecL:04 '
...: '100 claims '
...: '5000 xs 0 '
...: 'sev lognorm [10 20 50 75 100] '
...: 'cv [0.75 1.0 1.25 1.5 2] '
...: 'poisson'
...: , bs=1, approximation='exact')
...:

(continues on next page)

2.4. The Dec Language 73

aggregate Documentation, Release 0.22.0

(continued from previous page)

In [10]: qd(a04)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 500 0.044721 0.044721
Sev 50.956 50.956 -2.2323e-08 2.1341 2.1341 11.891 11.891
Agg 25478 25478 -2.2323e-08 0.1054 0.1054 0.44495 0.44495
log2 = 16, bandwidth = 1, validation: not unreasonable.

If exposures are determined via losses (directly or using premium and loss ratio or exposure and rate), then the weights
apply to expected loss. The resulting mixture is quite different.

In [11]: a01e = build('agg DecL:01e '
....: f'{a01.agg_m} loss '
....: '5000 xs 0 '
....: 'sev lognorm [10 20 50 60 70] '
....: 'cv [0.75 1.0 1.25 1.5 2] '
....: 'wts [0.4, 0.25, 0.15, 0.1, 0.1] '
....: 'poisson'
....: , bs=1/2, approximation='exact')
....:

In [12]: qd(a01e)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 115.2 0.093168 0.093168
Sev 29.493 29.493 1.1694e-08 2.1101 2.1101 14.661 14.661
Agg 3397.8 3397.8 1.1694e-08 0.21755 0.21755 1.113 1.113
log2 = 16, bandwidth = 1/2, validation: not unreasonable.

In [13]: qd(a01e.report_df.iloc[:, :-3])

view 0 1 2 3 4 independent
statistic
name DecL:01e DecL:01e DecL:01e DecL:01e DecL:01e DecL:01e
limit 5000 5000 5000 5000 5000 5000
attachment 0 0 0 0 0 0
el 460.82 576.02 864.03 691.2 805.71 3397.8
freq_m 46.082 28.801 17.281 11.52 11.52 115.2
freq_cv 0.14731 0.18634 0.24056 0.29462 0.29462 0.093168
freq_skew 0.14731 0.18634 0.24056 0.29462 0.29462 0.093168
sev_m 10 20 50 59.997 69.938 29.493
sev_cv 0.75 1 1.2498 1.4968 1.9523 2.1101
sev_skew 2.6719 4 5.6619 7.3823 9.6027 14.661
agg_m 460.82 576.02 864.03 691.2 805.71 3397.8
agg_cv 0.18414 0.26352 0.38505 0.53034 0.64624 0.21755
agg_skew 0.28772 0.52703 0.98195 1.6404 2.3418 1.113

74 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Mixed Exponential Distributions

The mixed exponential distribution (MED) is used by major US rating bureaus to model severity and compute in-
creased limits factors (ILFs). This example explains how to create a MED in aggregate. The distribution is
initially created as an Aggregate object with a degenerate frequency identically equal to 1 claim to focus on the
severity. We then explain how frequency mixing interacts with a mixed severity.
The next table of exponential means and weights appears on slide 24 of Li Zhu, Introduction to Increased Limits
Factors, 2011 RPM Basic Ratemaking Workshop,, titled a “Sample of Actual Fitted Distribution”. At the time, it
was a reasonable curve for US commercial auto. We will use these means and weights.

Mean Weight
2, 763 0.824796

24, 548 0.159065
275, 654 0.014444

1, 917, 469 0.001624
10, 000, 000 0.000071

Here the DecL to create this mixture.

In [14]: med = build('agg Decl:MED '
....: '1 claim '
....: 'sev [2.764e3 24.548e3 275.654e3 1.917469e6 10e6] * '
....: 'expon 1 '
....: 'wts [0.824796 0.159065 0.014444 0.001624, 0.000071] '
....: 'fixed')
....:

In [15]: qd(med)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 13990 13798 -0.013708 12.034 12.203 103.79 103.76
Agg 13990 13798 -0.013708 12.034 12.203 103.79 103.76
log2 = 16, bandwidth = 4000, validation: fails sev mean, agg mean.

Note: Currently, it is necessary to enter a dummy shape parameter 1 for the exponential, even though it does not
take a shape. This is a known bug in the parser.

The exponential distribution is surprisingly thick-tailed. It can be regarded as the dividing line between thin and thick
tailed distributions. In order to achieve good accuracy, the modeling increases the number of buckets to 218 (i.e.,
log2=18) and uses a bucket size bs=500. The dataframe report_df is a more detailed version of the audit
dataframe that includes information from statistics_df about each severity component. (The reported claim
counts are equal to the weights and cannot be interpreted as fixed frequencies. They can be regarded as frequencies
for a Poisson or mixed Poisson.)

In [16]: med.update(log2=18, bs=500)

In [17]: qd(med)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 13990 13987 -0.00022819 12.034 12.037 103.79 103.72
Agg 13990 13987 -0.00022819 12.034 12.037 103.79 103.72
log2 = 18, bandwidth = 500, validation: fails sev mean, agg mean.

The middle diagnostic plot, the log density, shows the mixture components.

2.4. The Dec Language 75

https://www.casact.org/sites/default/files/presentation/rpm_2011_handouts_ws1-zhu.pdf
https://www.casact.org/sites/default/files/presentation/rpm_2011_handouts_ws1-zhu.pdf

aggregate Documentation, Release 0.22.0

In [18]: med.plot()

The density_df dataframe includes a column lev. From this we can pull out ILFs. Zhu reports the ILF at 1M
equals 1.52.

In [19]: qd(med.density_df.loc[1000000, 'lev'] / med.density_df.loc[100000, 'lev'])
1.5204

Here is a graph of the ILFs by limit.

In [20]: base = med.density_df.loc[100000, 'lev']

In [21]: ax = (med.density_df.lev / base).plot(xlim=[-100000,10.1e6], ylim=[0.9, 1.
↪→85],

....: figsize=(3.5, 2.45))

....:

In [22]: ax.set(xlabel='Limit', ylabel='ILF', title='Pure loss ILFs relative to␣
↪→100K base');

Saving to the Knowledge

We can save the MED severity in the knowledge and then refer to it by name.

In [23]: build('sev COMMAUTO [2.764e3 24.548e3 275.654e3 1.917469e6 10e6] * '
....: ' expon 1 wts [0.824796 0.159065 0.014444 0.001624, 0.000071]');
....:

In [24]: a05 = build('agg DecL:05 [20 8 4 2] claims [1e6, 2e6 5e6 10e6] xs 0 '
....: 'sev sev.COMMAUTO fixed',
....: log2=18, bs=500)
....:

In [25]: qd(a05)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 34 0
Sev 11973 11970 -0.00026506 6.328 6.3298 31.665 31.665

(continues on next page)

76 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
Agg 4.0708e+05 4.0697e+05 -0.00026506 1.0852 1.0855 5.4306 5.4305
log2 = 18, bandwidth = 500, validation: fails sev mean, agg mean.

Different Distributions

The kind of distribution can vary across mixtures. In the following, exposure varies for each curve, rather than using
weights, see Vectorization: Limit Profiles and Mixed Severity.

In [26]: a06 = build('agg DecL:06 [100 200] claims '
....: '5000 xs 0 '
....: 'sev [gamma lognorm] [100 150] cv [1 0.5] '
....: 'mixed gamma 0.5',
....: log2=16, bs=2.5)
....:

In [27]: qd(a06.report_df.iloc[:, :-2])

view 0 1 independent mixed
statistic
name DecL:06 DecL:06 DecL:06 DecL:06
limit 5000 5000 5000 5000
attachment 0 0 0 0
el 10000 30000 40000 40000
freq_m 100 200 300 300
freq_cv 0.5099 0.50498 0.37712 0.50332
freq_skew 1.0002 1 0.80295 1
sev_m 100 150 133.33 133.33
sev_cv 1 0.5 0.65551 0.65551
sev_skew 2 1.625 1.4508 1.4508
agg_m 10000 30000 40000 40000
agg_cv 0.51962 0.50621 0.40127 0.50474
agg_skew 1.0022 1.0002 0.88112 1.0001

In [28]: a06.plot()

Using a Delaporte (shifted) gamma mixing often produces more realistic output than a gamma, avoiding very good
years.

In [29]: a07 = build('agg DecL:07 [100 200] claims '
....: '5000 xs 0 '
....: 'sev [gamma lognorm] [100 150] cv [1 0.5] '
....: 'mixed delaporte 0.5 0.6',
....: log2=18, bs=2.5)
....:

In [30]: qd(a07.report_df.iloc[:, :-2])

view 0 1 independent mixed
statistic

(continues on next page)

2.4. The Dec Language 77

aggregate Documentation, Release 0.22.0

(continued from previous page)
name DecL:07 DecL:07 DecL:07 DecL:07
limit 5000 5000 5000 5000
attachment 0 0 0 0
el 10000 30000 40000 40000
freq_m 100 200 300 300
freq_cv 0.5099 0.50498 0.37712 0.50332
freq_skew 2.4145 2.4561 1.9682 2.4705
sev_m 100 150 133.33 133.33
sev_cv 1 0.5 0.65551 0.65551
sev_skew 2 1.625 1.4508 1.4508
agg_m 10000 30000 40000 40000
agg_cv 0.51962 0.50621 0.40127 0.50474
agg_skew 2.3386 2.4456 2.1507 2.4582

In [31]: a07.plot()

Severity Mixtures and Mixed Frequency

All severity components in an aggregate share the same frequency mixing value, inducing correlation between the
parts. An Aon study, Aon Benfield [2015], shows that commercial auto has parameter uncertainty CV around 25%.
Building with

In [32]: a08 = build('agg DecL:08 '
....: '500 claims '
....: '500000 xs 0 sev sev.COMMAUTO '
....: 'poisson'
....: , approximation='exact')
....:

In [33]: a09 = build('agg DecL:09 '
....: '500 claims '
....: '500000 xs 0 sev sev.COMMAUTO '
....: 'mixed gamma 0.25'
....: , approximation='exact')
....:

In [34]: qd(a08)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 500 0.044721 0.044721
Sev 10266 10266 -4.9496e-05 3.9519 3.9522 9.4914 9.4913
Agg 5.1332e+06 5.1329e+06 -4.9496e-05 0.18231 0.18232 0.41833 0.41833
log2 = 16, bandwidth = 200, validation: not unreasonable.

In [35]: qd(a09)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

(continues on next page)

78 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
Freq 500 0.25397 0.50006
Sev 10266 10264 -0.0001979 3.9519 3.9528 9.4914 9.491
Agg 5.1332e+06 5.1321e+06 -0.0001979 0.30941 0.30943 0.55969 0.5597
log2 = 16, bandwidth = 400, validation: fails sev mean, agg mean.

The effect of shared mixing is shown in report_df. In order to focus on the mixing and ease the computational
burden, apply a 500,000 policy limit to model a self-insured retention. Assume a claim count of 500 claims; for
smaller portfolios the impact of mixing is less pronounced because idiosyncratic process risk dominates.
The independent column in report_df shows statitics assuming the mixture components are independent;
mixed includes the effect of shared mixing variables.
The next block shows results with a Poisson frequency, where there is nomixing. The independent andmixed columns
are identical.

In [36]: qd(a08.report_df.drop(['name']).iloc[:, :-2])

view 0 1 2 3 4 independent ␣
↪→mixed
statistic ␣
↪→

limit 5e+05 5e+05 5e+05 5e+05 5e+05 5e+05 ␣
↪→5e+05
attachment 0 0 0 0 0 0 ␣
↪→ 0
el 1.1399e+06 1.9524e+06 1.6662e+06 3.5738e+05 17314 5.1332e+06 5.
↪→1332e+06
freq_m 412.4 79.532 7.222 0.812 0.0355 500 ␣
↪→ 500
freq_cv 0.049243 0.11213 0.37211 1.1097 5.3074 0.044721 0.
↪→044721
freq_skew 0.049243 0.11213 0.37211 1.1097 5.3074 0.044721 0.
↪→044721
sev_m 2764 24548 2.3072e+05 4.4013e+05 4.8771e+05 10266 ␣
↪→10266
sev_cv 1 1 0.73847 0.29449 0.12909 3.9519 ␣
↪→3.9519
sev_skew 2 2 0.39392 -2.071 -5.6054 9.4914 ␣
↪→9.4914
agg_m 1.1399e+06 1.9524e+06 1.6662e+06 3.5738e+05 17314 5.1332e+06 5.
↪→1332e+06
agg_cv 0.06964 0.15858 0.46257 1.1569 5.3515 0.18231 0.
↪→18231
agg_skew 0.10446 0.23787 0.54133 1.1826 5.3739 0.41833 0.
↪→41833

This block shows mixed gamma (negative binomial) frequency. There are two differences: the individual components
have higher CVs (they asymptotically approach 25% for a large portfolio), and the mixed column includes correlation
between units (aggregate CV is greater than independent). GlennMeyers had the idea of using sharedmixing variables
to ensure aggregate portfolio dynamics are not influenced by how the portfolio is split into units.

In [37]: qd(a09.report_df.drop(['name']).iloc[:, :-2])

view 0 1 2 3 4 independent ␣
↪→mixed
statistic ␣
↪→

limit 5e+05 5e+05 5e+05 5e+05 5e+05 5e+05 ␣
↪→5e+05
attachment 0 0 0 0 0 0 ␣
↪→ 0

(continues on next page)

2.4. The Dec Language 79

aggregate Documentation, Release 0.22.0

(continued from previous page)
el 1.1399e+06 1.9524e+06 1.6662e+06 3.5738e+05 17314 5.1332e+06 5.
↪→1332e+06
freq_m 412.4 79.532 7.222 0.812 0.0355 500 ␣
↪→ 500
freq_cv 0.2548 0.274 0.44829 1.1376 5.3133 0.21474 0.
↪→25397
freq_skew 0.50009 0.5021 0.58771 1.1925 5.3251 0.473 0.
↪→50006
sev_m 2764 24548 2.3072e+05 4.4013e+05 4.8771e+05 10266 ␣
↪→10266
sev_cv 1 1 0.73847 0.29449 0.12909 3.9519 ␣
↪→3.9519
sev_skew 2 2 0.39392 -2.071 -5.6054 9.4914 ␣
↪→9.4914
agg_m 1.1399e+06 1.9524e+06 1.6662e+06 3.5738e+05 17314 5.1332e+06 5.
↪→1332e+06
agg_cv 0.25952 0.29605 0.52581 1.1836 5.3573 0.22858 0.
↪→30941
agg_skew 0.50102 0.51935 0.6983 1.2604 5.3913 0.42255 0.
↪→55969

2.4.7 Limit Profiles

Prerequisites: Examples use build and qd, and basic Aggregate output.
All exposure variables can be vectors. This feature makes it easy to express a limit profile. All exposure related
elements (claim count, premium, loss, loss ratio) are broadcast against one-another.
Example:

agg Eg1 \
[1000 2000 4000 1000] premium at 0.65 lr \
[1000 2000 5000 4000] xs [0 0 0 1000] \
sev lognorm 500 cv 1.25 \
mixed gamma 0.6

expresses a limit profile with 1000 of premium at 1000 xs 0; 2000 at 2000 xs 0, 4000 at 5000 xs 0, and 1000 at 4000
xs 1000. In this case all the loss ratios are the same, but they could vary too.
A (mixed) compound Poisson aggregate with a mixed severity is a sum of aggregates, with themixture weights applied
to the expected claim count. This is analogous to the fact that exp(a+ b) = exp(a) exp(b). In terms of a compound
Poisson,

CP(λ,
∑

wiFi) =d

∑
i

CP(wiλ, Fi)

where =d indcates the two sides have the same distribution. For Poisson frequency, the components on the right are
independent; for mixed frequencies they are not.
In this case, we have selected a mixed frequency, using a gamma CV 0.6 mixing distribution. All of the limits
share the same mixing variable. The effect of this is shown in the report_df, comparing the independent and
mixed columns. The former adds the mixture components independently whereas the latter uses the common mixing
variable. The increase in aggregate CV is quite marked.

In [1]: from aggregate import build, qd

In [2]: a10 = build('agg DecL:10 '
...: '[1000 2000 4000 1000] premium at 0.65 lr '
...: '[1000 2000 5000 4000] xs [0 0 0 1000] '
...: 'sev lognorm 500 cv 1.25 '

(continues on next page)

80 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
...: 'mixed gamma 0.6')
...:

In [3]: qd(a10)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 10.473 0.67489 1.2083
Sev 496.51 496.51 -8.8063e-09 1.1061 1.1061 3.1179 3.1179
Agg 5200 5200 -8.9414e-09 0.75651 0.75651 1.3155 1.3155
log2 = 16, bandwidth = 1, validation: not unreasonable.

In [4]: qd(a10.report_df.iloc[:, :-2])

view 0 1 2 3 independent mixed
statistic
name DecL:10 DecL:10 DecL:10 DecL:10 DecL:10 DecL:10
limit 1000 2000 5000 4000 3518.1 3518.1
attachment 0 0 0 1000 83.724 83.724
el 650 1300 2600 650 5200 5200
freq_m 1.5833 2.77 5.243 0.87685 10.473 10.473
freq_cv 0.99579 0.84913 0.74211 1.2249 0.47078 0.67489
freq_skew 1.3573 1.2731 1.2272 1.5188 0.80136 1.2083
sev_m 410.54 469.32 495.9 741.29 496.51 496.51
sev_cv 0.74534 0.96384 1.1639 1.1443 1.1061 1.1061
sev_skew 0.77863 1.8007 3.4165 2.019 3.1179 3.1179
agg_m 650 1300 2600 650 5200 5200
agg_cv 1.1587 1.0278 0.89949 1.7302 0.5797 0.75651
agg_skew 1.6154 1.5795 1.5449 2.5962 1.019 1.3155

2.4.8 Vectorization: Limit Profiles and Mixed Severity

Prerequisites: Examples use build and qd, and basic Aggregate output.

Using a Limit Profile with a Mixed Severity

Limit Profiles and Mixed Severity Distributions can be combined. Each mixed severity is applied to each limit profile
component.
sub-components.
Example.
This example combines three limit bands and a severity with two mixture components. It creates an aggregate with
six severities. The report_df dataframe shows the components (transposed extract shown). The mixture weights
apply to claim counts, since exposure is specified by number of expected claims.

In [1]: from aggregate import build, qd

In [2]: a11 = build('agg DecL:11 '
...: '[10 20 30] claims '
...: '[100 200 75] xs [0 50 75] '
...: 'sev lognorm 100 cv [1 2] wts [0.6 0.4] '
...: 'poisson')
...:

In [3]: qd(a11)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)

(continues on next page)

2.4. The Dec Language 81

aggregate Documentation, Release 0.22.0

(continued from previous page)
X
Freq 60 0.1291 0.1291
Sev 60.65 60.65 -8.3258e-08 0.76525 0.76525 1.2624 1.2624
Agg 3639 3639 -8.3262e-08 0.16256 0.16256 0.21483 0.21483
log2 = 16, bandwidth = 1/8, validation: not unreasonable.

In [4]: qd(a11.report_df.loc[['limit', 'attachment', 'freq_m',
...: 'agg_m', 'agg_cv']].T.iloc[:-4])
...:

statistic limit attachment freq_m agg_m agg_cv
view
0 100 0 6 406.32 0.44721
1 100 0 4 210.35 0.6055
2 200 50 13.618 984.54 0.35857
3 200 50 6.3822 552.26 0.51379
4 75 75 20.23 969.19 0.25552
5 75 75 9.7703 516.34 0.35838

Example.
We can combine the mixed exponential from Mixed Exponential Distributions with a limits profile.

In [5]: from aggregate import build, qd

In [6]: a12 = build('agg DecL:12 [20 8 4 2] claims [1e6, 2e6 5e6 10e6] xs 0 '
...: 'sev [2.764e3 24.548e3 275.654e3 1.917469e6 10e6] * '
...: 'expon 1 wts [0.824796 0.159065 0.014444 0.001624, 0.

↪→000071] fixed',
...: log2=18, bs=500)
...:

In [7]: qd(a12)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 34 0
Sev 11973 11970 -0.00026506 6.328 6.3298 31.665 31.665
Agg 4.0708e+05 4.0697e+05 -0.00026506 1.0852 1.0855 5.4306 5.4305
log2 = 18, bandwidth = 500, validation: fails sev mean, agg mean.

The report_df shows all 20 components: 4 limits x 5 mixture components.

In [8]: qd(a12.report_df.loc[['limit', 'attachment', 'freq_m',
...: 'agg_m', 'agg_cv']].T.iloc[:-4])
...:

statistic limit attachment freq_m agg_m agg_cv
view
0 1e+06 0 16.496 45595 0.24621
1 1e+06 0 3.1813 78095 0.56066
2 1e+06 0 0.28888 77515 1.7165
3 1e+06 0 0.03248 25309 2.3031
4 1e+06 0 0.00142 1351.3 4.8442
5 2e+06 0 6.5984 18238 0.3893
6 2e+06 0 1.2725 31238 0.88648
7 2e+06 0 0.11555 31830 2.9287
8 2e+06 0 0.012992 16133 5.082
9 2e+06 0 0.000568 1029.6 10.827
10 5e+06 0 3.2992 9118.9 0.55055
11 5e+06 0 0.63626 15619 1.2537

(continues on next page)

82 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
12 5e+06 0 0.057776 15926 4.1603
13 5e+06 0 0.006496 11538 10.463
14 5e+06 0 0.000284 1117.5 24.125
15 1e+07 0 1.6496 4559.5 0.7786
16 1e+07 0 0.31813 7809.5 1.773
17 1e+07 0 0.028888 7963.1 5.8836
18 1e+07 0 0.003248 6194.1 17.135
19 1e+07 0 0.000142 897.61 47.664

Circumventing Products: Modeling Multiple Units in One Aggregate

When severity weights sum to one, the severity is treated as a mixture and all exposure terms are broadcast against
all severity terms in an outer product.
When severity weights are missing or sum to the number of severity components (e.g., are all equal to 1) the result is
an item by item combination, circumventing the outer product. There are two cases when this alternative is useful:

1. Two or more units each with a different severity, but with a shared mixing variable. For example, to model two
units with expected losses 100 and 200, one with a gamma mean 10 CV 1 severity and the other lognormal
mean 15 CV 1.5 and both share a gamma mixing variable:

agg MixedPremReserve \
[100 200] claims \
sev [gamma lognorm] [10 15] cv [1 1.5] \
mixed gamma 0.4

The result should be the two-way combination, not the four-way exposure and severity product.
2. Exposures with different limits may have different severity curves. Again, the limit profile and severity curves

should all be broadcast together at once, rather than broadcasting limits and severities separately and then taking
the outer product:

agg Eg4 \
[10 10 10] claims \
[1000 2000 5000] xs 0 \
sev lognorm [50 100 150] cv [0.1 0.15 0.2] \
poisson

Example.
The next two examples illustrate the different behavior.

1. Two units with different limits and severities and no weights. report_df shows only two components mod-
eled.

In [9]: a13 = build('agg DecL:13 '
...: '[10 20] claims '
...: '[1000 2000] xs 0 '
...: 'sev [gamma lognorm] [10 15] cv [1 1.5] '
...: 'mixed gamma 0.4 ')
...:

In [10]: qd(a13)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 30 0.4397 0.80358
Sev 13.333 13.333 -4.0697e-07 1.4543 1.4543 8.255 8.255
Agg 400 400 -4.0707e-07 0.51365 0.51365 1.014 1.014
log2 = 16, bandwidth = 1/16, validation: not unreasonable.

(continues on next page)

2.4. The Dec Language 83

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [11]: qd(a13.report_df.loc[['limit', 'attachment', 'freq_m',

....: 'agg_m', 'agg_cv']].T.iloc[:-4])

....:

statistic limit attachment freq_m agg_m agg_cv
view
0 1000 0 10 100 0.6
1 2000 0 20 300 0.56778

1. Adding weights results in a mixed severity, 80% for the gamma and 20% for lognormal. Now report_df
shows that each limit band is combined with each severity, resulting in four modeled components.

In [12]: a14 = build('agg DecL:14 '
....: '[10 20] claims '
....: '[1000 2000] xs 0 '
....: 'sev [gamma lognorm] [10 15] cv [1 1.5] '
....: 'wts [.8 .2] '
....: 'mixed gamma 0.4 ')
....:

In [13]: qd(a14)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 30 0.4397 0.80358
Sev 11 11 -2.9593e-07 1.2362 1.2362 7.7928 7.7928
Agg 330 330 -2.1305e-06 0.49424 0.49422 0.94603 0.94464
log2 = 16, bandwidth = 1/32, validation: not unreasonable.

In [14]: qd(a14.report_df.loc[['limit', 'attachment', 'freq_m',
....: 'agg_m', 'agg_cv']].T.iloc[:-4])
....:

statistic limit attachment freq_m agg_m agg_cv
view
0 1000 0 8 80 0.64031
1 1000 0 2 29.997 1.3328
2 2000 0 16 160 0.53385
3 2000 0 4 60 0.98584

2.4.9 The Reinsurance Clauses

Prerequisites: Excess of loss reinsurance terminology.
Occurrence and aggregate reinsurance can be specified in a way similar to limits and deductibles. Both clauses are
optional. The ceded or net position can be output. Layers can be stacked and can include co-participations.
The options for both clauses are:

• Keywords ceded to or net of determine which losses flow out of the reinsurance.
• A fraction po limit xs attachment describes a partial placement, e.g., 0.5 so 3 xs 2.
• A participation so limit xs attachment describes a partial placement by the ceded limit, e.g., 1 po 3 xs
2. This syntax is equivalent to 0.333 so 3 xs 2.

An unlimited cover is denoted inf. Shares of unlimited covers must be expressed as shares, for obvious reasons.
Layers can be stacked using the and keyword. The initial net of or ceded to applies to all layers in the tower.
The occurrence reinsurance clause comes after severity but before frequency, because you need to know severity but
not frequency. The aggregate clause comes after frequency. If frequency is specified using dfreq the occurrence
clause comes before the aggregate clause.

84 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

The syntax is best illustrated with some examples.
Examples.

1. Occurrence reinsurance:

agg Trucking \
5000 loss 1000 xs 0 \
sev lognorm 50 cv 1.75 \
occurrence net of 750 xs 250 \
poisson

specifies the distribution of losses to the net position on the Trucking policy after a per occurrence cession
of the 750 xs 250 layer. This net position can also be written using limits and attachments rather than
reinsurance:

agg Trucking \
?? loss \
250 xs 0 \
sev lognorm 50 1.75 \
poisson

for some level of losses. Running:

agg Trucking \
5000 loss 1000 xs 0 \
sev lognorm 50 cv 1.75 \
occurrence ceded to 750 xs 250 \
poisson

models ceded losses.
2. Aggregate reinsurance:

agg WorkComp \
15000 loss \
500 xs 0 \
sev lognorm 50 cv 1.75 \
poisson \
aggregate ceded to 50% so 2000 xs 15000

specifies the distribution of losses ceded to an aggregate protection for the 2000 xs 15000 layer of total
losses (attaching at the loss pick), with occurrences limited to 500. The underlying business could be
an SIR on a large account Workers Compensation policy, and the aggregate is a part of the insurance
charge (Table L, M).

3. Occurrence and aggregate reinsurance:

agg Trucking 5000 \
loss 1000 xs 0 \
sev lognorm 50 cv 1.75 \
occurrence net of 50% so 250 xs 250 and 500 xs 500 \
poisson \
aggregate net of 250 po 1000 xs 4000 and 5000 xs 5000

applies two occurrence and two aggregate layers to the Trucking portfolio. The 250 xs 250 occurrence
layer is only 50% placed (so stands for share of), and the second is 100% (by default) of 500 xs 500.
The net of the occurrence programs flows through to aggregate layers, 250 part of 1000 xs 4000 (25%
placement, po stands for part of), and 100% share of the 5000 xs 5000 aggregate layers. The modeled
outcome is net of all four layers. In this case, it is not possible to write the net of occurrence using limits
and attachments.

2.4. The Dec Language 85

aggregate Documentation, Release 0.22.0

Note: All occurrence reinsurance assumes free and unlimited reinstatements.

Layering Losses in a Tower

Underwriters are often interested in layering out losses from ground-up to the policy limit. For example, a 5M limit
may be layered as 250 xs 0, 250 xs 250, 500 xs 500, 1000 xs 1000, and 3000 xs 2000. A tower can be input manually:

occurrence ceded to 250 xs 0 and 250 xs 250 and 500 xs 500 \
and 1000 xs 1000 and 3000 xs 2000

There is also a shorthand for layering, since it is quite common. A layering can be entered by specifying just the layer
break points using the tower keyword:

occurrence ceded to tower [0 250 500 1000 2000 5000]

The tower does not have to start at 0 and does not have to exhaust the entire policy limit. Towers can be applied to
occurrence and aggregate reinsurance.
See reinsurance pricing for more examples, including an approach to reinstatements.

2.4.10 The Note Clause

An optional note (comment) on the distribution can be added at the end, as the last clause. The note can include hints
for computation. The text is enclosed in braces.

note{US Prems Ops, light hazard severity; for ABC account; recommend:- log2:16, bs:
↪→1/32}

Notes cannot include a line break.

2.4.11 The tweedie Keyword

Prerequisites: Tweedie distribution from GLMs. Use of build.
See also: ../../5_technical_guides/5_x_tweedie.
The aggregate language keyword tweedie makes it easy to build Tweedie distributions. It uses reproductive
parameters µ, p, σ2 (mean, power, and dispersion), since these are most natural for GLM modeling.
Example.
The keyword is used as follows to produce Tw1.05(2, 5), mean 2, p = 1.05, and dispersion 5.

In [1]: from aggregate import build, qd, mv

In [2]: a15 = build('agg DecL:15 tweedie 2 1.05 5')

In [3]: qd(a15)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.40671 1.568 1.568
Sev 4.9175 4.9175 -2.3315e-15 0.22942 0.22942 0.45883 0.45883
Agg 2 2 -2.2204e-15 1.6088 1.6088 1.6892 1.6892
log2 = 16, bandwidth = 1/512, validation: not unreasonable.

In [4]: mv(a15)
mean = 2

(continues on next page)

86 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
variance = 10.35265
std dev = 3.21755

In [5]: print(f'Expected variance = disp x mean ** p = {2**1.05 * 5:.5f}')
Expected variance = disp x mean ** p = 10.35265

Inspecting the (non-trivial parts of the) specification shows the parser converts it into the additive form:

In [6]: {k: v for k,v in a15.spec.items()
...: if v!=0 and v is not None and v!=''}
...:

Out[6]:
{'name': 'DecL:15',
'exp_en': 0.4067100332315139,
'exp_limit': inf,
'sev_name': 'gamma',
'sev_a': 18.999999999999982,
'sev_scale': 0.2588162309603446,
'sev_wt': 1,
'sev_ub': inf,
'sev_conditional': True,
'freq_name': 'poisson',
'freq_p0': nan,
'note': 'Tw(p=1.05, μ=2.0, σ^2=5.0) --> CP(λ= 0.40671, ga(α=19, β=0.25881623),␣
↪→scale=0.25881623'}

The note shows the compound Poisson specification.
The helper function tweedie_convert translates between parameterizations. The scale (dispersion) parameter
σ2 has offsetting effects: higher σ2 results in a lower claim count, a higher gammamean, and a more skewed aggregate
distribution with a bigger mass at zero.
Example.
The code below shows the three Tweedie representations, starting with the easiest to interpret.

In [7]: from aggregate import tweedie_convert

In [8]: import pandas as pd

In [9]: p = 1.005; μ = 1; σ2 = 0.1; \
...: m0 = tweedie_convert(p=p, μ=μ, σ2=σ2); \
...: λ = μ**(2-p) / ((2-p) * σ2); \
...: α = (2 - p) / (p - 1); \
...: β = μ / (λ * α); \
...: tw_cv = σ2**.5 * μ**(p/2-1); \
...: sev_m = α * β; \
...: sev_cv = α**-0.5; \
...: m1 = tweedie_convert(λ=λ, m=sev_m, cv=sev_cv); \
...: m2 = tweedie_convert(λ=λ, α=α, β=β);
...:

In [10]: assert np.allclose(m0, m1, m2)

In [11]: temp = pd.concat((m0, m1, m2), axis=1); \
....: temp.columns = ['mean p disp', 'lambda sev m cv', 'lambda shape scale'];
....:

In [12]: with pd.option_context('display.float_format', lambda x: f'{x:.12g}'):
....: print(temp)
....:

mean p disp lambda sev m cv lambda shape scale

(continues on next page)

2.4. The Dec Language 87

aggregate Documentation, Release 0.22.0

(continued from previous page)
μ 1 1 1
p 1.005 1.005 1.005
σ^2 0.1 0.1 0.1
λ 10.0502512563 10.0502512563 10.0502512563
α 199 199 199
β 0.0005 0.0005 0.0005
tw_cv 0.316227766017 0.316227766017 0.316227766017
sev_m 0.0995 0.0995 0.0995
sev_cv 0.0708881205008 0.0708881205008 0.0708881205008
p0 4.31748997327e-05 4.31748997327e-05 4.31748997327e-05

Three different ways of specifying the same Tweedie distribution.

In [13]: program = f'''
....: agg DecL:16 {λ} claims sev gamma {sev_m:.8g} cv {sev_cv} poisson
....: agg DecL:17 {λ} claims sev {β:.4g} * gamma {α:.4g} poisson
....: agg DecL:18 tweedie {μ} {p} {σ2}
....: '''
....:

In [14]: tweedies = build(program)

In [15]: for a in tweedies:
....: print(a.program)
....: qd(a.object.describe)
....: print()
....:

agg DecL:16 10.050251256281404 claims sev gamma 0.0995 cv 0.07088812050083283␣
↪→poisson

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Est␣
↪→Skew(X)
X ␣
↪→

Freq 10.05 NaN NaN 0.31544 NaN NaN 0.31544 ␣
↪→NaN
Sev 0.0995 0.0995 -8.2379e-14 0.070888 0.070888 3.12e-06 0.14178 0.
↪→14177
Agg 1 1 -1.1036e-13 0.31623 0.31623 1.5599e-08 0.31781 0.
↪→31781

agg DecL:17 10.050251256281404 claims sev 0.0005 * gamma 199 poisson

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Est␣
↪→Skew(X)
X ␣
↪→

Freq 10.05 NaN NaN 0.31544 NaN NaN 0.31544 ␣
↪→NaN
Sev 0.0995 0.0995 -1.0825e-13 0.070888 0.070888 3.12e-06 0.14178 0.
↪→14177
Agg 1 1 -1.3756e-13 0.31623 0.31623 1.5599e-08 0.31781 0.
↪→31781

agg DecL:18 tweedie 1 1.005 0.1

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Est␣
↪→Skew(X)
X ␣
↪→

Freq 10.05 NaN NaN 0.31544 NaN NaN 0.31544 ␣

(continues on next page)

88 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
↪→NaN
Sev 0.0995 0.0995 -8.6597e-14 0.070888 0.070888 3.12e-06 0.14178 0.
↪→14177
Agg 1 1 -1.148e-13 0.31623 0.31623 1.5599e-08 0.31781 0.
↪→31781

Convert from reproductive form:

In [16]: tweedie_convert(p=1.05, μ=2, σ2=5)
Out[16]:
μ 2.000000
p 1.050000
σ^2 5.000000
λ 0.406710
α 19.000000
β 0.258816
tw_cv 1.608777
sev_m 4.917508
sev_cv 0.229416
p0 0.665837
dtype: float64

Convert from additive form:

In [17]: tweedie_convert(λ=0.406710033, m=4.917508388, cv=0.229415734)
Out[17]:
μ 2.000000
p 1.050000
σ^2 5.000000
λ 0.406710
α 19.000000
β 0.258816
tw_cv 1.608777
sev_m 4.917508
sev_cv 0.229416
p0 0.665837
dtype: float64

Build a Tweedie using reproductive parameters, p, mu, sigma2.

In [18]: a19 = build('agg DecL:19 tweedie 2 1.05 5')

In [19]: a19.plot()

In [20]: qd(a19)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.40671 1.568 1.568
Sev 4.9175 4.9175 -2.3315e-15 0.22942 0.22942 0.45883 0.45883
Agg 2 2 -2.2204e-15 1.6088 1.6088 1.6892 1.6892
log2 = 16, bandwidth = 1/512, validation: not unreasonable.

In [21]: print(a19.spec)
{'name': 'DecL:19', 'exp_el': 0, 'exp_premium': 0, 'exp_lr': 0, 'exp_en': 0.
↪→4067100332315139, 'exp_attachment': None, 'exp_limit': inf, 'sev_name': 'gamma',
↪→'sev_a': 18.999999999999982, 'sev_b': 0, 'sev_mean': 0, 'sev_cv': 0, 'sev_loc':␣
↪→0, 'sev_scale': 0.2588162309603446, 'sev_xs': None, 'sev_ps': None, 'sev_wt': 1,
↪→'sev_lb': 0, 'sev_ub': inf, 'sev_conditional': True, 'sev_pick_attachments':␣
↪→None, 'sev_pick_losses': None, 'occ_reins': None, 'occ_kind': '', 'freq_name':
↪→'poisson', 'freq_a': 0, 'freq_b': 0, 'freq_zm': False, 'freq_p0': nan, 'agg_reins

(continues on next page)

2.4. The Dec Language 89

aggregate Documentation, Release 0.22.0

(continued from previous page)
↪→': None, 'agg_kind': '', 'note': 'Tw(p=1.05, μ=2.0, σ^2=5.0) --> CP(λ= 0.40671,␣
↪→ga(α=19, β=0.25881623), scale=0.25881623'}

In [22]: print(a19.cdf(0), np.exp(-.40671))
0.6658372329829731 0.6658372551097528

Example.
When p is close to 1, the Tweedie approaches a Poisson. Here mean = 10 and sigma2 = 1, so the distribution is not
over-dispersed. The gamma severity has mean 1 and a very small CV; it acts like degenerate distribution at 1.

In [23]: a20 = build('agg DecL:20 tweedie 10 1.0001 1')

In [24]: a20.plot()

In [25]: qd(a20)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 9.9987 0.31625 0.31625
Sev 1.0001 1.0001 1.9973e-11 0.010001 0.010004 0.019989 0.019977
Agg 10 10 1.997e-11 0.31626 0.31626 0.3163 0.3163
log2 = 16, bandwidth = 1/1024, validation: not unreasonable.

In [26]: tweedie_convert(p=1.0001, μ=10, σ2=1)
Out[26]:
μ 10.000000
p 1.000100
σ^2 1.000000
λ 9.998698
α 9999.000000
β 0.000100
tw_cv 0.316264
sev_m 1.000130
sev_cv 0.010001
p0 0.000045
dtype: float64

Example.
When p is close to 2, the Tweedie approaches a Gamma. Here mean = 10, and sigma2=0.04. The variance equals
sigma2 mu^2, so CV = sigma = 0.2

90 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [27]: a21 = build('agg DecL:21 tweedie 10 1.999 0.04', log2=16, bs=1/256)

In [28]: a21.plot()

In [29]: qd(a21)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 25058 0.0063173 0.0063173
Sev 0.00039908 0.00039773 -0.0033706 31.607 31.715 63.214 63.21
Agg 10 9.9663 -0.0033706 0.19977 0.20045 0.39934 0.39932
log2 = 16, bandwidth = 1/256, validation: fails sev mean, agg mean.

Build the same distribution explicitly from gamma severities. Here the gamma is built using mean and CV or shape
and scale.

In [30]: tc = tweedie_convert(p=1.9999, μ=10, σ2=.04)

In [31]: print(tc)
μ 10.000000
p 1.999900
σ^2 0.040000
λ 250057.571255
α 0.000100
β 0.399868
tw_cv 0.199977
sev_m 0.000040
sev_cv 99.995000
p0 0.000000
dtype: float64

In [32]: m, cv = tc['μ'], tc['tw_cv']

In [33]: print(m, cv)
10.0 0.19997697547449372

In [34]: g = build(f'sev g gamma {m} cv {cv}')

In [35]: sh = cv ** -2; sc = m / sh

In [36]: print(sc, sh)
0.39990790719926267 25.005757125520617

In [37]: g2 = build(f'sev g2 {sc} * gamma {sh}')

In [38]: print(g2.stats(), g.stats())
(9.999999999999968, 3.999079071994487) (10.000000000000108, 3.999079071991673)

2.4. The Dec Language 91

aggregate Documentation, Release 0.22.0

Analytic Error Analysis

There is a series expansion for the pdf of a Tweedie computed by conditioning on the number of claims and using
that a convolution of gammas with the same scale parameter is again gamma. For a Tweedie with expected frequency
λ, gamma shape α and scale β, it is given by

f(x) =
∑
n≥1

e−λλ
n

n!

xnα−1e−x/β

Γ(nα)βnα

for x > 0 and f(x) = exp(−λ). The exact function shows the FFT method is very accurate.

In [39]: from aggregate import tweedie_convert, build, qd

In [40]: from scipy.special import loggamma

In [41]: import matplotlib.pyplot as plt

In [42]: import numpy as np

In [43]: from pandas import option_context

In [44]: a = build('agg Tw tweedie 10 1.01 1')

In [45]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 9.8711 0.31829 0.31829
Sev 1.0131 1.0131 -1.9318e-14 0.1005 0.1005 0.20101 0.20101
Agg 10 10 -2.2427e-14 0.31989 0.31989 0.32309 0.32309
log2 = 16, bandwidth = 1/1024, validation: not unreasonable.

In [46]: a.plot()

A Tweedie with p close to 1 approximates a Poisson. Its gamma severity is very peaked around its mean (high α and
offsetting small β).
The next function provides a transparent, if inefficient, implementation of the Tweedie density.

In [47]: def tweedie_density(x, mean, p, disp):
....: pars = tweedie_convert(p=p, μ=mean, σ2=disp)
....: λ = pars['λ']
....: α = pars['α']
....: β = pars['β']
....: if x == 0:
....: return np.exp(-λ)
....: logl = np.log(λ)
....: logx = np.log(x)
....: logb = np.log(β)
....: logbase = -λ
....: log_term = 100
....: const = -λ - x / β

(continues on next page)

92 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: ans = 0.0
....: for n in range(1, 2000): #while log_term > -20:
....: log_term = (const +
....: + n * logl +
....: + (n * α - 1) * logx +
....: - loggamma(n+1) +
....: - loggamma(n * α) +
....: - n * α * logb)
....: ans += np.exp(log_term)
....: if n > 20 and log_term < -227:
....: break
....: return ans
....:

The following graphs show that the FFT approximation is excellent, across a wide range, just as its good moment-
matching performance suggests it would be.

In [48]: bit = a.density_df.loc[5:a.q(0.99):256, ['p']]

In [49]: bit['exact'] = [tweedie_density(i, 10, 1.01, 1) for i in bit.index]

In [50]: bit['p'] /= a.bs

In [51]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
↪→layout=True, squeeze=True)

In [52]: ax0, ax1 = axs.flat

In [53]: bit.plot(ax=ax0);

In [54]: ax0.set(ylabel='density');

In [55]: bit['err'] = bit.p / bit.exact - 1

In [56]: bit.err.plot(ax=ax1);

In [57]: ax1.set(ylabel='relative error', ylim=[-1e-5, 1e-5]);

2.4.12 Summary of Objects Created by DecL

Objects created by build() in the DecL guide.

In [1]: from aggregate import build, pprint_ex

In [2]: for n, r in build.qlist('^DecL:').iterrows():
...: pprint_ex(r.program, split=20)
...:

2.4. The Dec Language 93

aggregate Documentation, Release 0.22.0

2.5 Individual Risk Pricing

Objectives: Applications of the Aggregate class to individual risk pricing, including LEVs, ILFs, layering, and
the insurance charge and savings (Table L, M), illustrated using problems from CAS Part 8.
Audience: Individual risk large account pricing, broker, or risk retention actuary.
Prerequisites: DecL, underwriting and insurance terminology, aggregate distributions, risk measures.
See also: Reinsurance Pricing, The Reinsurance Clauses. For other related examples see Published Problems and
Examples, especially Bahnemann Monograph. ir stop loss for theoretical background.
Contents:

1. Helpful References

2. Insurance Charge and Insurance Savings in Aggregate

3. Summary of Objects Created by DecL

The examples in this section are illustrative. aggregate gives the gross, ceded, and net distributions and with those
in hand, it is possible to answer any reasonable question about a large account program.

2.5.1 Helpful References

• Fisher et al. [2019]
• Bahnemann [2015]
• Other CAS Part 8 readings.

2.5.2 Insurance Charge and Insurance Savings in Aggregate

Creating a custom table of insurance charges and savings, varying with account size, specific occurrence limit, and
entry ratio (aggregate limit) is very easy using aggregate. We will make a custom function to illustrate one
solution.
First, we need a severity curve. This step is very important, and would be customized to the state and hazard group
distribution of expected losses. We use a simple mixture of a lognormal for small claims and a Pareto for large claims,
with a mean of about 25 (work in 000s). Create it as an object in the knowledge using build(). The parameters
are selected judgmentally.

In [1]: from aggregate import build, qd

In [2]: mu, sigma, shape, scale, wt = \
...: -0.204573975, 1.409431871, 1.633490596, 57.96737143, 0.742942461
...:

In [3]: mean = wt * np.exp(mu + sigma**2 / 2) + (1 - wt) * scale / (shape - 1)

In [4]: build(f'sev IR:WC '
...: f'[exp({mu}) {scale}] * [lognorm pareto] [{sigma} {shape}] '
...: f'+ [0 {-scale}] wts [{wt} {1-wt}]');
...:

In [5]: print(f'Mean = {mean:.1f} in 000s')
Mean = 25.2 in 000s

Second, we will build the model for a large account with 350 expected claims and an occurrence limit of 100M. This
model is used to set the update parameters. Assume a gamma mixed Poisson frequency distribution with a mixing
CV of 25% throughout. The CV could be an input parameter in a production application.

94 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [6]: a01 = build('agg IR:Base '
...: '350 claims '
...: '100000 xs 0 '
...: 'sev sev.IR:WC '
...: 'mixed gamma 0.25 ',
...: update=False)
...:

In [7]: qd(a01)

E[X] CV(X) Skew(X)
X
Freq 350 0.25565 0.50012
Sev 24.947 10.172 177.37
Agg 8731.6 0.6008 7.3319
log2 = 0, bandwidth = na, validation: n/a, not updated.

In [8]: qd(a01.statistics.loc['sev', [0, 1, 'mixed']])

name 0 1 mixed
measure
ex1 2.2005 90.69 24.947
ex2 35.299 2.5281e+05 65013
ex3 4127.8 1.1293e+10 2.9029e+09
mean 2.2005 90.69 24.947
cv 2.508 5.4532 10.172
skew 23.299 92.803 177.37

Look at the aggregate_error_analysis to pick bs (see Estimating and Testing bs For Aggregate Objects).
Use an expanded number of buckets log2=19 because the mixture includes small mean lognormal and large mean
Pareto components (some trial and error not shown).

In [9]: err_anal = a01.aggregate_error_analysis(19)

In [10]: qd(err_anal, sparsify=False)

view agg est abs rel rel rel
stat m m m m h total
bs
0.0625 8731.6 8552.1 -179.54 -0.020562 0.0012526 -0.021815
0.1250 8731.6 8647.1 -84.529 -0.0096808 0.0025053 -0.012186
0.2500 8731.6 8731.1 -0.5447 -6.2382e-05 0.0050105 -0.0050729
0.5000 8731.6 8728.8 -2.798 -0.00032045 0.010021 -0.010342
1.0000 8731.6 8719.9 -11.715 -0.0013417 0.020042 -0.021384
2.0000 8731.6 8694.4 -37.172 -0.0042572 0.040084 -0.044341
4.0000 8731.6 8639.2 -92.465 -0.01059 0.080168 -0.090758

Select bs=1/4 as the most accurate from the displayed range (`` (‘rel’, ‘m’)``). Update and plot. The plot shows the
impact of the occurrence limit in the extreme right tail.

In [11]: a01.update(approximation='exact', log2=19, bs=1/4, normalize=False)

In [12]: qd(a01)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 350 0.25565 0.50012
Sev 24.947 24.946 -5.5033e-05 10.172 10.172 177.37 177.37
Agg 8731.6 8731.1 -6.2382e-05 0.6008 0.60063 7.3319 7.3121
log2 = 19, bandwidth = 1/4, validation: not unreasonable.

In [13]: a01.plot()

2.5. Individual Risk Pricing 95

aggregate Documentation, Release 0.22.0

Third, create a custom function of account size and the occurrence limit, to produce the Aggregate object and a
small table of insurance savings and charges. Account size is measured by the expected ground-up claim count. It
should be clear how to extend this function to include custom severity, different mixing CVs, or produce factors for
different entry ratios. The answer is returned in a namedtuple.

In [14]: from collections import namedtuple

In [15]: def make_table(claims=360, occ_limit=100000):
....: """
....: Make a table of insurance charges and savings by entry ratio for
....: specified account size (expected claim count) and specific
....: occurrence limit.
....: """
....: a01 = build(f'agg IR:{claims}:{occ_limit} '
....: f'{claims} claims '
....: f'{occ_limit} xs 0 '
....: 'sev sev.IR:WC '
....: 'mixed gamma 0.25 '
....: , approximation='exact', log2=19, bs=1/4, normalize=False)
....: er_table = np.linspace(.1, 2., 20)
....: df = a01.density_df
....: ix = df.index.get_indexer(er_table * a01.est_m, method='nearest')
....: df = a01.density_df.iloc[ix][['loss', 'F', 'S', 'e', 'lev']]
....: df['er'] = er_table
....: df['charge'] = (df.e - df.lev) / a01.est_m
....: df['savings'] = (df.loss - df.lev) / a01.est_m
....: df['entry'] = df.loss / a01.est_m
....: df = df.set_index('entry')
....: df = df.drop(columns=['e', 'er'])
....: df.index = [f"{x:.2f}" for x in df.index]
....: df.index.name = 'r'
....: Table = namedtuple('Table', ['ob', 'table_df'])
....: return Table(a01, df)
....:

Finally, apply the new function to create some tables.
1. A small account with 25 expected claims, about 621K limited losses, and a low 50K occurrence limit. The

output shows the usual describe diagnostics for the underlying Aggregate object, followed by a small
Table across different entry ratios. The Table is indexed by entry ratio(aggregate attachment as a proportion
of limited losses) and shows loss the aggregate limit loss level in currency units; the cdf and sf at that loss
level (the latter giving the probability the aggregate layer attaches); the limited expected value at the entry ratio
lev; and the insurance charge(1 - lev / loss) and savings (r - lev / loss).

In [16]: tl = make_table(25, 50)

In [17]: fc = lambda x: f'{x:,.1f}' if abs(x) > 10 else f'{x:.3f}'

In [18]: qd(tl.ob)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

(continues on next page)

96 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
Freq 25 0.32016 0.51537
Sev 9.2527 9.2513 -0.00014797 1.7107 1.711 1.8407 1.8405
Agg 231.32 231.28 -0.00014797 0.46857 0.46862 0.65759 0.65759
log2 = 19, bandwidth = 1/4, validation: fails sev mean, agg mean.

In [19]: qd(tl.table_df, float_format=fc, col_space=8)

loss F S lev charge savings
r
0.10 23.2 0.005 0.995 23.2 0.900 0.000
0.20 46.2 0.017 0.983 46.0 0.801 0.001
0.30 69.5 0.041 0.959 68.6 0.703 0.004
0.40 92.5 0.081 0.919 90.2 0.610 0.010
0.50 115.8 0.135 0.865 111.0 0.520 0.021
0.60 138.8 0.205 0.795 130.1 0.438 0.037
0.70 162.0 0.284 0.716 147.7 0.361 0.062
0.80 185.0 0.370 0.630 163.2 0.294 0.094
0.90 208.2 0.459 0.541 176.8 0.236 0.136
1.00 231.2 0.544 0.456 188.3 0.186 0.186
1.10 254.5 0.625 0.375 197.9 0.144 0.245
1.20 277.5 0.696 0.304 205.7 0.110 0.310
1.30 300.8 0.760 0.240 212.0 0.083 0.384
1.40 323.8 0.813 0.187 216.9 0.062 0.462
1.50 347.0 0.857 0.143 220.8 0.045 0.546
1.60 370.0 0.892 0.108 223.7 0.033 0.633
1.70 393.2 0.920 0.080 225.8 0.024 0.724
1.80 416.2 0.941 0.059 227.4 0.017 0.816
1.90 439.5 0.958 0.042 228.6 0.012 0.912
2.00 462.5 0.970 0.030 229.4 0.008 1.008

2. The impact of increasing the occurrence limit to 250K:

In [20]: tl2 = make_table(25, 250)

In [21]: qd(tl2.ob)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 25 0.32016 0.51537
Sev 16.989 16.988 -8.0799e-05 2.5894 2.5897 3.852 3.852
Agg 424.73 424.69 -8.0799e-05 0.60885 0.60889 0.91444 0.91445
log2 = 19, bandwidth = 1/4, validation: not unreasonable.

In [22]: qd(tl2.table_df, float_format=fc, col_space=8)

loss F S lev charge savings
r
0.10 42.5 0.015 0.985 42.3 0.900 0.001
0.20 85.0 0.052 0.948 83.4 0.804 0.004
0.30 127.5 0.104 0.896 122.7 0.711 0.011
0.40 170.0 0.164 0.836 159.5 0.624 0.025
0.50 212.2 0.227 0.773 193.5 0.544 0.044
0.60 254.8 0.291 0.709 225.0 0.470 0.070
0.70 297.2 0.358 0.642 253.7 0.403 0.102
0.80 339.8 0.428 0.572 279.6 0.342 0.142
0.90 382.2 0.497 0.503 302.4 0.288 0.188
1.00 424.8 0.562 0.438 322.4 0.241 0.241
1.10 467.2 0.622 0.378 339.7 0.200 0.300
1.20 509.8 0.677 0.323 354.6 0.165 0.365
1.30 552.0 0.726 0.274 367.2 0.135 0.435
1.40 594.5 0.770 0.230 377.9 0.110 0.510

(continues on next page)

2.5. Individual Risk Pricing 97

aggregate Documentation, Release 0.22.0

(continued from previous page)
1.50 637.0 0.808 0.192 386.9 0.089 0.589
1.60 679.5 0.842 0.158 394.3 0.072 0.672
1.70 722.0 0.870 0.130 400.4 0.057 0.757
1.80 764.5 0.894 0.106 405.4 0.046 0.846
1.90 807.0 0.915 0.085 409.4 0.036 0.936
2.00 849.5 0.931 0.069 412.7 0.028 1.029

3. The impact of increasing the account size to 250 expected claims, still at 250K occurrence limit:

In [23]: tl3 = make_table(250, 250)

In [24]: qd(tl3.ob)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 250 0.25788 0.50024
Sev 16.989 16.988 -8.0799e-05 2.5894 2.5897 3.852 3.852
Agg 4247.3 4246.9 -8.0799e-05 0.30548 0.30549 0.52614 0.52615
log2 = 19, bandwidth = 1/4, validation: not unreasonable.

In [25]: qd(tl3.table_df, float_format=fc, col_space=8)

loss F S lev charge savings
r
0.10 424.8 0.000 1.000 424.7 0.900 0.000
0.20 849.5 0.000 1.000 849.5 0.800 0.000
0.30 1,274.0 0.001 0.999 1,273.7 0.700 0.000
0.40 1,698.8 0.009 0.991 1,696.7 0.600 0.000
0.50 2,123.5 0.031 0.969 2,113.8 0.502 0.002
0.60 2,548.2 0.080 0.920 2,516.2 0.408 0.008
0.70 2,972.8 0.161 0.839 2,890.8 0.319 0.019
0.80 3,397.5 0.272 0.728 3,224.5 0.241 0.041
0.90 3,822.2 0.402 0.598 3,506.5 0.174 0.074
1.00 4,247.0 0.535 0.465 3,732.1 0.121 0.121
1.10 4,671.8 0.657 0.343 3,903.0 0.081 0.181
1.20 5,096.2 0.760 0.240 4,025.9 0.052 0.252
1.30 5,521.0 0.840 0.160 4,110.1 0.032 0.332
1.40 5,945.8 0.898 0.102 4,165.1 0.019 0.419
1.50 6,370.5 0.937 0.063 4,199.6 0.011 0.511
1.60 6,795.0 0.963 0.037 4,220.4 0.006 0.606
1.70 7,219.8 0.979 0.021 4,232.5 0.003 0.703
1.80 7,644.5 0.988 0.012 4,239.3 0.002 0.802
1.90 8,069.2 0.994 0.006 4,243.0 0.001 0.901
2.00 8,494.0 0.997 0.003 4,244.9 0.000 1.000

4. Finally, increase the occurrence limit to 10M:

In [26]: tl4 = make_table(250, 10000)

In [27]: qd(tl4.ob)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 250 0.25788 0.50024
Sev 24.26 24.258 -5.6594e-05 6.2915 6.2918 33.759 33.759
Agg 6064.9 6064.6 -5.6594e-05 0.47416 0.47418 1.6385 1.6386
log2 = 19, bandwidth = 1/4, validation: not unreasonable.

In [28]: qd(tl4.table_df, float_format=fc, col_space=8)

loss F S lev charge savings

(continues on next page)

98 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
r
0.10 606.5 0.000 1.000 606.5 0.900 0.000
0.20 1,213.0 0.001 0.999 1,212.9 0.800 0.000
0.30 1,819.2 0.008 0.992 1,817.1 0.700 0.000
0.40 2,425.8 0.033 0.967 2,412.5 0.602 0.002
0.50 3,032.2 0.086 0.914 2,984.7 0.508 0.008
0.60 3,638.8 0.168 0.832 3,515.7 0.420 0.020
0.70 4,245.2 0.272 0.728 3,989.4 0.342 0.042
0.80 4,851.8 0.385 0.615 4,396.7 0.275 0.075
0.90 5,458.0 0.496 0.504 4,735.5 0.219 0.119
1.00 6,064.5 0.595 0.405 5,010.4 0.174 0.174
1.10 6,671.0 0.680 0.320 5,229.3 0.138 0.238
1.20 7,277.5 0.750 0.250 5,401.4 0.109 0.309
1.30 7,884.0 0.805 0.195 5,535.8 0.087 0.387
1.40 8,490.5 0.847 0.153 5,640.8 0.070 0.470
1.50 9,096.8 0.880 0.120 5,723.1 0.056 0.556
1.60 9,703.2 0.905 0.095 5,788.1 0.046 0.646
1.70 10,309.8 0.924 0.076 5,839.8 0.037 0.737
1.80 10,916.2 0.938 0.062 5,881.6 0.030 0.830
1.90 11,522.8 0.949 0.051 5,915.7 0.025 0.925
2.00 12,129.0 0.958 0.042 5,943.8 0.020 1.020

These Tables all behave as expected. The insurance charge decreases with increasing expected losses (claim count)
and decreasing occurrence limit.

2.5.3 Summary of Objects Created by DecL

Objects created by build() in this guide.

In [29]: from aggregate import pprint_ex

In [30]: for n, r in build.qlist('^IR:').iterrows():
....: pprint_ex(r.program, split=20)
....:

2.6 Reinsurance Pricing

Objectives: Applications of the Aggregate class to reinsurance exposure rating, including swings and slides,
aggregate stop loss and swing rated programs, illustrated using problems from CAS Parts 8 and 9.
Audience: Reinsurance pricing, broker, or ceded re actuary.
Prerequisites: DecL, underwriting and reinsurance terminology, aggregate distributions, risk measures.
See also: The Reinsurance Clauses, Individual Risk Pricing. For other related examples see Published Problems and
Examples, especially Bahnemann Monograph.
Contents:

1. Helpful references

2. Basic examples

3. Modes of reinsurance analysis

4. Reinsurance Functions

5. Casualty exposure rating

6. Property exposure rating

7. Variable features

2.6. Reinsurance Pricing 99

aggregate Documentation, Release 0.22.0

8. Inwards analysis of Bear and Nemlick variable features

• Aggregate deductible

• Aggregate limit

• Loss corridor

• Retro rated program

• Profit share

• Sliding scale commission

9. Outwards analysis

10. Adjusting layer loss picks

11. Summary of Objects Created by DecL

2.6.1 Helpful References

• General reinsurance: Strain [1997], Carter [2013], Albrecher et al. [2017], Parodi [2015]
• Clark [2014], CAS Part 8 reading
• General reinsurance pricing: Bear and Nemlick [1990], Mata et al. [2002]
• Property rating: Bernegger [1997], Ludwig [1991]
• Mildenhall and Major [2022] chapter 19

2.6.2 Basic Examples

Here are some basic examples. They are not realistic, but it is easy to see what is going on. The subsequent sections
add realism. The basic example gross loss is a “die roll of dice rolls”: roll a die, then roll that many dice and sum,
see Student. The outcome is between 1 (probability 1/36) and 36 (probability 1/6**7), as confirmed by this output.

In [1]: import pandas as pd

In [2]: from aggregate import build, qd

In [3]: a01 = build('agg Re:01 '
...: 'dfreq [1 2 3 4 5 6] '
...: 'dsev [1 2 3 4 5 6] ')
...:

In [4]: a01.plot()

In [5]: qd(a01)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3.5 0.48795 0
Sev 3.5 3.5 0 0.48795 0.48795 0 2.8529e-15
Agg 12.25 12.25 1.5543e-15 0.55328 0.55328 0.28689 0.28689
log2 = 7, bandwidth = 1, validation: not unreasonable.

In [6]: print(f'Pr D = 1: {a01.pmf(1) : 11.6g} = {a01.pmf(1) * 36:.0f} / 36\n'
...: f'Pr D = 36: {a01.pmf(36):8.6g} = {a01.pmf(36) * 6**7:.0f} / 6**7')
...:

Pr D = 1: 0.0277778 = 1 / 36
Pr D = 36: 3.57225e-06 = 1 / 6**7

100 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

An occurrence excess of loss reinsurance layer is specified between the severity and frequency clauses because you
need to know severity but not frequency. Multiple layers can be applied at once. This example enters 2 xs 4 as two
layers:

occurrence net of 1 xs 4 and 1 xs 5

Requesting net of propagates losses net of the cover through to the aggregate.

In [7]: a02 = build('agg Re:02 '
...: 'dfreq [1:6] '
...: 'dsev [1:6] '
...: 'occurrence net of 1 xs 4 and 1 xs 5')
...:

In [8]: a02.plot()

In [9]: qd(a02)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3.5 0.48795 0
Sev 3.5 3 -0.14286 0.48795 0.3849 0 -0.64952
Agg 12.25 10.5 -0.14286 0.55328 0.52955 0.28689 0.18324
log2 = 7, bandwidth = 1, validation: n/a, reinsurance.

[1:6] is shorthand for [1,2,3,4,5,6]. The net severity equals 3 = (1 + 2 + 3 + 4 + 4 + 4) / 6.
The reinsurance_audit_df dataframe shows unconditional (per ground up claim) severity statistics by layer.
Multiply by the claim count a02.n to get layer loss picks. The severity, ex, equals (1 + 2) / 6 = 0.5 (first block).
The expected loss to the layer equals 0.5 * 3.5 = 1.75 (second block).

In [10]: qd(a02.reinsurance_audit_df['ceded'])

ex var sd cv skew
kind share limit attach
occ 1.0 1.0 4.0 0.33333 0.22222 0.4714 1.4142 0.70711

5.0 0.16667 0.13889 0.37268 2.2361 1.7889
all inf gup 0.5 0.58333 0.76376 1.5275 1.1223

In [11]: qd(a02.reinsurance_audit_df['ceded'], sparsify=False)

ex var sd cv skew

(continues on next page)

2.6. Reinsurance Pricing 101

aggregate Documentation, Release 0.22.0

(continued from previous page)
kind share limit attach
occ 1.0 1.0 4.0 0.33333 0.22222 0.4714 1.4142 0.70711
occ 1.0 1.0 5.0 0.16667 0.13889 0.37268 2.2361 1.7889
occ all inf gup 0.5 0.58333 0.76376 1.5275 1.1223

In [12]: qd(a02.reinsurance_audit_df['ceded'][['ex']] * a02.n)

ex
kind share limit attach
occ 1.0 1.0 4.0 1.1667

5.0 0.58333
all inf gup 1.75

The reinsurance_occ_layer_df shows conditional layer expected loss and CV of loss, along with expected
counts by layer and layer severity. The expected count to 1 xs 4 equals 3.5 / 3, because there is a 1/3 chance the layer
attaches.

In [13]: qd(a02.reinsurance_occ_layer_df, sparsify=False)

stat ex ex ex cv cv cv en severity ␣
↪→ pct
view ceded net subject ceded net subject ceded ceded ␣
↪→ ceded
share limit attach ␣
↪→

1.0 1.0 4.0 1.1667 11.083 12.25 1.4142 0.42433 0.48795 1.1667 1␣
↪→0.095238
1.0 1.0 5.0 0.58333 11.667 12.25 2.2361 0.44721 0.48795 0.58333 1␣
↪→0.047619
all inf gup 1.75 10.5 12.25 1.5275 0.3849 0.48795 3.5 0.5 ␣
↪→0.14286

An aggregate excess of loss reinsurance layer, 12 xs 24, is specified after the frequency clause (you need to know
frequency):

aggregate ceded to 12 xs 34.

Requesting ceded to propagates the ceded losses through to the aggregate. Refer to agg.Re:01 by name as
a shorthand. reinsurance_audit_df reports expected loss to the aggregate layer. The layer is shown in two
parts to illustrate reporting.

In [14]: a03 = build('agg Re:03 agg.Re:01 '
....: 'aggregate ceded to 6 xs 24 and 6 xs 30')
....:

In [15]: a03.plot()

In [16]: qd(a03)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3.5 0.48795 0
Sev 3.5 3.5 0 0.48795 0.48795 0 2.8529e-15
Agg 12.25 0.10661 -0.9913 0.55328 5.9383 0.28689 7.6018
log2 = 7, bandwidth = 1, validation: n/a, reinsurance.

In [17]: qd(a03.reinsurance_audit_df.stack(0))

ex var sd cv skew
kind share limit attach
agg 1.0 6.0 24.0 ceded 0.10378 0.36108 0.6009 5.7901 6.9432

(continues on next page)

102 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
net 12.146 43.082 6.5637 0.54039 0.15351
subject 12.25 45.938 6.7777 0.55328 0.28689

30.0 ceded 0.0028292 0.0063577 0.079735 28.183 35.705
net 12.247 45.831 6.7698 0.55277 0.27937
subject 12.25 45.938 6.7777 0.55328 0.28689

all inf gup ceded 0.10661 0.4008 0.63309 5.9383 7.6018
net 12.143 43.009 6.5581 0.54005 0.1501
subject 12.25 45.938 6.7777 0.55328 0.28689

Occurrence and aggregate programs can both be applied. The ceded to and net of clauses can be mixed. You
cannot refer to agg.Re:01 by name because you need to see into the object to apply the occurrence reinsurance.

In [18]: a04 = build('agg Re:04 dfreq [1:6] dsev [1:6] '
....: 'occurrence net of 1 xs 4 and 1 xs 5 '
....: 'aggregate net of 4 xs 12 and 4 xs 16')
....:

In [19]: a04.plot()

In [20]: qd(a04)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3.5 0.48795 0
Sev 3.5 3 -0.14286 0.48795 0.3849 0 -0.64952
Agg 12.25 8.8731 -0.27566 0.55328 0.41047 0.28689 -0.61588
log2 = 7, bandwidth = 1, validation: n/a, reinsurance.

In [21]: qd(a04.reinsurance_audit_df['ceded'])

ex var sd cv skew
kind share limit attach
occ 1.0 1.0 4.0 0.33333 0.22222 0.4714 1.4142 0.70711

5.0 0.16667 0.13889 0.37268 2.2361 1.7889
all inf gup 0.5 0.58333 0.76376 1.5275 1.1223

agg 1.0 4.0 12.0 1.186 2.8219 1.6798 1.4164 0.88095
16.0 0.44087 1.1991 1.095 2.4838 2.4346

all inf gup 1.6269 6.5022 2.5499 1.5674 1.3628

Layers can be specified as a share of or part of to account for coinsurance (partial placement) of the layer:
• 0.5 so 2 xs 2, read 50% share of 2 xs 2, or

2.6. Reinsurance Pricing 103

aggregate Documentation, Release 0.22.0

• 1 po 4 xs 10, read 1 part of 4 xs 10.

Warning: aggregate works with discrete distributions. All outcomes are multiples of the bucket size, bs.
Any cession is rounded to a multiple of bs. Ensure bs is appropriate to capture cessions when applying share
or part of. By default build uses bs=1 when it detects a discrete distribution, such as the die roll example.
Ceding to 0.5 so 2 xs 2 produces ceded losses of 0.5 and net losses of 2.5. To capture these needs a much
smaller discretization grid. Non-discrete aggregates plot as though they are continuous or mixed distributions.

These concepts are illustrated in the next example. Note the bucket size.

In [22]: a05 = build('agg Re:05 '
....: 'dfreq [1:6] dsev [1:6] '
....: 'occurrence net of 0.5 so 2 xs 2 and 2 xs 4 '
....: 'aggregate net of 1 po 4 xs 10 '
....: , bs=1/512, log2=16)
....:

In [23]: a05.plot()

In [24]: qd(a05)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3.5 0.48795 0
Sev 3.5 2.4167 -0.30952 0.48795 0.30258 0 -0.98865
Agg 12.25 8.2063 -0.3301 0.55328 0.49122 0.28689 0.0035585
log2 = 16, bandwidth = 1/512, validation: n/a, reinsurance.

In [25]: qd(a05.reinsurance_audit_df['ceded'])

ex var sd cv skew
kind share limit attach
occ 0.5 2.0 2.0 0.58333 0.20139 0.44876 0.76931 -0.33297

1.0 2.0 4.0 0.5 0.58333 0.76376 1.5275 1.1223
all inf gup 1.0833 1.2014 1.0961 1.0118 0.64163

agg 0.25 4.0 10.0 0.25202 0.14516 0.38099 1.5117 1.1168
all inf gup 0.25202 0.14516 0.38099 1.5117 1.1168

A tower of limits can be specified by giving the attachment points of each layer. The shorthand:

occurrence ceded to tower [0 1 2 5 10 20 36]

is equivalent to:

occurrence ceded to 1 xs 0 and 1 xs 1 and 3 xs 2 \
and 5 xs 5 and 10 xs 10 and 16 xs 20

Here is a summary of these examples. The audit dataframe gives a layering of aggregate losses. The plot is omitted;
it is identical to gross since the tower covers all losses.

104 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [26]: a06 = build('agg Re:06 '
....: 'agg.Re:01 '
....: 'aggregate ceded to tower [0 1 2 5 10 20 36]')
....:

In [27]: a06.plot()

In [28]: qd(a06)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3.5 0.48795 0
Sev 3.5 3.5 0 0.48795 0.48795 0 2.8529e-15
Agg 12.25 12.25 2.2204e-16 0.55328 0.55328 0.28689 0.28689
log2 = 7, bandwidth = 1, validation: n/a, reinsurance.

In [29]: qd(a06.reinsurance_audit_df['ceded'], sparsify=False)

ex var sd cv skew
kind share limit attach
agg 1.0 1.0 0.0 1 4.4409e-16 2.1073e-08 2.1073e-08 -4.7453e+07
agg 1.0 1.0 1.0 0.97222 0.027006 0.16434 0.16903 -5.747
agg 1.0 3.0 2.0 2.6997 0.64684 0.80426 0.29791 -2.6177
agg 1.0 5.0 5.0 3.5291 4.2422 2.0597 0.58361 -0.87928
agg 1.0 10.0 10.0 3.573 15.609 3.9508 1.1057 0.56831
agg 1.0 16.0 20.0 0.47593 2.2625 1.5042 3.1604 3.8783
agg all inf gup 12.25 45.938 6.7777 0.55328 0.28689

See Reinsurance Functions for more about the reinsurance functions.

2.6.3 Modes of Reinsurance Analysis

Inwards reinsurance pricing is begins with an estimated loss pick, possibly supplemented by distribution and volatility
statistics such as loss standard deviation or quantiles. aggregate can help in two ways.

1. Excess of loss exposure rating that accounts for the limits profile of the underlying business and how it interacts
with excess layers. Uses only the severity distribution through difference of increased limits factors. This
application is peripheral to the underlying purpose of aggregate, but is very convenient nonetheless.

2. The impact of treaty variable features that are derived from the full aggregate distribution of ceded losses
and expenses—a showcase application.

Outwards reinsurance is evaluated based on the loss pick and the impact of the cession on the distribution of retained
losses. Ceded re and broker actuaries often want the full gross and net outcome distributions.

2.6.4 Reinsurance Functions

This section demonstrates Aggregate methods and properties for reinsurance analysis. These are:
• reinsurance_kinds() a text description of the kinds (occurrence and/or aggregate) of reinsurance ap-
plied.

• reinsurance_description() a text description of the layers and shares, by kind.
• reinsurance_occ_plot() plots subject (usually gross), ceded, and net severity, and aggregates created
from each. Does not consider aggregate reinsurance.

• reinsurance_audit_df dataframe summary by ceded, net, and subject, showing mean, CV, SD, and
skewness of occurrence loss by layer and in total by kind.

• reinsurance_occ_layer_df dataframe showing an expected loss layering analysis for occurrence rein-
surance.

2.6. Reinsurance Pricing 105

aggregate Documentation, Release 0.22.0

• reinsurance_df dataframe showing all possible densities.
• reinsurance_report_df dataframe showing mean, CV, skew, and SD statistics for each column in
reinsurance_df.

These are illustrated using the a more realistic example that includes occurrence and aggregate reinsurance. Notice
that the occurrence program just layers gross (subject) losses. Gross losses are then passed through to the aggre-
gate program. This is done to illustrate the functions below. In a real-world application is is likely the bottom few
occurrence layers would be dropped and you would pass the net of through to the aggregate.

In [30]: from aggregate import build, qd

In [31]: a = build('agg ReTester '
....: '10 claims '
....: '5000 xs 0 '
....: 'sev lognorm 100 cv 5 '
....: 'occurrence ceded to 250 xs 0 and 250 xs 250 and 500 xs 500 and␣

↪→1000 xs 1000 and 3000 xs 2000 '
....: 'poisson '
....: 'aggregate ceded to 250 xs 750 and 1500 xs 1000 '
....:)
....:

In [32]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 10 0.31623 0.31623
Sev 95.058 95.057 -2.0186e-06 3.2307 3.2307 9.4329 9.4329
Agg 950.58 310.2 -0.67367 1.0695 1.7183 2.8646 1.7399
log2 = 16, bandwidth = 1/2, validation: n/a, reinsurance.

In [33]: print(a.reinsurance_kinds())
Occurrence and aggregate

In [34]: print(a.reinsurance_description())
Ceded to 100% share of 250 xs 0 and 100% share of 250 xs 250 and 100% share of 500␣
↪→xs 500 and 100% share of 1,000 xs 1,000 and 100% share of 3,000 xs 2,000 per␣
↪→occurrence then ceded to 100% share of 250 xs 750 and 100% share of 1,500 xs 1,
↪→000 in the aggregate.

'plot shows the impact of occurrence reinsurance on severity and aggregate losses, and the ceded severity and
aggregate.

In [35]: a.reinsurance_occ_plot()

The reinsurance_audit_df dataframe shows unconditional layer severity that “adds-up” to the total layer
severity; compare to the total with the severity statistics in description above. These only match when the reinsurance
layers exhaust the ground-up limit.

In [36]: qd(a.reinsurance_audit_df, sparsify=False)

(continues on next page)

106 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
ceded ceded ceded ceded ceded net net␣

↪→ net net \
ex var sd cv skew ex var␣

↪→ sd cv
kind share limit attach ␣
↪→

occ 1.0 250.0 0.0 54.459 5603.2 74.854 1.3745 1.6845 40.599 72833␣
↪→269.88 6.6474
occ 1.0 250.0 250.0 13.305 2720.7 52.16 3.9204 3.9945 81.753 73469␣
↪→271.05 3.3155
occ 1.0 500.0 500.0 11.481 4748.2 68.907 6.0018 6.3905 83.576 64191␣
↪→253.36 3.0315
occ 1.0 1000.0 1000.0 8.7092 7140.4 84.501 9.7025 10.609 86.348 57052␣
↪→238.86 2.7662
occ 1.0 3000.0 2000.0 7.1035 15770 125.58 17.678 20.596 87.954 51379␣
↪→226.67 2.5771
occ all inf gup 95.057 94314 307.11 3.2307 9.4329 0 0␣
↪→ 0 NaN
agg 1.0 250.0 750.0 89.854 13133 114.6 1.2754 0.58829 860.72 8.8125e+05␣
↪→938.75 1.0907
agg 1.0 1500.0 1000.0 220.35 2.004e+05 447.67 2.0316 2.0217 730.22 4.2122e+05␣
↪→649.02 0.88879
agg all inf gup 310.2 2.8411e+05 533.02 1.7183 1.7399 640.37 3.3956e+05␣
↪→582.72 0.90997

net subject subject subject subject subject
skew ex var sd cv skew

kind share limit attach
occ 1.0 250.0 0.0 11.537 95.057 94314 307.11 3.2307 9.4329
occ 1.0 250.0 250.0 10.96 95.057 94314 307.11 3.2307 9.4329
occ 1.0 500.0 500.0 10.74 95.057 94314 307.11 3.2307 9.4329
occ 1.0 1000.0 1000.0 8.7905 95.057 94314 307.11 3.2307 9.4329
occ 1.0 3000.0 2000.0 5.6194 95.057 94314 307.11 3.2307 9.4329
occ all inf gup NaN 95.057 94314 307.11 3.2307 9.4329
agg 1.0 250.0 750.0 3.242 950.57 1.0335e+06 1016.6 1.0695 2.8646
agg 1.0 1500.0 1000.0 3.9477 950.57 1.0335e+06 1016.6 1.0695 2.8646
agg all inf gup 4.8085 950.57 1.0335e+06 1016.6 1.0695 2.8646

The reinsurance_occ_layer_df dataframe shows unconditional aggregate statistics. The blocks ex and cv
show values from audit_df times expected claim counts; en shows claim counts by layer. severity shows the
implied conditional layer severity, equal to expected loss from audit_df divided by the probability of attaching
the layer.

In [37]: qd(a.reinsurance_occ_layer_df, sparsify=False)

stat ex ex ex cv cv cv en severity ␣
↪→ pct
view ceded net subject ceded net subject ceded ceded ␣
↪→ ceded
share limit attach ␣
↪→

1.0 250.0 0.0 544.59 405.99 950.57 1.3745 6.6474 3.2307 10 54.459 ␣
↪→ 0.5729
1.0 250.0 250.0 133.05 817.53 950.57 3.9204 3.3155 3.2307 0.79248 167.89 ␣
↪→0.13997
1.0 500.0 500.0 114.81 835.76 950.57 6.0018 3.0315 3.2307 0.36394 315.47 ␣
↪→0.12078
1.0 1000.0 1000.0 87.092 863.48 950.57 9.7025 2.7662 3.2307 0.14697 592.59 ␣
↪→0.09162
1.0 3000.0 2000.0 71.035 879.54 950.57 17.678 2.5771 3.2307 0.052009 1365.8␣
↪→0.074729

(continues on next page)

2.6. Reinsurance Pricing 107

aggregate Documentation, Release 0.22.0

(continued from previous page)
all inf gup 950.57 0 950.57 3.2307 NaN 3.2307 10 95.057 ␣
↪→ 1

The reinsurance_df density dataframe shows subject, ceded, and net occurrence (severity); aggregates created
from each (without aggregate reinsurance); and subject, ceded, and net of requested aggregate reinsurance.

In [38]: qd(a.reinsurance_df, max_rows=20)

loss p_sev_gross p_sev_ceded p_sev_net p_agg_gross_occ p_agg_ceded_
↪→occ \
loss ␣
↪→

0.0 0 0.0078283 0.0078283 1 4.9097e-05 4.9097e-
↪→05
0.5 0.5 0.027461 0.027461 0 1.3482e-05 1.3482e-
↪→05
1.0 1 0.028318 0.028318 0 1.5754e-05 1.5754e-
↪→05
1.5 1.5 0.026716 0.026716 0 1.7104e-05 1.7104e-
↪→05
2.0 2 0.024836 0.024836 0 1.83e-05 1.83e-
↪→05
2.5 2.5 0.023058 0.023058 0 1.9467e-05 1.9467e-
↪→05
3.0 3 0.021453 0.021453 0 2.0635e-05 2.0635e-
↪→05
3.5 3.5 0.020023 0.020023 0 2.1812e-05 2.1812e-
↪→05
4.0 4 0.01875 0.01875 0 2.3e-05 2.3e-
↪→05
4.5 4.5 0.017615 0.017615 0 2.42e-05 2.42e-
↪→05
...
↪→.
32763.0 32763 0 0 0 0 ␣
↪→0
32763.5 32764 0 0 0 0 ␣
↪→0
32764.0 32764 0 0 0 0 ␣
↪→0
32764.5 32764 0 0 0 0 ␣
↪→0
32765.0 32765 0 0 0 0 ␣
↪→0
32765.5 32766 0 0 0 0 ␣
↪→0
32766.0 32766 0 0 0 0 ␣
↪→0
32766.5 32766 0 0 0 0 ␣
↪→0
32767.0 32767 0 0 0 0 ␣
↪→0
32767.5 32768 0 0 0 0 ␣
↪→0

p_agg_net_occ p_agg_gross p_agg_ceded p_agg_net
loss
0.0 1 4.9097e-05 0.57612 4.9097e-05
0.5 0 1.3482e-05 0.00029446 1.3482e-05
1.0 0 1.5754e-05 0.00029422 1.5754e-05
1.5 0 1.7104e-05 0.00029398 1.7104e-05

(continues on next page)

108 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
2.0 0 1.83e-05 0.00029374 1.83e-05
2.5 0 1.9467e-05 0.00029351 1.9467e-05
3.0 0 2.0635e-05 0.00029327 2.0635e-05
3.5 0 2.1812e-05 0.00029303 2.1812e-05
4.0 0 2.3e-05 0.00029279 2.3e-05
4.5 0 2.42e-05 0.00029256 2.42e-05
...
32763.0 0 4.3423e-19 0 0
32763.5 0 4.2049e-19 0 0
32764.0 0 4.3521e-19 0 0
32764.5 0 4.2965e-19 0 0
32765.0 0 4.2249e-19 0 0
32765.5 0 4.1451e-19 0 0
32766.0 0 4.2417e-19 0 0
32766.5 0 4.0984e-19 0 0
32767.0 0 4.2856e-19 0 0
32767.5 0 3.9884e-19 0 0

The reinsurance_report_df shows statistics for the densities in reinsurance_df. The p_agg_gross
column matches the theoretical (gross) output shown in qd(a) at the top and the p_agg_ceded column matches
the estimated output because the aggregate program requested ceded to output. The net column is the difference.

In [39]: qd(a.reinsurance_report_df)

p_sev_gross p_sev_ceded p_sev_net p_agg_gross_occ p_agg_ceded_occ p_agg_
↪→net_occ \
mean 95.057 95.057 0 950.57 950.57 ␣
↪→ 0
cv 3.2307 3.2307 NaN 1.0695 1.0695 ␣
↪→ NaN
sd 307.11 307.11 NaN 1016.6 1016.6 ␣
↪→ NaN
skew 9.4329 9.4329 NaN 2.8646 2.8646 ␣
↪→ NaN

p_agg_gross p_agg_ceded p_agg_net
mean 950.57 310.2 640.37
cv 1.0695 1.7183 0.90997
sd 1016.6 533.02 582.72
skew 2.8646 1.7399 4.8085

2.6.5 Casualty Exposure Rating

This example calculates the loss pick for excess layers across a subject portfolio with different underlying limits and
deductibles but a common severity curve. The limit profile is given by a premium distribution and the expected loss
ratio varies by limit. Values are in 000s. Policies at 1M and 2M limits are ground-up and those at 5M and 10M limits
have a 100K and 250K deductible. The full assumptions are:

In [40]: profile = pd.DataFrame({'limit': [1000, 2000, 5000, 10000],
....: 'ded' : [0, 0, 100, 250],
....: 'premium': [10000, 5000, 2500, 1500],
....: 'lr': [.75, .75, .7, .65]
....: }, index=pd.Index(range(4), name='class'))
....:

In [41]: qd(profile)

limit ded premium lr
class

(continues on next page)

2.6. Reinsurance Pricing 109

aggregate Documentation, Release 0.22.0

(continued from previous page)
0 1000 0 10000 0.75
1 2000 0 5000 0.75
2 5000 100 2500 0.7
3 10000 250 1500 0.65

The severity is a lognormal with an unlimited mean of 50 and cv of 10, σ = 2.148. The gross portfolio and tower are
created in a07. A typical XOL tower up to 10M is created by specifying the layer break points in an occurrence
ceded to tower clause.

In [42]: a07 = build('agg Re:07 '
....: f'{profile.premium.values} premium at {profile.lr.values} lr '
....: f'{profile.limit.values} xs {profile.ded.values} '
....: 'sev lognorm 50 cv 10 '
....: 'occurrence ceded to tower [0 250 500 1000 2000 5000 10000] '
....: 'poisson '
....: , approximation='exact', log2=18, bs=1/2)
....:

In [43]: qd(a07)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 292.72 0.058448 0.058448
Sev 47.741 47.737 -8.6055e-05 4.0096 4.01 15.901 15.901
Agg 13975 13974 -8.6055e-05 0.24153 0.24156 0.88974 0.88974
log2 = 18, bandwidth = 1/2, validation: n/a, reinsurance.

There are special options in build because the claim count is high: 292.7. To force a convolution use approx-
imation='exact'. Reviewing the default bs=1/2 and log2=16 shows a moderate error. Looking at the
density via:

a07.density_df.p_total.plot(logy=True)

shows aliasing, i.e., there is not enough space in the answer. Adjust by increasing log2 from 16 to 18 and leaving
bs=1/2.
The dataframe reinsurance_occ_layer_df shows layer expected loss, CV, counts, and conditional severity.
The last column shows the percent of subject ceded to each layer.

In [44]: qd(a07.reinsurance_occ_layer_df, sparsify=False)

stat ex ex ex cv cv cv en␣
↪→severity pct
view ceded net subject ceded net subject ceded ␣
↪→ceded ceded
share limit attach ␣
↪→

1.0 250.0 0.0 8724.1 5249.7 13974 1.9905 8.8564 4.01 292.72 29.
↪→803 0.62432
1.0 250.0 250.0 2076.6 11897 13974 5.4793 4.0236 4.01 12.063 ␣
↪→172.15 0.14861
1.0 500.0 500.0 1917.9 12056 13974 8.0564 3.7267 4.01 5.8545 ␣
↪→327.58 0.13725
1.0 1000.0 1000.0 775.37 13198 13974 17.887 3.5805 4.01 1.2306 ␣
↪→630.1 0.055488
1.0 3000.0 2000.0 400.74 13573 13974 41.327 3.509 4.01 0.26392 ␣
↪→1518.4 0.028678
1.0 5000.0 5000.0 79.06 13895 13974 122.64 3.8196 4.01 0.027983 ␣
↪→2825.3 0.0056577
all inf gup 13974 -7.8694e-09 13974 4.01 NaN 4.01 292.72 47.
↪→737 1

110 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

2.6.6 Property Risk Exposure Rating

Property risk exposure rating differs from casualty in part because the severity distribution varies with each risk
(location). Rather than a single ground-up severity curve per class, there is a size of loss distribution normalized by
property total insured value (TIV).
We start by introducing the Swiss Re severity curves, Bernegger [1997] using a moments-matched beta distribution.
The function G defines the MBBEFD distribution, parameterized by c.

In [45]: from aggregate import xsden_to_meancv

In [46]: import scipy.stats as ss

In [47]: import numpy as np

In [48]: import matplotlib.pyplot as plt

In [49]: def bb(c):
....: return np.exp(3.1 - 0.15*c*(1+c))
....:

In [50]: def bg(c):
....: return np.exp((0.78 + 0.12*c)*c)
....:

In [51]: def G(x, c):
....: b = bb(c)
....: g = bg(c)
....: return np.log(((g - 1) * b + (1 - g * b) * b**x) / (1 - b)) / np.

↪→log(g * b)
....:

Here are the base curves, compare Figure 4.2 in Bernegger [1997]. The curve c=5 is close to the Lloyd’s curve
(scale).

In [52]: fig, ax = plt.subplots(1, 1, figsize=(2.45, 2.55), constrained_
↪→layout=True)

In [53]: ans = []

In [54]: ps = np.linspace(0,1,101)

In [55]: for c in [0, 1, 2, 3, 4, 5]:
....: gs = G(ps, c)
....: ax.plot(ps, gs, label=f'c={c}')
....: ans.append([c, *xsden_to_meancv(ps[1:], np.diff(gs))])
....:

In [56]: ax.legend(loc='lower right');

In [57]: ax.set(xlabel='Proportion of limit', ylabel='Proportion of expected loss',
....: title='Swiss Re property scales');
....:

2.6. Reinsurance Pricing 111

aggregate Documentation, Release 0.22.0

Next, approximate these curves with a beta distribution to make them easier for us to use in aggregate. Here are
the parameters and fit graphs for each curve.

In [58]: swiss = pd.DataFrame(ans, columns=['c', 'mean', 'cv'])

In [59]: def beta_ab(m, cv):
....: v = (m * cv) ** 2
....: sev_a = m * (m * (1 - m) / v - 1)
....: sev_b = (1 - m) * (m * (1 - m) / v - 1)
....: return sev_a, sev_b
....:

In [60]: a, b = beta_ab(swiss['mean'], swiss.cv)

In [61]: swiss['a'] = a

In [62]: swiss['b'] = b

In [63]: swiss = swiss.set_index('c')

In [64]: qd(swiss)

mean cv a b
c
0 0.505 0.57161 1.01 0.99
1 0.44108 0.67278 0.79375 1.0058
2 0.36415 0.81654 0.58953 1.0294
3 0.28003 1.0103 0.42538 1.0937
4 0.19858 1.2531 0.31176 1.2582
5 0.13101 1.5171 0.24654 1.6353

In [65]: fig, axs = plt.subplots(2, 3, figsize=(3 * 2.45, 2 * 2.45), constrained_
↪→layout=True)

In [66]: for ax, (c, r) in zip(axs.flat, swiss.iterrows()):
....: gs = G(ps, c)
....: fz = ss.beta(r.a, r.b)
....: ax.plot(ps, gs, label=f'c={c}')
....: ax.plot(ps, fz.cdf(ps), label=f'beta fit')
....: ans.append([c, *xsden_to_meancv(ps[1:], np.diff(gs))])
....: ax.legend(loc='lower right');
....:

In [67]: fig.suptitle('Beta approximations to Swiss Re property curves');

112 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Work on a property schedule with the following TIVs and deductibles. The premium rate is 0.35 per 100 and the
loss ratio is 55%.

In [68]: schedule = pd.DataFrame({
....: 'locid': range(10),
....: 'tiv': [850, 950, 1250, 1500, 4500, 8000, 9000, 12000, 25000, 50000],
....: 'ded': [10, 10, 20, 20, 50, 100, 500, 1000, 5000, 5000]}
....:).set_index('locid')
....:

In [69]: schedule['premium'] = schedule.tiv / 100 * 0.35

In [70]: schedule['lr'] = 0.55

In [71]: qd(schedule)

tiv ded premium lr
locid
0 850 10 2.975 0.55
1 950 10 3.325 0.55
2 1250 20 4.375 0.55
3 1500 20 5.25 0.55
4 4500 50 15.75 0.55
5 8000 100 28 0.55
6 9000 500 31.5 0.55
7 12000 1000 42 0.55
8 25000 5000 87.5 0.55
9 50000 5000 175 0.55

Build the stochastic model using a Swiss Re c=3 scale. Use a gamma mixed Poisson frequency with a CV of 3 to
reflect the potential for catastrophe losses. Use a tower clause to set up the analysis of a per risk tower. Increase
bs to 2 based on high error with recommended bs=1.

In [72]: beta_a, beta_b = swiss.loc[3, ['a', 'b']]

In [73]: a08 = build('agg Re:08 '
....: f'{schedule.premium.values} premium at {schedule.lr.values} lr

↪→'
....: f'{schedule.tiv.values} xs {schedule.ded.values} '
....: f'sev {schedule.tiv.values} * beta {beta_a} {beta_b} ! '
....: 'occurrence ceded to tower [0 1000 5000 10000 20000 inf] '

(continues on next page)

2.6. Reinsurance Pricing 113

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: 'mixed gamma 2 '
....: , bs=2)
....:

In [74]: qd(a08)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.081693 4.03 5.0226
Sev 2663.9 2663.9 -1.2094e-07 2.2311 2.2311 3.8455 3.8455
Agg 217.62 217.62 -1.3778e-07 8.7849 8.7849 14.303 14.303
log2 = 16, bandwidth = 2, validation: n/a, reinsurance.

The shared mixing increases the frequency and aggregate CV and skewness.

In [75]: qd(a08.report_df.loc[
....: ['freq_m', 'freq_cv', 'freq_skew', 'agg_cv', 'agg_skew'],
....: ['independent', 'mixed']])
....:

view independent mixed
statistic
freq_m 0.081693 0.081693
freq_cv 3.5576 4.03
freq_skew 3.6749 5.0226
agg_cv 8.6169 8.7849
agg_skew 14.248 14.303

Look at reinsurance_occ_layer_df to summarize the analysis.

In [76]: qd(a08.reinsurance_occ_layer_df, sparsify=False)

stat ex ex ex cv cv cv en␣
↪→severity pct
view ceded net subject ceded net subject ceded ␣
↪→ceded ceded
share limit attach ␣
↪→

1.0 1000.0 0.0 38.473 179.15 217.62 0.93539 2.612 2.2311 0.05879 654.
↪→41 0.17679
1.0 4000.0 1000.0 74.293 143.33 217.62 1.6859 2.7968 2.2311 0.027946 ␣
↪→2658.4 0.34139
1.0 5000.0 5000.0 43.156 174.47 217.62 2.6872 2.2324 2.2311 0.012623 ␣
↪→3418.8 0.19831
1.0 10000.0 10000.0 37.782 179.84 217.62 4.1476 1.9578 2.2311 0.0059027 ␣
↪→6400.9 0.17362
1.0 inf 20000.0 23.917 193.7 217.62 7.2389 1.91 2.2311 0.0021465 ␣
↪→11143 0.1099
all inf gup 217.62 0 217.62 2.2311 NaN 2.2311 0.081693 ␣
↪→2663.9 1

Add plots of gross, ceded, and net severity with the placed program, 4000 xs 1000 and 5000 xs 5000. (The net is
zero with the tower clause, so we have to recompute.) The left and right plots differ only in the x-axis scale.

In [77]: a09 = build('agg Re:09 '
....: f'{schedule.premium.values} premium at {schedule.lr.values} lr

↪→'
....: f'{schedule.tiv.values} xs {schedule.ded.values} '
....: f'sev {schedule.tiv.values} * beta {beta_a} {beta_b} ! '
....: 'occurrence ceded to 4000 xs 1000 and 5000 xs 5000 '
....: 'mixed gamma 2 ', bs=2)

(continues on next page)

114 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
....:

In [78]: qd(a09)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.081693 4.03 5.0226
Sev 2663.9 1437.7 -0.46031 2.2311 1.9215 3.8455 1.8785
Agg 217.62 117.45 -0.46031 8.7849 7.838 14.303 9.4024
log2 = 16, bandwidth = 2, validation: n/a, reinsurance.

In [79]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
↪→layout=True); \

....: ax0, ax1 = axs.flat; \

....: df = a09.reinsurance_df; \

....: df.filter(regex='sev_[gcn]').plot(logy=True, xlim=[-50, 2000], ylim=[0.8e-
↪→6, 1] , ax=ax0); \

....: df.filter(regex='sev_[gcn]').plot(logy=True, xlim=[0, 50000], ylim=[0.8e-
↪→6, 1], ax=ax1); \

....: ax0.set(xlabel='loss (zoom)', ylabel='Log density');

....:

In [80]: ax1.set(xlabel='loss', ylabel='');

And finally, plot the corresponding aggregate distributions.

In [81]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45), constrained_
↪→layout=True); \

....: ax0, ax1, ax2, ax3 = axs.flat; \

....: df.filter(regex='agg_.*_occ').plot(logy=True, xlim=[-50, 2000], ylim=[0.
↪→8e-6, 1] , ax=ax0); \

....: (1 - df.filter(regex='agg_.*_occ').cumsum()).plot(logy=True, xlim=[-50,␣
↪→2000], ylim=[1e-3, 1], ax=ax2); \

....: df.filter(regex='agg_.*_occ').plot(logy=True, xlim=[0, 50000], ylim=[0.8e-
↪→12, 1], ax=ax1); \

....: (1 - df.filter(regex='agg_.*_occ').cumsum()).plot(logy=True, xlim=[0,␣
↪→50000], ylim=[1e-9, 1], ax=ax3); \

....: ax0.set(xlabel='', ylabel='Log density'); \

....: ax1.set(xlabel='', ylabel=''); \

....: ax2.set(xlabel='loss (zoom)', ylabel='Log survival');

....:

In [82]: ax3.set(xlabel='loss', ylabel='');

2.6. Reinsurance Pricing 115

aggregate Documentation, Release 0.22.0

2.6.7 Variable Features

Reinsurance treaties can incorporate variable features that alter the contract cash flows. These can impact losses,
premiums, or expenses (through the ceding commission). They can apply to quota share and excess treaties.

• Variable features altering Loss cash flows
– Aggregate limits and deductibles
– Loss corridor
– Limited reinstatements for excess treaties, by number of covered events or an aggregate limit

• Variable features altering Premium cash flows
– Swing or retro rating or margin-plus premium, where the premium equals losses times an expense factor
subject to a maximum and minimum. See also Individual Risk Pricing.

• Variable features altering Expense cash flows
– Sliding scale commission
– Profit commission or profit share

A loss corridor and sliding scale commission have a similar impact; both concentrate the impact of the treaty on tail
outcomes. Aggregate features have the opposite effect; concentrating the impact on body outcomes and lowering
effectiveness on tail outcomes.
Premium and expense related features are substitutes, the former used on treaties without ceding commissions.

2.6.8 Inwards Analysis of Bear and Nemlick Variable Features

Bear and Nemlick [1990] analyze six treaties with variable features across four portfolios. These examples are in-
cluded because they are realistic and show that aggregate produces the same answers as a published reference.
The subject losses defined as follows.

• Treaty 1 and 4.
– Cover: 160 xs 40
– Subject business

∗ Two classes
∗ Subject premium 3000 and 6000

116 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

∗ Loss rate 4% and 3%
∗ Severity: single parameter Pareto with shape 0.9 and 0.95

• Treaty 2 and 5.
– Cover: 700 xs 300
– Subject business

∗ Three classes
∗ Subject premium 2000 each
∗ Loss rate 10%, 14%, 21%
∗ Severity: single parameter Pareto with shape 1.5, 1.3, 1.1

• Treaty 3.
– Cover: 400 xs 100
– Subject business

∗ Three classes
∗ Subject premium 4500, 4500, 1000
∗ Loss rate 3.2%, 3.8%, 3.5%
∗ Severity: single parameter Pareto with shape 1.1.

• Treaty 6.
– Cover: 900 xs 100
– Subject business

∗ Subject premium 25000
∗ Layer loss cost 10% of subject premium
∗ Portfolio CV 0.485

They include a variety of frequency assumptions, including Poisson, negative binomial with variance multiplier based
on a gross multiplier of 2 or 3 adjusted for excess frequency, mixing variance 0.05 and 0.10. Excess counts get closer
to Poisson and so the difference between the two is slight.
The next table shows Bear and Nemlick’s estimated premium rates.
Heckman and Meyers describe claim count contagion and frequency parameter uncertainty, which they model using
a mixed-Poisson frequency distribution. Their parameter c is the variance of the mixing distribution. The value
c=0.05 is replicated in DecL with the frequency clause mixed gamma 0.05**0.5, since DecL is based on
the CV of the mixing distribution (the mean is always 1).
Heckman andMeyers also describe severity parameter uncertainty, which they model with an inverse gamma variable
with mean 1 and variance b. There is no analog of severity uncertainty in DecL. For finite excess layers it has a
muted impact on results. Heckman and Meyers call c the contagion parameter and b the mixing parameter, which is
confusing in our context. To approximate these columns use

• c=0,b=0 corresponds to the DecL frequency clause poisson.
• c=0.05,b=... is close to DecL frequency clause mixed gamma 0.05**0.5.
• c=0.1,b=... is close to DecL frequency clause mixed gamma 0.1**0.5.

2.6. Reinsurance Pricing 117

aggregate Documentation, Release 0.22.0

Fig. 1: Bear and Nemlick’s estimated premium rates by program by numerical method. The Lognormal Model
column uses a method of moments fit to the aggregate mean and CV. The Collective Risk Model columns uses the
Heckman-Meyers continuous FFT method.

Specifying the Single Parameter Pareto

Losses to an excess layer specified by a single parameter Pareto are the same as losses to a ground-up layer with a
shifted Pareto.
Example.
For 400 xs 100 and Pareto shape 1.1, these two DecL programs produce identical results:

4 claims 400 xs 100 sev 100 * pareto 1.1 poisson

4 claims 400 xs 0 sev 100 * pareto 1.1 - 100 poisson

Treaty 1: Aggregate Deductible

Treaty 1 adds an aggregate deductible of 360, equal to 3% of subject premium.
Setup the gross portfolio.

In [83]: import numpy as np

In [84]: from aggregate import build, mv, qd, xsden_to_meancvskew, \
....: mu_sigma_from_mean_cv, lognorm_lev
....:

In [85]: mix_cv = ((1.036-1)/5.154)**.5; mix_cv
Out[85]: 0.08357551150546018

In [86]: a10 = build('agg Re:BN1 '

(continues on next page)

118 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: '[9000 3000] exposure at [0.04 0.03] rate '
....: '160 xs 0 '
....: 'sev 40 * pareto [0.9 0.95] - 40 '
....: f'mixed gamma {mix_cv} ')
....:

In [87]: qd(a10)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 6.4966 0.40114 0.41855
Sev 69.267 69.267 -1.2751e-08 0.87703 0.87703 0.50056 0.50056
Agg 450 450 -2.1418e-07 0.5285 0.5285 0.62441 0.62436
log2 = 16, bandwidth = 1/32, validation: fails agg mean error >> sev, possible␣
↪→aliasing; try larger bs.

The portfolio CV matches 0.528, reported in Bear and Nemlick Appendix F, Exhibit 1.
There are several ways to estimate the impact of the AAD on recovered losses.
By hand, adjust losses and use the distribution of outcomes from a.density_df. The last line computes the
sum-product of losses net of AAD times probabilities, i.e., the expected loss cost.

In [88]: bit = a10.density_df[['loss', 'p_total']]

In [89]: bit['loss'] = np.maximum(0, bit.loss - 360)

In [90]: bit.prod(axis=1).sum()
Out[90]: 142.7571229766539

More in the spirit of aggregate: create a new Aggregate applying the AAD using a DecL aggregate net
of reinsurance clause. Alternatively use aggregate ceded to inf xs 360 (not shown).

In [91]: a11 = build('agg Re:BN1a '
....: '[9000 3000] exposure at [0.04 0.03] rate '
....: '160 xs 0 '
....: 'sev 40 * pareto [0.9 0.95] - 40 '
....: f'mixed gamma {mix_cv} '
....: 'aggregate net of 360 xs 0 ')
....:

In [92]: qd(a11)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 6.4966 0.40114 0.41855
Sev 69.267 69.267 -1.2751e-08 0.87703 0.87703 0.50056 0.50056
Agg 450 142.76 -0.68276 0.5285 1.2873 0.62441 1.5337
log2 = 16, bandwidth = 1/32, validation: n/a, reinsurance.

In [93]: gross = a11.agg_m; net = a11.est_m; ins_charge = net / gross

In [94]: net, ins_charge
Out[94]: (142.75888602897527, 0.3172419689532783)

Bear and Nemlick use a lognormal approximation to the aggregate.

In [95]: mu, sigma = mu_sigma_from_mean_cv(a10.agg_m, a10.agg_cv)

In [96]: elim_approx = lognorm_lev(mu, sigma, 1, 360)

(continues on next page)

2.6. Reinsurance Pricing 119

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [97]: a11.agg_m - elim_approx, 1 - elim_approx / a11.agg_m
Out[97]: (132.06333218858032, 0.29347407153017846)

The lognormal overstates the value of the AAD, resulting in a lower net premium. This is because the approximating
lognormal is much more skewed.

In [98]: fz = a11.approximate('lognorm')

In [99]: fz.stats('s'), a11.est_skew
Out[99]: (5.99543353838776, 1.5337492513585025)

Bear and Nemlick report the Poisson approximation and a Heckman-Meyers convolution with mixing and contagion
equal 0.05. We can compute the Poisson exactly and approximate Heckman-Meyers with contagion but no mixing.
Changing 0.05 to 0.10 is close to the b=0.1 column.

In [100]: a12 = build('agg Re:BN1p '
.....: '[9000 3000] exposure at [0.04 0.03] rate '
.....: '160 xs 0 '
.....: 'sev 40 * pareto [0.9 0.95] - 40 '
.....: f'poisson '
.....: 'aggregate net of 360 xs 0 ')
.....:

In [101]: qd(a12)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 6.4966 0.39234 0.39234
Sev 69.267 69.267 -1.2751e-08 0.87703 0.87703 0.50056 0.50056
Agg 450 141.8 -0.68489 0.52185 1.2794 0.60775 1.5152
log2 = 16, bandwidth = 1/32, validation: n/a, reinsurance.

In [102]: a13 = build('agg Re:BN1c '
.....: '[9000 3000] exposure at [0.04 0.03] rate '
.....: '160 xs 0 '
.....: 'sev 40 * pareto [0.9 0.95] - 40 '
.....: 'mixed gamma 0.05**.5 '
.....: 'aggregate net of 360 xs 0 ')
.....:

In [103]: qd(a13)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 6.4966 0.45158 0.5623
Sev 69.267 69.267 -5.1006e-08 0.87703 0.87703 0.50056 0.50056
Agg 450 148.41 -0.6702 0.56774 1.3332 0.72251 1.6412
log2 = 16, bandwidth = 1/16, validation: n/a, reinsurance.

Here is a summary of the different methods, compare Bear and Nemlick Table 1, row 1, page 75.

In [104]: bit = pd.DataFrame([a10.agg_m,
.....: a11.describe.iloc[-1, 1],
.....: a12.describe.iloc[-1, 1],
.....: a13.describe.iloc[-1, 1],
.....: a11.agg_m - elim_approx],
.....: columns=['Loss cost'],
.....: index=pd.Index(['Gross', 'NB', 'Poisson', 'c=0.05', 'lognorm'],
.....: name='Method'))
.....:

(continues on next page)

120 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [105]: bit['Premium'] = bit['Loss cost'] * 100 / 75

In [106]: bit['Rate'] = bit.Premium / 12000

In [107]: qd(bit, accuracy=5)

Loss cost Premium Rate
Method
Gross 450 600 0.05
NB 142.76 190.35 0.015862
Poisson 141.8 189.07 0.015755
c=0.05 148.41 197.88 0.01649
lognorm 132.06 176.08 0.014674

Treaty 2: Aggregate Limit

Treaty 2 adds an aggregate limit of 2800, i.e., 3 full reinstatements plus the original limit.
Setup the gross portfolio.

In [108]: a14 = build('agg Re:BN2 '
.....: '[2000 2000 2000] exposure at [.1 .14 .21] rate '
.....: '700 xs 0 '
.....: 'sev 300 * pareto [1.5 1.3 1.1] - 300 '
.....: 'mixed gamma 0.07 '
.....: , bs=1/8)
.....:

In [109]: qd(a14)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2.8949 0.5919 0.60017
Sev 310.9 310.9 -8.2604e-09 0.83714 0.83714 0.46335 0.46335
Agg 900 900 -8.4265e-09 0.76969 0.76969 0.90207 0.90207
log2 = 16, bandwidth = 1/8, validation: not unreasonable.

Specify bs=1/8 since the error was too high with the default bs=1/16. The portfolio CV matches 0.770, reported
in Bear and Nemlick Appendix G, Exhibit 1. The easiest way to value the aggregate limit to use an aggregate
ceded to clause.

In [110]: a14n = build('agg Re:BN2a '
.....: '[2000 2000 2000] exposure at [.1 .14 .21] rate '
.....: '700 xs 0 '
.....: 'sev 300 * pareto [1.5 1.3 1.1] - 300 '
.....: 'mixed gamma 0.07 '
.....: 'aggregate ceded to 2800 xs 0'
.....: , bs=1/8)
.....:

In [111]: qd(a14n)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2.8949 0.5919 0.60017
Sev 310.9 310.9 -8.2604e-09 0.83714 0.83714 0.46335 0.46335
Agg 900 894.68 -0.0059104 0.76969 0.7544 0.90207 0.72143
log2 = 16, bandwidth = 1/8, validation: n/a, reinsurance.

Applying a 20% coinsurance and grossing up by 100/60 produces the premium and rate. Using Poisson frequency,

2.6. Reinsurance Pricing 121

aggregate Documentation, Release 0.22.0

or mixed gamma with mix
√
0.05 or

√
0.1 ties closely to Table I, row 2.

In [112]: p = a14n.est_m * (1 - 0.2) * 100 / 60

In [113]: p, p / 6000
Out[113]: (1192.9075706627575, 0.19881792844379292)

aggregate induces correlation between the three classes because they share mixing variables. The report_df
shows the details by line and compares with an independent sum.

In [114]: qd(a14.report_df.iloc[:, :-2])

view 0 1 2 independent mixed
statistic
name Re:BN2 Re:BN2 Re:BN2 Re:BN2 Re:BN2
limit 700 700 700 700 700
attachment 0 0 0 0 0
el 200 280 420 900 900
freq_m 0.73701 0.92362 1.2342 2.8949 2.8949
freq_cv 1.1669 1.0429 0.90284 0.58919 0.5919
freq_skew 1.1711 1.0476 0.90827 0.59209 0.60017
sev_m 271.37 303.15 340.3 310.9 310.9
sev_cv 0.9087 0.84973 0.78339 0.83714 0.83714
sev_skew 0.72529 0.51332 0.27989 0.46335 0.46335
agg_m 200 280 420 900 900
agg_cv 1.5755 1.3672 1.1456 0.76767 0.76969
agg_skew 1.9025 1.6073 1.3121 0.89708 0.90207

Treaty 3: Loss Corridor

Treaty 3 is a loss corridor from expected layer losses to twice expected. The reinsurance pays up to expected and
beyond twice expected.
Setup the gross portfolio with CV 0.905. Use a larger bs to reduce error.

In [115]: a15 = build('agg Re:BN3 '
.....: '[4500 4500 1000] exposure at [.032 .038 .035] rate '
.....: '400 xs 0 '
.....: 'sev 100 * pareto 1.1 - 100 '
.....: 'poisson', bs=1/16)
.....:

In [116]: qd(a15)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2.3544 0.65172 0.65172
Sev 148.66 148.66 -1.1633e-08 0.96405 0.96405 0.79141 0.79141
Agg 350 350 -1.1694e-08 0.90526 0.90526 1.0937 1.0937
log2 = 16, bandwidth = 1/16, validation: not unreasonable.

There are several ways to model a loss corridor, but the most natural is to use an aggregate net of 350 xs
350 clause; expected layer loss equals 350.

In [117]: a15_lc = build('agg Re:BN3lc '
.....: '[4500 4500 1000] exposure at [.032 .038 .035] rate '
.....: '400 xs 0 '
.....: 'sev 100 * pareto 1.1 - 100 '
.....: 'poisson '
.....: 'aggregate net of 350 xs 350 ', bs=1/16)
.....:

(continues on next page)

122 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)

In [118]: qd(a15_lc)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2.3544 0.65172 0.65172
Sev 148.66 148.66 -1.1633e-08 0.96405 0.96405 0.79141 0.79141
Agg 350 256.88 -0.26607 0.90526 0.79669 1.0937 1.2854
log2 = 16, bandwidth = 1/16, validation: n/a, reinsurance.

Compare the results with the lognormal approximation, see Table 1 line 3.

In [119]: mu, sigma = mu_sigma_from_mean_cv(1, 0.905)

In [120]: ler = lognorm_lev(mu, sigma, 1, 2) - lognorm_lev(mu, sigma, 1, 1)

In [121]: p = a15_lc.est_m * 100 / 70

In [122]: bit = pd.DataFrame(
.....: [a15_lc.est_m, 1 - a15_lc.est_m / a15.est_m, ler, p, p/10000,
.....: 350 * (1 - ler) * 100 / 70 / 10000, 350 * 100 / 70 / 10000],
.....: index=pd.Index(['Loss cost', 'LER', 'Lognorm LER', 'Premium',
.....: 'Rate', 'Lognorm rate', 'Unadjusted rate'],name='Item

↪→'),
.....: columns=['Value'])
.....:

In [123]: qd(bit, accuracy=4)

Value
Item
Loss cost 256.88
LER 0.26607
Lognorm LER 0.19535
Premium 366.97
Rate 0.036697
Lognorm rate 0.040233
Unadjusted rate 0.05

Treaty 4: Retro Rated Program

Treaty 4 is a retro rated program on the same business as Treaty 1. The flat rate is 5%, given by a 100/75 load on
the 3.75% loss cost. Subject premium equals 12000. The retrospective rating plan has a one-year adjustment period.
The adjusted treaty premium equals 100/75 times incurred losses and ALAE in the layer limited to a maximum of
10% of subject premium and a minimum of 3%.
The gross portfolio is the same as Treaty 1. Use Poisson frequency.

In [124]: a16 = build('agg Re:BN4 '
.....: '[9000 3000] exposure at [0.04 0.03] rate '
.....: '160 xs 0 '
.....: 'sev 40 * pareto [0.9 0.95] - 40 '
.....: 'poisson ')
.....:

In [125]: qd(a16)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 6.4966 0.39234 0.39234

(continues on next page)

2.6. Reinsurance Pricing 123

aggregate Documentation, Release 0.22.0

(continued from previous page)
Sev 69.267 69.267 -1.2751e-08 0.87703 0.87703 0.50056 0.50056
Agg 450 450 -1.3429e-07 0.52185 0.52185 0.60775 0.60771
log2 = 16, bandwidth = 1/32, validation: fails agg mean error >> sev, possible␣
↪→aliasing; try larger bs.

The estimated retro premium (erp) and corresponding rate are easy to compute.

In [126]: bit = a16.density_df[['loss', 'p_total']]

In [127]: subject = 12000; min_rate = 0.03; max_rate = 0.10; lcf = 100 / 75

In [128]: bit['premium'] = np.minimum(max_rate * subject,
.....: np.maximum(min_rate * subject, lcf * bit.

↪→loss))
.....:

In [129]: erp = bit[['premium', 'p_total']].prod(1).sum()

In [130]: erp, erp / subject
Out[130]: (624.508953754649, 0.05204241281288742)

Bear and Nemlick also report the lognormal approximation.

In [131]: from scipy.integrate import quad

In [132]: fz = a16.approximate('lognorm')

In [133]: lognorm_approx = quad(lambda x: min(max_rate * subject,
.....: max(min_rate * subject, lcf * x)) * fz.pdf(x),
.....: 0, np.inf)
.....:

In [134]: lognorm_approx[0], lognorm_approx[0] / subject
Out[134]: (602.6887696334271, 0.05022406413611893)

Treaty 5: Profit Share

Treaty 5 models a three-year profit commission on the business underlying Treaty 2. The three years are modeled
independently with no change in exposure, giving 18M subject premium. The terms of the profit commission are a
25% share after a 20% expense allowance (“25% after 20%”), meaning a profit share payment equal to 25% of the
“profit” to the reinsurer after losses and a 20% expense allowance.
The treaty rate equals 25% of subject premium. There is a 20% proportional coinsurance that does not correspond
to an explicit share of the reinsurance premium (i.e., the 25% rate is for 80% cover). The analysis of Treaty 2 shows
the loss cost equals 900, or a 15% rate.
The ceded loss ratio equals (loss rate) x (coinsurance) / (premium rate) = 0.15 * 0.8 / 0.25 = 0.48.
The profit commission formula is:

pc = 0.25 * max(0, 1 - (loss ratio) - 0.2) * (subject premium)
= 0.25 * max(0, premium * 0.8 - loss).

The expected profit commission rate, ignoring Jensen’s inequality, equals:

pc rate = 0.25 * (1 - 0.48 - 0.2) = 0.25 * 0.32 = 0.08.

We can compute the expected value across the range of outcomes from the aggregate distribution.
Use a Portfolio object to aggregate the three years. It is convenient to create the single year distribution and then
use the Underwriter to refer to it by name.

124 Chapter 2. User Guides

https://en.wikipedia.org/wiki/Jensen%27s_inequality

aggregate Documentation, Release 0.22.0

In [135]: a17 = build('agg Re:BN2p '
.....: '[2000 2000 2000] exposure at [.1 .14 .21] rate '
.....: '700 xs 0 '
.....: 'sev 300 * pareto [1.5 1.3 1.1] - 300 '
.....: 'poisson')
.....:

In [136]: p17 = build('port Treaty.5 '
.....: 'agg Year.1 agg.Re:BN2p '
.....: 'agg Year.2 agg.Re:BN2p '
.....: 'agg Year.3 agg.Re:BN2p '
.....: , bs=1/4)
.....:

In [137]: qd(p17)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
Year.1 Freq 2.8949 0.58774 0.58774

Sev 310.9 310.9 -3.3041e-08 0.83714 0.83714 0.46335 0.46335
Agg 900 900 -3.3041e-08 0.7665 0.7665 0.89409 0.89409

Year.2 Freq 2.8949 0.58774 0.58774
Sev 310.9 310.9 -3.3041e-08 0.83714 0.83714 0.46335 0.46335
Agg 900 900 -3.3041e-08 0.7665 0.7665 0.89409 0.89409

Year.3 Freq 2.8949 0.58774 0.58774
Sev 310.9 310.9 -3.3041e-08 0.83714 0.83714 0.46335 0.46335
Agg 900 900 -3.3041e-08 0.7665 0.7665 0.89409 0.89409

total Freq 8.6846 0.33933 0.33933
Sev 310.9 310.9 -3.3041e-08 0.83714 0.46335
Agg 2700 2700 -3.3043e-08 0.44254 0.44254 0.5162 0.5162

log2 = 16, bandwidth = 1/4, validation: not unreasonable.

The three-year total CV equals 0.443 with Poisson frequency. Bear and Nemlick Appendix J, Exhibit 2, shows 0.444
with negative binomial frequency.
Compute the estimated profit share payment by hand.

In [138]: subject_premium = 18000; coinsurance = 0.2; re_rate = 0.25

In [139]: pc_share = 0.25; pc_expense = 0.2

In [140]: bit = p17.density_df[['loss', 'p_total']]

In [141]: bit['lr'] = bit.loss * (1 - coinsurance) / (re_rate * subject_premium)

In [142]: bit['pc_rate'] = np.maximum(0, pc_share * (1 - pc_expense - bit.lr))

In [143]: pc_pmt = (bit.pc_rate * bit.p_total).sum()

In [144]: print(f'Estimated pc payment rate = {pc_pmt:.4g}')
Estimated pc payment rate = 0.08238

Table 1 shows a rate of 8.24% for Poisson frequency.
Exercise. Replicate the rate computed using a lognormal approximation and a negative binomialc=0.05. Reconcile
to Table 1.
Note. If the premium varies by year then the builtin object can be scaled. There are two ways to scale aggregate
distributions.

1. Homogeneous scaling, using * to scale severity;
2. Inhomogeneous scaling, using @ to scale expected frequency and exposure.

2.6. Reinsurance Pricing 125

aggregate Documentation, Release 0.22.0

SeeMildenhall [2004] andMildenhall [2017] for an explanation of why homogeneous scaling is appropriate for assets
whereas inhomogeneous scaling applies to insurance. See Boonen et al. [2017] for an application.
Here is an extreme example to illustrate the differences. Homogeneous scaling does not change the aggregate CV or
skewness (or any other scaled higher moment or the shape of the distribution). Inhomogeneous scaling changes the
shape of the distribution; it becomes more symmetric, decreasing the CV and skewness.

In [145]: p17growing = build('port Treaty.5 '
.....: 'agg Year.1 agg.Re:BN2p '
.....: 'agg Year.2 2 @ agg.Re:BN2p '
.....: 'agg Year.3 2 * agg.Re:BN2p '
.....: , bs=1/4)
.....:

In [146]: qd(p17growing)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
Year.1 Freq 2.8949 0.58774 0.58774

Sev 310.9 310.9 -3.3041e-08 0.83714 0.83714 0.46335 0.46335
Agg 900 900 -3.3041e-08 0.7665 0.7665 0.89409 0.89409

Year.2 Freq 5.7897 0.4156 0.4156
Sev 310.9 310.9 -3.3041e-08 0.83714 0.83714 0.46335 0.46335
Agg 1800 1800 -3.3041e-08 0.542 0.542 0.63222 0.63222

Year.3 Freq 2.8949 0.58774 0.58774
Sev 621.79 621.79 -8.2604e-09 0.83714 0.83714 0.46335 0.46335
Agg 1800 1800 -8.3769e-09 0.7665 0.7665 0.89409 0.89409

total Freq 11.579 0.29387 0.29387
Sev 388.62 388.62 -2.3129e-08 0.95127 1.2038
Agg 4500 4500 -3.6822e-06 0.4056 0.40559 0.53104 0.53077

log2 = 16, bandwidth = 1/4, validation: fails agg mean error >> sev, possible␣
↪→aliasing; try larger bs.

Note. The following DecL program will produce the same answer as the Portfolio called p17 above. The
exposure has been tripled.

In [147]: a17p= build('agg Re:BN6p '
.....: '[6000 6000 6000] exposure at [.1 .14 .21] rate '
.....: '700 xs 0 '
.....: 'sev 300 * pareto [1.5 1.3 1.1] - 300 '
.....: 'poisson'
.....: , bs=1/4)
.....:

In [148]: qd(a17p)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 8.6846 0.33933 0.33933
Sev 310.9 310.9 -3.3041e-08 0.83714 0.83714 0.46335 0.46335
Agg 2700 2700 -3.3041e-08 0.44254 0.44254 0.5162 0.5162
log2 = 16, bandwidth = 1/4, validation: not unreasonable.

However, for a mixed frequency the answers are different, because mixing is shared mixing across class and year,
producing a higher CV and skewness.

In [149]: a17nb = build('agg Re:BN6c '
.....: '[6000 6000 6000] exposure at [.1 .14 .21] rate '
.....: '700 xs 0 '
.....: 'sev 300 * pareto [1.5 1.3 1.1] - 300 '
.....: 'mixed gamma 0.1**.5'
.....: , bs=1/4)

(continues on next page)

126 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
.....:

In [150]: qd(a17nb)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 8.6846 0.46384 0.67943
Sev 310.9 310.9 -3.3041e-08 0.83714 0.83714 0.46335 0.46335
Agg 2700 2700 -3.7443e-08 0.54391 0.54391 0.76744 0.76744
log2 = 16, bandwidth = 1/4, validation: not unreasonable.

Treaty 6: Sliding Scale Commission

Treaty 6 models a one-year sliding scale commission plan. The details of the plan are:
• Minimum commission of 20% at or above a 65% loss ratio
• Slide 0.5:1 between 55% and 65% to a 25% commission
• Slide 0.75:1 between 35% and 55% to a 40% commission
• Maximum commission of 40% at or below a 35% loss ratio.

The underlying portfolio is specified only as a 900 xs 100 layer on 25M premium with a 10% layer loss cost and a
CV of 0.485. No other details are provided. Based on trial and error and the other examples, model the portfolio
using a single parameter Pareto with q = 1.05 and a gamma mixed Poisson with mixing CV 0.095.

In [151]: a18 = build('agg Re:BN5 '
.....: '25000 exposure at 0.1 rate '
.....: '900 xs 0 '
.....: 'sev 100 * pareto 1.05 - 100 '
.....: 'mixed gamma 0.095')
.....:

In [152]: qd(a18)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 11.494 0.30988 0.339
Sev 217.5 217.5 -1.246e-07 1.2656 1.2656 1.5532 1.5532
Agg 2500 2500 -1.246e-07 0.48516 0.48516 0.64857 0.64857
log2 = 16, bandwidth = 1/4, validation: not unreasonable.

We use the function make_ceder_netter to model the commission function. It takes a list of triples (s, y,
a) as argument, interpreted as a share s of the layer y excess a. It returns two functions, a netter and a ceder, that
map a subject loss to net or ceded. Multiple non-overlapping layers can be provided. They are combined into a single
function. We will model the slide as the maximum 40% commission minus a cession to two layers with different
shares. The required layer descriptions, in loss ratio points, are

• Layer 1 (0.25, 0.2, 0.35) for the slide between 35% and 55% and
• Layer 2 (0.5, 0.1, 0.55) for the slide between 55% and 65%.

The function giving the slide payoff is easy to create, using a Python lambda function. The figure illustrates the
ceder and netter functions and the function that computes the slide.

In [153]: from aggregate import make_ceder_netter

In [154]: import matplotlib.pyplot as plt

In [155]: from matplotlib import ticker

(continues on next page)

2.6. Reinsurance Pricing 127

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [156]: c, n = make_ceder_netter([(0.25, .2, .35), (0.5, .1, .55)])

In [157]: f = lambda x: 0.4 - c(x); \
.....: lrs = np.linspace(0.2, 0.8, 61); \
.....: slide = f(lrs); \
.....: fig, axs = plt.subplots(1,3,figsize=(3*3.5, 2.45), constrained_

↪→layout=True); \
.....: ax0, ax1, ax2 = axs.flat; \
.....: ax0.plot(lrs, c(lrs)); \
.....: ax0.set(xlabel='Loss ratio', ylabel='"Ceded"'); \
.....: ax1.plot(lrs, n(lrs)); \
.....: ax1.set(xlabel='Loss ratio', ylabel='"Net"'); \
.....: ax2.plot(lrs, slide);
.....:

In [158]: for ax in axs.flat:
.....: ax.xaxis.set_major_locator(ticker.MultipleLocator(0.1))
.....: ax.xaxis.set_minor_locator(ticker.MultipleLocator(0.05))
.....: ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:.0%}'))
.....: ax.yaxis.set_major_formatter(ticker.StrMethodFormatter('{x:.0%}'))
.....: if ax is ax1:
.....: ax.yaxis.set_major_locator(ticker.MultipleLocator(0.1))
.....: ax.yaxis.set_minor_locator(ticker.MultipleLocator(0.05))
.....: else:
.....: ax.yaxis.set_major_locator(ticker.MultipleLocator(0.05))
.....: ax.yaxis.set_minor_locator(ticker.MultipleLocator(0.025))
.....: ax.grid(lw=.25, c='w')
.....:

In [159]: ax2.set(xlabel='Loss ratio', ylabel='Slide commission');

The expected commission across the estimated aggregate distribution can be computed by hand.

In [160]: subject = 25000; re_rate = 0.2; re_premium = subject * re_rate

In [161]: bit = a18.density_df[['loss', 'p_total']]

In [162]: bit['lr'] = bit.loss / re_premium

In [163]: bit['slide'] = f(bit.lr)

In [164]: (bit.slide * bit.p_total).sum()
Out[164]: 0.3574273911759826

The same quantity can be estimated using a lognormal approximation and numerical integration. The second value
returned by quad estimates the relative error of the answer.

In [165]: import scipy.stats as ss

In [166]: mu, sigma = mu_sigma_from_mean_cv(0.5, 0.485)

(continues on next page)

128 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [167]: fz = ss.lognorm(sigma, scale=np.exp(mu))

In [168]: quad(lambda x: (0.4 - c(x)) * fz.pdf(x), 0, np.inf)
Out[168]: (0.3613013481625082, 5.33305158633741e-09)

Bear and Nemlick use a coarser lognormal approximation to estimate the slide commission, Appendix K Exhibit I.

In [169]: mu, sigma = mu_sigma_from_mean_cv(1, 0.485)

In [170]: lr = 0.5; max_slide = 0.4

In [171]: entry_ratios = [1.3, 1.1, 0.7, 0]

In [172]: ins_charge = [1 - lognorm_lev(mu, sigma, 1, i) for i in entry_ratios]

In [173]: lr_points = np.diff(np.array(ins_charge), prepend=0) * lr

In [174]: slide_scale = np.array([0, .5, .75, 0])

In [175]: red_from_max = slide_scale * lr_points

In [176]: expected_slide = max_slide - np.sum(red_from_max)

In [177]: expected_slide
Out[177]: 0.3106485062930016

The lognormal distribution is not a great fit to the specified distribution.

In [178]: bit['logn'] = fz.pdf(bit.loss / re_premium)

In [179]: bit.logn = bit.logn / bit.logn.sum()

In [180]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
↪→layout=True)

In [181]: ax0, ax1 = axs.flat

In [182]: bit.index = bit.index / re_premium

In [183]: bit[['p_total', 'logn']].plot(ax=ax0);

In [184]: bit[['p_total', 'logn']].cumsum().plot(ax=ax1);

In [185]: for ax in axs.flat:
.....: for lr in [.35, .55, .65]:
.....: ax.axvline(lr, lw=.5, c='C7')
.....:

In [186]: ax0.set(ylabel='Probability density or mass');

In [187]: ax1.set(ylabel='Probability distribution');

2.6. Reinsurance Pricing 129

aggregate Documentation, Release 0.22.0

TODO: investigate differences!

2.6.9 Outwards Analysis

Bear and Nemlick’s analysis starts with a description of the frequency and severity of ceded loss. They do not
consider the gross portfolio from which the cession occurs. In this section, we model gross, ceded, and net portfolios,
mimicking a ceded re or broker actuary evaluation. We use an example from Mata et al. [2002]. Our methods are
similar in spirit to theirs, but the details are slightly different, and our estimates do not tie exactly to what they report.
Subject business.
Lawyers and Errors and Omissions (E&O).

• Lawyers
– Severity curve: lognormal µ = 8, σ = 2.5

– Loss ratio 65%
– Exposure

∗ 1M premium written with a 750K limit and 10K deductible
∗ 2M premium written with a 1M limit and 25K deductible

• E&O
– Severity curve: lognormal µ = 9, σ = 3

– Loss ratio 75%
– Exposure

∗ 2M premium written with a 1.5M limit and 50K deductible
∗ 3M premium written with a 2M limit and 50K deductible

The total premium equals 8M, assumed split 7.2M for the first million and 800K for the second.
Cessions.

• Layer 1: 500 xs 500
– Margin plus (retro) rated with provisional rate 12.5% of the premium for the first million, a minimum of
7%, maximum of 18%, and a load (lcf) of 107.5%.

– Profit commission of 15% after 20% expenses.
– Brokerage: 10% of provisional.

• Layer 2: 1M xs 1M
– Cessions rated, 800K ceded premium
– 15% ceding commission
– Profit commission 15% after 20%
– Brokerage: 10% on gross.

Treaty pricing with these variable features follows the same pattern as Bear and Nemlick and is left as an exercise.
This section works with the gross, ceded, and net severity distributions, accounting for the limit profile, and the gross,
ceded, and net aggregate distributions.

130 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Stochastic Model

Mata et al. assume a negative binomial (gamma mixed Poisson) frequency distribution with a variance to mean ratio
of 2.0. When there are relatively few excess claims the resulting mixing CV is close to 0 and the negative binomial is
close to a Poisson. We start using a Poisson frequency and then show the impact of moving to a negative binomial.
The basic stochastic model is as follows. Work in 000s. Using bs=1/2 results in a slightly better match to the mean
and CV than the recommended bs=1/4.

In [188]: a19 = build('agg Re:MFV41 '
.....: '[1000 2000 2000 3000] premium at [.65 .65 .75 .75] lr '
.....: '[750 1000 1500 2000] xs [10 25 50 50] '
.....: 'sev [exp(8)/1000 exp(8)/1000 exp(9)/1000 exp(9)/1000] '
.....: '* lognorm [2.5 2.5 3 3] '
.....: 'poisson', bs=1/2)
.....:

In [189]: qd(a19)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 22.51 0.21077 0.21077
Sev 253.23 253.23 -9.8245e-07 1.7344 1.7344 2.5007 2.5007
Agg 5700 5700 -9.8245e-07 0.42198 0.42198 0.60601 0.60601
log2 = 16, bandwidth = 1/2, validation: not unreasonable.

The report_df dataframe shows the theoretic and empirical (i.e., modeled) statistics for each unit.

In [190]: qd(a19.report_df.iloc[:, [0,1,2,3,4,-2]])

view 0 1 2 3 independent empirical
statistic
name Re:MFV41 Re:MFV41 Re:MFV41 Re:MFV41 Re:MFV41
limit 750 1000 1500 2000 1202.5
attachment 10 25 50 50 29.468
el 650 1300 1500 2250 5700
freq_m 6.4105 8.2296 3.416 4.4534 22.51
freq_cv 0.39496 0.34859 0.54105 0.47386 0.21077
freq_skew 0.39496 0.34859 0.54105 0.47386 0.21077
sev_m 101.4 157.97 439.1 505.23 253.23 253.23
sev_cv 1.7775 1.6113 1.2123 1.3296 1.7344 1.7344
sev_skew 2.5869 2.3057 1.1514 1.4005 2.5007 2.5007
agg_m 650 1300 1500 2250 5700 5700
agg_cv 0.80551 0.66106 0.85026 0.78834 0.42198 0.42198
agg_skew 1.1642 0.94224 1.04 0.98741 0.60601 0.60601

Mata et al. pay careful attention to the implied severity in each ceded layer, accounting for probability masses.
They do this by considering losses in small intervals and weighting the underlying severity curves. aggregate
automatically performs the same calculations to estimate the total layer severity. In this example, it uses a smaller
bucket size of 0.5K compared to 2.5K in the original paper. The next plots reproduce [TODODifferences?!] Figures
2 and 3. The masses (spikes in density; jumps in distribution) occur when the lower limit unit has only limit losses.

In [191]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45), constrained_
↪→layout=True)

In [192]: ax0, ax1, ax2, ax3 = axs.flat

In [193]: (a19.density_df.p_sev / a19.sev.sf(500)).plot(xlim=[500, 1005], ␣
↪→logy=True, ax=ax0);

In [194]: (a19.density_df.p_sev / a19.sev.sf(1000)).plot(xlim=[1000, 2005],␣
↪→logy=True, ax=ax1);

(continues on next page)

2.6. Reinsurance Pricing 131

aggregate Documentation, Release 0.22.0

(continued from previous page)

In [195]: ((a19.density_df.F_sev - a19.sev.cdf(500)) / (a19.sev.cdf(1000) - a19.
↪→sev.cdf(500))).plot(xlim=[500, 1005], ylim=[-0.05, 1.05], ax=ax2);

In [196]: ((a19.density_df.F_sev - a19.sev.cdf(1000)) / (a19.sev.cdf(2000) - a19.
↪→sev.cdf(1000))).plot(xlim=[1000, 2005], ylim=[-0.05, 1.05], ax=ax3);

In [197]: for ax, y in zip(axs.flat, ['Log density', 'Log density', 'Density',
↪→'Density']):

.....: ax.set(ylabel=y);

.....:

In [198]: fig.suptitle('Layer loss log density and distribution');

Use an occurrence net of clause to apply the two excess of loss reinsurance layers. The estimated statistics
refer to the net portfolio and reflect a pure exposure rating approach. Gross, ceded, and net expected losses are
reported last.

In [199]: a19n = build('agg Re:MFV41n '
.....: '[1000 2000 2000 3000] premium at [.65 .65 .75 .75] lr '
.....: '[750 1000 1500 2000] xs [10 25 50 50] '
.....: 'sev [exp(8)/1000 exp(8)/1000 exp(9)/1000 exp(9)/1000] *␣

↪→lognorm [2.5 2.5 3 3] '
.....: 'occurrence net of 500 xs 500 and 1000 xs 1000 '
.....: 'poisson', bs=1/2)
.....:

In [200]: qd(a19n)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 22.51 0.21077 0.21077
Sev 253.23 153.57 -0.39356 1.7344 1.1741 2.5007 1.0678
Agg 5700 3456.7 -0.39356 0.42198 0.32507 0.60601 0.39439
log2 = 16, bandwidth = 1/2, validation: n/a, reinsurance.

In [201]: print(f'Gross expected loss {a19.est_m:,.1f}\n'
.....: f'Ceded expected loss {a19.est_m - a19n.est_m:,.1f}\n'
.....: f'Net expected loss {a19n.est_m:,.1f}')
.....:

(continues on next page)

132 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
Gross expected loss 5,700.0
Ceded expected loss 2,243.3
Net expected loss 3,456.7

The reinsurance_audit_df dataframe summarizes ground-up (unconditional) layer loss statistics for occur-
rence covers. Thus, ex reports the layer severity per ground-up claim. The subject (gross) row is the same for all
layers and replicates the gross severity statistics shown above for a.

In [202]: qd(a19n.reinsurance_audit_df.stack(0), sparsify=False)

ex var sd cv skew
kind share limit attach
occ 1.0 500.0 500.0 ceded 57.296 22247 149.15 2.6032 2.427
occ 1.0 500.0 500.0 net 195.93 93447 305.69 1.5602 2.5723
occ 1.0 500.0 500.0 subject 253.23 1.929e+05 439.21 1.7344 2.5007
occ 1.0 1000.0 1000.0 ceded 42.365 31584 177.72 4.195 4.4786
occ 1.0 1000.0 1000.0 net 210.86 94455 307.34 1.4575 1.6901
occ 1.0 1000.0 1000.0 subject 253.23 1.929e+05 439.21 1.7344 2.5007
occ all inf gup ceded 99.66 91341 302.23 3.0326 3.4354
occ all inf gup net 153.57 32509 180.3 1.1741 1.0678
occ all inf gup subject 253.23 1.929e+05 439.21 1.7344 2.5007

The reinsurance_occ_layer_df dataframe summarizes aggregate losses.

In [203]: qd(a19n.reinsurance_occ_layer_df, sparsify=False)

stat ex ex ex cv cv cv en severity ␣
↪→ pct
view ceded net subject ceded net subject ceded ceded ␣
↪→ceded
share limit attach ␣
↪→

1.0 500.0 500.0 1289.7 4410.3 5700 2.6032 1.5602 1.7344 3.5198 366.41 0.
↪→22626
1.0 1000.0 1000.0 953.61 4746.4 5700 4.195 1.4575 1.7344 1.5175 628.41 0.
↪→1673
all inf gup 2243.3 3456.7 5700 3.0326 1.1741 1.7344 22.51 99.66 0.
↪→39356

The layer severities show above differ slightly from Mata et al. Table 3. The aggregate computation is closest to
Method 3. The reported severities are 351.1 and 628.8.
The reinsurance_df dataframe provides the gross, ceded, and net severity and aggregate distributions:

• Severity distributions: p_sev_gross, p_sev_ceded, p_sev_net
• Aggregate distribution: p_agg_gross_occ, p_agg_ceded_occ, p_agg_net_occ show the aggre-
gate distributions computed using gross, cede, and net severity (occurrence) distributions. These are the port-
folio gross, ceded and net distributions.

• The columns p_agg_gross, p_agg_ceded, p_agg_net are relevant only when there is are occur-
rence and aggregate reinsurance clauses. They report gross, ceded and net of the aggregate covers, using
the severity requested in the occurrence clause. In this case p_agg_gross is the same as p_agg_net_occ
because the occurrence clause specified net of.

Here is an extract from the severity distributions. Ceded severity is at most 1500. The masses at 250, 500, 1000 and
1500 are evident.

In [204]: qd(a19n.reinsurance_df.loc[0:2000:250,
.....: ['p_sev_gross', 'p_sev_ceded', 'p_sev_net']])
.....:

(continues on next page)

2.6. Reinsurance Pricing 133

aggregate Documentation, Release 0.22.0

(continued from previous page)
p_sev_gross p_sev_ceded p_sev_net

loss
0.0 0.0059219 0.84369 0.0059219
125.0 0.00074474 7.6472e-05 0.00074474
250.0 0.00029874 0.012139 0.00029874
375.0 0.00016663 3.8634e-05 0.00016663
500.0 0.00010806 0.018065 0.15642
625.0 7.6472e-05 1.8367e-05 0
750.0 0.012139 1.5689e-05 0
875.0 3.8634e-05 1.3584e-05 0
1000.0 0.018065 0.022295 0
1125.0 1.8367e-05 5.9515e-06 0
1250.0 1.5689e-05 5.3056e-06 0
1375.0 1.3584e-05 4.7639e-06 0
1500.0 0.022295 0.023679 0
1625.0 5.9515e-06 0 0
1750.0 5.3056e-06 0 0
1875.0 4.7639e-06 0 0
2000.0 0.023679 0 0

Here is an extract from the aggregate distributions, followed by the density and distribution plots. The masses are
caused by outcomes involving only limit losses.

In [205]: qd(a19n.reinsurance_df.loc[3000:6000:500,
.....: ['p_agg_gross_occ', 'p_agg_ceded_occ', 'p_agg_net_occ']])
.....:

p_agg_gross_occ p_agg_ceded_occ p_agg_net_occ
loss
3000.0 5.6326e-05 0.0090335 0.00017503
3250.0 6.2846e-05 0.0024374 0.00017886
3500.0 6.8727e-05 0.0050447 0.00017401
3750.0 7.3779e-05 0.0013535 0.00016174
4000.0 7.7914e-05 0.0037091 0.00014418
4250.0 8.1081e-05 0.0010054 0.00012359
4500.0 8.328e-05 0.002359 0.00010216
4750.0 8.4511e-05 0.00063735 8.1596e-05
5000.0 8.4787e-05 0.0012892 6.3111e-05
5250.0 8.4135e-05 0.00034824 4.735e-05
5500.0 8.2634e-05 0.00080992 3.4517e-05
5750.0 8.0373e-05 0.00022017 2.4482e-05
6000.0 7.7463e-05 0.00045425 1.6918e-05

In [206]: fig, axs = plt.subplots(1, 3, figsize=(3 * 3.5, 2.45), constrained_
↪→layout=True)

In [207]: ax0, ax1, ax2 = axs.flat

In [208]: bit = a19n.reinsurance_df[['p_agg_gross_occ', 'p_agg_ceded_occ', 'p_agg_
↪→net_occ']]

In [209]: bit.plot(ax=ax0);

In [210]: bit.plot(logy=True, ax=ax1);

In [211]: bit.cumsum().plot(ax=ax2);

In [212]: for ax in axs.flat:
.....: ax.set(xlim=[0, 12500]);
.....:

(continues on next page)

134 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [213]: ax0.set(ylabel='Mixed density');

In [214]: ax1.set(ylabel='Log mixed density');

In [215]: ax2.set(ylabel='Distribution');

Any desired risk management evaluation can be computed from reinsurance_df, which contains the gross,
ceded, and net distributions. For example, here is a tail return period plot and a dataframe of summary statistics.

In [216]: fig, axs = plt.subplots(1, 2, figsize=(2 * 2.45, 3.5), constrained_
↪→layout=True)

In [217]: ax0, ax1 = axs.flat

In [218]: for c in bit.columns:
.....: ax0.plot(bit[c].cumsum(), bit.index, label=c.split('_')[2])
.....: rp = 1 / (1 - bit[c].cumsum())
.....: ax1.plot(rp, bit.index, label=c)
.....:

In [219]: ax0.xaxis.set_major_locator(ticker.MultipleLocator(0.25))

In [220]: ax0.set(ylim=[0, a19n.q(1-1e-10)], title='x vs $F(x)$', xlabel='$F(x)$
↪→', ylabel='Outcome, x');

In [221]: ax1.set(xscale='log', xlim=[1, 1e10], ylim=[0, a19n.q(1-1e-10)], xlabel=
↪→'Log return period');

In [222]: ax0.legend(loc='upper left');

In [223]: df = pd.DataFrame({c.split('_')[2]: xsden_to_meancvskew(bit.index,␣
↪→bit[c]) for c in bit.columns},

.....: index=['mean', 'cv', 'skew'])

.....:

In [224]: qd(df)

gross ceded net
mean 5700 2243.3 3456.7
cv 0.42198 0.67304 0.32507
skew 0.60601 0.8053 0.39439

2.6. Reinsurance Pricing 135

aggregate Documentation, Release 0.22.0

Mata Figures 4, 5, 6 and 7 show the aggregate mixed density and distribution functions for each layer. These plots
are replicated below. Our model uses a gamma mixed Poisson frequency with a variance multiplier of 2.0, resulting
in a lower variance multiplier for excess layers (see REF). The plots in Mata appear to use a variance multiplier of
2.0 for the excess layer, resulting in a more skewed distribution.

In [225]: from aggregate import lognorm_approx

In [226]: vm = 2.0; c = (vm - 1) / a19.n; cv = c**0.5

In [227]: a20 = build('agg Re:MFV41n1 '
.....: '[1000 2000 2000 3000] premium at [.65 .65 .75 .75] lr '
.....: '[750 1000 1500 2000] xs [10 25 50 50] '
.....: 'sev [exp(8)/1000 exp(8)/1000 exp(9)/1000 exp(9)/1000] *␣

↪→lognorm [2.5 2.5 3 3] '
.....: 'occurrence net of 500 xs 500 '
.....: f'mixed gamma {cv}', bs=1/2)
.....:

In [228]: a21 = build('agg Re:MFV41n2 '
.....: '[1000 2000 2000 3000] premium at [.65 .65 .75 .75] lr '
.....: '[750 1000 1500 2000] xs [10 25 50 50] '
.....: 'sev [exp(8)/1000 exp(8)/1000 exp(9)/1000 exp(9)/1000] *␣

↪→lognorm [2.5 2.5 3 3] '
.....: 'occurrence net of 1000 xs 1000 '
.....: f'mixed gamma {cv}', bs=1/2)
.....:

In [229]: qd(a20)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 22.51 0.29808 0.44712
Sev 253.23 195.93 -0.22626 1.7344 1.5602 2.5007 2.5723
Agg 5700 4410.3 -0.22626 0.4717 0.44384 0.69763 0.68565
log2 = 16, bandwidth = 1/2, validation: n/a, reinsurance.

In [230]: qd(a21)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 22.51 0.29808 0.44712
Sev 253.23 210.86 -0.1673 1.7344 1.4575 2.5007 1.6901
Agg 5700 4746.4 -0.1673 0.4717 0.42805 0.69763 0.60342
log2 = 16, bandwidth = 1/2, validation: n/a, reinsurance.

In [231]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45), constrained_
↪→layout=True); \

(continues on next page)

136 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
.....: ax0, ax1, ax2, ax3 = axs.flat; \
.....: a20.reinsurance_df.p_agg_ceded_occ.plot(ax=ax0); \
.....: a20.reinsurance_df.p_agg_ceded_occ.cumsum().plot(ax=ax2); \
.....: a21.reinsurance_df.p_agg_ceded_occ.plot(ax=ax1); \
.....: a21.reinsurance_df.p_agg_ceded_occ.cumsum().plot(ax=ax3); \
.....: xs = np.linspace(0, 5000, 501); \
.....: fz = lognorm_approx(a20.reinsurance_df.p_agg_ceded_occ); \
.....: ax2.plot(xs, fz.cdf(xs), label='lognorm approx'); \
.....: fz = lognorm_approx(a21.reinsurance_df.p_agg_ceded_occ); \
.....: ax3.plot(xs, fz.cdf(xs), label='lognorm approx'); \
.....: ax2.legend(); \
.....: ax3.legend(); \
.....: ax0.set(xlim=[-50, 5000], xlabel=None, ylabel='500 xs 500 density'); \
.....: ax2.set(xlim=[-50, 5000], ylabel='500 xs 500 distribution'); \
.....: ax1.set(xlim=[-50, 5000], xlabel=None, ylabel='1M xs 1M density');
.....:

In [232]: ax3.set(xlim=[-50, 5000], ylabel='1M xs 1M distribution');

2.6.10 Summary of Objects Created by DecL

Objects created by build() in this guide.

In [233]: from aggregate import pprint_ex

In [234]: for n, r in build.qlist('^(Re):').iterrows():
.....: pprint_ex(r.program, split=20)
.....:

2.6. Reinsurance Pricing 137

aggregate Documentation, Release 0.22.0

2.7 Reserving

Objectives: Applications of theAggregate class to reserving, includingmodels of loss emergence and determining
ranges for IBNR and case reserves.
Audience: Reserving, capital modeling, ERM actuaries.
Prerequisites: DecL, the reserving process and terminology, aggregate distributions, risk measures.
See also:
Contents:

1. Helpful References

2. Modeling the Current Accident Year, Case and IBRN Reserves

3. The Resolution of Reserve Uncertainty Over Time

2.7.1 Helpful References

• Meyers [2019]
• Mildenhall and Major [2022], chapter 17

2.7.2 Modeling the Current Accident Year, Case and IBRN Reserves

Todo: Documentation to follow.

2.7.3 The Resolution of Reserve Uncertainty Over Time

Todo: Documentation to follow.

2.8 Catastrophe Modeling

Objectives: Applications of the Aggregate class to catastrophe risk evaluation and pricing using thick-tailed
Poisson Pareto and lognormal models, including occurrence and aggregate PMLs (OEP, AEP) and layer loss costs.
Covers material on CAS Parts 8 and 9.
Audience: Catastrophe modelers, reinsurance actuaries, and risk management professionals.
Prerequisites: Basics of catastrophe modeling, catastrophe insurance and reinsurance terminology, use of build.
See also: Capital Modeling and Risk Management, Strategy and Portfolio Management, Reinsurance Pricing, Individ-
ual Risk Pricing.
Contents:

1. Helpful References

2. Jewson’s US Wind PML Estimates

3. Jewson’s US Wind Climate Change Estimates

4. ILW Pricing

5. Secondary Uncertainty

138 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

6. Summary of Objects Created by DecL

2.8.1 Helpful References

• Jewson [2022]
• Mitchell-Wallace et al. [2017]
• Anderson and Dong [1988]
• Woo [2002]

2.8.2 Jewson’s US Wind PML Estimates

Model Description

Stephen Jewson Projections of Changes in U.S. Hurricane Damage Due to Projected Changes in Hurricane Frequencies
(submitted, under peer review), Jewson [2022] reports the following frequency and severity statistics for US hurricane
losses.

The dataframe jewson recreates the table and adds severity CVs.

In [1]: from aggregate import build, qd, mv

In [2]: import pandas as pd

In [3]: import matplotlib.pyplot as plt

In [4]: jewson = pd.DataFrame(
...: {'Num': [197, 84, 47, 43, 20, 3],
...: 'EN': [1.67, 0.71, 0.4, 0.36, 0.17, 0.025],

(continues on next page)

2.8. Catastrophe Modeling 139

https://www.linkedin.com/in/steve-jewson-phd-052bb417/

aggregate Documentation, Release 0.22.0

(continued from previous page)
...: 'ES_W': [10.0, 2.28, 4.46, 13.0, 43.8, 46.5],
...: 'ES_M': [15.9, 2.96, 6.39, 17.9, 82.3, 55.2],
...: 'SD_W': [24.4, 8.63, 6.17, 21.9, 50.9, 51.5],
...: 'SD_M': [47.2, 9.62, 7.83, 29.9, 119.0, 60.1],
...: 'EX_W': [16.7, 1.63, 1.78, 4.73, 7.42, 1.18],
...: 'EX_M': [26.5, 2.11, 2.55, 6.52, 13.9, 1.4]},
...: index=pd.Index(['1-5', '1', '2', '3', '4', '5'],
...: dtype='object', name='Cat')
...:)
...:

In [5]: jewson['CV_W'] = jewson.SD_W / jewson.ES_W; \
...: jewson['CV_M'] = jewson.SD_M / jewson.ES_M
...:

In [6]: qd(jewson)

Num EN ES_W ES_M SD_W SD_M EX_W EX_M CV_W CV_M
Cat
1-5 197 1.67 10 15.9 24.4 47.2 16.7 26.5 2.44 2.9686
1 84 0.71 2.28 2.96 8.63 9.62 1.63 2.11 3.7851 3.25
2 47 0.4 4.46 6.39 6.17 7.83 1.78 2.55 1.3834 1.2254
3 43 0.36 13 17.9 21.9 29.9 4.73 6.52 1.6846 1.6704
4 20 0.17 43.8 82.3 50.9 119 7.42 13.9 1.1621 1.4459
5 3 0.025 46.5 55.2 51.5 60.1 1.18 1.4 1.1075 1.0888

Jewson models aggregate losses with Poisson frequency and lognormal severity assumptions. Use build to create
Aggregate models of the two implied distributions. Adjust bs from recommended 1/16 to 1/8 for thick tailed
distributions.

In [7]: w = build('agg Cat:USWind:W '
...: f'{jewson.loc["1":"5", "EN"].to_numpy()} claims '
...: f'sev lognorm {jewson.loc["1":"5", "ES_W"].to_numpy()} '
...: f'cv {jewson.loc["1":"5", "CV_W"].to_numpy()}'
...: 'poisson'
...: , bs=1/8)
...:

In [8]: m = build('agg Cat:USWind:M: '
...: f'{jewson.loc["1":"5", "EN"].to_numpy()} claims '
...: f'sev lognorm {jewson.loc["1":"5", "ES_M"].to_numpy()} '
...: f'cv {jewson.loc["1":"5", "CV_M"].to_numpy()}'
...: 'poisson'
...: , bs=1/8)
...:

In [9]: qd(w)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.665 0.77498 0.77498
Sev 10.025 10.024 -4.5361e-05 2.4845 2.4841 9.9667 9.7215
Agg 16.691 16.691 -4.5361e-05 2.0756 2.0753 6.9539 6.8019
log2 = 16, bandwidth = 1/8, validation: fails sev skew, agg skew.

In [10]: mv(w)
mean = 16.6913
variance = 1200.188
std dev = 34.6437

In [11]: qd(m)

(continues on next page)

140 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.665 0.77498 0.77498
Sev 15.899 15.899 -4.9864e-05 3.0261 3.0218 15.065 14.399
Agg 26.473 26.471 -4.9871e-05 2.4699 2.4668 10.676 10.23
log2 = 16, bandwidth = 1/8, validation: fails sev cv, agg cv.

In [12]: mv(m)
mean = 26.4726
variance = 4275.28
std dev = 65.3856

Plots of the severity and aggregate distributions confirms they are very thick tailed.

In [13]: w.plot()

In [14]: m.plot()

Aggregate PML Estimates

It is easy to compute aggregate PML points (aggregate quantiles). The next table shows values at a range of return
periods. The return period corresponding to a p quantile is 1/(1− p). In a Poisson frequency model, the reciprocal
of the frequency equals the average waiting time between events because of the relationship between the Poisson and
exponential distributions. Amounts are in USD billions.

In [15]: agg_pmls = pd.DataFrame({'Return': [2, 5, 10, 20, 25, 50, 100, 200, 250,␣
↪→1000, 10000]}, dtype=float)

In [16]: agg_pmls['p'] = 1 - 1/agg_pmls.Return

In [17]: agg_pmls['Weinkle'] = [w.q(i) for i in agg_pmls.p]

In [18]: agg_pmls['Martinez'] = [m.q(i) for i in agg_pmls.p]

In [19]: agg_pmls = agg_pmls.set_index(['Return'])

In [20]: qd(agg_pmls)

(continues on next page)

2.8. Catastrophe Modeling 141

aggregate Documentation, Release 0.22.0

(continued from previous page)
p Weinkle Martinez

Return
2.0 0.5 4.5 6.375
5.0 0.8 23.5 33
10.0 0.9 46 68.5
20.0 0.95 73.875 117.38
25.0 0.96 84.125 136.12
50.0 0.98 119.25 204.12
100.0 0.99 160.38 288.88
200.0 0.995 208.12 392.88
250.0 0.996 225.12 431
1000.0 0.999 350.5 727
10000.0 0.9999 657.88 1516

Occurrence PML Estimates

Occurrence PMLs, called occurrence exceeding probability (OEP) points, can be computed for a compound Pois-
son model as adjusted severity quantiles. The n year OEP is defined as the loss level OEP(n) so that

there is a 1/n chance of one or more losses greater than OEP(n) per year.
The definition is valid only for n ≥ 1 since 1/n is interpreted as a probability. If λ is the annual event frequency
and S the severity survival function, then the annual frequency of losses greater than x equals λS(x) and therefore
chance of one or more losses greater than x equals 1− exp(−λS(x)) with Poisson frequency (one minus chance of
no events). Rearranging gives

OEP(n) = q

(
1 +

log(1− 1/n)

λ

)
where q is the severity distribution quantile function.
Jewson [2022] considers the related notion of event exceedance frequency (EEF). Here, the n year EEF is defined
as the loss level EEF(n) with a 1/n annual frequency. Thus

EEF(n) = q

(
1− 1

λn

)
.

This definition is valid for any n > 0 since the result is a frequency rather than a probability. OEP and EEF are very
similar for large n because log(1 + x) ≈ x for small x, but they diverge significantly for small n and only the latter
makes sense for 0 < n < 1. Jewson shows EEFs in his Figure 2. See Aggregate and Occurrence Probable Maximal
Loss and Catastrophe Model Output.
Jewson comments that OEP is useful for validating the frequency of annual maximum loss, which is affected by clus-
tering. Thus OEP estimates are important for validating models that include clustering. EEF is useful for validating
whether a model captures the mean frequency of events, including events with frequency greater than 1 per year.
The following table shows OEP and EEF points, comparing the two statistics.

In [21]: oep = pd.DataFrame({'Return': [2, 5, 10, 20, 25, 50, 100, 200, 250, 1000,␣
↪→10000]}, dtype=float); \

....: oep['p'] = 1 - 1/oep.Return; \

....: oep['W OEP'] = [w.q_sev(1 + np.log(i) / w.n) for i in oep.p]; \

....: oep["W EEF"] = [w.q_sev(1 - 1 / i /w.n) for i in oep.Return]; \

....: oep['M OEP'] = [m.q_sev(1 + np.log(i) / m.n) for i in oep.p]; \

....: oep["M EEF"] = [m.q_sev(1 - 1 / i /m.n) for i in oep.Return]; \

....: oep = oep.set_index(['Return']); \

....: qd(oep)

....:

p W OEP W EEF M OEP M EEF
Return

(continues on next page)

142 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
2.0 0.5 3.625 6.375 5.125 8.875
5.0 0.8 18.75 21.125 26.125 29.75
10.0 0.9 37.75 39.375 56.75 59.375
20.0 0.95 62.125 63.125 100.5 102.38
25.0 0.96 71.25 72 117.62 119.25
50.0 0.98 103.12 103.62 181 182
100.0 0.99 141.62 141.88 261.75 262.38
200.0 0.995 187.38 187.62 362.75 363.12
250.0 0.996 203.88 204 400.12 400.38
1000.0 0.999 327.38 327.5 693.38 693.5
10000.0 0.9999 635.38 635.38 1482.8 1482.8

The next block of code shows the same information as Jewson’s Figure 2. It includes OEP and EEF for comparison.
The dashed line shows a third alternative aggregate implementation using the exact continuous weighted severity
survival function m.sev.sf, rather than the discrete approximation in m.density_df.

In [22]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
↪→layout=True)

In [23]: for ax, mw, title, xmax in zip(axs.flat[::-1], [m, w], ['Martinez␣
↪→estimates', 'Weinkel estimates'], [550, 240]):

....: bit = np.exp(-(1-mw.density_df.F_sev.loc[:1000]) * m.n)

....: bit = 1 / (1 - bit)

....: bit.plot(logy=True, ax=ax, label='OEP = Pr no events in year')

....: bit = 1 / ((1 - mw.density_df.F_sev.loc[:20000]) * m.n)

....: bit.plot(logy=True, ax=ax, label='EEF RP = 1/freq')

....: xs = np.linspace(0, 500, 501)

....: if title[0] == 'M':

....: rp = 1 / (m.n * m.sev.sf(xs))

....: else:

....: rp = 1 / (m.n * w.sev.sf(xs))

....: ax.plot(xs, rp, c='r', ls='--', lw=2, alpha=0.25, label='From sev sf')

....: ax.legend()

....: ax.set(xlim=[-10, xmax], ylim=[400, .5], title=title)

....: ax.set_yscale('log', base=10)

....: ticks = [1, 3, 10, 30, 100, 300]

....: ax.set_yticks(ticks)

....: ax.set_yticklabels([f'{x}' for x in ticks]);

....:

In [24]: fig;

2.8. Catastrophe Modeling 143

aggregate Documentation, Release 0.22.0

Feller’s Relationship between AEP and OEP

For thick tailed distributions, AEP and OEP points are closely related by Feller’s theorem, which says that for A ∼
CP(λ,X) with severity X subexponential,

λPr(X > x)→ Pr(A > x)

as x→∞, see REF. The next plot confirms that Feller’s approximation is very good. Note the extreme return periods
returned by aggregate that would be hard to estimate with simulation.

In [25]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.55), constrained_
↪→layout=True)

In [26]: for ax, mw, lim, title in zip(axs.flat[::-1], [m, w], [5000, 5000], [
↪→'Martinez', 'Weinkle']):

....: bit = mw.density_df.loc[:5000, ['S', 'S_sev']]

....: bit['Feller'] = bit.S_sev * mw.n

....: bit = 1 / bit

....: bit.plot(xlim=[-10, lim], logy=True, ax=ax, ylim=[1000000, 0.5], lw=1)

....: ax.set_yscale('log', base=10)

....: ticks = [1,10,100,1000,10000, 1e5, 1e6]

....: ax.set_yticks(ticks)

....: ax.set_yticklabels([f'{x:.0g}' for x in ticks]);

....: ax.set(title=title);

....: if ax is axs[0]: ax.set(ylabel='Return period (years)');

....:

In [27]: fig.suptitle("Feller's approximation to aggregate PMLs")
Out[27]: Text(0.5, 0.98, "Feller's approximation to aggregate PMLs")

Note: These graphs demonstrate computational facility. I’m not suggesting one million year PML is a reliable
estimate. But the figure is reliably computing what the specified statistical model implies. The losses shown
range up to USD 5 trillion, about 20% of GDP.

2.8.3 Jewson’s US Wind Climate Change Estimates

Jewson Table 2 provides estimates for the impact of a 2 degree Celcius increase in global mean surface temperature
(GMST) on event frequency by Safir-Simpson category. He also provides the standard deviation of the impact. These
are added in the next dataframe.

In [28]: jewson['Freq Chg'] = [None, 1.011, 1.095, 1.134, 1.179, 1.236]

In [29]: jewson['Freq Chg SD'] = [None, 0.3179, .4176, .4638, .5174, .5830]

In [30]: qd(jewson.loc["1":"5", ['Freq Chg', 'Freq Chg SD']])

Freq Chg Freq Chg SD

(continues on next page)

144 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
Cat
1 1.011 0.3179
2 1.095 0.4176
3 1.134 0.4638
4 1.179 0.5174
5 1.236 0.583

He models the impact of climate change on PMLs by assuming the frequency of each category is perturbed using
a lognormal with mean and standard deviation given by the last two columns of the above table. He assumes that
the perturbations across categories are comonotonic. In actuarial terms, he is using comonotonic frequency mixing
variables, to create a mixed compound Poisson.
We can create a similar effect using aggregate first by adjusting the baseline event frequencies by the Freq Chg
column and then by applying shared mixing across all events together (resulting in comonotonic perturbations). We
select a mix CV equal to Jewson’s estimate for Category 4 events. The categories are similar — in light of the overall
uncertainty of the analysis.

In [31]: qd((jewson.iloc[1:, -1] / jewson.iloc[1:, -2]))

Cat
1 0.31444
2 0.38137
3 0.40899
4 0.43885
5 0.47168

In [32]: mix_cv = 0.5174 / 1.179

In [33]: mix_cv
Out[33]: 0.4388464800678541

The adjusted model is built using inverse Gaussian mixing variables (slightly thicker tail than gamma), rather than
Jewson’s lognormals. Note that the standard deviations increase but the CVs decrease.

In [34]: wcc = build('agg Cat:USWind:Wcc '
....: f'{jewson.loc["1":"5", "EN"].to_numpy() * jewson.loc["1":"5",

↪→"Freq Chg"].to_numpy()} claims '
....: f'sev lognorm {jewson.loc["1":"5", "ES_W"].to_numpy()} '
....: f'cv {jewson.loc["1":"5", "CV_W"].to_numpy()}'
....: f'mixed ig {mix_cv}'
....: , bs=1/8)
....:

In [35]: mcc = build('agg Cat:USWind:Mcc '
....: f'{jewson.loc["1":"5", "EN"].to_numpy() * jewson.loc["1":"5",

↪→"Freq Chg"].to_numpy()} claims '
....: f'sev lognorm {jewson.loc["1":"5", "ES_M"].to_numpy()} '
....: f'cv {jewson.loc["1":"5", "CV_M"].to_numpy()}'
....: f'mixed ig {mix_cv}'
....: , bs=1/8)
....:

In [36]: qd(wcc)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.7954 0.86578 1.1454
Sev 10.646 10.645 -4.0062e-05 2.4249 2.4246 9.5485 9.3409
Agg 19.113 19.112 -4.0062e-05 2.0062 2.006 6.2354 6.1214
log2 = 16, bandwidth = 1/8, validation: fails sev skew, agg skew.

(continues on next page)

2.8. Catastrophe Modeling 145

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [37]: mv(wcc)
mean = 19.1129
variance = 1470.276
std dev = 38.3442

In [38]: qd(mcc)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.7954 0.86578 1.1454
Sev 16.95 16.949 -4.9432e-05 2.9533 2.9491 14.535 13.891
Agg 30.432 30.431 -4.9442e-05 2.368 2.3651 9.6255 9.2342
log2 = 16, bandwidth = 1/8, validation: fails sev cv, agg cv.

In [39]: mv(mcc)
mean = 30.4321
variance = 5193.212
std dev = 72.0639

The new models produce the following AALs, compare Jewson Figure 3.

In [40]: base = pd.concat((w.report_df.loc['agg_m'].T,
....: m.report_df.loc['agg_m'].T), axis=1,
....: keys=['Weinkle', 'Martinez']); \
....: cc = pd.concat((wcc.report_df.loc['agg_m'].T,
....: mcc.report_df.loc['agg_m'].T), axis=1,
....: keys=['Weinkle', 'Martinez']); \
....: df = pd.concat((base, cc), axis=1,
....: keys=[' Base', 'Adjusted']); \
....: df[('Change', 'Martinez')] = (df[('Adjusted', 'Martinez')] - df[(' Base',

↪→ 'Martinez')]); \
....: df[('Change', 'Weinkle')] = (df[('Adjusted', 'Weinkle')] - df[(' Base',

↪→'Weinkle')]); \
....: df[('Pct Change', 'Martinez')] = (df[('Adjusted', 'Martinez')] -
....: df[(' Base', 'Martinez')]) / jewson.iloc[0]['EX_M']; \
....: df[('Pct Change', 'Weinkle')] = (df[('Adjusted', 'Weinkle')] -
....: df[(' Base', 'Weinkle')]) / jewson.iloc[0]['EX_W']; \
....: df = df.iloc[[0,1,2,3,4,6]]; \
....: df.index = [1,2,3,4,5, 'Total']; \
....: df.index.name = 'Category'; \
....: df = df.swaplevel(axis=1); \
....: df = df.sort_index(axis=1, ascending=[False, True]); \
....: qd(df.stack(0).swaplevel(0).sort_index(ascending=[False,True]))
....:

Base Adjusted Change Pct Change
Category

Weinkle 1 1.6188 1.6366 0.017807 0.0010663
2 1.784 1.9535 0.16948 0.010149
3 4.68 5.3071 0.62712 0.037552
4 7.446 8.7788 1.3328 0.07981
5 1.1625 1.4368 0.27435 0.016428
Total 16.691 19.113 2.4216 0.14501

Martinez 1 2.1016 2.1247 0.023118 0.00087236
2 2.556 2.7988 0.24282 0.009163
3 6.444 7.3075 0.8635 0.032585
4 13.991 16.495 2.5044 0.094505
5 1.38 1.7057 0.32568 0.01229
Total 26.473 30.432 3.9595 0.14942

Here are plots of the base and adjusted AEP and OEP curves. Compare Jewson Figure 5 (a) and (b) for aggregate
and Figure 6 (a) and (b) for occurrence.

146 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [41]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.5), constrained_
↪→layout=True)

In [42]: axs = axs.flat[::-1]

In [43]: for axo, axa, (mw, mwcc), title in zip(axs.flat[0::2], axs.flat[1::2],␣
↪→[(m, mcc), (w, wcc)], ['Martinez', 'Weinkle']):

....: bit = 1 / ((1 - mw.density_df.F_sev.loc[:2000]) * mw.n)

....: bit.plot(logy=True, ax=axo, label='OEP');

....: bit = 1 / ((1 - mwcc.density_df.F_sev.loc[:2000]) * mw.n)

....: bit.plot(logy=True, ax=axo, label='OEP, climate chanage');

....: bit = 1 / (1 - mw.density_df.F.loc[:2000])

....: bit.plot(logy=True, ax=axa, label='AEP');

....: bit = 1 / (1 - mwcc.density_df.F.loc[:2000])

....: bit.plot(logy=True, ax=axa, label='AEP, climate change');

....: axo.set(title=f'{title} OEP');

....: axa.set(title=f'{title} AEP');

....:

In [44]: for ax in axs.flat:
....: ax.set(xlim=[-10, 325], ylim=[130, .5], xlabel='Loss');
....: if ax in [axs.flat[1], axs.flat[3]]:
....: ax.set(ylabel='Return period');
....: ax.set_yscale('log', base=10);
....: ticks = [1, 2, 5, 10, 20, 50, 100]
....: ax.set_yticks(ticks);
....: ax.set_yticklabels([f'{x}' for x in ticks]);
....: ax.legend()
....:

In [45]: fig.suptitle('Impact of climate change on AEP and OEP curves');

2.8. Catastrophe Modeling 147

aggregate Documentation, Release 0.22.0

2.8.4 ILW Pricing

Industry Loss Warranties (ILW) are securities that pay an agreed amount if losses from a named peril exceed a
threshold during the contract term. They are usually written on an occurrence basis and are triggered by losses from
a single event. For example, a US hurricane $20 billion ILW pays 1 if there is a US hurricane causing $20 billion
or more losses during the contract period. They are used by insurers to provide cat capacity. Because they are not
written on an indemnity basis there is no underwriting, which simplifies their pricing.
Brokers publish price sheets for ILWs to give a view of market pricing. Price is expressed as a percentage of the face
value. A recent sheet quoted prices for US hurricane as follows.

Attachment Price (Pct)
15B 47.0
20B 38.0
25B 33.0
30B 27.5
40B 17.5
50B 13.0
60B 10.75

The next dataframe adds expected losses and compares them to the ILW pricing. The expected loss is given by the
occurrence survival function — it is simply the probability of attaching the layer. The EL columns show Jewson’s
expected losses across the four views discussed above. The impact on EL is only caused by greater event frequency.
Its effect increases with attachment.

In [46]: views = ['Weinkle', 'Weinkle Adj', 'Martinez', 'Martinez Adj']

In [47]: ilw = pd.concat((x.density_df.loc[[15, 20, 25, 30, 40, 50, 60],
....: ['S_sev']].rename(columns={'S_sev': 'EL'})
....: for x in [w, wcc, m, mcc]),
....: axis=1, keys=views,
....: names=['View', 'Stat']); \
....: ilw['Price'] = [.47, .38, .33, .275, .175, .13, .1075]; \
....: ilw.index.name = 'Trigger'; \
....: ilw = ilw.iloc[:, [-1,0,1,2,3]]; \
....: qd(ilw, float_format=lambda x: f'{x:.4f}')
....:

View Price Weinkle Weinkle Adj Martinez Martinez Adj
Stat EL EL EL EL
Trigger
15.0 0.4700 0.1622 0.1733 0.2075 0.2207
20.0 0.3800 0.1261 0.1353 0.1666 0.1782
25.0 0.3300 0.1013 0.1091 0.1390 0.1492
30.0 0.2750 0.0832 0.0898 0.1188 0.1279
40.0 0.1750 0.0586 0.0634 0.0910 0.0983
50.0 0.1300 0.0431 0.0467 0.0725 0.0785
60.0 0.1075 0.0326 0.0354 0.0593 0.0643

Cat pricing is often expressed in terms of the implied multiple: the ratio of premium to EL (reciprocal of the loss
ratio).
Cat pricing multiples are usually in the range of 2 to 5 times the standard commercial models’ estimates of expected
loss. The base model pricing multiples, shown below, fall into this range. The climate adjusted multiples fall outside,
which is not unexpected, since the pricing is for the coming period and not a future climate-impacted period.

In [48]: ilw[[(v, 'Multiple') for v in views]] = ilw[['Price']].values / ilw[[(v,
↪→'EL') for v in views]]; \

....: qd(ilw.iloc[:, [0,5,6,7,8]])

....:

View Price Weinkle Weinkle Adj Martinez Martinez Adj

(continues on next page)

148 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
Stat Multiple Multiple Multiple Multiple
Trigger
15.0 0.47 2.8979 2.7117 2.2652 2.1299
20.0 0.38 3.0142 2.8079 2.2803 2.1327
25.0 0.33 3.2578 3.0257 2.3739 2.2117
30.0 0.275 3.3058 3.0637 2.3144 2.1502
40.0 0.175 2.9845 2.7581 1.9239 1.7806
50.0 0.13 3.0188 2.7849 1.7938 1.6562
60.0 0.1075 3.3001 3.0409 1.8132 1.6714

The next table shows implied distortion parameters calibrated to market pricing for the dual

g(s) = 1− (1− s)p, p > 1

and proportional hazard (PH)

g(s) = sp, p < 1

parametric families (seeMildenhall andMajor [2022]). In both cases, a higher parameter corresponds to a higher risk
load. The dual is body-risk centric and the PH is tail-risk centric. The indicated parameters are quite high, consistent
with the expense of bearing cat risk. (The parameters are incomparable between distortions.)

In [49]: params = pd.concat((np.log(1 - ilw[['Price']]).values / np.log(1 - ilw.xs(
↪→'EL', axis=1, level=1)),

....: np.log(ilw[['Price']].values) / np.log(ilw.xs('EL',␣
↪→axis=1, level=1))),

....: axis=1, keys=['Dual', 'PH'])

....:

In [50]: qd(params.xs('Dual', axis=1, level=0))

View Weinkle Weinkle Adj Martinez Martinez Adj
Trigger
15.0 3.5877 3.3355 2.7301 2.5465
20.0 3.5474 3.2875 2.6224 2.436
25.0 3.7497 3.4678 2.6757 2.4785
30.0 3.7027 3.4194 2.5422 2.3499
40.0 3.1837 2.9347 2.0172 1.8596
50.0 3.1637 2.9131 1.8511 1.7036
60.0 3.4341 3.1598 1.8608 1.7107

In [51]: qd(params.xs('PH', axis=1, level=0))

View Weinkle Weinkle Adj Martinez Martinez Adj
Trigger
15.0 0.41507 0.4308 0.48009 0.49965
20.0 0.46722 0.48378 0.53997 0.56093
25.0 0.4842 0.50034 0.56186 0.58276
30.0 0.51916 0.53554 0.60606 0.62775
40.0 0.6145 0.63208 0.72704 0.7513
50.0 0.6487 0.66578 0.77736 0.80174
60.0 0.65132 0.66726 0.78937 0.8128

2.8. Catastrophe Modeling 149

aggregate Documentation, Release 0.22.0

2.8.5 Secondary Uncertainty

Secondary uncertainty is the practice of expanding cat model simulated output by assuming that the results from each
event form a distribution. It is usual to assume the distribution is a beta. The model output provides the beta’s mean
and standard deviation. Given this output, modelers often need to compute statistics, such as a layer expected loss,
reflecting the secondary uncertainty. This calculation can be performed in aggergate as follows.
Assumptions: Assume one location with a TIV of 2500 and simple cat model output with only three equally-likely
events with mean losses 100, 200, and 1100 and secondary uncertainty standard deviation 100, 150, and 600. The
overall event frequency is 1.6 with a Poisson distribution.
Question: What is the expected loss to a 1000 xs 1000 per risk cover with and without secondary uncertainty?
Solution: Start by building the answer without secondary uncertainty. It is convenient to put the assumptions in a
dataframe.

In [52]: df = pd.DataFrame({'GroundUpLoss': [100, 200, 1100],
....: 'GroundUpSD': [100, 150, 600]})
....:

The model with no secondary uncertainty is a simple mixed severity.

In [53]: base = build('agg Cat:Base '
....: '1.6 claims '
....: f'dsev {df.GroundUpLoss.values} '
....: 'occurrence ceded to 1000 xs 1000 '
....: 'poisson'
....: , bs=1)
....:

In [54]: qd(base)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.6 0.79057 0.79057
Sev 466.67 33.333 -0.92857 0.96362 1.4142 0.68097 0.70711
Agg 746.67 53.333 -0.92857 1.0979 1.3693 1.2973 1.3693
log2 = 15, bandwidth = 1, validation: n/a, reinsurance.

To incorporate the secondary uncertainty, we first compute the beta parameters using the method of moments. Then
build the Aggregate model incorporating secondary uncertainty in each loss.

In [55]: tiv = 2500; \
....: m = df['GroundUpLoss'] / tiv; \
....: v = (df['GroundUpSD'] / tiv) ** 2; \
....: sev_a = m * (m * (1 - m) / v - 1); \
....: sev_b = (1 - m) * (m * (1 - m) / v - 1); \
....: sec = build(f'agg Cat:Secondary '
....: '1.6 claims '
....: f'sev {tiv} * beta {sev_a.values} {sev_b.values} wts=3 '
....: 'occurrence ceded to 1000 xs 1000 '
....: 'poisson')
....:

In [56]: qd(sec)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.6 0.79057 0.79057
Sev 466.67 96.384 -0.79346 1.2367 2.5758 1.5399 2.6259
Agg 746.67 154.21 -0.79346 1.2573 2.1844 1.6706 2.4651
log2 = 16, bandwidth = 1/2, validation: n/a, reinsurance.

150 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Including secondary uncertainty nearly triples the expected loss to the layer, from 53 to 154. Had the third loss been
only 1000, there would be no loss at all to the layer without secondary uncertainty.
The next plot compares the gross severity and aggregate distributions.

In [57]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
↪→layout=True); \

....: ax0, ax1 = axs.flat

....:

In [58]: base.reinsurance_df['p_sev_gross'].cumsum().plot(xlim=[0, 2500], ax=ax0,␣
↪→label='Base'); \

....: sec.reinsurance_df['p_sev_gross'].cumsum().plot(xlim=[0, 2500], ax=ax0,␣
↪→label='Secondary'); \

....: base.reinsurance_df['p_agg_gross_occ'].cumsum().plot(xlim=[0, 2500],␣
↪→ax=ax1, label='Base'); \

....: sec.reinsurance_df['p_agg_gross_occ'].cumsum().plot(xlim=[0, 2500],␣
↪→ax=ax1, label='Secondary'); \

....: ax0.set(title='Occurrence', xlabel='Loss', ylabel='Distribution'); \

....: ax1.set(title='Aggregate', xlabel='Loss', ylabel='Distribution'); \

....: ax0.legend();

....:

In [59]: ax1.legend();

2.8.6 Summary of Objects Created by DecL

The following objects are created by build() in this guide.

In [60]: from aggregate import pprint_ex

In [61]: for n, r in build.qlist('^Cat:').iterrows():
....: pprint_ex(r.program, split=20)
....:

2.9 Capital Modeling and Risk Management

Objectives: Application of the Portfolio class to capital modeling, including VaR, TVaR, and risk visualization
and quantification. Covers material on CAS Part 9.
Audience: ERM, capital modeling, risk management actuaries.
Prerequisites: DecL, aggregate distributions, risk measures.
See also: Catastrophe Modeling, Strategy and Portfolio Management, Case Studies.
Contents:

1. Helpful References

2. Conditional Expectation as a Risk Management and Visualization Device

2.9. Capital Modeling and Risk Management 151

aggregate Documentation, Release 0.22.0

2.9.1 Helpful References

• Mildenhall and Major [2022], especially chapter 14.

2.9.2 Conditional Expectation as a Risk Management and Visualization Device

Todo: Documentation to follow. In the meantime, see examples in Case Studies.

2.10 Strategy and Portfolio Management

Objectives: Use spectral risk measures to allocate total margin by unit.Application of the Portfolio and and
Distortion classes to strategy and portfolio management, including margin (capital) allocation, determining
benchmark pricing within a portfolio using alternative pricing methodologies, and the evaluation of reinsurance.
Audience: Planning and strategy, ERM, capital modeling, risk management actuaries.
Prerequisites: DecL, aggregate distributions, risk measures.
See also: Catastrophe Modeling, Capital Modeling and Risk Management, Case Studies.
Contents:

1. Helpful References

2. strat margin alloc

2.10.1 Helpful References

• Mildenhall and Major [2022] chapters 14 and 15 and references therein.

2.10.2 Margin Allocation Using Spectral Risk Measures

Todo: Documentation to follow. In the meantime, see examples in Case Studies.

2.11 Case Studies

Objectives: Using aggregate to reproduce the case study exhibits from the book Pricing Insurance Risk and build
similar exhibits for your own cases.
Audience: Capital modeling and corporate strategy actuaries; anyone reading PIR.
Prerequisites: Intermediate to advanced users with a sold understanding of aggregate. Familiar with PIR.
See also: Capital Modeling and Risk Management, Strategy and Portfolio Management.
Contents:

1. PIR Case Studies

2. Creating a Case Study

3. Case Study Factory Arguments

4. Defining a Custom Case Study

152 Chapter 2. User Guides

https://www.wiley.com/en-us/Pricing+Insurance+Risk:+Theory+and+Practice-p-9781119755678

aggregate Documentation, Release 0.22.0

5. Standard Case Study Exhibits

Confession: Some of the case_studies code is sub-optimal.

2.11.1 PIR Case Studies

The book Pricing Insurance Risk (PIR) presents four Case Studies that show how different methods price business.
This section shows how to reproduce all the book’s exhibits for each case and how to create new cases.
Each case describes business written by Ins Co., a one-period de novo insurer that comes into existence at time zero,
raises capital and writes business, and pays all losses at time one. A case models two units (line, region, operating unit,
or other division) with one more risky than the other. Usually, the riskier one is reinsured. Case exhibits compare
unit statistics and pricing on a gross and net basis, showing results from over a dozen different methods.

Simple Discrete Example

In the Simple Discrete Example Case Study, X1 takes values 0, 8, or 10, and X2 values 0, 1, or 90. The units are
independent and sum to the portfolio loss X . The outcome probabilities are 1/2, 1/4, and 1/4 respectively for each
marginal. There are 9 possible outcomes. This type of output is typical of that produced by a catastrophe, capital, or
pricing simulation model—albeit much simpler.

Tame Case Study

In the Tame Case Study, Ins Co. writes two predictable units with no catastrophe exposure. It is an idealized, best-
case risk-pool. It proxies a portfolio of personal and commercial auto liability. It uses a straightforward stochastic
model with gamma distributions.
Aggregate reinsurance applies to the more volatile unit, with an attachment probability 0.2 (56) and detachment
probability 0.01 (69).

Catastrophe and Non-Catastrophe (CNC) Case Study

In the Cat/Non-Cat Case Study, Ins Co. has catastrophe and non-catastrophe exposures. The non-catastrophe unit
proxies a small commercial lines portfolio. Balancing the relative benefits of units considered to bemore stable against
more volatile ones is a very common strategic problem for insurers and reinsurers. It arises in many different guises:

• Should a US Midwestern company expand to the East coast (and pick up hurricane exposure)?
• Should an auto insurer start writing homeowners?
• What is the appropriate mix between property catastrophe and non-catastrophe exposed business for a rein-
surer?

The two units are independent and have gamma and lognormal distributions.
Aggregate reinsurance applies to the Cat unit, with an attachment probability 0.1 (41) and detachment probability
0.005 (121).

2.11. Case Studies 153

https://www.wiley.com/en-us/Pricing+Insurance+Risk:+Theory+and+Practice-p-9781119755678

aggregate Documentation, Release 0.22.0

Hurricane/Severe Convective Storm (HuSCS) Case Study

In the Hu/SCS Case Study, Ins Co. has catastrophe exposures from severe convective storms (SCS) and, indepen-
dently, hurricanes (Hu). In practice, hurricane exposure is modeled using a catastrophe model. The Case proxies that
by using a very severe severity in place of the gross catastrophe model event-level output. Both units are modeled
using an aggregate distribution with a Poisson frequency and lognormal severity.
Aggregate reinsurance applies to the HU unit with an occurrence attachment probability 0.05(40) and detachment
probability 0.005 (413). (PIR incorrectly states the reinsurance is occurrence.)

2.11.2 Creating a Case Study

Case Study exhibits are managed by the class CaseStudy in aggregate.extensions.case_studies,
see Extensions. Here are the steps needed to create a case study. The computations take a few minutes. The output
is a set of HTML files that can be viewed in a browser. The code blocks below are provided in executable scripts
described below.

1. Import case_studies:

from aggregate import build, qd
from aggregate.extensions import case_studies as cs

2. Create a new CaseStudy object. It is a generic container, the options are set in the next step:

my_case = cs.CaseStudy()

3. Set the case study options. Here are the options for the PIR Tame case. The arguments are described later:

my_case.factory(case_id='my_tame',
case_name='My version of PIR Tame Case',
case_description='Tame Case to demonstrate capabilities.',
a_distribution='agg A 1 claim sev gamma 50 cv 0.10 fixed',
b_distribution_gross='agg B 1 claim sev gamma 50 cv 0.15 fixed

↪→',
b_distribution_net='agg B 1 claim sev gamma 50 cv 0.15 fixed '

'aggregate net of 12.90625 xs 56.171875',
reg_p=0.999,
roe=0.10,
d2tc=0.3,
f_discrete=False,
s_values=[.005, 0.01, 0.03],
gs_values=[0.029126, 0.047619, 0.074074],
bs=1/64,
log2=16,
padding=1)

4. Execute:

my_case.full_monty()

to create all figures and tables. The code can take several minutes to execute.
5. To browse the exhibits execute:

my_case.browse_exhibits()

which opens two new browser tabs, one for the standard book exhibits and one for a set of extended
exhibits.

Details.
Exhibit output files are stored in build.case_dir, which by default is the subdirectory aggregate/cases of
your home directory (~ on Linux, \users\<user name> on Windows, and who knows on an Apple). The

154 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

book exhibits are marshaled in f'{my_case.case_id}_book.html' and a set of extended exhibits are
in f'{my_case.case_id}_extended.html'. The detailed files are in a subdirectory called my_case.
case_id.

2.11.3 Case Study Factory Arguments

cs.CaseStudy().factory() takes the following arguments.
• case_id is a single word label that uniquely identifies the Case. It determines the output directory for the
Case exhibits and so must be acceptable to your operating system as a directory name.

• case_name such as “Cat/Non-Cat”.
• case_description is a brief description of the Case.
• a_distribution, b_distribution_gross and b_distribution_net are DecL programs
defining the aggregate distributions for each unit, including reinsurance on unit B. Unit names should be upper
case and ideally in alphabetical order, the more volatile unit second. For example A and B.

• reg_p gives the regulatory capital standard, entered as a probability of non-exceedance level. Solvency II
operates at 0.995 (one in 200 years). In the US, rating agencies consider companies at 0.99 (100 years), 0.996
(250 years), 0.999 (1000 years), or higher. Corporate bond default rates impose even tighter capital standards.

• roe sets the target cost of capital. All pricing methods are calibrated to produce a return on capital of roe at
the selected capital standard level. This makes them comparable.

• d2tc is the maximum allowable debt to total capital level (used for enhanced exhibits only). It is used to
tranche capital into debt and equity.

• f_discrete indicates whether the distributions are discrete (Simple Discrete Example) or mixed (all oth-
ers). Usually f_discrete=False.

• s_values and gs_values define cat bond pricing and are used to create a blended distortion, see below.
• bs, log2, and padding are the usual update parameters.

2.11.4 PIR Case Specifications

This section provides the arguments needed to recreate each PIR Case Study. Some of the code is used to determine
the details of reinsurance. See PIR Chapter REF for more details and explanation.
The current version of aggregate uses an improved blend distortion over that shown in PIR. It is calibrated to cat
bond pricing for high return periods using the following values:

• s_values: [.005, 0.01, 0.03]

• gs_values: [0.029126, 0.047619, 0.074074]

meaning bonds with a 0.5% EL have a discount spread of 2.9%, 1% EL a discount spread of 4.76% and so forth.
They define the left-hand (small s) end of a distortion function.
All Cases assume that debt to total capital limited at 30%, d2tc: 0.3. This factor is only used in the extended
exhibits.

2.11. Case Studies 155

aggregate Documentation, Release 0.22.0

Simple Discrete Example Specification

There are two flavors, one with distinct outcomes and one with two ways of obtaining the outcome 10. The latter is
used in PIR to illustrate the linear natural allocation. Here are the specifications.

make the discrete case study

from aggregate.extensions import case_studies as cs

if __name__ == '__main__':

discrete = cs.CaseStudy()
discrete.factory(case_id='discrete',

case_name='Discrete',
case_description='PIR Discrete Case Study (no equal points).',
a_distribution='agg X1 1 claim dsev [0 8 10] [1/2 1/4 1/4]␣

↪→fixed',
b_distribution_gross='agg X2 1 claim dsev [0 1 90] [1/2 1/4 1/

↪→4] fixed',
b_distribution_net=f'agg X2 1 claim dsev [0 1 90] [1/2 1/4 1/

↪→4] fixed aggregate net of 70 xs 20',
reg_p=1,
roe=0.10,
d2tc=0.3,
f_discrete=True,
s_values=[.005, 0.01, 0.03],
gs_values=[0.029126, 0.047619, 0.074074],
bs=1,
log2=8,
padding=1)

discrete.full_monty()
discrete.to_json()
discrete.browse_exhibits()

discrete_eq = cs.CaseStudy()
discrete_eq.factory(case_id='discrete_equal',

case_name='Discrete (equal points)',
case_description='PIR Discrete Case Study with equal␣

↪→points.',
a_distribution='agg X1 1 claim dsev [0 9 10] [1/2 1/4 1/4]␣

↪→fixed',
b_distribution_gross='agg X2 1 claim dsev [0 1 90] [1/2 1/

↪→4 1/4] fixed',
b_distribution_net=f'agg X2 1 claim dsev [0 1 90] [1/2 1/4␣

↪→1/4] fixed aggregate net of 70 xs 20',
reg_p=1,
roe=0.10,
d2tc=0.3,
f_discrete=True,
s_values=[.005, 0.01, 0.03],
gs_values=[0.029126, 0.047619, 0.074074],
bs=1,
log2=8,
padding=1)

discrete_eq.full_monty()
discrete_eq.to_json()
discrete_eq.browse_exhibits()

156 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Tame Specification

The first few lines calibrate the reinsurance to probability levels.

make the tame case study

from aggregate.extensions import case_studies as cs
from aggregate import build

if __name__ == '__main__':

calibrate reinsurance
recalc = build('agg B 1 claim sev gamma 50 cv 0.15 fixed',

log2=16, bs=1/64)
a, d = recalc.q(0.8), recalc.q(0.99)
y = d - a

create exhibits
tame = cs.CaseStudy()
tame.factory(case_id='tame',

case_name='Tame',
case_description='Tame Case in the new syntax.',
a_distribution='agg A 1 claim sev gamma 50 cv 0.10 fixed',
b_distribution_gross='agg B 1 claim sev gamma 50 cv 0.15 fixed',
b_distribution_net=f'agg B 1 claim sev gamma 50 cv 0.15 fixed␣

↪→aggregate net of {y} xs {a}',
reg_p=0.9999,
roe=0.10,
d2tc=0.3,
f_discrete=False,
s_values=[.005, 0.01, 0.03],
gs_values=[0.029126, 0.047619, 0.074074],
bs=1/64,
log2=16,
padding=1)

tame.full_monty()
tame.to_json()
tame.browse_exhibits()

Catastrophe and Non-Catastrophe Specification

The first few lines calibrate the reinsurance to probability levels.

make the cat non-cat case study

from aggregate.extensions import case_studies as cs
from aggregate import build
import warnings

warnings.filterwarnings('ignore')

if __name__ == '__main__':
be more informative
build.logger_level(20)
calibrate reinsurance
recalc = build('agg Cat 1 claim sev lognorm 20 cv 1.00 fixed'

, log2=16, bs=1/64)
a, d = recalc.q(0.9), recalc.q(0.995)
y = d - a

create exhibits

(continues on next page)

2.11. Case Studies 157

aggregate Documentation, Release 0.22.0

(continued from previous page)
cnc = cs.CaseStudy()
cnc.factory(case_id='cnc',

case_name='Cat/Non-Cat',
case_description='Cat/Non-Cat in the new syntax.',
a_distribution='agg NonCat 1 claim sev gamma 80 cv 0.15 fixed',
b_distribution_gross='agg Cat 1 claim sev lognorm 20 cv 1.00 fixed

↪→',
b_distribution_net=f'agg Cat 1 claim sev lognorm 20 cv 1.00 fixed␣

↪→aggregate net of {y} xs {a}',
reg_p=0.999,
roe=0.10,
d2tc=0.3,
f_discrete=False,
s_values=[.005, 0.01, 0.03],
gs_values=[0.029126, 0.047619, 0.074074],
bs=1/64,
log2=16,
padding=1)

cnc.full_monty()
cnc.to_json()
cnc.browse_exhibits()

Hurricane/Severe Convective Storm Specification

The first few lines set up the parameters from PIR. Then the reinsurance is calibrated to probability levels. The second
version has occurrence reinsurance on the Cat line with the same limit and attachment.

make the hu-scs case study

from aggregate.extensions import case_studies as cs
from aggregate import build
import numpy as np

if __name__ == '__main__':

parameters from PIR
freq1, sigma1 = 70, 1.9
freq2, sigma2 = 2, 2.5
mu1 = -sigma1**2 / 2
mu2 = -sigma2**2 / 2
sev1, sev2 = 1, 15
print(mu1, sigma1, mu2, sigma2,

freq1, np.exp(mu1), sigma1,
freq2, np.exp(mu2), sigma2)

recalc = build(f'sev Husev {15 * np.exp(mu2)} * lognorm {sigma2}')
a, d = recalc.isf(0.05), recalc.isf(0.005)
y = d - a
print(y, a, d)

create exhibits
hs = cs.CaseStudy()
hs.factory(case_id='hs',

case_name='Hu/SCS Case',
case_description='Hu/SCS Case in the new syntax.',
a_distribution=f'agg SCS {freq1} claims sev {sev1 * np.exp(mu1)}␣

↪→* lognorm {sigma1} poisson',
b_distribution_gross=f'agg Hu {freq2} claims sev {sev2 * np.

↪→exp(mu2)} * lognorm {sigma2} poisson',

(continues on next page)

158 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
b_distribution_net=f'agg Hu {freq2} claims sev {sev2 * np.

↪→exp(mu2)} * lognorm {sigma2} poisson ' \
f'aggregate net of {y} xs {a}',

reg_p=0.999,
roe=0.10,
d2tc=0.3,
f_discrete=False,
s_values=[.005, 0.01, 0.03],
gs_values=[0.029126, 0.047619, 0.074074],
bs=1/4,
log2=19,
padding=1)

hs.full_monty()
hs.to_json()
hs.browse_exhibits()

hs2 = cs.CaseStudy()
hs2.factory(case_id='hs_per_occ',

case_name='Hu/SCS',
case_description='Hu/SCS Case in the new syntax with per␣

↪→occurrence reinsurance .',
a_distribution=f'agg SCS {freq1} claims sev {sev1 * np.exp(mu1)}␣

↪→ * lognorm {sigma1} poisson',
b_distribution_gross=f'agg Hu {freq2} claims sev {sev2 * np.

↪→exp(mu2)} * lognorm {sigma2} poisson',
b_distribution_net=f'agg Hu {freq2} claims sev {sev2 * np.

↪→exp(mu2)} * lognorm {sigma2} '
f'occurrence net of {y} xs {a} poisson',

reg_p=0.999,
roe=0.10,
d2tc=0.3,
f_discrete=False,
s_values=[.005, 0.01, 0.03],
gs_values=[0.029126, 0.047619, 0.074074],
bs=1/4,
log2=19,
padding=1)

hs2.full_monty()
hs2.to_json()

These snippets are provided in Python scripts in aggregate.extensions called discrete.py, tame.py,
cnc.py and hs.py. They can be run from the command line:

python -m aggregate.extensions.tame

Precomputed versions are available at https://www.pricinginsurancerisk.com/results.

2.11. Case Studies 159

aggregate Documentation, Release 0.22.0

2.11.5 Defining a Custom Case Study

It should be obvious how to create a custom case study. The key is the DecL for the two units. Here are ideas for
some custom Case Studies illustrating different behaviors.

2.11.6 Standard Case Study Exhibits

The next table provides a list of all the PIR exhibits and figures showing the Chapter in which they occur and the
figure numbers. Not all exhibits are down for the Simple Discrete Example.

160 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Rf Kind Ch. Number(s) Description
A Ta-

ble
2 2.3, 2.5, 2.6, 2.7 Estimated mean, CV, skewness and kurtosis by line and in total, gross

and net.
B Fig-

ure
2 2.2, 2.4, 2.6 Gross and net densities on a linear and log scale.

C Fig-
ure

2 2.3, 2.5, 2.7 Bivariate densities: gross and net with gross sample.

D Fig-
ure

4 4.9, 4.10, 4.11,
4.12

TVaR, and VaR for unlimited and limited variables, gross and net.

E Ta-
ble

4 4.6, 4.7, 4.8 Estimated VaR, TVaR, and EPD by line and in total, gross, and net.

F Ta-
ble

7 7.2 Pricing summary.

G Ta-
ble

7 7.3 Details of reinsurance.

H Ta-
ble

9 9.2, 9.5, 9.8 Classical pricing by method.

I Ta-
ble

9 9.3, 9.6, 9.9 Sum of parts (SoP) stand-alone vs. diversified classical pricing by
method.

J Ta-
ble

9 9.4, 9.7, 9.10 Implied loss ratios from classical pricing by method.

K Ta-
ble

9 9.11 Comparison of stand-alone and sum of parts premium.

L Ta-
ble

9 9.12, 9.13, 9.14 Constant CoC pricing by unit for Case Study.

M Fig-
ure

11 11.2, 11.3,
11.4,11.5

Distortion envelope for Case Study, gross.

N Ta-
ble

11 11.5 Parameters for the six SRMs and associated distortions.

O Fig-
ure

11 11.6, 11.7, 11.8 Variation in insurance statistics for six distortions as s varies.

P Fig-
ure

11 11.9, 11.10,
11.11

Variation in insurance statistics as the asset limit is varied.

Q Ta-
ble

11 11.7, 11.8, 11.9 Pricing by unit and distortion for Case Study.

R Ta-
ble

13 13.1 missing Comparison of gross expected losses by Case, catastrophe-prone lines.

S Ta-
ble

13 13.2, 13.3, 13.4 Constant 0.10 ROE pricing for Case Study, classical PCP methods.

T Fig-
ure

15 15.2 - 15.7 (G/N) Twelve plot.

U Fig-
ure

15 15.8, 15.9, 15.10 Capital density by layer.

V Ta-
ble

15 15.35, 15.36,
15.37

Constant 0.10 ROE pricing for Cat/Non-Cat Case Study, distortion,
SRM methods.

W Fig-
ure

15 15.11 Loss and loss spectrums.

X Fig-
ure

15 15.12, 15.13,
15.14

Percentile layer of capital allocations by asset level.

Y Ta-
ble

15 15.38, 15.39,
15.40

Percentile layer of capital allocations compared to distortion alloca-
tions.

2.11. Case Studies 161

aggregate Documentation, Release 0.22.0

2.12 Working With Samples

Objectives: How to sample from aggregate and how to a build a Portfolio from a sample. Inducing cor-
relation in a sample using the Iman-Conover algorithm and determining the worst-VaR rearrangement using the
rearrangement algorithm.
Audience: Planning and strategy, ERM, capital modeling, risk management actuaries.
Prerequisites: DecL, aggregate distributions, risk measures.
See also: ../5_technical_guides/5_x_samples, ../5_technical_guides/5_x_iman_conover, ../5_techni-
cal_guides/5_x_rearrangement_algorithm.
Contents:

1. Helpful References

2. Samples from aggregate Object

3. Applying the Iman-Conover Algorithm

4. Applying the Re-Arrangement Algorithm

5. Summary of Objects Created by DecL

2.12.1 Helpful References

• Mildenhall and Major [2022] chapter 14 and 15
• Puccetti and Ruschendorf [2012]
• Conover [1999]
• Mildenhall [2005]
• Vitale IC proof in dependency book

2.12.2 Samples and Densities

Use case: make realistic marginal distributions with aggregate that reflect the underlying frequency and severity
(rather than defaulting to a lognormal determined by a CV assumption) and then use a sample in your simulation
model.

2.12.3 Samples from aggregate Object

The method sample() draws a sample from an Aggregate or Portfolio class object. Both cases work by
applying pandas.DataFrame.sample to the object’s density_df dataframe.
Examples.

1. A sample from an Aggregate. Set up a simple lognormal distribution, modeled as an aggregate with trivial
frequency.

In [1]: from aggregate import build, qd, set_seed

In [2]: a01 = build('agg Samp:01 '
...: '1 claim '
...: 'sev lognorm 10 cv .4 '
...: 'fixed'
...: , bs=1/512)
...:

(continues on next page)

162 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [3]: qd(a01)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 10 10 -6.1087e-11 0.4 0.4 1.264 1.264
Agg 10 10 -6.1087e-11 0.4 0.4 1.264 1.264
log2 = 16, bandwidth = 1/512, validation: not unreasonable.

Apply sample() and display the results.

In [4]: set_seed(102)

In [5]: df = a01.sample(10**5)

In [6]: fc = lambda x: f'{x:8.2f}'

In [7]: qd(df.head(), float_format=fc)

loss
0 6.33
1 10.10
2 13.29
3 7.56
4 11.18

The sample histogram and the computed pmf are close. The pmf is adjusted to the resolution of the
histogram.

In [8]: fig, ax = plt.subplots(1, 1, figsize=(3.5, 2.45), constrained_
↪→layout=True)

In [9]: xm = a01.q(0.999)

In [10]: df.hist(bins=np.arange(xm), ec='w', lw=.25, density=True,
....: ax=ax, grid=False);
....:

In [11]: (a01.density_df.loc[:xm, 'p_total'] / a01.bs).plot(ax=ax);

In [12]: ax.set(title='Sample and aggregate pmf', ylabel='pmf');

2. A sample from a Portfolio produces a multivariate distribution. Setup a simple Portfolio with three
lognormal marginals.

In [13]: from aggregate.utilities import qdp

In [14]: from pandas.plotting import scatter_matrix

In [15]: p02 = build('port Samp:02 '

(continues on next page)

2.12. Working With Samples 163

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: 'agg A 1 claim sev lognorm 10 cv .2 fixed '
....: 'agg B 1 claim sev lognorm 15 cv .5 fixed '
....: 'agg C 1 claim sev lognorm 5 cv .8 fixed '
....: , bs=1/128)
....:

In [16]: qd(p02)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est␣
↪→Skew(X)
unit X ␣
↪→

A Freq 1 0 ␣
↪→

Sev 10 10 5.7732e-15 0.2 0.2 0.608 0.
↪→608

Agg 10 10 5.7732e-15 0.2 0.2 0.608 0.
↪→608
B Freq 1 0 ␣
↪→

Sev 15 15 -2.2271e-13 0.5 0.5 1.625 1.
↪→625

Agg 15 15 -2.2271e-13 0.5 0.5 1.625 1.
↪→625
C Freq 1 0 ␣
↪→

Sev 5 5 -2.3183e-10 0.8 0.8 2.912 2.
↪→912

Agg 5 5 -2.3183e-10 0.8 0.8 2.912 2.
↪→912
total Freq 3 0 ␣
↪→

Sev 10 10 -3.8748e-11 0.64872 1.8077 ␣
↪→

Agg 30 30 -6.3166e-11 0.29107 0.29107 1.3168 1.
↪→3168
log2 = 16, bandwidth = 1/128, validation: not unreasonable.

Apply sample() to produce a sample with no correlation. Here are the first few values.

In [17]: df = p02.sample(10**4)

In [18]: qd(df.head(), float_format=fc)

A B C total
0 9.45 21.07 4.86 35.38
1 11.73 20.10 8.34 40.16
2 10.93 12.06 3.05 26.05
3 7.24 6.34 1.79 15.37
4 8.28 13.30 13.87 35.45

qdp() prints the pandas describe statistics dataframe for a dataframe, and adds the CV.

In [19]: qdp(df)
Out[19]:

A B C total
count 10000.000000 10000.000000 10000.000000 10000.000000
mean 9.966709 15.052769 5.058216 30.077694
std 2.002445 7.583697 4.047945 8.889127
min 3.664062 2.117188 0.250000 11.726562
25% 8.539062 9.773438 2.484375 23.781250

(continues on next page)

164 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
50% 9.789062 13.351562 4.000000 28.507812
75% 11.187500 18.609375 6.257812 34.640625
max 21.078125 81.070312 45.562500 115.281250
cv 0.200913 0.503807 0.800271 0.295539

The sample is independent, with correlations close to zero, as expected.

In [20]: abc = ['A', 'B', 'C']

In [21]: qd(df[abc].corr())

A B C
A 1 0.0058516 -0.0021565
B 0.0058516 1 0.015729
C -0.0021565 0.015729 1

The scatterplot is consistent with independent marginals.

In [22]: scatter_matrix(df[abc], grid=False,
....: figsize=(6, 6), diagonal='hist',
....: hist_kwds={'density': True, 'bins': 25, 'lw': .25, 'ec': 'w'}

↪→,
....: s=1, marker='.');
....:

3. Pass a correlation matrix to sample() to draw a correlated sample. Correlation is induced using the Iman-
Conover algorithm.
The functionrandom_corr_matrix() creates a random correlationmatrix using vines. The second
parameter controls the average correlation. This example includes high positive correlation.

In [23]: from aggregate import random_corr_matrix

In [24]: rcm = random_corr_matrix(3, .6, True)

In [25]: rcm

(continues on next page)

2.12. Working With Samples 165

aggregate Documentation, Release 0.22.0

(continued from previous page)
Out[25]:
matrix([[1. , 0.80331094, 0.24377874],

[0.80331094, 1. , 0.35448898],
[0.24377874, 0.35448898, 1.]])

Re-sample with target correlation rcm. The achieved correlation is reasonably close to the requested
rcm.

In [26]: df2 = p02.sample(10**4, desired_correlation=rcm)

In [27]: qd(df2.iloc[:, :3].corr('pearson'))

A B C
A 1 0.78513 0.22481
B 0.78513 1 0.31656
C 0.22481 0.31656 1

The scatterplot now shows correlated marginals. The histograms are unchanged.

In [28]: df2['total'] = df2.sum(1)

In [29]: scatter_matrix(df2[abc], grid=False, figsize=(6, 6), diagonal=
↪→'hist',

....: hist_kwds={'density': True, 'bins': 25, 'lw': .25, 'ec': 'w'}
↪→,

....: s=1, marker='.');

....:

The sample uses a different random state and produces a different draw. Comparing qdp output is one
way to see if 10000 simulations is adequate. In this case there is good agreement.

In [30]: qdp(df2)
Out[30]:

A B C total
count 10000.000000 10000.000000 10000.000000 10000.000000
mean 9.991469 14.969470 4.987341 29.948280

(continues on next page)

166 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
std 1.997495 7.389115 3.910557 10.902512
min 4.070312 1.984375 0.304688 8.242188
25% 8.570312 9.742188 2.414062 22.304688
50% 9.789062 13.406250 3.906250 27.867188
75% 11.179688 18.351562 6.273438 35.460938
max 19.398438 79.468750 45.937500 111.164062
cv 0.199920 0.493612 0.784097 0.364045

2.12.4 Applying the Iman-Conover Algorithm

The method sample() automatically applies the Iman-Conover algorithm (described in ../5_techni-
cal_guides/5_x_iman_conover). It is also easy to apply Iman-Conover to a dataframe using the method
aggregate.utilities.iman_conover(). It reorders the input dataframe to have the same rank cor-
relation as a multivariate normal reference sample with the desired linear correlation. Optionally, a multivariate
t-distribution can be used as the reference.
Examples.
Apply Iman-Conover to the sample df with target the correlation rcm, reusing the variables created in the previous
section. The achieved correlation is close to that requested, as shown in the last two blocks.

In [31]: from aggregate import iman_conover

In [32]: import pandas as pd

In [33]: ans = iman_conover(df[abc], rcm, add_total=False)

In [34]: qd(pd.DataFrame(rcm, index=abc, columns=abc))

A B C
A 1 0.80331 0.24378
B 0.80331 1 0.35449
C 0.24378 0.35449 1

In [35]: qd(ans.corr())

A B C
A 1 0.78111 0.22247
B 0.78111 1 0.31237
C 0.22247 0.31237 1

Setting the argument dof uses a t-copula reference with dof degrees of freedom. The t-copula with low degrees of
freedom can produce pinched multivariate distributions. Use with caution.

In [36]: ans = iman_conover(df[abc], rcm, dof=2, add_total=False)

In [37]: qd(ans.corr())

A B C
A 1 0.69018 0.18008
B 0.69018 1 0.36267
C 0.18008 0.36267 1

In [38]: scatter_matrix(ans, grid=False, figsize=(6, 6), diagonal='hist',
....: hist_kwds={'density': True, 'bins': 25, 'lw': .25, 'ec': 'w'},
....: s=1, marker='.');
....:

2.12. Working With Samples 167

aggregate Documentation, Release 0.22.0

See WP REF for ways to apply Iman-Conover with different reference distributions.
Details. Creating the independent scores for Iman-Conover is quite time consuming. They are cached for a given
sample size. Second and subsequent calls are far quicker (an order of magnitude) than the first call.

2.12.5 Applying the Re-Arrangement Algorithm

The method rearrangement_algorithm_max_VaR() implements the re-arrangement algorithm described
in ../5_technical_guides/5_x_rearrangement_algorithm. It returns only the tail of the re-arrangement, since values
below the requested percentile are irrelevant.
Apply to df and request 0.999-VaR. Themarginals are the 10 largest values. The algorithm permutes them to balance
large and small observations.

In [39]: from aggregate import rearrangement_algorithm_max_VaR

In [40]: ans = rearrangement_algorithm_max_VaR(df.iloc[:, :3], .999)

In [41]: qd(ans, float_format=fc)

A B C total
0 21.08 63.78 38.59 123.45
6 20.22 65.18 38.40 123.80
1 20.63 62.50 40.80 123.93
3 18.93 65.02 40.24 124.20
5 17.98 60.66 45.56 124.20
2 18.02 68.88 37.33 124.23
7 17.75 61.75 44.91 124.41
9 19.99 66.28 38.22 124.49
8 17.69 73.03 37.12 127.84
4 17.59 81.07 37.03 135.70

Here are the stand-alone saVaRs by marginal, in total for df, in total for the correlated df2, and the re-arrangement
solutions ra for a range of different percentiles. The column comon total shows VaR for the comonotonic sum
of the marginals (which equals the largest TVaR and variance re-arrangement).

168 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [42]: ps = [9000, 9500, 9900, 9960, 9990, 9999]

In [43]: sa = pd.concat([df[c].sort_values().reset_index(drop=True).iloc[ps] for c␣
↪→in df]

....: +[df2.rename(columns={'total':'corr total'})['corr total
↪→'].\

....: sort_values().reset_index(drop=True).iloc[ps]], axis=1)

....:

In [44]: sa['comon total'] = sa[abc].sum(1)

In [45]: ra = pd.concat([rearrangement_algorithm_max_VaR(df.iloc[:, :3], p/10000).
↪→iloc[0] for p in ps],

....: axis=1, keys=ps).T

....:

In [46]: exhibit = pd.concat([sa, ra], axis=1, keys=['stand-alone', 're-arrangement
↪→'])

In [47]: exhibit.index = [f'{x/10000:.2%}' for x in exhibit.index]

In [48]: exhibit.index.name = 'percentile'

In [49]: qd(exhibit, float_format=fc)

stand-alone re-
↪→arrangement \

A B C total corr total comon total ␣
↪→ A B
percentile ␣
↪→

90.00% 12.59 24.75 9.73 41.48 44.22 47.06 ␣
↪→14.66 29.73
95.00% 13.55 29.21 12.68 46.48 50.43 55.44 ␣
↪→16.42 32.19
99.00% 15.45 39.98 20.55 58.15 65.26 75.98 ␣
↪→17.75 44.51
99.60% 16.36 47.62 26.58 68.00 73.50 90.56 ␣
↪→17.59 59.56
99.90% 17.59 60.66 37.03 80.20 93.51 115.28 ␣
↪→21.08 63.78
99.99% 21.08 81.07 45.56 115.28 111.16 147.71 ␣
↪→21.08 81.07

C total
percentile
90.00% 12.62 57.02
95.00% 16.98 65.59
99.00% 26.37 88.62
99.60% 28.77 105.92
99.90% 38.59 123.45
99.99% 45.56 147.71

See alsoWorked Example.

2.12. Working With Samples 169

aggregate Documentation, Release 0.22.0

2.12.6 Creating a Portfolio From a Sample

A Portfolio can be created from an existing sample by passing in a dataframe rather than a list of aggregates.
This approach is useful when another model has created the sample, but the user wants to access other aggregate
functionality. Each marginal in the sample is created as a dsev with the sampled outcomes. The p_total column
used to set scenario probabilities if its is input, otherwise each scenario is treated as equally likely. The Portfolio
ignores any the correlation structure of the sample; the marginals are treated as independent, but see Using Samples
and the Switcheroo Trick for a way around this assumption.
Example.
Create a simple discrete sample from a three unit portfolio.

In [50]: sample = pd.DataFrame(
....: {'A': [20, 22, 24, 6, 5, 6, 7, 8, 21, 3],
....: 'B': [20, 18, 16, 14, 12, 10, 8, 6, 4, 2],
....: 'C': [0, 0, 0, 0, 0, 0, 0, 0, 20, 40]})
....:

In [51]: qd(sample)

A B C
0 20 20 0
1 22 18 0
2 24 16 0
3 6 14 0
4 5 12 0
5 6 10 0
6 7 8 0
7 8 6 0
8 21 4 20
9 3 2 40

Pass to Portfolio to create with these marginals. In this case, treat the marginals as discrete and update with
bs=1.

In [52]: from aggregate import Portfolio

In [53]: p03 = Portfolio('Samp:03', sample)

In [54]: p03.update(bs=1, log2=8)

In [55]: qd(p03)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
A Freq 1 0

Sev 12.2 12.2 0 0.65142 0.65142 0.37792 0.37792
Agg 12.2 12.2 0 0.65142 0.65142 0.37792 0.37792

B Freq 1 0
Sev 11 11 0 0.52223 0.52223 0 0
Agg 11 11 0 0.52223 0.52223 0 0

C Freq 1 0
Sev 6 6 -3.3307e-16 2.1344 2.1344 1.9198 1.9198
Agg 6 6 -3.3307e-16 2.1344 2.1344 1.9198 1.9198

total Freq 3 0
Sev 9.7333 9.7333 0 0.99572 1.0775
Agg 29.2 29.2 -3.3307e-16 0.55238 0.55238 1.0061 1.0061

log2 = 8, bandwidth = 1, validation: not unreasonable.

The univariate statistics for each marginal are the same as the sample input, but because they added independently,
the totals differ. The sample has negative correlation and a lower CV.

170 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [56]: sample['total'] = sample.sum(1)

In [57]: qdp(sample)
Out[57]:

A B C total
count 10.000000 10.000000 10.000000 10.000000
mean 12.200000 11.000000 6.000000 29.200000
std 7.947327 5.744563 12.806248 12.998461
min 3.000000 2.000000 0.000000 14.000000
25% 6.000000 6.500000 0.000000 16.250000
50% 7.500000 11.000000 0.000000 30.000000
75% 20.750000 15.500000 0.000000 40.000000
max 24.000000 20.000000 40.000000 45.000000
cv 0.651420 0.522233 2.134375 0.445153

The Portfolio total is a convolution of the input marginals and includes all possible combinations added inde-
pendently. The figure plots the distribution functions.

In [58]: ax = p03.density_df.filter(regex='p_[ABCt]').cumsum().plot(
....: drawstyle='steps-post', lw=1, figsize=(3.5, 2.45))
....:

In [59]: ax.plot(np.hstack((0, sample.total.sort_values())), np.linspace(0, 1, 11),
....: drawstyle='steps-post', lw=2, label='dependent');
....:

In [60]: ax.set(xlim=[-2, 90]);

In [61]: ax.legend(loc='lower right');

2.12.7 Using Samples and the Switcheroo Trick

Portfolio objects created from a sample ignore the dependency structure; the aggregate convolution al-
gorithm always assumes independence. It is highly desirable to retain the sample’s dependency structure. Many
calculations rely only on E[Xi | X] and not the input densities per se. Thus, we reflect dependency if we alter the
values E[Xi | X] based on a sample and recompute everything that depends on them. The method Portfolio.
add_exa_sample() implements this idea.
Example.
sample was chosen to have lots of ties - different ways of obtaining the same total outcome.

In [62]: qd(sample)

A B C total
0 20 20 0 40
1 22 18 0 40
2 24 16 0 40
3 6 14 0 20
4 5 12 0 17

(continues on next page)

2.12. Working With Samples 171

aggregate Documentation, Release 0.22.0

(continued from previous page)
5 6 10 0 16
6 7 8 0 15
7 8 6 0 14
8 21 4 20 45
9 3 2 40 45

Apply add_exa_sample to the sample dataframe and look at the outcomes with positive probability. When
a total outcome can occur in multiple ways, exeqa_i gives the average value of unit i. The function is applied
to a copy of the original Portfolio object because it invalidates various internal states. The output dataframe is
indexed by total loss. Notice that rows sum to the correct total.

In [63]: p03sw = Portfolio('Samp:03sw', sample)

In [64]: p03sw.update(bs=1, log2=8)

In [65]: df = p03sw.add_exa_sample(sample)

In [66]: qd(df.query('p_total > 0').filter(regex='p_total|exeqa_[ABC]'))

p_total exeqa_A exeqa_B exeqa_C
14.0 0.1 8 6 0
15.0 0.1 7 8 0
16.0 0.1 6 10 0
17.0 0.1 5 12 0
20.0 0.1 6 14 0
40.0 0.3 22 18 0
45.0 0.2 12 3 30

Swap the density_df dataframe — the switcheroo trick.

In [67]: p03sw.density_df = df

See the function Portfolio.create_from_sample for a single step create from sample, update, add exa
calc, and switcheroo.
Most Portfolio spectral functions depend only on marginal conditional expectations. Applying these functions
through p03sw reflects dependencies. Calibrate some distortions to a 15% return. The maximum loss is only 45, so
use a 1-VaR, no default capital standard.

In [68]: p03sw.calibrate_distortions(ROEs=[0.15], Ps=[1], strict='ordered');

In [69]: qd(p03sw.distortion_df)

S L P PQ Q COC param error
a LR method
45.0 0.934075 ccoc 0 29.2 31.261 2.2753 13.739 0.15 0.15 0

ph 0 29.2 31.261 2.2753 13.739 0.15 0.80913 4.1444e-09
wang 0 29.2 31.261 2.2753 13.739 0.15 0.18223 -1.6102e-07
dual 0 29.2 31.261 2.2753 13.739 0.15 1.228 -9.8354e-08
tvar 0 29.2 31.261 2.2753 13.739 0.15 0.12059 5.935e-06

Apply the PH and dual to the independent and dependent portfolios. Asset level 45 is the 0.861 percentile of the
independent.

In [70]: d1 = p03sw.dists['ph']; d2 = p03sw.dists['dual']

In [71]: for d in [d1, d2]:
....: print(d.name)
....: print('='*74)
....: pr = p03.price(1, d)
....: pr45 = p03.price(.861, d)

(continues on next page)

172 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: prsw = p03sw.price(1, d)
....: a = pd.concat((pr.df, pr45.df, prsw.df), keys=['pr', 'pr45', 'prsw'])
....: qd(a, float_format=lambda x: f'{x:7.3f}')
....:

ph
==

statistic L P M Q a ␣
↪→LR PQ \

distortion unit ␣
↪→

pr Proportional Hazard, 0.809 A 12.200 12.944 0.744 13.129 26.073 0.
↪→943 0.986

B 11.000 11.376 0.376 9.544 20.919 0.
↪→967 1.192

C 6.000 8.400 2.400 28.608 37.008 0.
↪→714 0.294

total 29.200 32.719 3.519 51.281 84.000 0.
↪→892 0.638
pr45 Proportional Hazard, 0.809 A 11.675 12.059 0.384 3.624 15.682 0.
↪→968 3.328

B 10.578 10.674 0.096 2.160 12.834 0.
↪→991 4.941

C 4.803 6.457 1.654 10.027 16.484 0.
↪→744 0.644

total 27.055 29.189 2.134 15.811 45.000 0.
↪→927 1.846
prsw Proportional Hazard, 0.809 A 12.200 12.571 0.371 3.371 15.942 0.
↪→970 3.729

B 11.000 10.532 -0.468 -0.187 10.345 1.
↪→044 -56.386

C 6.000 8.158 2.158 10.555 18.713 0.
↪→736 0.773

total 29.200 31.261 2.061 13.739 45.000 0.
↪→934 2.275

statistic COC
distortion unit

pr Proportional Hazard, 0.809 A 0.057
B 0.039
C 0.084
total 0.069

pr45 Proportional Hazard, 0.809 A 0.106
B 0.045
C 0.165
total 0.135

prsw Proportional Hazard, 0.809 A 0.110
B 2.507
C 0.204
total 0.150

dual
==

statistic L P M Q a LR ␣
↪→PQ COC

distortion unit ␣
↪→

pr Dual Moment, 1.228 A 12.200 13.061 0.861 15.011 28.071 0.934 0.
↪→870 0.057

B 11.000 11.523 0.523 11.590 23.113 0.955 0.
↪→994 0.045

(continues on next page)

2.12. Working With Samples 173

aggregate Documentation, Release 0.22.0

(continued from previous page)
C 6.000 7.171 1.171 25.645 32.816 0.837 0.

↪→280 0.046
total 29.200 31.754 2.554 52.246 84.000 0.920 0.

↪→608 0.049
pr45 Dual Moment, 1.228 A 11.675 12.422 0.747 5.480 17.902 0.940 2.
↪→267 0.136

B 10.578 11.009 0.432 4.186 15.195 0.961 2.
↪→630 0.103

C 4.803 5.716 0.914 6.187 11.903 0.840 0.
↪→924 0.148

total 27.055 29.148 2.093 15.852 45.000 0.928 1.
↪→839 0.132
prsw Dual Moment, 1.228 A 12.200 12.874 0.674 4.947 17.821 0.948 2.
↪→602 0.136

B 11.000 11.197 0.197 2.644 13.840 0.982 4.
↪→235 0.074

C 6.000 7.191 1.191 6.148 13.339 0.834 1.
↪→170 0.194

total 29.200 31.261 2.061 13.739 45.000 0.934 2.
↪→275 0.150

2.12.8 Summary of Objects Created by DecL

Objects created by build() in this guide. Objects created directly by class constructors are not entered into the
knowledge database.

In [72]: from aggregate import pprint_ex

In [73]: for n, r in build.qlist('^Samp:').iterrows():
....: pprint_ex(r.program, split=20)
....:

2.13 Published Problems and Examples

Objectives: aggregate solutions to a wide selection of problems and examples from books (Loss Models, Loss
Data Analytics), actuarial exam study notes, and academic papers. Demonstrates the method of solution and verifies
the correctness of aggregate calculations.
Audience: Academics and researchers and actuarial students reading the cited works.
Prerequisites: aggregate programming; risk theory.
See also: Examples in Reinsurance Pricing.
Contents:

2.13.1 Grübel and Hermesmeier (1999)

Poisson/Levy Example

Here is an example from Grübel and Hermesmeier [1999]. The Levy distribution is a zero parameter distribution
in scipy.stats. The paper considers an aggregate with Poisson(20) claim count. The Panjer recursion column
can be replicated using more buckets and padding with bs=1. The function exact uses conditional probability to
compute the aggregate probability of x − 1/2 < X < x + 1/2 exactly. The Levy is stable with index α = 1/2,
which means that

X1 + · · ·+Xn =d n
2X

174 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

for iid Levy variables.
The other models use log2=10, no padding, and varying amounts of tilting.

In [1]: from aggregate import build, qd

In [2]: from scipy.stats import levy

In [3]: a = build('agg L 20 claim sev levy poisson', update=False)

In [4]: bs = 1

In [5]: a.update(log2=16, bs=bs, padding=2, normalize=False, tilt_vector=None)

In [6]: df = a.density_df.loc[[1, 10, 100, 1000], ['p_total']] / a.bs

In [7]: df.columns = ['accurate']

In [8]: def exact(x):
...: lam = 20
...: n = 100
...: p = np.zeros(n)
...: a = np.zeros(n)
...: p[0] = np.exp(-lam)
...: fz = levy()
...: for i in range(1, n):
...: p[i] = p[i-1] * lam / i
...: a[i] = fz.cdf((x+0.5)/i**2) - fz.cdf((x-0.5)/i**2)
...: return np.sum(p * a)
...:

In [9]: df['exact'] = [exact(i) for i in df.index]

other models
In [10]: log2 = 10

In [11]: for tilt in [None, 1/1024, 5/1024, 25/1024]:
....: a.update(log2=log2, bs=bs, padding=0, normalize=False, tilt_

↪→vector=tilt)
....: if tilt is None:
....: tilt = 0
....: df[f'tilt {tilt:.4f}'] = a.density_df.loc[[1, 10, 100, 1000], ['p_

↪→total']]/a.bs
....:

In [12]: qd(df.iloc[:, [1,0,2,3,4, 5]], accuracy=3)

exact accurate tilt 0.0000 tilt 0.0010 tilt 0.0049 tilt 0.0244
loss
1.0 1.0778e-07 2.4616e-07 0.00020645 7.3458e-05 1.5602e-06 2.4616e-07
10.0 3.0754e-05 3.4324e-05 0.00023799 0.00010668 3.5624e-05 3.4324e-05
100.0 0.0011555 0.0011559 0.0013212 0.0012148 0.0011569 0.0011559
1000.0 0.00020129 0.00020121 0.00021341 0.00020561 0.00020129 0.00020121

This table is identical to the table shown in the paper.

2.13. Published Problems and Examples 175

aggregate Documentation, Release 0.22.0

2.13.2 Embrechts and Frei (2009)

Poisson/Pareto Example

Embrechts and Frei [2009], Panjer recursion versus FFT for compound distributions.
Consider a Po(λ) ∨ Pareto(α, β), α is shape and β is scale.

In [1]: from aggregate import build, qd

In [2]: from pandas import option_context

In [3]: import matplotlib.pyplot as plt

In [4]: alpha = 4

In [5]: beta = 3

In [6]: freq = 20

In [7]: a = build(f'agg EF.1 {freq} claims '
...: f'sev {beta} * pareto {alpha} - {beta} '
...: 'poisson', bs=1/8, log2=8, padding=0, normalize=False)
...:

In [8]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 20 0.22361 0.22361
Sev 1 0.9985 -0.0014965 1.4142 1.3956 7.0711 5.1093
Agg 20 17.704 -0.11481 0.3873 0.38559 1.1619 -0.21402
log2 = 8, bandwidth = 1/8, validation: fails sev mean, agg mean, agg mean error >>␣
↪→sev, possible aliasing; try larger bs.

The last dataframe shows poor accuracy. Try different ways to compute the aggregate: padding, tilting, and more
buckets.

In [9]: from pandas import option_context

In [10]: df = a.density_df[['p_total']].rename(columns={'p_total': 'Pad 0, tilt 0'}
↪→)

In [11]: a.update(bs=1/8, log2=8, padding=1, normalize=False)

In [12]: df['Pad 1, tilt 0'] = a.density_df.p_total

(continues on next page)

176 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [13]: a.update(bs=1/8, log2=8, padding=2, normalize=False)

In [14]: df['Pad 2, tilt 0'] = a.density_df.p_total

In [15]: a.update(bs=1/8, log2=8, padding=0, tilt_vector=0.01, normalize=False)

In [16]: df['Pad 0, tilt 0.01'] = a.density_df.p_total

In [17]: a.update(bs=1/32, log2=16, padding=1, normalize=False)

In [18]: bit = a.density_df[['p_total']].rename(columns={'p_total': 'log2 16, pad␣
↪→1, tilt 0'})

In [19]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 20 0.22361 0.22361
Sev 1 0.99995 -5.4251e-05 1.4142 1.4144 7.0711 7.0284
Agg 20 19.999 -5.4252e-05 0.3873 0.38732 1.1619 1.1567
log2 = 16, bandwidth = 1/32, validation: not unreasonable.

The last dataframe shows a good approximation.
The next figure (compare Figure 1 in the paper, shown below) shows that padding, as recommended in Wang [1998],
removes aliasing as effectively as padding, albeit at the expense of a longer FFT computation. The log density shows
the aliasing is completely removed.

In [20]: f, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
↪→layout=True, squeeze=True)

In [21]: ax0, ax1 = axs.flat

In [22]: df.plot(ax=ax0, logy=False)
Out[22]: <Axes: xlabel='loss'>

In [23]: df.plot(ax=ax1, logy=True)
Out[23]: <Axes: xlabel='loss'>

In [24]: ax0.legend(loc='upper left')
Out[24]: <matplotlib.legend.Legend at 0x7fe3e65c4340>

In [25]: ax1.legend(loc='lower right');

2.13. Published Problems and Examples 177

aggregate Documentation, Release 0.22.0

Clearly there is not enough space with only 2**8 buckets. Expanding to 2**16 and using a finer bucket covers a more
realistic range. The log density plot shows a change in regime from Poisson body to Pareto tail. The extreme tail can
be approximated by differentiating Feller’s theorem, which says the survival function is converges to 20Pr(X > x)
where X is the Pareto severity (right hand plot). The multiplication by four accounts for the different bs values.

In [26]: f, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
↪→layout=True, squeeze=True)

In [27]: ax0, ax1 = axs.flat

In [28]: df.plot(ax=ax0, logy=False)
Out[28]: <Axes: xlabel='loss'>

In [29]: (bit * 4).plot(ax=ax0, lw=3, alpha=.5);

In [30]: bit.plot(ax=ax1, logy=True);

density from tail, need to divide by bs
In [31]: ax1.plot(bit.index, (20*4/3*a.bs)*(3/(3+bit.index))**5, label='Feller␣
↪→approximation');

In [32]: ax0.set(xlim=[-5, a.q(0.99999)]);

In [33]: ax0.legend(loc='upper right');

In [34]: ax1.legend(loc='upper right');

178 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Choice of Bandwidth (Bucket Size)

This example replicates parts of Table 1. As well as the 99.9%ile it shows the 99.9999%ile.

In [35]: import pandas as pd

In [36]: a = build('agg EF.2 50 claims sev expon poisson', update=False)

In [37]: ans = []

In [38]: for log2, bs in zip([10, 10, 10, 16, 16, 16, 16], [1, 1/2, 1/8, 1/8, 1/16,
↪→ 1/64, 1/512]):

....: a.update(log2=log2, bs=bs, padding=1)

....: ans.append([log2, 1/bs, a.q(0.999), a.q(1-1e-6)])

....:

In [39]: df = pd.DataFrame(ans, columns=['log2', '1/bs', 'p999', 'p999999'])

In [40]: qd(df, accuracy=4)

log2 1/bs p999 p999999
0 10 1 84 107
1 10 2 84.5 108
2 10 8 85.125 108.25
3 16 8 85.125 108.25
4 16 16 85.125 108.25
5 16 64 85.109 108.23
6 16 512 85.105 108.23

2.13.3 Denuit (2019 and 2022)

Poisson/Discrete Example (6.1)

Example from Denuit [2019], Size-biased transform and conditional mean risk sharing, with application to p2p
insurance and tontines.

In [1]: from aggregate import build, qd

In [2]: p = build('''
...: port Denuit6.1
...: agg P1 0.08 claims dsev [1 2 3 4] [.1 .2 .4 .3] poisson
...: agg P2 0.08 claims dsev [1 2 3 4] [.15 .25 .3 .3] poisson
...: agg P3 0.10 claims dsev [1 2 3 4] [.1 .2 .4 .3] poisson
...: agg P4 0.10 claims dsev [1 2 3 4] [.15 .25 .3 .3] poisson
...: ''', bs=1, log2=10)
...:

In [3]: qd(p)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
P1 Freq 0.08 3.5355 3.5355

Sev 2.9 2.9 -1.1102e-16 0.32531 0.32531 -0.51452 -0.51452
Agg 0.232 0.232 4.0856e-13 3.7179 3.7179 3.9518 3.9518

P2 Freq 0.08 3.5355 3.5355
Sev 2.75 2.75 0 0.37921 0.37921 -0.28106 -0.28106
Agg 0.22 0.22 3.7326e-13 3.7812 3.7812 4.0928 4.0928

P3 Freq 0.1 3.1623 3.1623
Sev 2.9 2.9 -1.1102e-16 0.32531 0.32531 -0.51452 -0.51452
Agg 0.29 0.29 -4.5741e-14 3.3254 3.3254 3.5346 3.5346

(continues on next page)

2.13. Published Problems and Examples 179

aggregate Documentation, Release 0.22.0

(continued from previous page)
P4 Freq 0.1 3.1623 3.1623

Sev 2.75 2.75 0 0.37921 0.37921 -0.28106 -0.28106
Agg 0.275 0.275 1.1036e-13 3.382 3.382 3.6607 3.6607

total Freq 0.36 1.6667 1.6667
Sev 2.825 2.825 -3.3307e-16 0.35299 -0.40097
Agg 1.017 1.017 -5.6621e-15 1.7675 1.7675 1.8952 1.8952

log2 = 10, bandwidth = 1, validation: fails agg mean error >> sev, possible␣
↪→aliasing; try larger bs.

Computation of E[Xi | X = x] and E[Xi | X = x]/x as a function of x. The first function, called κi(x) in PIR, is
computed automatically by the portfolio class as exeqa_line (expectation given X equals x). The original
figure is shown below.

In [4]: bit = p.density_df.query('p_total > 0').iloc[1:]

In [5]: rat = bit.filter(regex='exeqa_P').apply(
...: lambda x: x / bit.loss.to_numpy(), axis=0)
...:

In [6]: ax = rat.plot.bar(ylim=[-0.05,1.05], stacked=True, figsize=(3.5, 2.45))

In [7]: ax.set(xlim=[-0.5, 15.5], ylim=[0,1]);

In [8]: ax.legend().set(visible=False);

All the values are available as a table. These are consistent with numbers mentioned in the text.

180 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [9]: from pandas import option_context

In [10]: b = bit.filter(regex='exeqa_P').apply(
....: lambda x: x / bit.loss.to_numpy(), axis=0)
....:

In [11]: b.index = b.index.astype(int)

In [12]: b.index.name = 'a'

In [13]: qd(b)

exeqa_P1 exeqa_P2 exeqa_P3 exeqa_P4
a
1 0.17778 0.26667 0.22222 0.33333
2 0.19729 0.24716 0.24661 0.30895
3 0.25219 0.19226 0.31523 0.24032
4 0.22212 0.22232 0.27765 0.2779
5 0.22524 0.21921 0.28155 0.27401
6 0.23238 0.21207 0.29047 0.26508
7 0.23486 0.20958 0.29358 0.26198
8 0.22365 0.2208 0.27956 0.276
9 0.23064 0.2138 0.28831 0.26725
10 0.23224 0.2122 0.2903 0.26526
11 0.23056 0.21388 0.2882 0.26735
12 0.22551 0.21893 0.28189 0.27366
..
30 0.22858 0.21586 0.28573 0.26982
31 0.22829 0.21615 0.28537 0.27017
32 0.22872 0.21571 0.2859 0.26963
33 0.22893 0.21549 0.28617 0.26937
34 0.22839 0.216 0.28551 0.26999
35 0.22829 0.2161 0.28537 0.27006
36 0.22865 0.21576 0.28577 0.26966
37 0.22863 0.21571 0.28579 0.26959
38 0.22816 0.21601 0.28522 0.2699
39 0.22816 0.21599 0.28513 0.26976
40 0.22849 0.21582 0.28545 0.26962
41 0.22806 0.21556 0.28498 0.2692

Proportion of expected loss by unit.

In [14]: bb = p.describe.xs('Agg', axis=0, level=1)[['E[X]']]

In [15]: qd(bb / bb.iloc[-1,0])

E[X]
unit
P1 0.22812
P2 0.21632
P3 0.28515
P4 0.2704
total 1

2.13. Published Problems and Examples 181

aggregate Documentation, Release 0.22.0

Mortality Example and Figure

Example from Denuit et al. [2022], Mortality Credits with Large Survivor Funds. Reproducing Figure 4.5.

In [16]: import matplotlib.pyplot as plt; import pandas as pd

In [17]: wl = 0.6; wh = 1 - wl; ql = .1; qh = .2; al = 1; ah = 3

In [18]: ports = {}

In [19]: for n in (10, 20, 50, 100):
....: ports[n] = build(f'port DR.4.3 '
....: f'agg Low.q {wl * n * ql} claims dsev [{al}] binomial {ql}'
....: f'agg High.q {wh * n * qh} claims dsev [{ah}] binomial {qh}'
....: , bs=1, log2=8)
....:

In [20]: audit = pd.concat([i.describe for i in ports.values()], keys=ports.keys(),
↪→ names=['n', 'unit', 'X'])

In [21]: qd(audit.xs('Agg', axis=0, level=2)['E[X]'].unstack(1))

unit Low.q High.q total
n
10 0.6 2.4 3
20 1.2 4.8 6
50 3 12 15
100 6 24 30

In [22]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 3.5), constrained_
↪→layout=True, squeeze=True)

In [23]: for ax, (n, port), mx, t in zip(axs.flat, ports.items(), [20, 25, 40, 60],
↪→ [2, 5, 10, 10]):

....: lm = [-1, mx]

....: port.density_df.query('p_total > 0').filter(regex='exeqa_[LHt]').
↪→plot(ax=ax, xlim=lm, ylim=lm)

....: ax.set_xticks(range(0, mx, t))

....: ax.set_yticks(range(0, mx, t))

....: ax.grid(lw=.25, c='w')

....: ax.set(title=f'{n} risks')

....:

In [24]: fig.suptitle('Denuit Figure 4.5')
Out[24]: Text(0.5, 0.98, 'Denuit Figure 4.5')

182 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

2.13.4 Loss Data Analytics Book

Examples from Jed Frees’ open source actuarial software. Text and github source available on-line.

Contents

• Distribution examples

– Gamma

– Pareto

– Weibull

• Mixture examples

• Coverage modifications: deductibles and limits

– Deductible

– Limit

– Limit and deductible

– Reinsurance

• Aggregate loss distributions

– Poisson-discrete

– Discrete

– Geometric-discrete

– Moments

2.13. Published Problems and Examples 183

https://openacttexts.github.io/Loss-Data-Analytics/
https://github.com/OpenActTexts/Loss-Data-Analytics

aggregate Documentation, Release 0.22.0

– Poisson-uniform

– Geometric-discrete

– Zero-modified Poisson-Burr

– Negative binomial

– Poisson-exponential

• Portfolio management

– Discrete example

– Telecom example

Distribution Examples

Gamma distribution

In [1]: import scipy.stats as ss

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

In [4]: xs = np.linspace(0, 1000, 1001)

In [5]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
↪→layout=True, squeeze=True)

In [6]: ax0, ax1 = axs.flat

In [7]: for scale in [100, 150, 200, 250]:
...: ax0.plot(xs, ss.gamma(2, scale=scale).pdf(xs), label=f'scale = {scale}

↪→')
...:

In [8]: for shape in [2, 3, 4, 5]:
...: ax1.plot(xs, ss.gamma(shape, scale=100).pdf(xs), label=f'shape =

↪→{shape}')
...:

In [9]: for ax in axs.flat:
...: ax.legend(loc='upper right')
...: ax.set(ylabel='gamma density', xlabel='x')
...:

184 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Pareto distribution

In [10]: xs = np.linspace(0, 3000, 3001)

In [11]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
↪→layout=True, squeeze=True)

In [12]: ax0, ax1 = axs.flat

In [13]: for scale in [2000, 2500, 3000, 3500]:
....: ax0.plot(xs, ss.pareto(3, scale=scale, loc=-scale).pdf(xs), label=f

↪→'scale = {scale}')
....:

In [14]: for shape in [1,2,3,4]:
....: ax1.plot(xs, ss.pareto(shape, scale=2000, loc=-2000).pdf(xs), label=f

↪→'shape = {shape}')
....:

In [15]: for ax in axs.flat:
....: ax.legend(loc='upper right')
....: ax.set(ylabel='Pareto density', xlabel='x')
....:

Weibull distribution

scipy.stats includes Weibull min (for positive x) and Weibull max (for negative x) distributions. We want the
min version.

In [16]: xs = np.linspace(0, 400, 401)

In [17]: fig, axs = plt.subplots(1, 2, figsize=(2 * 3.5, 2.45), constrained_
↪→layout=True, squeeze=True)

In [18]: ax0, ax1 = axs.flat

In [19]: for scale in [50, 100, 150, 200]:
....: ax0.plot(xs, ss.weibull_min(3, scale=scale).pdf(xs), label=f'scale =

↪→{scale}')
....:

In [20]: for shape in [1.5, 2, 2.5, 3]:
....: ax1.plot(xs, ss.weibull_min(shape, scale=100).pdf(xs), label=f'shape␣

↪→= {shape}')
....:

In [21]: for ax in axs.flat:
....: ax.legend(loc='upper right')
....: ax.set(ylabel='Weibull_min density', xlabel='x')

(continues on next page)

2.13. Published Problems and Examples 185

aggregate Documentation, Release 0.22.0

(continued from previous page)
....:

Mixture Example (3.3.5)

A collection of insurance policies consists of two types. 25% of policies are Type 1 and 75% of policies are Type 2.
For a policy of Type 1, the loss amount per year follows an exponential distribution with mean 200, and for a policy
of Type 2, the loss amount per year follows a Pareto distribution with parameters α = 3 and θ = 200. For a policy
chosen at random from the entire collection of both types of policies, find the probability that the annual loss will be
less than 100, and find the average loss.
Solution. The function pmv (print mean and variance) is a convenience.

In [22]: from aggregate import build, qd, mv

In [23]: def pmv(m, v):
....: print(f'mean = {m:.6g}\n'
....: f'variance = {v:.7g}')
....:

Create the Aggregate object, display its describe dataframe and compare the cdf with the exact computation.

In [24]: a = build('agg lda.3.3.5 '
....: '1 claim '
....: 'sev [200 200] * [expon pareto] [1 3] + [0 -200] wts [.25 .75] '
....: 'fixed',
....: normalize=False)
....:

In [25]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 125 125 -2.3123e-05 1.4832 1.4754 inf 9.9477
Agg 125 125 -2.3123e-05 1.4832 1.4754 inf 9.9477
log2 = 16, bandwidth = 1/2, validation: fails sev cv, agg cv.

In [26]: a.sev.cdf(100), 0.25 * (1 - np.exp(-0.5)) + 0.75 * (1 - (2/3)**3)
Out[26]: (0.6261451128496194, 0.6261451128496194)

This example has a very thick tailed severity and it is best to specify normalized=False for the most accurate
severity estimates. With default settings, aggregate suffers considerable discretization error, with an estimated
mean well below the actual 125. The sev.cdf method exposes the actual underlying severity distribution cdf
functions and reproduces the requested probability exactly. The object cdf function relies on the discretization and
so is shifted by half a bucket size. (Also available: sev.sf and sev.pdf.)

In [27]: a.cdf(100), a.sev.cdf(100 + a.bs/2)
Out[27]: (0.626889166181137, 0.6268891661811365)

186 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Coverage Modifications

Deductible Example (3.4.1)
A claim severity distribution is exponential with mean 1000. An insurance company will pay the amount of each
claim in excess of a deductible of 100. Calculate the variance of the amount paid by the insurance company for one
claim, including the possibility that the amount paid is 0.
Solution. In this case we must use unconditional severity to include the possibility that the amount paid is 0. This is
done by adding ! at the end of the severity specification. The moments are computed exactly without updating.

In [28]: import numpy as np

In [29]: a = build('agg lda.3.4.1 1 claim '
....: 'inf xs 100 sev 1000 * expon 1 ! '
....: 'fixed', update=False)
....:

In [30]: qd(a)

E[X] CV(X) Skew(X)
X
Freq 1 0
Sev 904.84 1.1002 2.0257
Agg 904.84 1.1002 2.0257
log2 = 0, bandwidth = na, validation: n/a, not updated.

In [31]: m = 1000 * np.exp(-0.1)

In [32]: mv(a)
mean = 904.837
variance = 990944.1
std dev = 995.462

In [33]: pmv(m, (2 * 1000**2 * np.exp(-0.1)) - m**2)
mean = 904.837
variance = 990944.1

Deductible Example (3.4.2)
For an insurance:

• Losses have a density function

fX (x) =

{
0.02x 0 < x < 10,
0 elsewhere.

• The insurance has an ordinary deductible of 4 per loss.
• Y P is the claim payment per payment random variable.

Solution. The trick here is to realize that X is a beta variable with α = 2 and β = 1.

In [34]: a = build('agg lda.3.4.2 1 claim 6 xs 4 sev 10 * beta 2 1 fixed')

In [35]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 3.4286 3.4286 1.0348e-10 0.48947 0.48947 -0.29313 -0.29313
Agg 3.4286 3.4286 1.0348e-10 0.48947 0.48947 -0.29313 -0.29313
log2 = 16, bandwidth = 1/4096, validation: not unreasonable.

(continues on next page)

2.13. Published Problems and Examples 187

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [36]: mv(a)
mean = 3.42857
variance = 2.816327
std dev = 1.67819

Limit Example (3.4.4)
Under a group insurance policy, an insurer agrees to pay 100% of the medical bills incurred during the year by
employees of a small company, up to a maximum total of one million dollars. The total amount of bills incurred,X ,
has pdf

fX(x) =

{
x(4−x)

9 0 < x < 3
0 elsewhere.

where x is measured in millions. Calculate the total amount, in millions of dollars, the insurer would expect to pay
under this policy.
Solution. In this case the distribution has no obvious parametric form—though it is related to a beta. We can solve
it in aggregate by using a custom empirical distribution.

In [37]: xs = np.linspace(0, 4, 2**13, endpoint=False)

In [38]: F = np.where(xs<3,(xs * xs * (2 - xs / 3)) / 9, 1)

In [39]: ps = np.diff(F, append=1)

In [40]: fig, ax = plt.subplots(1, 1, figsize=(3.5, 2.45), constrained_layout=True,
↪→ squeeze=True)

In [41]: ax.plot(xs, ps);

When the empirical distribution has many entries it is faster to build the Aggregate object directly, rather than
use DecL. The moments of the severity and aggregate distribution are computed from the numerical approximation
during creation. There is no need to update the object.

In [42]: from aggregate import Aggregate

In [43]: a = Aggregate('Example', exp_en=1, sev_name='dhistogram', sev_xs=xs, sev_
↪→ps=ps,

....: exp_attachment=0, exp_limit=1, freq_name='fixed')

....:

In [44]: print(a)
aggregate object name Example
claim count 1.00
frequency distribution fixed
severity distribution dhistogram, 1 xs 0.

E[X] CV(X) Skew(X)
X
Freq 1 0 NaN
Sev 0.93514 0.1826 -2.9018
Agg 0.93514 0.1826 -2.9018

188 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Limit and Deductible Example (3.4.5)
The ground up loss random variable for a health insurance policy in 2006 is modeled withX , a random variable with
an exponential distribution having mean 1000. An insurance policy pays the loss above an ordinary deductible of
100, with a maximum annual payment of 500. The ground up loss random variable is expected to be 5% larger in
2007, but the insurance in 2007 has the same deductible and maximum payment as in 2006. Find the percentage
increase in the expected cost per payment from 2006 to 2007.
Solution. Trend increases the ground-up severity distribution but not the limit and attachment. The calculation is
performed exactly on creation; again, there is no need to update the Aggregate object.

In [45]: import pandas as pd

In [46]: a06 = build('agg X06 1 claim 500 xs 100 sev 1000 * expon fixed',␣
↪→update=False)

In [47]: a07 = build('agg X07 1 claim 500 xs 100 sev 1050 * expon fixed',␣
↪→update=False)

In [48]: ans = pd.concat((a06.describe, a07.describe), keys=['2006', '2007'])

In [49]: qd(ans)

E[X] CV(X) Skew(X)
X

2006 Freq 1 0 NaN
Sev 393.47 0.40656 -1.1717
Agg 393.47 0.40656 -1.1717

2007 Freq 1 0 NaN
Sev 397.8 0.39691 -1.2342
Agg 397.8 0.39691 -1.2342

In [50]: ans.iloc[5, 0] / ans.iloc[2, 0] - 1
Out[50]: 0.011000207063778467

Reinsurance Example (3.4.6, modified)
Losses arising in a certain portfolio have a two-parameter Pareto distribution with α = 5 and θ = 3, 600. A
reinsurance arrangement has been made, under which (a) the reinsurer accepts 15% of losses up to u = 5, 000 and
all amounts in excess of 5,000 and (b) the insurer pays for the remaining losses.

1. Express the random variables for the reinsurer’s and the insurer’s payments as a function of X , the portfolio
losses.

2. Calculate the mean amount paid on a single claim by the insurer.
3. Calculate the standard deviation of the amount paid on a single claim by the insurer (retaining the 15% copay-

ment).
Solution. The net position can be modeled as:

agg insurer.net 1 claim
sev 3600 * pareto 5 - 3600
occurrence net of 0.15 so 5000 xs 0 and inf xs 5000
fixed

but this involves the thick-tailed Pareto across its entire range. It is better to recognize the severity is limited by the
second excess layer and proceed as follows.

In [51]: a = build('agg insurer.net 1 claim '
....: '5000 xs 0 sev 3600 * pareto 5 - 3600 '
....: 'occurrence net of 0.15 so 5000 xs 0 '
....: 'fixed')
....:

(continues on next page)

2.13. Published Problems and Examples 189

aggregate Documentation, Release 0.22.0

(continued from previous page)

In [52]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 872.37 741.53 -0.14998 1.1256 1.1256 2.0952 2.0952
Agg 872.37 741.53 -0.14998 1.1256 1.1256 2.0952 2.0952
log2 = 16, bandwidth = 1/4, validation: n/a, reinsurance.

In [53]: print('\n', a.agg_m, a.agg_sd)

872.3650484486672 981.9314221673877

Aggregate Loss Distributions

Poisson/Discrete Example (5.3.1)
The number of accidents follows a Poisson distribution with mean 12. Each accident generates 1, 2, or 3 claimants
with probabilities 1/2, 1/3, and 1/6 respectively.
Calculate the variance in the total number of claimants.
Solution.

In [54]: a = build('agg QU 12 claims dsev [1 2 3] [1/2 1/3 1/6] poisson')

In [55]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 12 0.28868 0.28868
Sev 1.6667 1.6667 -1.1102e-16 0.44721 0.44721 0.6261 0.6261
Agg 20 20 -7.9936e-15 0.31623 0.31623 0.36366 0.36366
log2 = 10, bandwidth = 1, validation: not unreasonable.

In [56]: mv(a)
mean = 20
variance = 40
std dev = 6.32456

As always, a contains the (exact) full distribution of outcomes. We could answer any question about it.
Discrete Example (5.3.2)
You are the producer of a television quiz show that gives cash prizes. The number of prizes, N , and prize amount,
X , have the following distributions:

n Pr(N = n) x Pr(X = x)

1 0.8 0 0.2
2 0.2 100 0.7

1000 0.1

Your budget for prizes equals the expected aggregate cash prizes plus the standard deviation of aggregate cash prizes.
Calculate your budget.
Solution. Just a matter of translating into DecL. No need to update the object.

In [57]: a = build('agg lda.5.3.2 dfreq [1 2] [.8 .2] '
....: 'dsev [0 100 1000] [.2 .7 .1]', update=False)
....:

(continues on next page)

190 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [58]: display(a)
lda.5.3.2, <aggregate.distributions.Aggregate object at 0x7fe3e66ea140>

In [59]: mv(a)
mean = 204
variance = 98344
std dev = 313.598

In [60]: a.agg_m + a.agg_sd
Out[60]: 517.5984693840198

Geometric/Discrete Example (5.3.3 and 5.4.1)
The number of claims in a period has a geometric distribution with mean 4. The amount of each claim X follows
Pr(X = x) = 0.25, x = 1, 2, 3, 4, i.e. a discrete uniform distribution on {1, 2, 3, 4}. The number of claims and
the claim amounts are independent. Let SN denote the aggregate claim amount in the period. Calculate FSN

(3).
Solution. We can compute the entire distribution. Here we show up to the 99th percentile. If the probability clause
in dsev is omitted then all outcomes are treated as equally likely.

In [61]: a = build('agg lda.5.3.3 4 claims dsev [1:4] geometric')

In [62]: qd(a, accuracy=4)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 4 1.118 2.0125
Sev 2.5 2.5 0 0.44721 0.44721 0 0
Agg 10 10 -1.9499e-10 1.1402 1.1402 2.024 2.024
log2 = 8, bandwidth = 1, validation: not unreasonable.

In [63]: b = a.density_df.loc[0:a.q(0.99), ['p_total', 'F']]

In [64]: b.index = b.index.astype(int)

In [65]: qd(b, accuracy=4)

p_total F
loss
0 0.2 0.2
1 0.04 0.24
2 0.048 0.288
3 0.0576 0.3456
4 0.06912 0.41472
5 0.042944 0.45766
6 0.043533 0.5012
7 0.042639 0.54384
8 0.039647 0.58348
9 0.033753 0.61724
10 0.031914 0.64915
11 0.029591 0.67874
...
40 0.0023287 0.97449
41 0.0021339 0.97662
42 0.0019554 0.97858
43 0.0017918 0.98037
44 0.001642 0.98201
45 0.0015046 0.98352
46 0.0013788 0.9849
47 0.0012634 0.98616
48 0.0011577 0.98732
49 0.0010609 0.98838

(continues on next page)

2.13. Published Problems and Examples 191

aggregate Documentation, Release 0.22.0

(continued from previous page)
50 0.00097217 0.98935
51 0.00089085 0.99024

Moments Example (5.3.4)
You are given:

Mean Standard Deviation
Number of Claims 8 3
Individual Losses 10, 000 3, 937

As a benchmark, use the normal approximation to determine the probability that the aggregate loss will exceed 150%
of the expected loss.
Solution. Use the MomentAggregator class to compute the moments of an aggregate from those of frequency
and severity.

In [66]: import scipy.stats as ss

In [67]: from aggregate import MomentAggregator

In [68]: mom = MomentAggregator.agg_from_fs2(8, 9, 10000, 3937**2)

In [69]: fz = ss.norm(loc=mom.ex, scale=mom.sd)

In [70]: mom['prob'] = fz.sf(1.5*mom.ex)

In [71]: qd(mom)

ex 80000
var 1.024e+09
sd 32000
cv 0.4
prob 0.10565

Poisson/Uniform Example (5.3.5 and 5.4.2)
For an individual over 65:

1. The number of pharmacy claims is a Poisson random variable with mean 25.
2. The amount of each pharmacy claim is uniformly distributed between 5 and 95.
3. The amounts of the claims and the number of claims are mutually independent.

Estimate the probability that aggregate claims for this individual will exceed 2000 using the normal approximation.
Solution. Here is a close-to exact solution in addition to the normal approximation. Note that the uniform distribution
has no shape parameter. The severity is made by shifting and scaling the base. Scaling is like multiplication and is
applied before the location (addition) shift.

In [72]: a = build('agg Pharma 25 claims sev 90 * uniform + 5 poisson')

In [73]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 25 0.2 0.2
Sev 50 50 0 0.51962 0.51962 0 0
Agg 1250 1250 2.6645e-15 0.22539 0.22539 0.25293 0.25293
log2 = 16, bandwidth = 1/16, validation: not unreasonable.

Here are the moments for the approximation. The approximate function returns a scipy.stats frozen normal
object, which yields the approximation.

192 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [74]: print(a.sf(2000), a.agg_m, a.agg_var)
0.00698200305408303 1250.0 79375.0

In [75]: fz = a.approximate('norm')

In [76]: fz.sf(2000), a.sf(2000)
Out[76]: (0.0038830948902722645, 0.00698200305408303)

approximate will also provide (shifted) gamma and lognormal fits.

In [77]: approx = a.approximate('all')

In [78]: b = pd.DataFrame([[k, v.sf(2000)] for k, v in approx.items()],
....: columns=['approx', 'prob']).set_index('approx')
....:

In [79]: b.loc['exact'] = a.sf(2000)

In [80]: b.sort_values('prob')
Out[80]:

prob
approx
norm 0.003883
exact 0.006982
sgamma 0.007101
slognorm 0.007175
gamma 0.009789
lognorm 0.013118

Here is a comparison of the FFT model with the normal approximation. Example 5.4.2 derives a similar probability
using simulation.

In [81]: fig, ax = plt.subplots(1, 1, figsize=(3.5, 2.45), constrained_layout=True,
↪→ squeeze=True)

In [82]: (a.density_df.p / a.bs).plot(label='Exact', ax=ax);

In [83]: ax.plot(a.xs, fz.pdf(a.xs), label='Normal approx');

In [84]: ax.set(xlim=[0, 3000], title='Normal approximation');

In [85]: ax.legend(loc='upper right');

Geometric/Discrete Example (5.3.6 and 5.3.7)
In a given week, the number of projects that require you to work overtime has a geometric distribution with β = 2.
For each project, the distribution of the number of overtime hours in the week, X , is as follows:

x f(x)

5 0.2
10 0.3
20 0.5

The number of projects and the number of overtime hours are independent. You will get paid for overtime hours in

2.13. Published Problems and Examples 193

aggregate Documentation, Release 0.22.0

excess of 15 hours in the week. Calculate the expected number of overtime hours for which you will get paid in the
week.
Solution. This is a one-liner in aggregate. Remember that aggregate reinsurance is specified after the frequency
clause. The first column in the describe dataframe shows the analytic gross answer and the second the FFT-computed
net.

In [86]: a = build('agg Projects 2 claims '
....: 'dsev [5 10 20] [.2 .3 .5] geometric '
....: 'aggregate net of 15 xs 0')
....:

In [87]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 1.2247 2.0412
Sev 14 14 0 0.44607 0.44607 -0.23403 -0.23403
Agg 28 18.807 -0.32831 1.2647 1.6713 2.0725 2.6373
log2 = 9, bandwidth = 1, validation: n/a, reinsurance.

Example 5.3.7 uses a recursive calculation in steps of 5. We can replicate that using an aggregate tower. The rein-
surance_audit_df provides ceded and net statistics by layer. Here we extract just the ceded part to get the
excess (overtime).

In [88]: a1 = build('agg Projects.1 2 claims '
....: 'dsev [5 10 20] [.2 .3 .5] geometric '
....: 'aggregate net of tower [0 5 10 15 inf]')
....:

In [89]: b = a1.reinsurance_audit_df.xs('ceded', axis=1, level=0)

In [90]: b['cumul ex'] = b.ex[::-1].cumsum() - a.agg_m

In [91]: qd(b, accuracy=4)

ex var sd cv skew cumul ex
kind share limit attach
agg 1.0 5.0 0.0 3.3333 5.5556 2.357 0.70711 -0.70711 28

5.0 3.1111 5.8765 2.4242 0.77919 -0.50418 24.666
10.0 2.7481 6.1884 2.4877 0.90521 -0.1995 21.555

inf 15.0 18.807 988 31.433 1.6713 2.6373 18.807
all inf gup 28 1253.9 35.41 1.2647 2.0713 -0.00026862

Zero-Modified Poisson/Burr Example (5.5.4)
Aggregate losses are modeled as follows:

1. The number of losses follows a zero-modified Poisson distribution with λ = 3 and pM0 = 0.5.
2. The amount of each loss has a Burr distribution with α = 3, θ = 50, γ = 1.
3. There is a deductible of d = 30 on each loss.
4. The number of losses and the amounts of the losses are mutually independent.

Calculate E(NP) and Var(NP).
Solution.

Todo: Implement ZT and ZM!

Negative Binomial Example (5.5.5 and 5.5.6 modified)

194 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

A group dental policy has a negative binomial claim count distribution with mean 300 and variance 800. Ground-up
severity is given by the following table:

Severity Probability
40 0.25
80 0.25
120 0.25
200 0.25

You expect severity to increase 50% with no change in frequency. You decide to impose a per claim deductible
of 100. Calculate the expected total claim payment S after these changes. What is the variance of the total claim
payment, Var(S)? (Modified:) Compare the aggregate distributions before and after the policy change.
Solution. A negative binomial with mean 300 and variance 800 has 8/3 = 1 + 300c and giving a mixing cv of√
c = (5/900)0.5 = 0.0745. Hence the aggregate program is

TODO: why is the answer not exact?

In [92]: cv = ((8 / 3 - 1) / 300)**0.5

In [93]: a0 = build(f'agg Original 300 claims dsev [4 8 12 20] mixed gamma {cv}')

In [94]: a1 = build(f'agg Revised 300 claims inf xs 10 '
....: f'sev dhistogram xps [{4*1.5} {8*1.5} {12*1.5} {20*1.5}] !␣

↪→mixed gamma {cv}')
....:

In [95]: qd(a0)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 300 0.094281 0.15321
Sev 11 11 0 0.53783 0.53783 0.43465 0.43465
Agg 3300 3300 -3.3207e-13 0.099263 0.099263 0.15833 0.15832
log2 = 20, bandwidth = 1, validation: not unreasonable.

In [96]: qd(a1)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 300 0.094281 0.15321
Sev 7.5 7.5 4.6567e-11 1.0392 1.0392 0.7207 0.7207
Agg 2250 2250 4.4878e-11 0.11175 0.11175 0.16722 0.16669
log2 = 20, bandwidth = 1, validation: not unreasonable.

In [97]: mv(a0)
mean = 3300
variance = 107300
std dev = 327.567

In [98]: mv(a1)
mean = 2250
variance = 63225
std dev = 251.446

Here is a comparison of the two densities.

In [99]: fig, ax = plt.subplots(1, 1, figsize=(3.5, 2.45), constrained_layout=True,
↪→ squeeze=True)

In [100]: a0.density_df.p_total.plot(ax=ax, label='Original');

In [101]: a1.density_df.p_total.plot(ax=ax, label='Adjusted');

(continues on next page)

2.13. Published Problems and Examples 195

aggregate Documentation, Release 0.22.0

(continued from previous page)

In [102]: ax.set(xlim=[-10, 1.25 * a0.q(0.9999)]);

In [103]: ax.legend(loc='upper right');

Poisson/Exponential Coverage and Underwriting Modification (Ex-
ample 5.5.7)
A company insures a fleet of vehicles. Aggregate losses have a compound Poisson distribution. The expected number
of losses is 20. Loss amounts, regardless of vehicle type, have exponential distribution with θ = 200. To reduce the
cost of the insurance, two modifications are to be made:

1. A certain type of vehicle will not be insured. It is estimated that this will reduce loss frequency by 20%.
2. A deductible of 100 per loss will be imposed.

Calculate the expected aggregate amount paid by the insurer after the modifications.
Solution. The ! at the end of the severity clause indicates unconditional severity (including zero claims that fail to
meet the deductible).

In [104]: a = build(f'agg Auto {20 * 0.8} claims inf xs 100 sev 200 * expon !␣
↪→poisson')

In [105]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 16 0.25 0.25
Sev 121.31 121.31 -6.5104e-08 1.5157 1.5157 2.4172 2.4172
Agg 1940.9 1940.9 -6.5104e-08 0.45397 0.45397 0.68096 0.68096
log2 = 16, bandwidth = 1/4, validation: not unreasonable.

If severity is conditional there are 16 claims in excess of the deductible, giving a much higher number. The mean
severity is still 200 because of the exponential’s memoryless property.

In [106]: a = build(f'agg Auto {20 * 0.8} claims inf xs 100 sev 200 * expon poisson
↪→')

In [107]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 16 0.25 0.25
Sev 200 200 -6.5104e-08 1 1 2 2
Agg 3200 3200 -6.5104e-08 0.35355 0.35355 0.53033 0.53033
log2 = 16, bandwidth = 1/4, validation: not unreasonable.

196 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Portfolio Management

VaR for a Discrete Variable Example (10.3.4)
Consider an insurance loss random variable with the following probability distribution:

Pr[X = x] =

{
0.75, for x = 1
0.20, for x = 3
0.05, for x = 4.

Determine the VaR at q = 0.6, 0.9, 0.95, 0.95001.
Solution.

In [108]: a = build('agg VaR 1 claim dsev [1 3 4] [.75 .2 .05] fixed')

In [109]: [a.q(i) for i in [.6, .9, .95, .9501]]
Out[109]: [1.0, 3.0, 3.0, 4.0]

Multi-Unit Telecom Management Example (10.4.3.3)
You are the Chief Risk Officer of a telecommunications firm. Your firm has several property and liability risks. We
will consider:

• X1, buildings, modeled using a gamma distribution with mean 200 and scale parameter 100.
• X2, motor vehicles, modeled using a gamma distribution with mean 400 and scale parameter 200.
• X3, directors and executive officers risk, modeled using a Pareto distribution with mean 1000 and scale pa-
rameter 1000.

• X4, cyber risks, modeled using a Pareto distribution with mean 1000 and scale parameter 2000.
Denote the total risk as X = X1 + X2 + X3 + X4. For simplicity, you assume that these risks are independent.
(Later, we will consider the more complex case of dependence.)
To manage the risk, you seek some insurance protection. You wish to manage internally small building and motor
vehicles amounts, up to M1 and M2, respectively. You seek insurance to cover all other risks. Specifically, the
insurer’s portion is

Yinsurer = (X1 −M1)+ + (X2 −M2)+ +X3 +X4,

so that your retained risk is Yretained = X − Yinsurer = min(X1,M1) +min(X2,M2). Using deductiblesM1 =
100 andM2 = 200:

1. Determine the expected claim amount of (i) that retained, (ii) that accepted by the insurer, and (iii) the total
overall amount.

2. Determine the 80th, 90th, 95th, and 99th percentiles for (i) that retained, (ii) that accepted by the insurer, and
(iii) the total overall amount.

3. Compare the distributions by plotting the densities for (i) that retained, (ii) that accepted by the insurer, and
(iii) the total overall amount.

Solution. Begin by figuring the gamma and Pareto parameters. For a gamma, the mean equals shape times scale,
so shape equals 2 for building and motor. For a Pareto, the mean equals scale / (shape - 1), so shape equals 2 (no
variance) for D&O and 3 for cyber (no third moment). We model the results using three Portfolio objects,
one for the retention, one for the insured amount, and one total. In each case the distribution gives total losses; the
frequency component is trivial.
Since the insured and total aggregates have no variance it is hard to estimate an appropriate bucket size. The default
method uses the standard deviation as a scale factor. Wemust use judgement (or trial and error), and select log2=18
and bs=1 to ensure there is enough “space”. Checking the describe dataframe shows these values match the means
well by unit and in total. The insured severity must be made unconditional.

2.13. Published Problems and Examples 197

aggregate Documentation, Release 0.22.0

In [110]: from aggregate import build

In [111]: retained = build('''port retained
.....: agg building 1 claim 100 xs 0 sev 100 * gamma 2 fixed
.....: agg motor 1 claim 200 xs 0 sev 200 * gamma 2 fixed
.....: ''')
.....:

In [112]: qd(retained)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
building Freq 1 0

Sev 89.636 89.636 1.0437e-10 0.23985 0.23985 -2.1029 -2.1029
Agg 89.636 89.636 1.0437e-10 0.23985 0.23985 -2.1029 -2.1029

motor Freq 1 0
Sev 179.27 179.27 2.6093e-11 0.23985 0.23985 -2.1029 -2.1029
Agg 179.27 179.27 2.6093e-11 0.23985 0.23985 -2.1029 -2.1029

total Freq 2 0
Sev 134.45 134.45 5.2187e-11 0.41837 -0.0046
Agg 268.91 268.91 5.2187e-11 0.17878 0.17878 -1.6928 -1.6928

log2 = 16, bandwidth = 1/128, validation: not unreasonable.

In [113]: insured = build('''port insured
.....: agg building 1 claim inf xs 100 sev 100 * gamma 2 ! fixed
.....: agg motor 1 claim inf xs 200 sev 200 * gamma 2 ! fixed
.....: agg d.and.o 1 claim sev 1000 * pareto 2 - 1000 fixed
.....: agg cyber 1 claim sev 2000 * pareto 3 - 2000 fixed
.....: ''', log2=18, bs=1)
.....:

In [114]: qd(insured)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
building Freq 1 0

Sev 110.36 110.36 -1.3889e-06 1.1901 1.1901 1.757 1.757
Agg 110.36 110.36 -1.3889e-06 1.1901 1.1901 1.757 1.757

motor Freq 1 0
Sev 220.73 220.73 -3.4722e-07 1.1901 1.1901 1.757 1.757
Agg 220.73 220.73 -3.4722e-07 1.1901 1.1901 1.757 1.757

d.and.o Freq 1 0
Sev 1000 992.43 -0.0075717 inf 2.6992 24.633
Agg 1000 992.43 -0.0075717 inf 2.6992 24.633

cyber Freq 1 0
Sev 1000 999.83 -0.00017075 1.7321 1.7062 inf 12.894
Agg 1000 999.83 -0.00017075 1.7321 1.7062 inf 12.894

total Freq 4 0
Sev 582.77 580.84 -0.0033215 inf
Agg 2331.1 2323.3 -0.0033392 inf 1.3721 16.508

log2 = 18, bandwidth = 1, validation: fails sev mean, agg mean.

In [115]: total = build('''port total
.....: agg building 1 claim sev 100 * gamma 2 fixed
.....: agg motor 1 claim sev 200 * gamma 2 fixed
.....: agg d.and.o 1 claim sev 1000 * pareto 2 - 1000 fixed
.....: agg cyber 1 claim sev 2000 * pareto 3 - 2000 fixed
.....: ''', log2=18, bs=1)
.....:

In [116]: qd(total)

(continues on next page)

198 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)

unit X
building Freq 1 0

Sev 200 200 -1.2153e-11 0.70711 0.70711 1.4142 1.4142
Agg 200 200 -1.2153e-11 0.70711 0.70711 1.4142 1.4142

motor Freq 1 0
Sev 400 400 -7.5939e-13 0.70711 0.70711 1.4142 1.4142
Agg 400 400 -7.5939e-13 0.70711 0.70711 1.4142 1.4142

d.and.o Freq 1 0
Sev 1000 992.43 -0.0075717 inf 2.6992 24.633
Agg 1000 992.43 -0.0075717 inf 2.6992 24.633

cyber Freq 1 0
Sev 1000 999.83 -0.00017075 1.7321 1.7062 inf 12.894
Agg 1000 999.83 -0.00017075 1.7321 1.7062 inf 12.894

total Freq 4 0
Sev 650 648.06 -0.0029779 inf
Agg 2600 2592.2 -0.0029969 inf 1.2304 16.463

log2 = 18, bandwidth = 1, validation: fails sev mean, agg mean.

The spacing in the agg programs is for clarity. We could also program using dfreq as agg motor dfreq [1]
100 xs 0 sev.... Next, assemble the requested data elements.

In [117]: pfs = [retained, insured, total]

In [118]: answers = pd.DataFrame(columns=['retained', 'insured', 'total'])

In [119]: answers.index.name = 'statistic'

In [120]: answers.loc['expected claim amount'] = [x.agg_m for x in pfs]

In [121]: for p in [.8, .9, .95, .99]:
.....: answers.loc[f'claim p_{p:.2f}'] = [x.q(p) for x in pfs]
.....:

In [122]: qd(answers)

retained insured total
statistic
expected claim amount 268.91 2331.1 2600
claim p_0.80 300 3090 3364
claim p_0.90 300 4483 4756
claim p_0.95 300 6244 6516
claim p_0.99 300 12706 12977

Finally, plot the densities. Compared to the text plot, the FFT reveals a discontinuous distribution for retained loss,
with a large mass at 300. This is clearer on the lower plots, which show the distribution functions.

In [123]: fig, axs = plt.subplots(2, 3, figsize=(7.5, 3.5), constrained_
↪→layout=True, squeeze=True)

In [124]: xl = {}

In [125]: for ax, pf in zip(axs.flat, pfs):
.....: pf.density_df.p_total.plot(ax=ax)
.....: q = pf.q(0.99) * 1.1
.....: xl[hash(pf)] = [-q / 50, q]
.....: ax.set(xlim=xl[hash(pf)], title=pf.name.title() + ' density')
.....: if pf is retained:
.....: ax.set(ylabel='density')
.....:

(continues on next page)

2.13. Published Problems and Examples 199

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [126]: for ax, pf in zip(axs.flat[3:], pfs):

.....: pf.density_df.F.plot(ax=ax)

.....: ax.set(xlim=xl[hash(pf)], title=pf.name.title() + ' distribution',␣
↪→xlabel='loss')

.....: if pf is retained:

.....: ax.set(ylabel='density')

.....:

2.13.5 Loss Models Book

Examples from the text Klugman et al. [2019], Loss Models: from data to decisions. The Loss models book is used
as a text for several actuarial society exams and many college courses. KPW is shorthand for Loss Models.

Contents

• Example 9.3 and 4

• Example 9.5 and 6

• Exercise 9.19

• Exercise 9.23

• Exercise 9.24

• Exercise 9.31

• Exercise 9.34

• Exercise 9.35

• Exercise 9.36

• Example 9.9 and 10

• Exercise 9.39

• Exercise 9.40

• Example 9.11

• Example 9.12

• Exercise 9.45

200 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

• Exercise 9.57 and 58

• Exercise 9.59

• Exercise 9.60

• Example 9.14

• Exercise 9.63

• Example 9.15 and 18

• Example 9.16 and 17

• Exercise 9.73

• Exercise 9.74

Method of Moments Approximations, Examples 9.3 and 9.4

The observedmean (and standard deviation) of the number of claims and the individual losses over the past 10 months
are 6.7 (2.3) and 179,247 (52,141), respectively. Determine the mean and standard deviation of aggregate claims per
month.

In [1]: from aggregate import build, qd, mv, MomentAggregator, round_bucket

In [2]: import scipy.stats as ss

In [3]: import pandas as pd

In [4]: import numpy as np

In [5]: import matplotlib.pyplot as plt

In [6]: moms = MomentAggregator.agg_from_fs2(6.7, 2.3**2, 179247, 52141**2)

In [7]: moms
Out[7]:
ex 1.200955e+06
var 1.881802e+11
sd 4.337974e+05
cv 3.612104e-01
dtype: float64

Using normal and lognormal distributions as approximating distributions for aggregate claims, calculate the proba-
bility that claims will exceed 140% of expected costs.

In [8]: fzn = ss.norm(loc=moms.ex, scale=moms.sd)

In [9]: sigma = np.sqrt(np.log(moms.cv**2 + 1))

In [10]: fzl = ss.lognorm(sigma, scale=moms.ex*np.exp(-sigma**2/2))

In [11]: fzn.sf(1.4 * moms.ex), fzl.sf(1.4 * moms.ex)
Out[11]: (0.1340631332467369, 0.1279965072394511)

Notes.
1. How to make the lognormal…

2.13. Published Problems and Examples 201

aggregate Documentation, Release 0.22.0

Group Dental Insurance, Examples 9.5, 9.6

Under a group dental insurance plan covering employees and their families, the premium for each married employee
is the same regardless of the number of family members. The insurance company has compiled statistics showing
that the annual cost of dental care per person for the benefits provided by the plan has the distribution (given in units
of 25) on the left.
Furthermore, the distribution of the number of persons per insurance certificate (i.e. per employee) receiving dental
care in any year has the distribution on the right.
Determine the mean and standard deviation of total payments per employee.

x f(x) n Pr(N = n)

1 0.150 0 0.05
2 0.200 1 0.10
3 0.250 2 0.15
4 0.125 3 0.20
5 0.075 4 0.25
6 0.050 5 0.15
7 0.050 6 0.06
8 0.050 7 0.03
9 0.025 8 0.01
10 0.025

In [12]: kpw_9_5 = build('agg KPW.95 '
....: 'dfreq [0:8] [0.05, 0.1, 0.15, 0.2, 0.25, 0.15, 0.06, 0.

↪→03, 0.01] '
....: 'dsev [1:10] [0.15, 0.2, 0.25, 0.125, 0.075, 0.05, 0.05,␣

↪→0.05, 0.025, 0.025]')
....:

In [13]: qd(kpw_9_5)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3.4 0.50602 0.063622
Sev 3.7 3.7 0 0.62572 0.62572 1.0074 1.0074
Agg 12.58 12.58 -4.4409e-16 0.60927 0.60927 0.52196 0.52196
log2 = 8, bandwidth = 1, validation: not unreasonable.

In [14]: mv(kpw_9_5)
mean = 12.58
variance = 58.7464
std dev = 7.66462

The probability distributions are in the density_df dataframe.

In [15]: with pd.option_context('display.max_rows', 360, 'display.max_columns', 10,
....: 'display.width', 150,
....: 'display.float_format', lambda x: f'{x:.5g}'):
....: print(kpw_9_5.density_df.query('p > 0')[['p', 'F', 'S']])
....:

p F S
loss
0 0.05 0.05 0.95
1 0.015 0.065 0.935
2 0.023375 0.088375 0.91163
3 0.034675 0.12305 0.87695
4 0.032577 0.15563 0.84437
5 0.035786 0.19141 0.80859
6 0.039808 0.23122 0.76878
7 0.043562 0.27478 0.72522

(continues on next page)

202 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
8 0.047518 0.3223 0.6777
9 0.049034 0.37133 0.62867
10 0.051898 0.42323 0.57677
11 0.051379 0.47461 0.52539
12 0.051187 0.5258 0.4742
13 0.050305 0.5761 0.4239
14 0.048182 0.62429 0.37571
15 0.045759 0.67004 0.32996
16 0.042809 0.71285 0.28715
17 0.039378 0.75223 0.24777
18 0.035746 0.78798 0.21202
19 0.031968 0.81995 0.18005
20 0.028324 0.84827 0.15173
21 0.024788 0.87306 0.12694
22 0.021491 0.89455 0.10545
23 0.018458 0.91301 0.086993
24 0.015692 0.9287 0.0713
25 0.013234 0.94193 0.058066
26 0.011076 0.95301 0.04699
27 0.0092013 0.96221 0.037789
28 0.0075941 0.96981 0.030195
29 0.0062231 0.97603 0.023972
30 0.0050662 0.98109 0.018906
31 0.0040954 0.98519 0.01481
32 0.003288 0.98848 0.011522
33 0.0026221 0.9911 0.0089001
34 0.002076 0.99318 0.0068241
35 0.001632 0.99481 0.0051921
36 0.0012732 0.99608 0.0039189
37 0.00098531 0.99707 0.0029336
38 0.00075628 0.99782 0.0021773
39 0.00057544 0.9984 0.0016019
40 0.000434 0.99883 0.0011679
41 0.00032431 0.99916 0.00084357
42 0.00024008 0.9994 0.00060349
43 0.000176 0.99957 0.00042749
44 0.00012773 0.9997 0.00029976
45 9.1748e-05 0.99979 0.00020801
46 6.52e-05 0.99986 0.00014281
47 4.5831e-05 0.9999 9.6977e-05
48 3.1858e-05 0.99993 6.5119e-05
49 2.1894e-05 0.99996 4.3225e-05
50 1.4871e-05 0.99997 2.8353e-05
51 9.9806e-06 0.99998 1.8373e-05
52 6.6161e-06 0.99999 1.1757e-05
53 4.3305e-06 0.99999 7.4261e-06
54 2.7976e-06 1 4.6285e-06
55 1.7833e-06 1 2.8452e-06
56 1.1211e-06 1 1.7241e-06
57 6.9482e-07 1 1.0292e-06
58 4.2428e-07 1 6.0496e-07
59 2.5511e-07 1 3.4985e-07
60 1.5095e-07 1 1.989e-07
61 8.7827e-08 1 1.1107e-07
62 5.0209e-08 1 6.086e-08
63 2.8179e-08 1 3.2681e-08
64 1.5508e-08 1 1.7173e-08
65 8.3573e-09 1 8.8161e-09
66 4.4032e-09 1 4.4129e-09
67 2.2637e-09 1 2.1492e-09
68 1.1334e-09 1 1.0158e-09

(continues on next page)

2.13. Published Problems and Examples 203

aggregate Documentation, Release 0.22.0

(continued from previous page)
69 5.5143e-10 1 4.6435e-10
70 2.6002e-10 1 2.0433e-10
71 1.1836e-10 1 8.5974e-11
72 5.1711e-11 1 3.4264e-11
73 2.1497e-11 1 1.2767e-11
74 8.3923e-12 1 4.3749e-12
75 3.0273e-12 1 1.3476e-12
76 9.8572e-13 1 3.6182e-13
77 2.8076e-13 1 8.1046e-14
78 6.7141e-14 1 1.3878e-14
79 1.221e-14 1 1.6653e-15
80 1.5255e-15 1 1.1102e-16

Aggregate stop loss premiums can be computed as tail integrals of the survival function. Multiply by the units, 25.

In [16]: (kpw_9_5.density_df.S[::-1].cumsum()[::-1] * 25)[:8]
Out[16]:
loss
0.0 314.500000
1.0 290.750000
2.0 267.375000
3.0 244.584375
4.0 222.660625
5.0 201.551289
6.0 181.336613
7.0 162.117133
8.0 143.986712
Name: S, dtype: float64

Exercise 9.19. An insurance portfolio produces N = 0, 1, 3 claims with probabilities 0.5, 0.4, 0.1. Individual claim
amounts are 1 or 10 with probability 0.9, 0.1. Individual claim amounts and N are mutually independent. Calculate
the probability that the ratio of aggregate claims to expected claims will exceed 3.0.

In [17]: kpw_9_19 = build('agg KPW.9.19 dfreq [0 1 3] [.5 .4 .1] '
....: 'dsev [1 10] [.9 .1]')
....:

In [18]: qd(kpw_9_19)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.7 1.2857 1.4486
Sev 1.9 1.9 0 1.4211 1.4211 2.6667 2.6667
Agg 1.33 1.33 -9.992e-16 2.1302 2.1302 3.414 3.414
log2 = 6, bandwidth = 1, validation: not unreasonable.

In [19]: m = kpw_9_19.agg_m

In [20]: print(f'mean {m:.5g}\nprobability {kpw_9_19.sf(3 * m):.4g}')
mean 1.33
probability 0.0671

Exercise 9.23. An individual loss distribution is normal with mean = 100 and variance = 9. The distribution for
the number of claims has outcomes 0, 1, 2, 3 with probabilities 0.5, 0.2, 0.2, 0.1. Determine the probability that
aggregate claims exceed 100.

In [21]: kpw_9_23 = build('agg KPW.9.23 dfreq [0:3] [1/2 1/5 1/5 1/10] '
....: 'sev 3 * norm + 100')
....:

In [22]: qd(kpw_9_23)

(continues on next page)

204 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.9 1.16 0.7276
Sev 100 100 -1.1102e-16 0.03 0.03 -5.174e-11 0
Agg 90 90 -1.1102e-15 1.1605 1.1605 0.72937 0.72937
log2 = 16, bandwidth = 1/32, validation: fails sev skew.

In [23]: qd(kpw_9_23.density_df.loc[90:110:64, ['p', 'F', 'S']])

p F S
loss
90.0 3.2132e-06 0.50009 0.49991
92.0 2.3742e-05 0.50078 0.49922
94.0 0.00011248 0.50461 0.49539
96.0 0.00034169 0.51841 0.48159
98.0 0.00066552 0.55083 0.44917
100.0 0.00083113 0.60042 0.39958
102.0 0.00066552 0.64983 0.35017
104.0 0.00034169 0.68193 0.31807
106.0 0.00011248 0.69551 0.30449
108.0 2.3742e-05 0.69925 0.30075
110.0 3.2132e-06 0.69992 0.30008

Exercise 9.24. An employer self-insures a life insurance program with the following two characteristics:
1. Given that a claim has occurred, the claim amount is 2,000 with probability 0.4 and 3,000 with probability 0.6.
2. The number of claims has outcomes 0, 1, 2, 3, 4 with probabilities 1/16, 1/4, 3/8, 1/4, 1/16.

The employer purchases aggregate stop-loss coverage that limits the employer’s annual claims cost to 5,000. The
aggregate stop-loss coverage costs 1,472. Determine the employer’s expected annual cost of the program, including
the cost of stop-loss coverage.

In [24]: kpw_9_24 = build('agg KPW.9.24 dfreq [0:4] [1/16 1/4 3/8 1/4 1/16] '
....: 'dsev [2 3] [0.4 0.6] '
....: 'aggregate net of inf xs 5')
....:

In [25]: qd(kpw_9_24)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0.5 0
Sev 2.6 2.6 0 0.18842 0.18842 -0.40825 -0.40825
Agg 5.2 4.0275 -0.22548 0.51745 0.36633 0.091166 -1.4019
log2 = 5, bandwidth = 1, validation: n/a, reinsurance.

In [26]: net = kpw_9_24.describe.iloc[-1, 1]

In [27]: print(f'\ngross loss {kpw_9_24.agg_m:.5g}\nretained loss {net:.5g}\n'
....: f'premium {net + 1.472:.5g}')
....:

gross loss 5.2
retained loss 4.0275
premium 5.4995

Working in thousands.
Exercise 9.31. Medical and dental claims are assumed to be independent with compound Poisson distributions as
follows:

2.13. Published Problems and Examples 205

aggregate Documentation, Release 0.22.0

• Medical claims 2 expected claims, amounts uniform (0, 1000)
• Dental claims 3 expected claims, amounts uniform (0, 200)

Let X be the amount of a given claim under a policy that covers both medical and dental claims. Determine E[(X −
100)+], the expected cost (in excess of 100) of any given claim.

In [28]: kpw_9_31 = build('agg KPW.9.31 [2 3] claims '
....: 'sev [1000 200] * uniform '
....: 'occurrence ceded to inf xs 100 '
....: 'poisson')
....:

In [29]: qd(kpw_9_31)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 5 0.44721 0.44721
Sev 260 177 -0.31923 1.0444 1.461 1.3042 1.4244
Agg 1300 885 -0.31923 0.64664 0.79177 0.85178 0.95458
log2 = 16, bandwidth = 1/4, validation: n/a, reinsurance.

In [30]: qd(kpw_9_31.reinsurance_audit_df.stack(0).head(3))

ex var sd cv skew
kind share limit attach
occ 1.0 inf 100.0 ceded 177 66871 258.59 1.461 1.4244

net 83 844.34 29.057 0.35009 -1.5092
subject 260 73733 271.54 1.0444 1.3042

Could also compute impact of aggregate reinsurance structures.
Exercise 9.34. A compound Poisson distribution has 5 expected claim and claim amount distribution p(100) = 0.80,
p(500) = 0.16, and p(1,000) = 0.04. Determine the probability that aggregate claims will be exactly 600.

In [31]: kpw_9_34 = build('agg KPW.9.34 5 claims '
....: 'dsev [1 5 10] [.8 .16 .04] '
....: 'poisson')
....:

In [32]: qd(kpw_9_34)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 5 0.44721 0.44721
Sev 2 2 -2.2204e-16 1.0954 1.0954 2.2822 2.2822
Agg 10 10 4.6629e-15 0.66332 0.66332 1.0416 1.0416
log2 = 10, bandwidth = 1, validation: not unreasonable.

In [33]: print(f'{kpw_9_34.pmf(6):.6g}')
0.0598929

In [34]: kpw_9_34.density_df.index = kpw_9_34.density_df.index.astype(int)

In [35]: qd(kpw_9_34.density_df.query('p > 0.001')[['p', 'F', 'S']], accuracy=5)

p F S
loss
0 0.0067379 0.0067379 0.99326
1 0.026952 0.03369 0.96631
2 0.053904 0.087593 0.91241
3 0.071871 0.15946 0.84054
4 0.071871 0.23134 0.76866

(continues on next page)

206 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
5 0.062888 0.29422 0.70578
6 0.059893 0.35412 0.64588
7 0.065027 0.41914 0.58086
8 0.068449 0.48759 0.51241
9 0.062365 0.54996 0.45004
10 0.051448 0.60141 0.39859
11 0.045388 0.64679 0.35321
...
23 0.0099885 0.95791 0.042093
24 0.0084688 0.96638 0.033624
25 0.0065328 0.97291 0.027091
26 0.0050132 0.97792 0.022078
27 0.0042014 0.98212 0.017877
28 0.0036975 0.98582 0.014179
29 0.0030698 0.98889 0.011109
30 0.0023339 0.99122 0.0087753
31 0.0017543 0.99298 0.007021
32 0.0014285 0.99441 0.0055925
33 0.0012267 0.99563 0.0043658
34 0.0010036 0.99664 0.0033621

Work in hundreds. Convert index to integer to improve display. Show all outcomes with probability greater than
0.001.
Exercise 9.35. Aggregate payments have a compound distribution. The frequency distribution is negative binomial
with r = 16 and β = 6, and the severity distribution is uniform on the interval (0, 8). Use the normal approximation
to determine the premium such that the probability is 5% that aggregate payments will exceed the premium.
The negative binomial has mean rβ and variance rβ(1 + β). Therefore the gamma mixing variance equals c = 1/r
(since rβ(1 + β) = n(1 + cn).) Hence the mixing cv equals 0.25. The premium is the 95%ile of the aggregate
distribution.

In [36]: kpw_9_35 = build('agg KPW.9.35 96 claims '
....: 'sev 8 * uniform '
....: 'mixed gamma 0.25')
....:

In [37]: qd(kpw_9_35)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 96 0.27003 0.50149
Sev 4 4 0 0.57735 0.57736 0 0
Agg 384 384 3.3307e-15 0.27639 0.27639 0.50366 0.50366
log2 = 16, bandwidth = 1/32, validation: not unreasonable.

In [38]: mv(kpw_9_35)
mean = 384
variance = 11264
std dev = 106.132

In [39]: appx = kpw_9_35.approximate('all')

In [40]: ans = {k: v.isf(0.05) for k, v in appx.items()}

In [41]: ans['FFT'] = kpw_9_35.q(0.95)

In [42]: qd(pd.DataFrame(ans.values(),
....: index=pd.Index(ans.keys(), name='method'),
....: columns=['premium']).sort_values('premium'),
....: accuracy=4)

(continues on next page)

2.13. Published Problems and Examples 207

aggregate Documentation, Release 0.22.0

(continued from previous page)
....:

premium
method
norm 558.57
slognorm 571.88
sgamma 572.4
FFT 572.41
gamma 573.6
lognorm 578.31

The approximatemethod returns a dictionary with key the method, for normal and shifted and unshifted gamma
and lognormal.
Exercise 9.36. The number of losses is Poisson with mean 3. Loss amounts have a Burr distribution with α = 3,
θ = 2, and γ = 1. Determine the variance of aggregate losses.
A matter of converting parameterizations. This is the scipy.stats burr12 distribution. The shape parameters
are c=gamma and d=alpha. theta is a scale parameter.

In [43]: kpw_9_36 = build('agg KPW.9.36 3 claims '
....: 'sev 2 * burr12 1 3 '
....: 'poisson')
....:

In [44]: qd(kpw_9_36)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3 0.57735 0.57735
Sev 1 0.99995 -4.9059e-05 1.7321 1.7187 inf 15.681
Agg 3 2.9999 -4.9063e-05 1.1547 1.148 inf 6.5701
log2 = 16, bandwidth = 1/128, validation: fails sev cv, agg cv.

In [45]: mv(kpw_9_36)
mean = 3
variance = 12
std dev = 3.4641

In [46]: kpw_9_36.plot()

208 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Compound Poisson, Example 9.9, 9.10

Policy A has a compound Poisson distribution with 2 expected claims and severity probabilities 0.6 on a payment of
1 and 0.4 on a payment of 2. Policy B has a compound Poisson distribution with 1 expected claim and probabilities
0.7 on a payment of 1 and 0.3 on a payment of 3.
Determine the probability that the total payment on the two policies will be 2.
Figure the weighted severity by hand.

In [47]: kpw_9_9 = build('agg KPW.9.9 3 claims '
....: 'dsev [1 2 3] [1.9/3 .8/3 .3/3] '
....: 'poisson')
....:

In [48]: qd(kpw_9_9)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3 0.57735 0.57735
Sev 1.4667 1.4667 -1.1102e-16 0.45681 0.45681 1.1192 1.1192
Agg 4.4 4.4 0 0.63474 0.63474 0.75284 0.75284
log2 = 7, bandwidth = 1, validation: not unreasonable.

In [49]: print(f'{kpw_9_9.pmf(2):.6g}')
0.129695

In [50]: kpw_9_9.density_df.index = kpw_9_9.density_df.index.astype(int)

In [51]: bit = kpw_9_9.density_df.query('p > 0.001')[['p', 'F', 'S']]

In [52]: bit['p*exp(3)'] = bit.p * np.exp(3)

In [53]: qd(bit, accuracy=5)

p F S p*exp(3)
loss
0 0.049787 0.049787 0.95021 1
1 0.094595 0.14438 0.85562 1.9
2 0.1297 0.27408 0.72592 2.605
3 0.14753 0.42161 0.57839 2.9632
4 0.14324 0.56484 0.43516 2.877
5 0.12498 0.68983 0.31017 2.5104
6 0.099904 0.78973 0.21027 2.0066
7 0.074101 0.86383 0.13617 1.4884
8 0.051641 0.91547 0.084527 1.0372
9 0.034066 0.94954 0.050462 0.68423
10 0.021404 0.97094 0.029058 0.42991
11 0.012877 0.98382 0.01618 0.25865
12 0.0074477 0.99127 0.0087326 0.14959
13 0.0041552 0.99542 0.0045774 0.08346
14 0.0022429 0.99767 0.0023345 0.04505
15 0.0011742 0.99884 0.0011603 0.023584

The last column answers Example 9.10.
Alternatively, use the Portfolio class.

In [54]: p = build('port KPW.9.9.p '
....: 'agg A 2 claims dsev [1 2] [.6 .4] poisson '
....: 'agg B 1 claims dsev [1 3] [.7 .3] poisson')
....:

(continues on next page)

2.13. Published Problems and Examples 209

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [55]: qd(p)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
A Freq 2 0.70711 0.70711

Sev 1.4 1.4 0 0.34993 0.34993 0.40825 0.40825
Agg 2.8 2.8 6.6613e-16 0.74915 0.74915 0.82344 0.82344

B Freq 1 1 1
Sev 1.6 1.6 2.2204e-16 0.57282 0.57282 0.87287 0.87287
Agg 1.6 1.6 8.8818e-16 1.1524 1.1524 1.4037 1.4037

total Freq 3 0.57735 0.57735
Sev 1.4667 1.4667 2.2204e-16 0.45681 1.1192
Agg 4.4 4.4 -1.6653e-15 0.63474 0.63474 0.75284 0.75284

log2 = 16, bandwidth = 1/1024, validation: not unreasonable.

Exercise 9.39. For a compound distribution, frequency has a binomial distribution with parameters m = 3 and q =
0.4 and severity has an exponential distribution with a mean of 100. Calculate Pr(A ≤ 300).
Assume 1.2 expected claims. Work in hundreds.

In [56]: kpw_9_39 = build('agg KPW.9.39 1.2 claims '
....: 'sev expon binomial 0.4')
....:

In [57]: qd(kpw_9_39)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.2 0.70711 0.2357
Sev 1 1 -3.9736e-08 1 1 2 2
Agg 1.2 1.2 -3.9736e-08 1.1547 1.1547 1.7681 1.7681
log2 = 16, bandwidth = 1/1024, validation: not unreasonable.

In [58]: print(f'probability = {kpw_9_39.cdf(3):.6g}')
probability = 0.894092

Exercise 9.40. A company sells three policies. For policy A, all claim payments are 10,000 and a single policy has
a Poisson number of claims with mean 0.01. For policy B, all claim payments are 20,000 and a single policy has a
Poisson number of claims with mean 0.02. For policy C, all claim payments are 40,000 and a single policy has a
Poisson number of claims with mean 0.03. All policies are independent. For the coming year, there are 5,000, 3,000,
and 1,000 of policies A, B, and C, respectively. Calculate the expected total payment, the standard deviation of total
payment, and the probability that total payments will exceed 30,000.
Must use a Portfolio. Work in thousands.

In [59]: kpw_9_40 = build('port kpw_9_40\n'
....: '\tagg A 50 claims dsev [10] poisson\n'
....: '\tagg B 60 claims dsev [20] poisson\n'
....: '\tagg C 30 claims dsev [40] poisson\n')
....:

In [60]: qd(kpw_9_40)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
A Freq 50 0.14142 0.14142

Sev 10 10 0 0 0
Agg 500 500 1.9984e-15 0.14142 0.14142 0.14142 0.14142

B Freq 60 0.1291 0.1291
Sev 20 20 0 0 0
Agg 1200 1200 -6.1062e-15 0.1291 0.1291 0.1291 0.1291

(continues on next page)

210 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
C Freq 30 0.18257 0.18257

Sev 40 40 0 0 0
Agg 1200 1200 -2.2204e-15 0.18257 0.18257 0.18257 0.18257

total Freq 140 0.084515 0.084515
Sev 20.714 20.714 0 0.53086 0.82553
Agg 2900 2899.9 -4.1178e-05 0.095686 0.095811 0.11466 0.08019

log2 = 16, bandwidth = 1/16, validation: fails agg cv.

In [61]: qd(pd.Series({'expected payment': kpw_9_40.agg_m,
....: 'sd payment': kpw_9_40.agg_sd,
....: 'Pr > 3000': kpw_9_40.sf(3000)}).to_frame('value'),
....: accuracy=5)
....:

value
expected payment 2900
sd payment 277.49
Pr > 3000 0.34658

ZM Binomial, Example 9.11

A compound distribution has a zero-modified binomial distribution with 𝑚 = 3, q = 0.3, and pM0 = 0.4. Individual
payments are 0, 50, and 150, with probabilities 0.3, 0.5, and 0.2, respectively. Use the recursive formula to determine
the probability distribution of S.

Todo: Implement ZM and ZT.

ETNB, Example 9.12

The number of claims has a Poisson–ETNB distribution with Poisson parameter 𝜆 = 2 and ETNB parameters β = 3
and r = 0.2. The claim size distribution has probabilities 0.3, 0.5, and 0.2 at 0, 10, and 20, respectively. Determine
the total claims distribution recursively.

Todo: Implement ZM and ZT.

Exercise 9.45. For a compound Poisson distribution, has 6 expected claims and individual losses take values 1, 2, 4
with equal probabilities. Determine the distribution of the aggregate.

In [62]: kpw_9_45 = build('agg KPW.9.45 6 claims '
....: 'dsev [1 2 4] poisson')
....:

In [63]: qd(kpw_9_45)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 6 0.40825 0.40825
Sev 2.3333 2.3333 2.2204e-16 0.53452 0.53452 0.3818 0.3818
Agg 14 14 4.6629e-15 0.46291 0.46291 0.53639 0.53639
log2 = 9, bandwidth = 1, validation: not unreasonable.

In [64]: qd(kpw_9_45.density_df.query('p > 0.001')[['p', 'F', 'S']], accuracy=5)

p F S

(continues on next page)

2.13. Published Problems and Examples 211

aggregate Documentation, Release 0.22.0

(continued from previous page)
loss
0.0 0.0024788 0.0024788 0.99752
1.0 0.0049575 0.0074363 0.99256
2.0 0.009915 0.017351 0.98265
3.0 0.01322 0.030571 0.96943
4.0 0.021483 0.052054 0.94795
5.0 0.027101 0.079155 0.92085
6.0 0.036575 0.11573 0.88427
7.0 0.041045 0.15678 0.84322
8.0 0.050031 0.20681 0.79319
9.0 0.05345 0.26026 0.73974
10.0 0.059963 0.32022 0.67978
11.0 0.06019 0.38041 0.61959
...
24.0 0.017373 0.93502 0.064978
25.0 0.014016 0.94904 0.050962
26.0 0.011474 0.96051 0.039488
27.0 0.0090615 0.96957 0.030427
28.0 0.0072502 0.97682 0.023176
29.0 0.0056163 0.98244 0.01756
30.0 0.0044008 0.98684 0.013159
31.0 0.0033471 0.99019 0.0098123
32.0 0.0025718 0.99276 0.0072405
33.0 0.0019231 0.99468 0.0053174
34.0 0.0014512 0.99613 0.0038662
35.0 0.0010677 0.9972 0.0027985

Exercise 9.47. Aggregate claims are compound Poisson with 2 expected claims and severity outcomes 1, 2 with
probability 1/4 and 3/4. For a premium of 6, an insurer covers aggregate claims and agrees to pay a dividend (a
refund of premium) equal to the excess, if any, of 75% of the premium over 100% of the claims. Determine the
excess of premium over expected claims and dividends.

In [65]: kpw_9_47 = build('agg KPW.9.47 2 claims '
....: 'dsev [1 2] [1/4 3/4] poisson')
....:

In [66]: qd(kpw_9_47)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2 0.70711 0.70711
Sev 1.75 1.75 0 0.24744 0.24744 -1.1547 -1.1547
Agg 3.5 3.5 2.2204e-16 0.72843 0.72843 0.75429 0.75429
log2 = 6, bandwidth = 1, validation: not unreasonable.

In [67]: bit = kpw_9_47.density_df.query('p > 0')[['p', 'F', 'S']]

In [68]: bit['dividend'] = np.maximum(0.75 * 6 - bit.index, 0)

In [69]: qd(bit.head(10), accuracy=4)

p F S dividend
loss
0.0 0.13534 0.13534 0.86466 4.5
1.0 0.067668 0.203 0.797 3.5
2.0 0.21992 0.42292 0.57708 2.5
3.0 0.10432 0.52724 0.47276 1.5
4.0 0.17798 0.70522 0.29478 0.5
5.0 0.080391 0.78561 0.21439 0
6.0 0.095689 0.8813 0.1187 0
7.0 0.041288 0.92259 0.077408 0

(continues on next page)

212 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
8.0 0.038464 0.96106 0.038945 0
9.0 0.0159 0.97696 0.023045 0

In [70]: exp_div = (bit.dividend * bit.p).sum()

In [71]: print(f'prem = {6:.5g}\n'
....: f'exp loss = {kpw_9_47.agg_m:.5g}\n'
....: f'dividend = {exp_div:.5g}\n'
....: f'excess = {6 - kpw_9_47.agg_m - exp_div:.5g}')
....:

prem = 6
exp loss = 3.5
dividend = 1.6411
excess = 0.85888

Exercise 9.57, 9.58. Aggregate losses have a compound Poisson claim distribution with 3 expected claims and
individual claim amount distribution p(1) = 0.4, p(2) = 0.3, p(3) = 0.2, and p(4) = 0.1. Determine the probability
that aggregate losses do not exceed 3.
Repeat the Exercise with a negative binomial frequency distribution with r = 6 and β = 0.5.

In [72]: kpw_9_57 = build('agg KPW.9.57 3 claims '
....: 'dsev [1:4] [.4 .3 .2 .1] poisson')
....:

In [73]: qd(kpw_9_57)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3 0.57735 0.57735
Sev 2 2 -3.3307e-16 0.5 0.5 0.6 0.6
Agg 6 6 -1.1102e-16 0.6455 0.6455 0.75394 0.75394
log2 = 8, bandwidth = 1, validation: not unreasonable.

In [74]: kpw_9_58 = build('agg KPW.9.58 3 claims '
....: 'dsev [1:4] [.4 .3 .2 .1] mixed gamma 6**-0.5')
....:

In [75]: qd(kpw_9_58)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3 0.70711 0.94281
Sev 2 2 -3.3307e-16 0.5 0.5 0.6 0.6
Agg 6 6 -7.6605e-15 0.76376 0.76376 1.0474 1.0474
log2 = 8, bandwidth = 1, validation: not unreasonable.

In [76]: bit = pd.concat((kpw_9_57.density_df[['p', 'F', 'S']],
....: kpw_9_58.density_df[['p', 'F', 'S']]),
....: keys=('Po', 'NB'), axis=1)
....:

In [77]: qd(bit.head(16), accuracy=5)

Po NB
p F S p F S

loss
0.0 0.049787 0.049787 0.95021 0.087791 0.087791 0.91221
1.0 0.059744 0.10953 0.89047 0.070233 0.15802 0.84198
2.0 0.080655 0.19019 0.80981 0.08545 0.24348 0.75652
3.0 0.097981 0.28817 0.71183 0.095933 0.33941 0.66059

(continues on next page)

2.13. Published Problems and Examples 213

aggregate Documentation, Release 0.22.0

(continued from previous page)
4.0 0.10751 0.39568 0.60432 0.098486 0.43789 0.56211
5.0 0.10445 0.50013 0.49987 0.089535 0.52743 0.47257
6.0 0.098668 0.5988 0.4012 0.082877 0.61031 0.38969
7.0 0.088215 0.68701 0.31299 0.073657 0.68396 0.31604
8.0 0.07506 0.76207 0.23793 0.063257 0.74722 0.25278
9.0 0.061311 0.82338 0.17662 0.05302 0.80024 0.19976
10.0 0.048587 0.87197 0.12803 0.043819 0.84406 0.15594
11.0 0.037239 0.90921 0.09079 0.035507 0.87957 0.12043
12.0 0.027715 0.93692 0.063075 0.028316 0.90789 0.092115
13.0 0.020101 0.95703 0.042974 0.022288 0.93017 0.069827
14.0 0.014239 0.97127 0.028735 0.017338 0.94751 0.052489
15.0 0.0098562 0.98112 0.018879 0.013334 0.96085 0.039155

Exercise 9.59. A policy covers physical damage incurred by the trucks in a company’s fleet. The number of losses in
a year has a Poisson distribution with expectation 5. The amount of a single loss has a gamma distribution with shape
0.5 and scale 2,500. The insurance contract pays a maximum annual benefit of 20,000. Determine the probability
that the maximum benefit will be paid. Use a span of 100 and the method of rounding.

In [78]: kpw_9_59 = build('agg KPW.9.59 5 claims '
....: 'sev 2500 * gamma 0.5 '
....: 'poisson')
....:

In [79]: qd(kpw_9_59)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 5 0.44721 0.44721
Sev 1250 1250 -3.109e-06 1.4142 1.4142 2.8284 2.8284
Agg 6250 6250 -3.109e-06 0.7746 0.7746 1.291 1.291
log2 = 16, bandwidth = 2, validation: not unreasonable.

In [80]: print(f'pr(loss >= 20000) = {kpw_9_59.sf(20000):.6g}')
pr(loss >= 20000) = 0.015939

Repeated at the requested span of 100.

In [81]: kpw_9_59.update(log2=10, bs=100)

In [82]: print(f'pr(loss >= 20000) = {kpw_9_59.sf(20000):.6g}')
pr(loss >= 20000) = 0.0157042

Exercise 9.60. An individual has purchased health insurance, for which they pay 10 for each physician visit and 5
for each prescription. The probability that a payment will be 10 is 0.25, and the probability that it will be 5 is 0.75.
The total number of payments per year has the Poisson–Poisson (Neyman Type A) distribution with primary mean
10 and secondary mean 4. Determine the probability that total payments in one year will exceed 400. Compare your
answer to a normal approximation.

In [83]: kpw_9_60 = build('agg KPW.9.60 40 claims '
....: 'dsev [5 10] [3/4 1/4] '
....: 'neyman 4')
....:

In [84]: qd(kpw_9_60)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 40 0.35355 0.41012
Sev 6.25 6.25 0 0.34641 0.34641 1.1547 1.1547
Agg 250 250 -9.1038e-14 0.35777 0.35777 0.42101 0.42101

(continues on next page)

214 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
log2 = 14, bandwidth = 1, validation: not unreasonable.

In [85]: fz = kpw_9_60.approximate('norm')

In [86]: print(f'FFT {kpw_9_60.sf(400):.5g}\n'
....: f'Normal approx {fz.sf(400):.5g}')
....:

FFT 0.054616
Normal approx 0.046766

Poisson Pareto, Example 9.14

The number of ground-up losses is Poisson distributed with mean 3. The individual loss distribution is Pareto with
shape parameter :math:alpha= 4` and scale parameter 10. An individual ordinary deductible of 6, coinsurance of 75%,
and an individual loss limit of 24 (before application of the deductible and coinsurance) are all applied. Determine
the mean, variance, and distribution of aggregate payments.
The covered layer is 18 xs 6, in which the insured pays 25% because of the coinsurance clause. The severity is
unconditional.

In [87]: kpw_9_14 = build('agg KPW.9.14 3 claims '
....: '18 xs 6 '
....: 'sev 10 * pareto 4 - 10 ! '
....: 'occurrence net of 0.25 so inf xs 0 '
....: 'poisson')
....:

In [88]: qd(kpw_9_14)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3 0.57735 0.57735
Sev 0.72899 0.54678 -0.24995 3.5115 3.5113 4.6513 4.6511
Agg 2.187 1.6403 -0.24995 2.108 2.1079 2.8396 2.8395
log2 = 16, bandwidth = 1/512, validation: n/a, reinsurance.

In [89]: print(f'variance = {kpw_9_14.describe.iloc[-1,[1, 4]].prod()**2:.6g}\
↪→ncomputed with bs=1/{1/kpw_9_14.bs:.0f} and log2={kpw_9_14.log2}')
variance = 11.9552
computed with bs=1/512 and log2=16

In [90]: qd(kpw_9_14.density_df.loc[[0, 1, 2, 3], ['p', 'F', 'S']])

p F S
loss
0.0 0.63277 0.63277 0.36723
1.0 0.00013621 0.71496 0.28504
2.0 0.00010097 0.7751 0.2249
3.0 7.6416e-05 0.82013 0.17987

In [91]: kpw_9_14.plot()

2.13. Published Problems and Examples 215

aggregate Documentation, Release 0.22.0

describe returns gross under E[X] and the requested net or ceded under Est E[X]. The print statement
computes net variance from the product of estimated mean and cv. The spikes on the density corresponds to the
possibility of only limit claims. Exercise 9.63. A ground-up model of individual losses has a gamma distribution
with shape parameter 2 and scale 100. The number of losses has a negative binomial distribution with r = 2 and
β = 1.5. An ordinary deductible of 50 and a loss limit of 175 (before imposition of the deductible) are applied to
each individual loss.

• Determine the mean and variance of the aggregate payments on a per-loss basis.
• Determine the distribution of the number of payments.
• Determine the cumulative distribution function of the amount of a payment, given that a payment is made.
• Discretize the severity distribution using the method of rounding and a span of 40.
• Calculate the discretized distribution of aggregate payments up to a discretized amount paid of 120.

Negative binomial c = 1/2 and hence mixing cv √c, and the mean equals rβ/(1 + β) = 1.4. The cover is 125 xs
50. The severity is unconditional. First, the default calculation using bs=1/64.

In [92]: kpw_9_63 = build('agg KPW.9.63 1.4 claims '
....: '125 xs 50 '
....: 'sev 100 * gamma 2 ! '
....: 'mixed gamma 2**-0.5')
....:

In [93]: qd(kpw_9_63)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.4 1.1019 1.5557
Sev 86.467 86.467 3.9488e-12 0.54006 0.54006 -0.74977 -0.74977
Agg 121.05 121.05 -3.9543e-08 1.1927 1.1927 1.6385 1.6385
log2 = 16, bandwidth = 1/32, validation: fails agg mean error >> sev, possible␣
↪→aliasing; try larger bs.

In [94]: mv(kpw_9_63)
mean = 121.054
variance = 20847.33
std dev = 144.386

In [95]: qd(kpw_9_63.density_df.loc[:400:40*64,
....: ['p', 'F', 'S', 'p_sev', 'F_sev', 'S_sev']],
....: accuracy=5)
....:

p F S p_sev F_sev S_sev
loss
0.0 0.37325 0.37325 0.62675 0.090251 0.090251 0.90975
80.0 4.2253e-05 0.47185 0.52815 0.00011072 0.37323 0.62677
160.0 3.327e-05 0.72045 0.27955 0 1 0
240.0 3.0211e-05 0.80373 0.19627 0 1 0
320.0 1.7591e-05 0.9016 0.098397 0 1 0
400.0 9.0878e-06 0.94991 0.050095 0 1 0

216 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Next, calculations performed with the requested broader bs=40.

In [96]: kpw_9_63.update(log2=8, bs=40)

In [97]: qd(kpw_9_63)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.4 1.1019 1.5557
Sev 86.467 84.042 -0.02805 0.54006 0.546 -0.74977 -0.81723
Agg 121.05 117.66 -0.02805 1.1927 1.1947 1.6385 1.636
log2 = 8, bandwidth = 40, validation: fails sev mean, agg mean.

In [98]: qd(kpw_9_63.density_df.loc[:400,
....: ['p', 'F', 'S', 'p_sev', 'F_sev', 'S_sev']],
....: accuracy=5)
....:

p F S p_sev F_sev S_sev
loss
0.0 0.39509 0.39509 0.60491 0.1558 0.1558 0.8442
40.0 0.05047 0.44556 0.55444 0.14517 0.30097 0.69903
80.0 0.053928 0.49949 0.50051 0.1412 0.44217 0.55783
120.0 0.20376 0.70325 0.29675 0.55783 1 0
160.0 0.042972 0.74622 0.25378 0 1 0
200.0 0.042194 0.78841 0.21159 0 1 0
240.0 0.081719 0.87013 0.12987 0 1 0
280.0 0.024403 0.89453 0.10547 0 1 0
320.0 0.02234 0.91687 0.083127 0 1 0
360.0 0.030181 0.94705 0.052946 0 1 0
400.0 0.011572 0.95863 0.041374 0 1 0

The apparent difference in the severity distribution is caused by the rounding method. In the first case F(40) is almost
exact whereas in the second it is actually F(60).

Group Life Individual Risk Model, Example 9.15, 9.18

Consider a group life insurance contract with an accidental death benefit. Assume that for all members the probability
of death in the next year is 0.01 and that 30% of deaths are accidental. For 50 employees, the benefit for an ordinary
death is 50,000 and for an accidental death it is 100,000. For the remaining 25 employees, the benefits are 75,000
and 150,000, respectively. Develop an individual risk model and determine its mean and variance.
The Portfolio solution, working in thousands.

In [99]: kpw_9_15p = build('port KPW.9.15.p '
....: 'agg A 0.5 claims '
....: 'dsev [50 100] [0.7 0.3] '
....: 'binomial 0.01 '
....: 'agg B 0.25 claims '
....: 'dsev [75 150] [0.7 0.3] '
....: 'binomial 0.01 ')
....:

In [100]: qd(kpw_9_15p)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
A Freq 0.5 1.4071 1.3929

Sev 65 65 0 0.35251 0.35251 0.87287 0.87287
Agg 32.5 32.5 2.82e-14 1.4928 1.4928 1.6562 1.6562

B Freq 0.25 1.99 1.9699

(continues on next page)

2.13. Published Problems and Examples 217

aggregate Documentation, Release 0.22.0

(continued from previous page)
Sev 97.5 97.5 0 0.35251 0.35251 0.87287 0.87287
Agg 24.375 24.375 1.1613e-13 2.1112 2.1112 2.3423 2.3423

total Freq 0.75 1.1489 1.1373
Sev 75.833 75.833 0 0.41249 1.1623
Agg 56.875 56.875 -8.6597e-15 1.2435 1.2435 1.4369 1.4369

log2 = 16, bandwidth = 1/16, validation: not unreasonable.

In [101]: mv(kpw_9_15p)
mean = 56.875
variance = 5001.984
std dev = 70.7247

The density_df dataframe contains the exact aggregate distribution, which is not easy to compute by other means.
KPW says (emphasis added)

With regard to calculating the probabilities, there are at least three options. One is to do an exact calcula-
tion, which involves numerous convolutions and almost always requires more excessive computing
time. Recursive formulas have been developed, but they are cumbersome and are not presented here.
For one such method, see De Pril [27]. One alternative is a parametric approximation as discussed for
the collective risk model. Another alternative is to replace the individual risk model with a similar col-
lective risk model and then do the calculations with that model. These two approaches are presented
here.

The following solution attempts to commute convolution through the mixture. This works for a compound Poisson.
However, the sum of binomials is not binomial, and so the frequencies can’t be independent binomial. They can be
independent Poisson because it is additive.

In [102]: kpw_9_15w = build('agg KPW.9.15.w '
.....: '0.75 claims '
.....: 'dsev [50 75 100 150] '
.....: '[0.35/0.75, 0.175/0.75, 0.15/0.75, 0.075/0.75] '
.....: 'binomial 0.01 ')
.....:

In [103]: qd(kpw_9_15w)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.75 1.1489 1.1373
Sev 75.833 75.833 2.2204e-16 0.41249 0.41249 1.1623 1.1623
Agg 56.875 56.875 -6.9356e-11 1.2437 1.2437 1.4389 1.4389
log2 = 10, bandwidth = 1, validation: fails agg mean error >> sev, possible␣
↪→aliasing; try larger bs.

In [104]: mv(kpw_9_15w)
mean = 56.875
variance = 5003.745
std dev = 70.7372

The compound Poisson approximation matches the mean but its variance is slightly off.

In [105]: kpw_9_15cp = build('agg KPW.9.15.cp '
.....: '0.75 claims '
.....: 'dsev [50 75 100 150] '
.....: '[0.35/0.75, 0.175/0.75, 0.15/0.75, 0.075/0.75] '
.....: 'poisson ')
.....:

In [106]: qd(kpw_9_15cp)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)

(continues on next page)

218 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
X
Freq 0.75 1.1547 1.1547
Sev 75.833 75.833 2.2204e-16 0.41249 0.41249 1.1623 1.1623
Agg 56.875 56.875 -1.1396e-10 1.2491 1.2491 1.4523 1.4523
log2 = 10, bandwidth = 1, validation: fails agg mean error >> sev, possible␣
↪→aliasing; try larger bs.

In [107]: mv(kpw_9_15cp)
mean = 56.875
variance = 5046.875
std dev = 71.0414

Comparing probabilities shows that all three distributions are very close.

In [108]: bit = pd.concat((kpw_9_15p.density_df.loc[:400:128, ['p_total']].query(
↪→'p_total > 1e-10'),

.....: kpw_9_15cp.density_df.loc[:400, ['p_total']].query('p_
↪→total > 0'),

.....: kpw_9_15w.density_df.loc[:400, ['p_total']].query('p_
↪→total > 0'),

.....:),

.....: keys=('exact', 'compound Po', 'wrong'), axis=1).
↪→rename(columns={'p_total': 'p'})

.....:

In [109]: bit = bit.droplevel(1, axis=1)

In [110]: bit.index.name = 'loss'

In [111]: qd(bit, accuracy=5)

exact compound Po wrong
loss
0.0 0.47059 0.47237 0.47059
200.0 0.024856 0.024881 0.024823
400.0 0.00061615 0.00064447 0.00061581
50.0 NaN 0.16533 0.16637
75.0 NaN 0.082664 0.083185
100.0 NaN 0.099787 0.10032
125.0 NaN 0.028932 0.029017
150.0 NaN 0.070835 0.071104
175.0 NaN 0.017463 0.017428
225.0 NaN 0.011552 0.011478
250.0 NaN 0.011399 0.0113
275.0 NaN 0.0040587 0.0039712
300.0 NaN 0.0050707 0.004986
325.0 NaN 0.0018166 0.0017595
350.0 NaN 0.001694 0.0016392
375.0 NaN 0.00077117 0.00073805

2.13. Published Problems and Examples 219

aggregate Documentation, Release 0.22.0

Group Life Individual Risk Model, Example 9.16, 9.17

A small manufacturing business has a group life insurance contract on its 14 permanent employees. The actuary for
the insurer has selected a mortality table to represent the mortality of the group. Each employee is insured for the
amount of his or her salary rounded up to the next 1,000. The group’s data are shown in the next table.

Employee Age Sex Benefit q

1 20 M 15, 000 0.00149
2 23 M 16, 000 0.00142
3 27 M 20, 000 0.00128
4 30 M 28, 000 0.00122
5 31 M 31, 000 0.00123
6 46 M 18, 000 0.00353
7 47 M 26, 000 0.00394
8 49 M 24, 000 0.00484
9 64 M 60, 000 0.02182
10 17 F 14, 000 0.00050
11 22 F 17, 000 0.00050
12 26 F 19, 000 0.00054
13 37 F 30, 000 0.00103
14 55 F 55, 000 0.00479

If the insurer adds a 45% relative loading to the net (pure) premium, what are the chances that it will lose money in
a given year? Use the normal and lognormal approximations.
In order to make the answer self-contained, the code below includes the data munging to re-create the table, pasted
from a pdf.

In [112]: data = '''1
.....: 20
.....: M
.....: 15,000
.....: 0.00149
.....: 2
.....: 23
.....: M
.....: 16,000
.....: 0.00142
.....: 3
.....: 27
.....: M
.....: 20,000
.....: 0.00128
.....: 4
.....: 30
.....: M
.....: 28,000
.....: 0.00122
.....: 5
.....: 31
.....: M
.....: 31,000
.....: 0.00123
.....: 6
.....: 46
.....: M
.....: 18,000
.....: 0.00353
.....: 7
.....: 47
.....: M
.....: 26,000
.....: 0.00394

(continues on next page)

220 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
.....: 8
.....: 49
.....: M
.....: 24,000
.....: 0.00484
.....: 9
.....: 64
.....: M
.....: 60,000
.....: 0.02182
.....: 10
.....: 17
.....: F
.....: 14,000
.....: 0.00050
.....: 11
.....: 22
.....: F
.....: 17,000
.....: 0.00050
.....: 12
.....: 26
.....: F
.....: 19,000
.....: 0.00054
.....: 13
.....: 37
.....: F
.....: 30,000
.....: 0.00103
.....: 14
.....: 55
.....: F
.....: 55,000
.....: 0.00479'''
.....:

In [113]: sdata = data.split('\n')

In [114]: df = pd.DataFrame(zip(*[iter(sdata)]*5),
.....: columns=['Employee', 'Age', 'Sex', 'Benefit', 'q'])
.....:

In [115]: df.Benefit = df.Benefit.str.replace(',','').astype(float)

In [116]: df.q = df.q.astype(float)

In [117]: df = df.set_index('Employee')

In [118]: qd(df)

Age Sex Benefit q
Employee
1 20 M 15000 0.00149
2 23 M 16000 0.00142
3 27 M 20000 0.00128
4 30 M 28000 0.00122
5 31 M 31000 0.00123
6 46 M 18000 0.00353
7 47 M 26000 0.00394
8 49 M 24000 0.00484

(continues on next page)

2.13. Published Problems and Examples 221

aggregate Documentation, Release 0.22.0

(continued from previous page)
9 64 M 60000 0.02182
10 17 F 14000 0.0005
11 22 F 17000 0.0005
12 26 F 19000 0.00054
13 37 F 30000 0.00103
14 55 F 55000 0.00479

In [119]: print(f'expected claim count = {df.q.sum():.6g}')
expected claim count = 0.04813

Here are the FFT-exact, and various approximations to the required probability. Working in thousands. The dsev
clauses enter the fixed benefit amount for each employee. Note the outsize impact of employee 9.

In [120]: from aggregate import Portfolio

In [121]: a = [build(f'agg ee.{i} {r.q} claims '
.....: f'dsev [{r.Benefit / 1000}] '
.....: f'bernoulli')
.....: for i, r in df.iterrows()]
.....:

In [122]: kpw_9_16p = Portfolio('KPW.9.16p', a)

In [123]: kpw_9_16p.update(log2=8, bs=1, remove_fuzz=True)

In [124]: qd(kpw_9_16p)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
ee.1 Freq 0.00149 25.887 25.848

Sev 15 15 -1.1102e-16 0 0
Agg 0.02235 0.02235 8.8818e-16 25.887 25.887 25.848 25.848

ee.2 Freq 0.00142 26.518 26.481
Sev 16 16 0 0 0
Agg 0.02272 0.02272 -1.481e-13 26.518 26.518 26.481 26.481

ee.3 Freq 0.00128 27.933 27.897
Sev 20 20 0 0 0
Agg 0.0256 0.0256 -8.7597e-14 27.933 27.933 27.897 27.897

ee.4 Freq 0.00122 28.612 28.577
Sev 28 28 2.2204e-16 0 0
Agg 0.03416 0.03416 3.908e-14 28.612 28.612 28.577 28.577

...
ee.12 Freq 0.00054 43.022 42.998

Sev 19 19 0 0 0
Agg 0.01026 0.01026 1.35e-13 43.022 43.022 42.998 42.998

ee.13 Freq 0.00103 31.143 31.111
Sev 30 30 0 0 0
Agg 0.0309 0.0309 -4.2188e-15 31.143 31.143 31.111 31.111

ee.14 Freq 0.00479 14.414 14.345
Sev 55 55 -1.1102e-16 0 0
Agg 0.26345 0.26345 -2.1538e-14 14.414 14.414 14.345 14.345

total Freq 0.04813 4.5315 4.4789
Sev 42.685 42.685 0 0.43586 -0.28928
Agg 2.0544 2.0544 -5.9397e-14 4.9289 4.9289 5.2673 5.2673

log2 = 8, bandwidth = 1, validation: not unreasonable.

In [125]: mv(kpw_9_16p)
mean = 2.05441
variance = 102.5336
std dev = 10.1259

(continues on next page)

222 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [126]: appx = kpw_9_16p.approximate('all')

In [127]: premium = 1.45 * kpw_9_16p.agg_m

In [128]: ans = {k: v.sf(premium) for k, v in appx.items()}

In [129]: ans['FFT'] = kpw_9_16p.sf(premium)

In [130]: qd(pd.DataFrame(ans.values(),
.....: index=pd.Index(ans.keys(), name='method'),
.....: columns=['premium']).sort_values('premium'),
.....: accuracy=5)
.....:

premium
method
FFT 0.047261
gamma 0.091498
lognorm 0.13449
sgamma 0.18346
slognorm 0.28099
norm 0.46363

Here is a sample from the distribution and the mean-matched compound Poisson (for Exercise 9.18). The latter
dsev clause works because all the benefit amounts are different. The temporary variable sev creates the severity
curve. The log pmf graph reflects the irregular benefit amounts. Compare the cdf under comp Po with Table 9.17.

In [131]: sev = df[['Benefit', 'q']]

In [132]: sev.q = sev.q / sev.q.sum()

In [133]: sev = sev.sort_values('Benefit')

In [134]: kpw_9_16cp = build('agg kpw_9_16.po '
.....: f'{df.q.sum()} claims '
.....: f'dsev {sev.Benefit.values / 1000} {sev.q.values} '
.....: 'poisson', bs=1, log2=10)
.....:

In [135]: qd(kpw_9_16cp)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.04813 4.5582 4.5582
Sev 42.685 42.685 0 0.43586 0.43586 -0.28928 -0.28928
Agg 2.0544 2.0544 3.4417e-14 4.9723 4.9723 5.4286 5.4286
log2 = 10, bandwidth = 1, validation: not unreasonable.

In [136]: bit = pd.concat((kpw_9_16p.density_df.query('p_total > 0')[['p_total', 'F
↪→', 'S']],

.....: kpw_9_16cp.density_df.query('p_total > 0')[['p_total',
↪→'F', 'S']]),

.....: keys=['exact', 'comp Po'], axis=1)

.....:

In [137]: bit.index = [f'{i:.0f}' for i in bit.index]

In [138]: bit.index.name = 'loss'

In [139]: with pd.option_context('display.max_rows', 360, 'display.max_columns',␣
↪→10,

(continues on next page)

2.13. Published Problems and Examples 223

aggregate Documentation, Release 0.22.0

(continued from previous page)
.....: 'display.width', 150, 'display.float_format',␣

↪→lambda x: f'{x:.7g}'):
.....: print(bit)
.....:

exact comp Po
p_total F S p_total F S

loss
0 0.952739 0.952739 0.04726095 0.9530099 0.9530099 0.04699011
14 0.0004766078 0.9532157 0.04678434 0.0004765049 0.9534864 0.04651361
15 0.0014217 0.9546374 0.04536264 0.001419985 0.9549064 0.04509362
16 0.001354813 0.9559922 0.04400783 0.001353274 0.9562597 0.04374035
17 0.0004766078 0.9564688 0.04353122 0.0004765049 0.9567362 0.04326384
18 0.003375083 0.9598439 0.04015614 0.003364125 0.9601003 0.03989972
19 0.0005147571 0.9603586 0.03964138 0.0005146252 0.9606149 0.03938509
20 0.001221069 0.9615797 0.03842031 0.001219853 0.9618348 0.03816524
24 0.004633684 0.9662134 0.03378663 0.004612568 0.9664473 0.03355267
26 0.00376864 0.969982 0.03001799 0.003754859 0.9702022 0.02979781
28 0.001163761 0.9711458 0.02885423 0.001162791 0.971365 0.02863502
29 7.112054e-07 0.9711465 0.02885352 7.099922e-07 0.9713657 0.02863431
30 0.0009830108 0.9721295 0.02787051 0.0009833345 0.972349 0.02765098
31 0.001175572 0.9733051 0.02669493 0.001174457 0.9735235 0.02647652
32 2.399591e-06 0.9733075 0.02669253 3.352879e-06 0.9735268 0.02647317
33 5.971631e-06 0.9733134 0.02668656 5.946495e-06 0.9735328 0.02646722
34 6.178405e-06 0.9733196 0.02668038 6.272902e-06 0.9735391 0.02646095
35 4.242488e-06 0.9733239 0.02667614 4.23041e-06 0.9735433 0.02645672
36 1.993891e-06 0.9733259 0.02667415 7.927184e-06 0.9735512 0.02644879
37 2.434369e-06 0.9733283 0.02667171 2.426553e-06 0.9735536 0.02644637
38 6.643644e-06 0.9733349 0.02666507 6.751312e-06 0.9735604 0.02643961
39 7.574225e-06 0.9733425 0.02665749 7.531446e-06 0.9735679 0.02643208
40 8.474451e-06 0.973351 0.02664902 9.207982e-06 0.9735771 0.02642287
41 7.941654e-06 0.9733589 0.02664108 7.901023e-06 0.973585 0.02641497
42 2.23561e-05 0.9733813 0.02661872 2.219562e-05 0.9736072 0.02639278
43 6.125396e-06 0.9733874 0.0266126 6.100774e-06 0.9736133 0.02638668
44 2.143545e-05 0.9734088 0.02659116 2.130123e-05 0.9736346 0.02636538
45 4.672158e-06 0.9734135 0.02658649 4.659237e-06 0.9736393 0.02636072
46 1.210077e-05 0.9734256 0.02657439 1.205366e-05 0.9736513 0.02634866
47 2.791514e-06 0.9734284 0.0265716 2.78804e-06 0.9736541 0.02634587
48 5.56219e-06 0.973434 0.02656603 1.670997e-05 0.9736708 0.02632916
49 4.696495e-06 0.9734387 0.02656134 4.6784e-06 0.9736755 0.02632449
50 2.022647e-05 0.9734589 0.02654111 2.007543e-05 0.9736956 0.02630441
51 1.510358e-06 0.9734604 0.0265396 1.516371e-06 0.9736971 0.02630289
52 5.666162e-06 0.9734661 0.02653394 1.304127e-05 0.9737101 0.02628985
53 1.370555e-08 0.9734661 0.02653392 1.686769e-08 0.9737102 0.02628984
54 9.392317e-06 0.9734755 0.02652453 9.356468e-06 0.9737195 0.02628048
55 0.004591308 0.9780668 0.02193322 0.004570612 0.9782901 0.02170987
56 3.900383e-06 0.9780707 0.02192932 4.60947e-06 0.9782947 0.02170526
57 4.682325e-06 0.9780754 0.02192464 4.659748e-06 0.9782994 0.0217006
58 1.240279e-06 0.9780766 0.0219234 1.246296e-06 0.9783006 0.02169935
59 1.480938e-06 0.9780781 0.02192192 1.478042e-06 0.9783021 0.02169787
60 0.02125253 0.9993306 0.000669383 0.02079525 0.9990974 0.0009026226
61 1.248838e-06 0.9993319 0.0006681341 1.247493e-06 0.9990986 0.0009013751
62 4.172979e-08 0.9993319 0.0006680924 7.93117e-07 0.9990994 0.000900582
63 2.713599e-08 0.9993319 0.0006680653 4.479884e-08 0.9990995 0.0009005372
64 4.244129e-08 0.999332 0.0006680228 6.96877e-08 0.9990995 0.0009004675
65 4.491981e-08 0.999332 0.0006679779 5.030504e-08 0.9990996 0.0009004172
66 4.146533e-08 0.9993321 0.0006679364 9.361181e-08 0.9990997 0.0009003236
67 2.339189e-08 0.9993321 0.000667913 4.760197e-08 0.9990997 0.000900276
68 8.513895e-08 0.9993322 0.0006678279 1.101497e-07 0.9990998 0.0009001659
69 2.329551e-06 0.9993345 0.0006654983 2.321713e-06 0.9991022 0.0008978441
70 6.910878e-06 0.9993414 0.0006585875 6.89662e-06 0.9991091 0.0008909475
71 6.544798e-06 0.999348 0.0006520427 6.512085e-06 0.9991156 0.0008844354

(continues on next page)

224 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
72 2.350356e-06 0.9993503 0.0006496923 2.366974e-06 0.9991179 0.0008820685
73 1.628085e-05 0.9993666 0.0006334115 1.615066e-05 0.9991341 0.0008659178
74 1.314419e-05 0.9993797 0.0006202673 1.294404e-05 0.999147 0.0008529738
75 3.761971e-05 0.9994174 0.0005826475 3.685732e-05 0.9991839 0.0008161165
76 3.023577e-05 0.9994476 0.0005524118 2.959418e-05 0.9992135 0.0007865223
77 1.064505e-05 0.9994582 0.0005417667 1.041214e-05 0.9992239 0.0007761101
78 7.531246e-05 0.9995335 0.0004664543 7.34545e-05 0.9992973 0.0007026556
79 3.379094e-05 0.9995673 0.0004326633 3.334395e-05 0.9993307 0.0006693117
80 2.725768e-05 0.9995946 0.0004054057 2.665243e-05 0.9993573 0.0006426592
81 1.816289e-05 0.9996128 0.0003872428 1.801028e-05 0.9993754 0.000624649
82 5.911614e-09 0.9996128 0.0003872369 1.74019e-08 0.9993754 0.0006246316
83 5.608384e-06 0.9996184 0.0003816285 5.586048e-06 0.999381 0.0006190455
84 0.0001033707 0.9997217 0.0002782578 0.0001006574 0.9994816 0.0005183881
85 4.743e-06 0.9997265 0.0002735148 4.72191e-06 0.9994863 0.0005136662
86 8.972427e-05 0.9998162 0.0001837905 8.756326e-05 0.9995739 0.0004261029
87 1.649612e-08 0.9998162 0.000183774 2.194197e-08 0.9995739 0.000426081
88 2.598867e-05 0.9998422 0.0001577853 2.540443e-05 0.9995993 0.0004006766
89 4.722525e-08 0.9998423 0.0001577381 4.726622e-08 0.9995994 0.0004006293
90 2.194831e-05 0.9998642 0.0001357898 2.147808e-05 0.9996208 0.0003791512
91 2.623287e-05 0.9998904 0.0001095569 2.56655e-05 0.9996465 0.0003534857
92 6.536066e-08 0.9998905 0.0001094916 8.594597e-08 0.9996466 0.0003533998
93 1.65287e-07 0.9998907 0.0001093263 1.62614e-07 0.9996468 0.0003532372
94 1.743665e-07 0.9998908 0.0001091519 1.733535e-07 0.9996469 0.0003530638
95 1.355125e-07 0.999891 0.0001090164 1.365987e-07 0.9996471 0.0003529272
96 8.286137e-08 0.9998911 0.0001089335 2.111788e-07 0.9996473 0.000352716
97 1.619798e-07 0.9998912 0.0001087716 1.594421e-07 0.9996474 0.0003525566
98 1.778121e-07 0.9998914 0.0001085938 1.768561e-07 0.9996476 0.0003523797
99 2.722478e-07 0.9998917 0.0001083215 2.665397e-07 0.9996479 0.0003521132
100 2.116102e-07 0.9998919 0.0001081099 2.234979e-07 0.9996481 0.0003518897
101 2.354722e-07 0.9998921 0.0001078744 2.302657e-07 0.9996483 0.0003516594
102 5.121685e-07 0.9998926 0.0001073623 4.978643e-07 0.9996488 0.0003511616
103 1.63469e-07 0.9998928 0.0001071988 2.132647e-07 0.9996491 0.0003509483
104 5.007765e-07 0.9998933 0.000106698 4.873585e-07 0.9996495 0.0003504609
105 2.016058e-07 0.9998935 0.0001064964 1.979245e-07 0.9996497 0.000350263
106 2.772016e-07 0.9998938 0.0001062192 2.703786e-07 0.99965 0.0003499926
107 8.955276e-08 0.9998939 0.0001061296 1.233815e-07 0.9996501 0.0003498692
108 1.241644e-07 0.999894 0.0001060055 3.6475e-07 0.9996505 0.0003495045
109 1.499989e-07 0.9998941 0.0001058555 1.469601e-07 0.9996506 0.0003493575
110 4.787335e-07 0.9998946 0.0001053768 1.139834e-05 0.999662 0.0003379592
111 5.24875e-08 0.9998947 0.0001053243 5.520826e-08 0.9996621 0.000337904
112 1.489302e-07 0.9998948 0.0001051753 3.069069e-07 0.9996624 0.0003375971
113 6.282775e-09 0.9998948 0.0001051691 6.359186e-09 0.9996624 0.0003375907
114 2.166401e-07 0.999895 0.0001049524 2.112529e-07 0.9996626 0.0003373795
115 0.0001024173 0.9999975 2.53513e-06 9.973353e-05 0.9997624 0.0002376459
116 9.301591e-08 0.9999976 2.442114e-06 1.065637e-07 0.9997625 0.0002375394
117 1.046485e-07 0.9999977 2.337466e-06 1.054805e-07 0.9997626 0.0002374339
118 2.779748e-08 0.9999977 2.309668e-06 2.74138e-08 0.9997626 0.0002374065
119 3.323942e-08 0.9999977 2.276429e-06 3.258744e-08 0.9997626 0.0002373739
120 1.07834e-09 0.9999977 2.27535e-06 0.0002268827 0.9999895 1.049118e-05
121 2.805718e-08 0.9999978 2.247293e-06 2.767002e-08 0.9999895 1.046351e-05
122 1.04354e-09 0.9999978 2.24625e-06 1.753529e-08 0.9999896 1.044597e-05
123 1.015218e-09 0.9999978 2.245234e-06 1.506102e-09 0.9999896 1.044447e-05
124 1.11823e-09 0.9999978 2.244116e-06 7.176094e-09 0.9999896 1.043729e-05
125 1.330164e-09 0.9999978 2.242786e-06 1.78429e-08 0.9999896 1.041945e-05
126 1.040647e-09 0.9999978 2.241745e-06 1.771138e-08 0.9999896 1.040174e-05
127 7.934845e-10 0.9999978 2.240952e-06 6.910456e-09 0.9999896 1.039483e-05
128 2.074415e-09 0.9999978 2.238878e-06 4.117227e-08 0.9999896 1.035365e-05
129 5.213364e-08 0.9999978 2.186744e-06 5.695507e-08 0.9999897 1.02967e-05
130 1.542995e-07 0.999998 2.032444e-06 1.646233e-07 0.9999899 1.013208e-05
131 1.46062e-07 0.9999981 1.886382e-06 1.424089e-07 0.99999 9.989666e-06
132 5.249366e-08 0.9999982 1.833889e-06 5.171857e-08 0.9999901 9.937948e-06

(continues on next page)

2.13. Published Problems and Examples 225

aggregate Documentation, Release 0.22.0

(continued from previous page)
133 3.632949e-07 0.9999985 1.470594e-06 3.526438e-07 0.9999904 9.585304e-06
134 5.60785e-08 0.9999986 1.414515e-06 2.220186e-07 0.9999906 9.363285e-06
135 1.318434e-07 0.9999987 1.282672e-06 4.663595e-07 0.9999911 8.896926e-06
136 4.358886e-10 0.9999987 1.282236e-06 3.667832e-07 0.9999915 8.530142e-06
137 3.292504e-10 0.9999987 1.281907e-06 1.138415e-07 0.9999916 8.416301e-06
138 6.005527e-10 0.9999987 1.281306e-06 8.153441e-07 0.9999924 7.600957e-06
139 4.976509e-07 0.9999992 7.836552e-07 6.051008e-07 0.999993 6.995856e-06
140 4.940901e-10 0.9999992 7.831612e-07 3.024997e-07 0.9999933 6.693356e-06
141 4.051553e-07 0.9999996 3.780058e-07 4.064893e-07 0.9999937 6.286867e-06
142 1.556782e-10 0.9999996 3.778501e-07 4.463796e-10 0.9999937 6.286421e-06
143 1.251058e-07 0.9999997 2.527444e-07 1.219742e-07 0.9999938 6.164447e-06
144 1.937367e-10 0.9999997 2.525506e-07 1.098375e-06 0.9999949 5.066072e-06
145 1.058015e-07 0.9999999 1.467492e-07 1.030876e-07 0.999995 4.962984e-06
146 1.262168e-07 1 2.053237e-08 1.016858e-06 0.9999961 3.946126e-06
147 3.685373e-10 1 2.016383e-08 5.121882e-10 0.9999961 3.945614e-06
148 6.46479e-10 1 1.951735e-08 2.77595e-07 0.9999963 3.668019e-06
149 6.999917e-10 1 1.881736e-08 9.506666e-10 0.9999963 3.667068e-06
150 4.588675e-10 1 1.835849e-08 2.346692e-07 0.9999966 3.432399e-06
151 2.170583e-10 1 1.814144e-08 2.805268e-07 0.9999968 3.151872e-06
152 2.643346e-10 1 1.78771e-08 1.33265e-09 0.9999968 3.15054e-06
153 7.16224e-10 1 1.716088e-08 2.204159e-09 0.9999969 3.148335e-06
154 8.158174e-10 1 1.634506e-08 2.534458e-09 0.9999969 3.145801e-06
155 9.122321e-10 1 1.543283e-08 2.028215e-09 0.9999969 3.143773e-06
156 8.566022e-10 1 1.457623e-08 2.859701e-09 0.9999969 3.140913e-06
157 2.40212e-09 1 1.217411e-08 2.93432e-09 0.9999969 3.137979e-06
158 6.608837e-10 1 1.151322e-08 2.44401e-09 0.9999969 3.135535e-06
159 2.304181e-09 1 9.209041e-09 4.077408e-09 0.9999969 3.131457e-06
160 5.036921e-10 1 8.705349e-09 2.915487e-09 0.9999969 3.128542e-06
161 1.300943e-09 1 7.404406e-09 3.161405e-09 0.9999969 3.12538e-06
162 3.006818e-10 1 7.103724e-09 5.729582e-09 0.9999969 3.119651e-06
163 5.986384e-10 1 6.505086e-09 3.201579e-09 0.9999969 3.116449e-06
164 5.047601e-10 1 6.000326e-09 5.670897e-09 0.9999969 3.110778e-06
165 2.172347e-09 1 3.827979e-09 2.073139e-08 0.9999969 3.090047e-06
166 1.623502e-10 1 3.665628e-09 3.083291e-09 0.9999969 3.086964e-06
167 6.086006e-10 1 3.057028e-09 2.082057e-09 0.9999969 3.084882e-06
168 2.04573e-12 1 3.054982e-09 3.995334e-09 0.9999969 3.080886e-06
169 1.009057e-09 1 2.045925e-09 2.109975e-09 0.9999969 3.078776e-06
170 6.145147e-10 1 1.431411e-09 2.439393e-07 0.9999972 2.834837e-06
171 4.192868e-10 1 1.012124e-09 8.580199e-10 0.9999972 2.833979e-06
172 5.027193e-10 1 5.094045e-10 3.601279e-09 0.9999972 2.830378e-06
173 1.333299e-10 1 3.760746e-10 1.352801e-10 0.9999972 2.830242e-06
174 1.590085e-10 1 2.170661e-10 2.382985e-09 0.9999972 2.827859e-06
175 4.288268e-12 1 2.127779e-10 1.088124e-06 0.9999983 1.739736e-06
176 1.340885e-10 1 7.868939e-11 1.228987e-09 0.9999983 1.738507e-06
177 4.486189e-12 1 7.42032e-11 1.192855e-09 0.9999983 1.737314e-06
178 2.920835e-12 1 7.128231e-11 3.02749e-10 0.9999983 1.737011e-06
179 4.562823e-12 1 6.671952e-11 3.683841e-10 0.9999983 1.736643e-06
180 4.82662e-12 1 6.189294e-11 1.65027e-06 0.9999999 8.637285e-08
181 4.454919e-12 1 5.743805e-11 3.319206e-10 0.9999999 8.604093e-08
182 2.514367e-12 1 5.492373e-11 2.035136e-10 0.9999999 8.583741e-08
183 9.143925e-12 1 4.577982e-11 8.424069e-11 0.9999999 8.575317e-08
184 3.826298e-12 1 4.195355e-11 1.503577e-10 0.9999999 8.560282e-08
185 7.320083e-12 1 3.463352e-11 4.000487e-10 0.9999999 8.520277e-08
186 2.580997e-12 1 3.205247e-11 3.64933e-10 0.9999999 8.483783e-08
187 6.060502e-12 1 2.599199e-11 1.396254e-10 0.9999999 8.469821e-08
188 3.909234e-12 1 2.208278e-11 8.727237e-10 0.9999999 8.382548e-08
189 3.768936e-12 1 1.831379e-11 7.747876e-10 0.9999999 8.30507e-08
190 3.132506e-12 1 1.51813e-11 1.950703e-09 0.9999999 8.109999e-08
191 1.538332e-12 1 1.364298e-11 1.62618e-09 0.9999999 7.947381e-08
192 1.447886e-12 1 1.219513e-11 5.652266e-10 0.9999999 7.890859e-08
193 2.725839e-12 1 9.469314e-12 3.871408e-09 0.9999999 7.503718e-08

(continues on next page)

226 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
194 6.673824e-13 1 8.801959e-12 2.58819e-09 0.9999999 7.244899e-08
195 2.106876e-12 1 6.695089e-12 3.878648e-09 0.9999999 6.857034e-08
196 2.600251e-12 1 4.094836e-12 3.322862e-09 0.9999999 6.524748e-08
197 6.347047e-13 1 3.460121e-12 8.305254e-10 0.9999999 6.441695e-08
198 7.662416e-13 1 2.693845e-12 6.129516e-09 0.9999999 5.828744e-08
199 5.279873e-13 1 2.165823e-12 6.156754e-09 0.9999999 5.213068e-08
200 1.257773e-12 1 9.080514e-13 2.36799e-09 1 4.976269e-08
201 1.318127e-14 1 8.948398e-13 4.582293e-09 1 4.51804e-08
202 5.310998e-13 1 3.637091e-13 5.655193e-12 1 4.517475e-08
203 2.332875e-14 1 3.403944e-13 1.331814e-09 1 4.384293e-08
204 1.743248e-13 1 1.660894e-13 7.991045e-09 1 3.585189e-08
205 1.421973e-14 1 1.518785e-13 1.125462e-09 1 3.472643e-08
206 1.067366e-14 1 1.412204e-13 7.84441e-09 1 2.688202e-08
207 1.25541e-14 1 1.286748e-13 6.361132e-12 1 2.687566e-08
208 1.108523e-14 1 1.175726e-13 2.022885e-09 1 2.485277e-08
209 9.803926e-15 1 1.078027e-13 1.1113e-11 1 2.484166e-08
210 9.503263e-15 1 9.825474e-14 1.710189e-09 1 2.313147e-08
211 1.723964e-14 1 8.104628e-14 2.045013e-09 1 2.108646e-08
212 8.14414e-15 1 7.294165e-14 1.447721e-11 1 2.107198e-08
213 1.419199e-14 1 5.87308e-14 1.99869e-11 1 2.105199e-08
214 1.306909e-14 1 4.563017e-14 2.498278e-11 1 2.102701e-08
215 9.182056e-15 1 3.641532e-14 1.943114e-11 1 2.100758e-08
216 8.3874e-15 1 2.797762e-14 2.588086e-11 1 2.09817e-08
217 4.424326e-15 1 2.353673e-14 3.051195e-11 1 2.095118e-08
218 6.462422e-15 1 1.709743e-14 2.291723e-11 1 2.092827e-08
219 1.852404e-15 1 1.521006e-14 3.87301e-11 1 2.088954e-08
220 3.656445e-15 1 1.154632e-14 4.736282e-11 1 2.084217e-08
221 3.85918e-16 1 1.121325e-14 2.793092e-11 1 2.081424e-08
222 1.257844e-15 1 9.992007e-15 4.501632e-11 1 2.076923e-08
223 2.590752e-15 1 7.438494e-15 2.96758e-11 1 2.073955e-08
224 3.203268e-15 1 4.218847e-15 4.462978e-11 1 2.069492e-08
226 2.513132e-15 1 1.665335e-15 2.380553e-11 1 2.02578e-08
228 8.000274e-16 1 8.881784e-16 2.928074e-11 1 2.020762e-08
230 6.667216e-16 1 2.220446e-16 2.644072e-09 1 1.754439e-08
225 NaN NaN NaN 4.133196e-10 1 2.02816e-08
227 NaN NaN NaN 2.090073e-11 1 2.02369e-08
229 NaN NaN NaN 1.915667e-11 1 2.018846e-08
231 NaN NaN NaN 8.206594e-12 1 1.753618e-08
232 NaN NaN NaN 2.810019e-11 1 1.750808e-08
233 NaN NaN NaN 1.469202e-12 1 1.750661e-08
234 NaN NaN NaN 1.791823e-11 1 1.748869e-08
235 NaN NaN NaN 7.914547e-09 1 9.574146e-09
236 NaN NaN NaN 9.459713e-12 1 9.564686e-09
237 NaN NaN NaN 8.997999e-12 1 9.555688e-09
238 NaN NaN NaN 2.312338e-12 1 9.553376e-09
239 NaN NaN NaN 2.852462e-12 1 9.550524e-09
240 NaN NaN NaN 9.002972e-09 1 5.475517e-10
241 NaN NaN NaN 2.816684e-12 1 5.44735e-10
242 NaN NaN NaN 1.639808e-12 1 5.430952e-10
243 NaN NaN NaN 1.558068e-12 1 5.415371e-10
244 NaN NaN NaN 1.794712e-12 1 5.397425e-10
245 NaN NaN NaN 4.569197e-12 1 5.351732e-10
246 NaN NaN NaN 3.991432e-12 1 5.311818e-10
247 NaN NaN NaN 1.48429e-12 1 5.296975e-10
248 NaN NaN NaN 9.45804e-12 1 5.202395e-10
249 NaN NaN NaN 7.367474e-12 1 5.128721e-10
250 NaN NaN NaN 1.533775e-11 1 4.975343e-10
251 NaN NaN NaN 1.288323e-11 1 4.846511e-10
252 NaN NaN NaN 4.119826e-12 1 4.805313e-10
253 NaN NaN NaN 2.848955e-11 1 4.520417e-10
254 NaN NaN NaN 2.153303e-11 1 4.305087e-10

(continues on next page)

2.13. Published Problems and Examples 227

aggregate Documentation, Release 0.22.0

(continued from previous page)
255 NaN NaN NaN 2.401756e-11 1 4.064912e-10
256 NaN NaN NaN 2.364939e-11 1 3.828418e-10
257 NaN NaN NaN 4.549044e-12 1 3.782927e-10
258 NaN NaN NaN 3.505759e-11 1 3.432351e-10
259 NaN NaN NaN 4.316564e-11 1 3.000695e-10
260 NaN NaN NaN 1.428383e-11 1 2.857857e-10
261 NaN NaN NaN 3.440264e-11 1 2.513831e-10
262 NaN NaN NaN 4.775503e-14 1 2.513354e-10
263 NaN NaN NaN 9.695625e-12 1 2.416398e-10
264 NaN NaN NaN 4.360835e-11 1 1.980315e-10
265 NaN NaN NaN 8.192855e-12 1 1.898386e-10
266 NaN NaN NaN 4.524329e-11 1 1.445953e-10
267 NaN NaN NaN 5.492698e-14 1 1.445404e-10
268 NaN NaN NaN 1.10606e-11 1 1.334798e-10
269 NaN NaN NaN 9.141233e-14 1 1.333884e-10
270 NaN NaN NaN 9.353046e-12 1 1.240353e-10
271 NaN NaN NaN 1.118703e-11 1 1.128483e-10
272 NaN NaN NaN 1.160805e-13 1 1.127322e-10
273 NaN NaN NaN 1.367965e-13 1 1.125954e-10
274 NaN NaN NaN 1.828934e-13 1 1.124125e-10
275 NaN NaN NaN 1.578676e-13 1 1.122547e-10
276 NaN NaN NaN 1.74829e-13 1 1.120798e-10
277 NaN NaN NaN 2.204896e-13 1 1.118593e-10
278 NaN NaN NaN 1.607224e-13 1 1.116985e-10
279 NaN NaN NaN 2.648382e-13 1 1.114338e-10
280 NaN NaN NaN 6.39425e-13 1 1.107944e-10
281 NaN NaN NaN 1.809595e-13 1 1.106134e-10
282 NaN NaN NaN 2.707045e-13 1 1.103427e-10
283 NaN NaN NaN 1.970095e-13 1 1.101457e-10
284 NaN NaN NaN 2.664828e-13 1 1.098792e-10
285 NaN NaN NaN 4.382094e-12 1 1.054972e-10
286 NaN NaN NaN 1.397449e-13 1 1.053574e-10
287 NaN NaN NaN 1.477025e-13 1 1.052097e-10
288 NaN NaN NaN 1.615116e-13 1 1.050482e-10
289 NaN NaN NaN 1.259848e-13 1 1.049222e-10
290 NaN NaN NaN 1.916858e-11 1 8.575363e-11
291 NaN NaN NaN 5.610997e-14 1 8.569756e-11
292 NaN NaN NaN 1.640735e-13 1 8.553347e-11
293 NaN NaN NaN 1.077555e-14 1 8.55227e-11
294 NaN NaN NaN 1.011079e-13 1 8.542156e-11
295 NaN NaN NaN 4.317568e-11 1 4.224587e-11
296 NaN NaN NaN 5.481826e-14 1 4.219103e-11
297 NaN NaN NaN 5.099189e-14 1 4.214007e-11
298 NaN NaN NaN 1.407973e-14 1 4.212597e-11
299 NaN NaN NaN 1.710537e-14 1 4.210887e-11
300 NaN NaN NaN 3.929458e-11 1 2.814304e-12
301 NaN NaN NaN 1.865038e-14 1 2.795653e-12
302 NaN NaN NaN 1.020398e-14 1 2.785439e-12
303 NaN NaN NaN 1.61517e-14 1 2.76934e-12
304 NaN NaN NaN 1.513325e-14 1 2.754241e-12
305 NaN NaN NaN 3.490552e-14 1 2.71938e-12
306 NaN NaN NaN 3.002566e-14 1 2.689404e-12
307 NaN NaN NaN 1.066545e-14 1 2.678746e-12
308 NaN NaN NaN 6.886354e-14 1 2.609912e-12
309 NaN NaN NaN 5.300219e-14 1 2.556955e-12
310 NaN NaN NaN 9.01918e-14 1 2.466805e-12
311 NaN NaN NaN 7.905782e-14 1 2.387757e-12
312 NaN NaN NaN 2.253344e-14 1 2.365219e-12
313 NaN NaN NaN 1.580737e-13 1 2.207123e-12
314 NaN NaN NaN 1.355182e-13 1 2.071565e-12
315 NaN NaN NaN 1.186181e-13 1 1.952993e-12

(continues on next page)

228 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
316 NaN NaN NaN 1.363317e-13 1 1.816658e-12
317 NaN NaN NaN 1.995775e-14 1 1.796674e-12
318 NaN NaN NaN 1.624001e-13 1 1.634248e-12
319 NaN NaN NaN 2.30203e-13 1 1.404099e-12
320 NaN NaN NaN 7.025782e-14 1 1.333822e-12
321 NaN NaN NaN 1.935323e-13 1 1.14031e-12
322 NaN NaN NaN 3.044294e-16 1 1.139977e-12
323 NaN NaN NaN 5.294786e-14 1 1.087019e-12
324 NaN NaN NaN 1.904147e-13 1 8.966161e-13
325 NaN NaN NaN 4.47376e-14 1 8.518741e-13
326 NaN NaN NaN 2.081715e-13 1 6.437073e-13
327 NaN NaN NaN 3.651783e-16 1 6.433742e-13
328 NaN NaN NaN 4.841219e-14 1 5.949685e-13
329 NaN NaN NaN 5.792017e-16 1 5.944134e-13
330 NaN NaN NaN 4.096891e-14 1 5.534462e-13
331 NaN NaN NaN 4.899058e-14 1 5.044853e-13
332 NaN NaN NaN 7.188962e-16 1 5.038192e-13
333 NaN NaN NaN 7.541253e-16 1 5.030421e-13
334 NaN NaN NaN 1.051268e-15 1 5.020429e-13
335 NaN NaN NaN 1.215004e-15 1 5.008216e-13
336 NaN NaN NaN 9.354349e-16 1 4.999334e-13
337 NaN NaN NaN 1.222217e-15 1 4.987122e-13
338 NaN NaN NaN 8.942888e-16 1 4.97824e-13
339 NaN NaN NaN 1.412135e-15 1 4.963807e-13
340 NaN NaN NaN 5.994606e-15 1 4.903855e-13
341 NaN NaN NaN 9.247895e-16 1 4.894973e-13
342 NaN NaN NaN 1.322465e-15 1 4.881651e-13
343 NaN NaN NaN 1.014759e-15 1 4.871659e-13
344 NaN NaN NaN 1.290385e-15 1 4.858336e-13
345 NaN NaN NaN 3.144116e-14 1 4.544143e-13
346 NaN NaN NaN 6.647595e-16 1 4.537482e-13
347 NaN NaN NaN 8.041342e-16 1 4.52971e-13
348 NaN NaN NaN 7.163302e-16 1 4.523049e-13
349 NaN NaN NaN 6.480017e-16 1 4.516387e-13
350 NaN NaN NaN 1.043598e-13 1 3.472778e-13
351 NaN NaN NaN 2.970056e-16 1 3.469447e-13
352 NaN NaN NaN 7.695338e-16 1 3.461675e-13
354 NaN NaN NaN 4.549113e-16 1 3.457234e-13
355 NaN NaN NaN 1.88428e-13 1 1.573186e-13
356 NaN NaN NaN 2.541842e-16 1 1.570966e-13
357 NaN NaN NaN 2.321641e-16 1 1.568745e-13
360 NaN NaN NaN 1.4293e-13 1 1.398881e-14
368 NaN NaN NaN 3.653724e-16 1 1.365574e-14
369 NaN NaN NaN 3.012033e-16 1 1.332268e-14
370 NaN NaN NaN 4.262703e-16 1 1.287859e-14
371 NaN NaN NaN 3.993759e-16 1 1.24345e-14
373 NaN NaN NaN 7.04541e-16 1 1.176836e-14
374 NaN NaN NaN 6.775864e-16 1 1.110223e-14
375 NaN NaN NaN 4.868756e-16 1 1.065814e-14
376 NaN NaN NaN 6.44266e-16 1 9.992007e-15
378 NaN NaN NaN 6.361091e-16 1 9.325873e-15
379 NaN NaN NaN 9.883173e-16 1 8.326673e-15
380 NaN NaN NaN 2.902703e-16 1 7.993606e-15
381 NaN NaN NaN 8.696954e-16 1 7.105427e-15
383 NaN NaN NaN 2.30469e-16 1 6.883383e-15
384 NaN NaN NaN 7.177201e-16 1 6.217249e-15
386 NaN NaN NaN 7.941167e-16 1 5.440093e-15
410 NaN NaN NaN 4.545908e-16 1 4.996004e-15
415 NaN NaN NaN 6.831854e-16 1 4.32987e-15
420 NaN NaN NaN 4.481143e-16 1 3.885781e-15

(continues on next page)

2.13. Published Problems and Examples 229

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [140]: fig, axs = plt.subplots(1,2, figsize=(3.5*2, 2.45), constrained_
↪→layout=True, squeeze=True)

In [141]: ax0, ax1 = axs.flat

In [142]: bit[('exact', 'p_total')].plot(marker='.', lw=.25, logy=True, ax=ax0,␣
↪→label='Portfolio');

In [143]: bit[('comp Po', 'p_total')].plot(marker='.', markerfacecolor='None', lw=.
↪→25, logy=True, ax=ax0, label='compound Po');

In [144]: (1-bit[('exact', 'p_total')].cumsum()).plot(ax=ax1);

In [145]: (1-bit[('comp Po', 'p_total')].cumsum()).plot(ax=ax1);

In [146]: ax0.legend();

In [147]: ax0.set(ylabel='log pmf');

In [148]: ax1.set(ylabel='survival function');

Exercise 9.73.
An insurance company sold one-year term life insurance on a group of 2,300 independent lives as given in the next
table.

Benefit q Number
Class
1 100, 000 0.1 500
2 200, 000 0.02 500
3 300, 000 0.02 500
4 200, 000 0.1 300
5 200, 000 0.1 500

The insurance company reinsures amounts in excess of 100,000 on each life. The reinsurer wishes to charge a
premium that is sufficient to guarantee that it will lose money 5% of the time on such groups. Obtain the appropriate
premium by each of the following ways:

1. Using a normal approximation to the aggregate claims distribution.
2. Using a lognormal approximation.
3. Using a gamma approximation.
4. Using the compound Poisson approximation that matches the means.

In order to make the answer self-contained, the code below includes the data munging to re-create the table, pasted
from a pdf.

230 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [149]: data = '''1
.....: 100,000
.....: 0.10
.....: 500
.....: 2
.....: 200,000
.....: 0.02
.....: 500
.....: 3
.....: 300,000
.....: 0.02
.....: 500
.....: 4
.....: 200,000
.....: 0.10
.....: 300
.....: 5
.....: 200,000
.....: 0.10
.....: 500'''
.....:

In [150]: sdata = data.split('\n')

In [151]: df = pd.DataFrame(zip(*[iter(sdata)]*4),
.....: columns=['Class', 'Benefit', 'q', 'Number'])
.....:

In [152]: df.Benefit = df.Benefit.str.replace(',','').astype(float)

In [153]: df.q = df.q.astype(float)

In [154]: df.Number = df.Number.astype(int)

In [155]: df = df.set_index('Class')

In [156]: qd(df)

Benefit q Number
Class
1 1e+05 0.1 500
2 2e+05 0.02 500
3 3e+05 0.02 500
4 2e+05 0.1 300
5 2e+05 0.1 500

Next, build the exact solution for the gross book as a Portfolio (extra credit).

In [157]: a = [build(f'agg Class.{i} {r.q * r.Number} claims '
.....: f'dsev [{r.Benefit / 100000}] '
.....: f'binomial {r.q}')
.....: for i, r in df.iterrows()]
.....:

In [158]: p = Portfolio('KPW.9.73p', a)

In [159]: p.update(log2=10, bs=1, remove_fuzz=True)

In [160]: qd(p)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X

(continues on next page)

2.13. Published Problems and Examples 231

aggregate Documentation, Release 0.22.0

(continued from previous page)
Class.1 Freq 50 0.13416 0.11926

Sev 1 1 0 0 0
Agg 50 50 -8.4155e-14 0.13416 0.13416 0.11926 0.11926

Class.2 Freq 10 0.31305 0.30666
Sev 2 2 0 0 0
Agg 20 20 5.7554e-13 0.31305 0.31305 0.30666 0.30666

Class.3 Freq 10 0.31305 0.30666
Sev 3 3 0 0 0
Agg 30 30 2.9909e-13 0.31305 0.31305 0.30666 0.30666

Class.4 Freq 30 0.17321 0.15396
Sev 2 2 0 0 0
Agg 60 60 -1.3123e-13 0.17321 0.17321 0.15396 0.15396

Class.5 Freq 50 0.13416 0.11926
Sev 2 2 0 0 0
Agg 100 100 -1.1879e-13 0.13416 0.13416 0.11926 0.11926

total Freq 150 0.077917 0.070413
Sev 1.7333 1.7333 0 0.33086 0.081688
Agg 260 260 9.77e-15 0.082527 0.082527 0.083622 0.083622

log2 = 10, bandwidth = 1, validation: not unreasonable.

Build the reinsurer’s loss distribution exactly, as p_ceded, a Portfolio, and the compound Poisson approxima-
tion cp_ceded, an Aggregate. The temporary variable bit is used to calculate the mixed severity distribution.

In [161]: a_ceded = [build(f'agg Class.{i}.c {r.q * r.Number} claims '
.....: f'dsev [{r.Benefit / 100000 - 1}] '
.....: f'binomial {r.q}')
.....: for i, r in df.query('Benefit > 100000').iterrows()]
.....:

In [162]: p_ceded = Portfolio('KPW.9.73pc', a_ceded)

In [163]: p_ceded.update(log2=10, bs=1, remove_fuzz=True)

In [164]: qd(p_ceded)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
Class.2.c Freq 10 0.31305 0.30666

Sev 1 1 0 0 0
Agg 10 10 1.0121e-12 0.31305 0.31305 0.30666 0.30666

Class.3.c Freq 10 0.31305 0.30666
Sev 2 2 0 0 0
Agg 20 20 5.7554e-13 0.31305 0.31305 0.30666 0.30666

Class.4.c Freq 30 0.17321 0.15396
Sev 1 1 0 0 0
Agg 30 30 -9.6367e-14 0.17321 0.17321 0.15396 0.15396

Class.5.c Freq 50 0.13416 0.11926
Sev 1 1 0 0 0
Agg 50 50 -8.4155e-14 0.13416 0.13416 0.11926 0.11926

total Freq 100 0.095708 0.087165
Sev 1.1 1.1 0 0.27273 2.6667
Agg 110 110 1.4877e-14 0.1 0.1 0.10689 0.10689

log2 = 10, bandwidth = 1, validation: not unreasonable.

In [165]: bit = df.query('Benefit > 100000')

In [166]: bit['Claims'] = bit.q * bit.Number

In [167]: bit.groupby('Benefit').Claims.sum()
Out[167]:
Benefit

(continues on next page)

232 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
200000.0 90.0
300000.0 10.0
Name: Claims, dtype: float64

In [168]: cp_ceded = build('agg CP.Approx '
.....: f'{bit.Claims.sum()} claims '
.....: f'dsev [1 2] [0.9 0.1] '
.....: 'poisson')
.....:

In [169]: qd(cp_ceded)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 100 0.1 0.1
Sev 1.1 1.1 0 0.27273 0.27273 2.6667 2.6667
Agg 110 110 6.1506e-14 0.10365 0.10365 0.11469 0.11469
log2 = 14, bandwidth = 1, validation: not unreasonable.

Compute the various estimated premiums, the 95%iles of the aggregate loss distribution.

In [170]: prem_confidence = 0.95

In [171]: appx = p_ceded.approximate('all')

In [172]: ans = {k: v.ppf(prem_confidence) for k, v in appx.items()}

In [173]: ans['FFT'] = p_ceded.q(prem_confidence)

In [174]: ans['Comp Po'] = cp_ceded.q(prem_confidence)

In [175]: qd(pd.DataFrame(ans.values(),
.....: index=pd.Index(ans.keys(), name='method'),
.....: columns=['premium']).sort_values('premium'),
.....: accuracy=5)
.....:

premium
method
FFT 128
norm 128.09
slognorm 128.42
sgamma 128.42
gamma 128.7
lognorm 128.97
Comp Po 129

Exercise 9.74. A group insurance contract covers 1,000 employees. An employee can have at most one claim per
year. For 500 employees, there is a 0.02 probability of a claim, and when there is a claim, the amount has an
exponential distribution with mean 500. For 250 other employees, there is a 0.03 probability of a claim and amounts
are exponential with mean 750. For the remaining 250 employees, the probability is 0.04 and the mean is 1,000.
Determine the exact mean and variance of total claims payments. Next, construct a compound Poisson model with
the same mean and determine the variance of this model.

In [176]: kpw_9_74p = build('port KPW.9.74p '
.....: 'agg A 10. claims sev 500 * expon binomial 0.02 '
.....: 'agg B 7.5 claims sev 750 * expon binomial 0.03 '
.....: 'agg C 10. claims sev 1000 * expon binomial 0.04 ')
.....:

In [177]: qd(kpw_9_74p)
(continues on next page)

2.13. Published Problems and Examples 233

aggregate Documentation, Release 0.22.0

(continued from previous page)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
A Freq 10 0.31305 0.30666

Sev 500 500 -6.6667e-07 1 1 2 2
Agg 5000 5000 -6.6667e-07 0.44497 0.44497 0.66748 0.66748

B Freq 7.5 0.35963 0.34851
Sev 750 750 -2.963e-07 1 1 2 2
Agg 5625 5625 -2.963e-07 0.51251 0.51251 0.76882 0.76882

C Freq 10 0.30984 0.29693
Sev 1000 1000 -1.6667e-07 1 1 2 2
Agg 10000 10000 -1.6667e-07 0.44272 0.44272 0.66417 0.66417

total Freq 27.5 0.18781 0.18203
Sev 750 750 -3.2323e-07 1.0778 2.372
Agg 20625 20625 -3.2323e-07 0.27794 0.27794 0.44276 0.44276

log2 = 16, bandwidth = 2, validation: not unreasonable.

In [178]: mv(kpw_9_74p)
mean = 20625
variance = 3.286094e+07
std dev = 5732.45

Compound Poisson approximation is easy to construct as a mixture.

In [179]: kpw_9_74cp = build('agg KPW.9.74.cp [10 7.5 10] claims sev [500 750␣
↪→1000] * expon poisson')

In [180]: qd(kpw_9_74cp)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 27.5 0.19069 0.19069
Sev 750 750 -3.2323e-07 1.0778 1.0778 2.372 2.372
Agg 20625 20625 -3.2323e-07 0.28036 0.28036 0.44729 0.44729
log2 = 16, bandwidth = 2, validation: not unreasonable.

In [181]: mv(kpw_9_74cp)
mean = 20625
variance = 3.34375e+07
std dev = 5782.52

2.13.6 Bahnemann Monograph

Examples from the CAS publishedmonograph Bahnemann [2015], Distributions for actuaries, which is a text for CAS
Part 8. It is available for free on the [CAS Website](https://www.casact.org/monograph/cas-monograph-no-2).

Contents

Chapter 4: Aggregate Claims
• Example 4.1 Simple Discrete-Discrete Aggregate

• Example 4.2, Poisson-Gamma (Tweedie) Aggregate

• Example 4.3, Tweedie Approximations

• Example 4.4, Poisson-Discrete Approximation

• Example 4.5, Poisson-Gamma Approximation

• Example 4.15, Poisson-Lognormal With Policy Limit

234 Chapter 2. User Guides

https://www.casact.org/monograph/cas-monograph-no-2

aggregate Documentation, Release 0.22.0

• Problems 4.7 and 13, Poisson-Gamma Distribution and Approximations

• Example 5.13, Poisson-Lognormal Layer Statistics

• Example 6.3, Lognormal Increased Limits Factors (ILFs)

• Example 6.4, Layer Premium

• Example 6.5, Risk Loads

• Example 6.6, Aggregate Premiums

• Example 6.7, Deductible Credits

• Summary of Created aggregate objects

Simple Discrete Aggregate, Example 4.1

Assume that n = 0, 1, 2 are the only possible numbers of claims and they occur with probabilities 0.6, 0.3 and 0.1,
and that there exist just three potential claim sizes: 1, 2, and 3 with probabilities 0.4, 0.5 and 0.1. (Note: the text
uses claim sizes 100, 200 and 300.) Compute the distribution of possible outcomes and its mean and variance.
Imports and convenience functions.

In [1]: from aggregate import build, qd, mv

In [2]: import matplotlib.pyplot as plt

Build the aggregate and display key statistics.

In [3]: a = build('agg Bahn.4.1 dfreq[0 1 2][.6 .3 .1] '
...: 'dsev[1 2 3][.4 .5 .1]')
...:

In [4]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.5 1.3416 0.99381
Sev 1.7 1.7 -1.1102e-16 0.37665 0.37665 0.36568 0.36568
Agg 0.85 0.85 -2.2204e-16 1.4435 1.4435 1.3333 1.3333
log2 = 4, bandwidth = 1, validation: not unreasonable.

In [5]: mv(a)
mean = 0.85
variance = 1.5055
std dev = 1.22699

Display all possible outcomes. Compare with the table on p. 107.

In [6]: qd(a.density_df.query('p_total > 0') [['p_total', 'F']])

p_total F
loss
0.0 0.6 0.6
1.0 0.12 0.72
2.0 0.166 0.886
3.0 0.07 0.956
4.0 0.033 0.989
5.0 0.01 0.999
6.0 0.001 1

2.13. Published Problems and Examples 235

aggregate Documentation, Release 0.22.0

Poisson-Gamma (Tweedie) Aggregate, Example 4.2

The text considers a Tweedie with expected claim count λ = 2.5 and gammma shape 3 and scale 400. It computes
the mean, variance and skewness, and uses the series expansion for the distribution to compute the CDF at various
points (Table 4.1). These results can be replicated as follows.

In [7]: a = build('agg Bahn.4.2 2.5 claims '
...: 'sev 400 * gamma 3 poisson')
...:

In [8]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2.5 0.63246 0.63246
Sev 1200 1200 1.5543e-15 0.57735 0.57735 1.1547 1.1547
Agg 3000 3000 -2.7578e-13 0.7303 0.7303 0.91287 0.91287
log2 = 16, bandwidth = 1/2, validation: not unreasonable.

In [9]: mv(a)
mean = 3000
variance = 4800000
std dev = 2190.89

Extract various points of the pmf, cdf, and sf. The adjustment to the index is cosmetic. aggregate returns the
entire distribution. The left plot shows the mixed density, with a mass at zero; right shows the cdf.

In [10]: bit = a.density_df.loc[
....: sorted(np.hstack((500, np.arange(0, 10000.5, 1000)))),
....: ['p', 'F', 'S']]
....:

In [11]: qd(bit, accuracy=4)

p F S
loss
0.0 0.082085 0.082085 0.91792
500.0 5.9764e-05 0.10958 0.89042
1000.0 8.8058e-05 0.18677 0.81323
2000.0 9.6726e-05 0.37558 0.62442
3000.0 8.6514e-05 0.56132 0.43868
4000.0 6.6611e-05 0.71519 0.28481
5000.0 4.5895e-05 0.82731 0.17269
6000.0 2.8971e-05 0.90135 0.098646
7000.0 1.7022e-05 0.94653 0.053468
8000.0 9.4148e-06 0.97234 0.027662
9000.0 4.9432e-06 0.98627 0.013727
10000.0 2.4799e-06 0.99344 0.006561

In [12]: fig, axs = plt.subplots(1, 2, figsize=(3.5*2, 2.45), constrained_
↪→layout=True, squeeze=True)

In [13]: ax0, ax1 = axs.flat

In [14]: (a.density_df.p / a.bs).plot(ylim=[0, 0.0002], xlim=[-100, 10000], lw=2,␣
↪→ax=ax0)
Out[14]: <Axes: xlabel='loss'>

In [15]: ax0.set(title='Density')
Out[15]: [Text(0.5, 1.0, 'Density')]

In [16]: a.density_df.F.plot(ylim=[-0.05, 1.05], xlim=[-100, 10000], lw=2, ax=ax1)

(continues on next page)

236 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
Out[16]: <Axes: xlabel='loss'>

In [17]: ax0.set(title='Mixed density');

In [18]: ax1.set(title='Distribution function');

Approximations to the Tweedie, Example 4.3

aggregate largely circumvents the need for approximations, but it does support their creation. The following
reproduces Table 4.3.

In [19]: fz = a.approximate('all')

In [20]: bit['Normal'] = fz['norm'].cdf(bit.index)

In [21]: bit['Norm err'] = bit.Normal / bit.F - 1

In [22]: bit['sGamma'] = fz['sgamma'].cdf(bit.index)

In [23]: bit['sGamma err'] = bit.sGamma / bit.F - 1

In [24]: qd(bit, accuracy=4)

p F S Normal Norm err sGamma sGamma err
loss
0.0 0.082085 0.082085 0.91792 0.085452 0.041016 0.045932 -0.44044
500.0 5.9764e-05 0.10958 0.89042 0.12692 0.15821 0.10104 -0.077947
1000.0 8.8058e-05 0.18677 0.81323 0.18066 -0.032733 0.17751 -0.049594
2000.0 9.6726e-05 0.37558 0.62442 0.32404 -0.13723 0.36803 -0.020087
3000.0 8.6514e-05 0.56132 0.43868 0.5 -0.10924 0.56073 -0.0010453
4000.0 6.6611e-05 0.71519 0.28481 0.67596 -0.054848 0.71854 0.0046875
5000.0 4.5895e-05 0.82731 0.17269 0.81934 -0.0096235 0.83105 0.0045249
6000.0 2.8971e-05 0.90135 0.098646 0.91455 0.014639 0.90379 0.0027037
7000.0 1.7022e-05 0.94653 0.053468 0.96606 0.020626 0.94752 0.0010466
8000.0 9.4148e-06 0.97234 0.027662 0.98876 0.01689 0.97238 4.3133e-05
9000.0 4.9432e-06 0.98627 0.013727 0.99692 0.01079 0.98589 -0.00038586
10000.0 2.4799e-06 0.99344 0.006561 0.9993 0.0059007 0.99298 -0.00046669

Here is Table 4.4. The FFT overstates F (0) because of discretization error.

In [25]: a2 = build('agg Bahn.4.2b 10 claims '
....: 'sev 6000 * gamma 0.05 poisson')
....:

In [26]: qd(a2)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 10 0.31623 0.31623

(continues on next page)

2.13. Published Problems and Examples 237

aggregate Documentation, Release 0.22.0

(continued from previous page)
Sev 300 299.94 -0.00018672 4.4721 4.473 8.9443 8.9441
Agg 3000 2999.4 -0.00018672 1.4491 1.4494 2.8293 2.8293
log2 = 16, bandwidth = 5, validation: fails sev mean, agg mean.

In [27]: fz = a2.approximate('all')

In [28]: bit = a2.density_df.loc[
....: sorted(np.hstack((500, np.arange(0, 20000, 2000)))),
....: ['p', 'F', 'S']]
....:

In [29]: bit['Normal'] = fz['norm'].cdf(bit.index)

In [30]: bit['Norm err'] = bit.Normal / bit.F - 1

In [31]: bit['sGamma'] = fz['sgamma'].cdf(bit.index)

In [32]: bit['sGamma err'] = bit.sGamma / bit.F - 1

In [33]: qd(bit, accuracy=4)

p F S Normal Norm err sGamma sGamma err
loss
0.0 0.047861 0.047861 0.95214 0.24512 4.1215 0.12322 1.5746
500.0 0.0014101 0.33964 0.66036 0.28267 -0.16774 0.33446 -0.015242
2000.0 0.00055391 0.59253 0.40747 0.40909 -0.30959 0.5887 -0.0064723
4000.0 0.00028651 0.75148 0.24852 0.59101 -0.21353 0.75043 -0.0013915
6000.0 0.00017056 0.84025 0.15975 0.75496 -0.1015 0.84022 -3.1891e-05
8000.0 0.00010741 0.89466 0.10534 0.87498 -0.022001 0.89493 0.00030275
10000.0 6.9725e-05 0.92946 0.070541 0.94633 0.018153 0.92976 0.0003232
12000.0 4.6131e-05 0.95227 0.047735 0.98079 0.029954 0.95251 0.00025575
14000.0 3.0919e-05 0.96745 0.032549 0.9943 0.027755 0.96762 0.00017682
16000.0 2.0919e-05 0.97768 0.022323 0.99861 0.021408 0.97779 0.00011036
18000.0 1.4255e-05 0.98462 0.01538 0.99972 0.015336 0.98468 6.1254e-05

Poisson-Discrete Distribution, Example 4.4

The claim-count random variable is Poisson distributed with mean 1.75. Severity has a discrete distribution with
outcomes 1, 2, 3, 4, 5 occurring with probabilities 0.2, 0.4, 0.2, 0.15, 0.05 respectively. Compute the aggregate
distribution.
Here is Table 4.5.

In [34]: a = build('agg Bahn.4.4 1.75 claims '
....: 'dsev [1 2 3 4 5] [.2 .4 .2 .15 .05] '
....: 'poisson')
....:

In [35]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.75 0.75593 0.75593
Sev 2.45 2.45 -2.2204e-16 0.45588 0.45588 0.55603 0.55603
Agg 4.2875 4.2875 2.2204e-16 0.83078 0.83078 0.95453 0.95453
log2 = 7, bandwidth = 1, validation: not unreasonable.

In [36]: qd(a.density_df.query('p > .001')[['p', 'F', 'S']], accuracy=4)

p F S

(continues on next page)

238 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
loss
0.0 0.17377 0.17377 0.82623
1.0 0.060821 0.23459 0.76541
2.0 0.13229 0.36688 0.63312
3.0 0.10464 0.47152 0.52848
4.0 0.11704 0.58855 0.41145
5.0 0.093249 0.6818 0.3182
6.0 0.078644 0.76045 0.23955
7.0 0.064101 0.82455 0.17545
8.0 0.049889 0.87444 0.12556
9.0 0.037655 0.91209 0.087908
10.0 0.02737 0.93946 0.060537
11.0 0.019672 0.95913 0.040865
12.0 0.013764 0.9729 0.027101
13.0 0.0094201 0.98232 0.017681
14.0 0.0063168 0.98864 0.011364
15.0 0.0041654 0.9928 0.0071986
16.0 0.0027032 0.9955 0.0044954
17.0 0.0017249 0.99723 0.0027705
18.0 0.0010842 0.99831 0.0016863

Poisson-Gamma Distribution, Example 4.5

Aggregate losses have Poisson frequency with mean 2.5 and gamma severity with shape 3 and scale 400. Hence the
aggregate mean equals 1,200 and variance equals 480,000. Now approximate the distribution function using FFT
with a fine bucket size and the midpoint method for assigning claim-size probabilities and then bs=20 and bs=100.
Here is Table 4.6, comparing the distributions. The update method re-runs the FFT computation with different
options, here altering bs.

In [37]: import numpy as np

In [38]: import pandas as pd

In [39]: a = build('agg Bahn.4.5 2.5 claims '
....: 'sev 400 * gamma 3 poisson')
....:

In [40]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 2.5 0.63246 0.63246
Sev 1200 1200 1.5543e-15 0.57735 0.57735 1.1547 1.1547
Agg 3000 3000 -2.7578e-13 0.7303 0.7303 0.91287 0.91287
log2 = 16, bandwidth = 1/2, validation: not unreasonable.

In [41]: xs = sorted(np.hstack((500, np.arange(0, 10001, 1000))))

In [42]: bit = a.density_df.loc[xs, ['F']]

In [43]: a.update(bs=100)

In [44]: bit100 = a.density_df.loc[xs, ['F']]

In [45]: a.update(bs=20)

In [46]: bit20 = a.density_df.loc[xs, ['F']]

In [47]: bit = pd.concat((bit, bit100, bit20), axis=1, keys=['h0.25', 'h100', 'h20
(continues on next page)

2.13. Published Problems and Examples 239

aggregate Documentation, Release 0.22.0

(continued from previous page)
↪→'])

In [48]: bit[('h100', 'Rel Error')] = bit[('h100', 'F')] / bit[('h0.25', 'F')] - 1

In [49]: bit[('h20', 'Rel Error')] = bit[('h20', 'F')] / bit[('h0.25', 'F')] - 1

In [50]: bit = bit.sort_index(axis=1)

In [51]: qd(bit, accuracy=4)

h0.25 h100 h20
F F Rel Error F Rel Error

loss
0.0 0.082085 0.082146 0.00074147 0.082086 6.3895e-06
500.0 0.10958 0.11579 0.056708 0.11076 0.010735
1000.0 0.18677 0.19565 0.047526 0.18849 0.0092186
2000.0 0.37558 0.38525 0.025749 0.37747 0.0050273
3000.0 0.56132 0.56991 0.015294 0.56301 0.003004
4000.0 0.71519 0.72175 0.0091789 0.71648 0.0018127
5000.0 0.82731 0.8318 0.0054318 0.8282 0.0010783
6000.0 0.90135 0.90417 0.0031276 0.90192 0.00062395
7000.0 0.94653 0.94818 0.0017394 0.94686 0.00034868
8000.0 0.97234 0.97324 0.00093101 0.97252 0.0001875
9000.0 0.98627 0.98675 0.00047913 0.98637 9.6942e-05
10000.0 0.99344 0.99367 0.00023728 0.99349 4.8226e-05

Poisson-Lognormal Distribution With Limit, Example 4.15

Consider an aggregate distribution with mean 3 Poisson frequency and lognormal claim size with parameters (µ, σ) =
(6, 1.5). Moreover, claim size is limited by a policy limit of 1,000. Graph the aggregate distribution.
The log density (left) shows the probability masses at outcomes consisting of only limit losses. The distribution (right)
shows the corresponding jumps. Compare with Figure 4.4.

In [52]: a = build('agg Bahn.4.15 '
....: '3 claims '
....: '1000 xs 0 '
....: 'sev exp(6) * lognorm 1.5 '
....: 'poisson')
....:

In [53]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 3 0.57735 0.57735
Sev 502.97 502.97 1.1478e-09 0.74753 0.74753 0.23542 0.23542
Agg 1508.9 1508.9 1.1478e-09 0.72083 0.72083 0.82314 0.82314
log2 = 16, bandwidth = 1/4, validation: not unreasonable.

In [54]: fig, axs = plt.subplots(1, 2, figsize=(2*3.5, 2.45), constrained_
↪→layout=True)

In [55]: ax0, ax1 = axs.flat

In [56]: a.density_df.p.plot(ax=ax0, logy=True, label='FFT');

In [57]: a.density_df.F.plot(ax=ax1, label='FFT');

In [58]: ax0.set(ylabel='log density');

(continues on next page)

240 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)

In [59]: ax0.set(ylabel='distribution', ylim=[0,1]);

In [60]: ax1.axvline(1000, c='C7', lw=.5);

In [61]: ax1.axvline(2000, c='C7', lw=.5);

In [62]: ax1.axvline(3000, c='C7', lw=.5);

Poisson-Gamma Distribution and Approximations, Problems 4.7 and 13

An aggregate distribution has mean 8 Poisson frequency and gamma severity with shape 0.2 and scale 3750. Compute
the distribution and compare with normal and shifted-gamma approximations.

In [63]: a = build('agg Bahn.4.7 '
....: '8 claims '
....: 'sev 3750 * gamma 0.2 '
....: 'poisson')
....:

In [64]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 8 0.35355 0.35355
Sev 750 749.98 -2.9119e-05 2.2361 2.2361 4.4721 4.4721
Agg 6000 5999.8 -2.9119e-05 0.86603 0.86605 1.5877 1.5877
log2 = 16, bandwidth = 2, validation: not unreasonable.

In [65]: xs = np.arange(0, 30000,3000)

In [66]: qd(a.density_df.loc[xs, ['p', 'F','S']], accuracy=4)

p F S
loss
0.0 0.0018002 0.0018002 0.9982
3000.0 0.00020926 0.34209 0.65791
6000.0 0.00014322 0.60704 0.39296
9000.0 8.7227e-05 0.7775 0.2225
12000.0 5.0019e-05 0.87823 0.12177
15000.0 2.7618e-05 0.93494 0.065065
18000.0 1.4853e-05 0.96586 0.034143
21000.0 7.8339e-06 0.98233 0.017666
24000.0 4.0696e-06 0.99096 0.0090364
27000.0 2.0885e-06 0.99542 0.0045787

aggregate readily computes approximations and returns frozen scipy.stats objects.

2.13. Published Problems and Examples 241

aggregate Documentation, Release 0.22.0

In [67]: fz = a.approximate('all')

In [68]: comp = pd.DataFrame({k: v.cdf(xs) for k, v in fz.items()}, index=xs)

In [69]: comp['agg'] = a.density_df.loc[xs, 'F',]

In [70]: comp.loc[:, [f'{k} err' for k in fz.keys()]] = comp.loc[:, fz.keys()].
↪→values / comp.loc[:, ['agg']].values - 1

In [71]: comp = comp.sort_index(axis=1)

In [72]: qd(comp, accuracy=4)

agg gamma gamma err lognorm lognorm err norm norm err ␣
↪→sgamma sgamma err \
0 0.0018002 0 -1 0 -1 0.12411 67.945 0.
↪→026306 13.613
3000 0.34209 0.33977 -0.0067746 0.29031 -0.15135 0.28186 -0.17605 0.
↪→33624 -0.017089
6000 0.60704 0.61485 0.012868 0.64583 0.063894 0.50001 -0.17631 0.
↪→60542 -0.0026701
9000 0.7775 0.78363 0.0078835 0.82019 0.054907 0.71816 -0.07632 0.
↪→77824 0.00095764
12000 0.87823 0.88084 0.0029796 0.90331 0.02856 0.8759 -0.0026494 0.
↪→87926 0.0011727
15000 0.93494 0.9352 0.00028096 0.94508 0.010852 0.95837 0.025066 0.
↪→93559 0.0007034
18000 0.96586 0.96506 -0.00082253 0.96731 0.0015039 0.98954 0.024521 0.
↪→96614 0.00028959
21000 0.98233 0.98128 -0.0010704 0.97975 -0.0026265 0.99805 0.016002 0.
↪→98239 5.1729e-05
24000 0.99096 0.99002 -0.00095081 0.98703 -0.0039667 0.99973 0.0088504 0.
↪→99091 -5.1265e-05
27000 0.99542 0.9947 -0.00072386 0.99145 -0.0039875 0.99997 0.0045731 0.
↪→99534 -7.866e-05

slognorm slognorm err
0 0.058626 31.567
3000 0.31389 -0.082441
6000 0.59173 -0.025232
9000 0.77906 0.002005
12000 0.88465 0.0073188
15000 0.94022 0.0056501
18000 0.96881 0.0030552
21000 0.9835 0.001191
24000 0.99113 0.0001684
27000 0.99515 -0.00027715

Poisson-Lognormal Layer Statistics, Example 5.13

Consider an aggregate distribution with mean 15 Poisson frequency and lognormal claim size with parameters
(µ, σ) = (5.9809, 1.8). What are the distribution characteristics for random variable S for claims in the layer
5,000 excess of 3,000?
The exact and FFT-estimated mean, cv, and skewness are reported in the describe dataframe, for frequency and
severity. The values reported agree with the text, up to rounding.

In [73]: a = build('agg Bahn.5.13 '
....: '15 claims 5000 xs 3000 '
....: 'sev exp(5.9809) * lognorm 1.8 ! '

(continues on next page)

242 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: 'poisson')
....:

In [74]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 15 0.2582 0.2582
Sev 385.68 385.68 -3.4957e-09 3.1319 3.1319 3.1942 3.1942
Agg 5785.3 5785.3 -3.4982e-09 0.84887 0.84887 0.93405 0.93405
log2 = 16, bandwidth = 1, validation: not unreasonable.

In [75]: mv(a)
mean = 5785.25
variance = 2.411727e+07
std dev = 4910.93

The exact severity can be accessed directly, as a.sevs[0].fz, allowing us to compute the expected layer claim
count. The aggregate can then be written in conditional form, producing the same statistics. The distribution function
shows probability masses at multiples of the limit.

In [76]: xs = 15 * a.sevs[0].fz.sf(3000)

In [77]: print(f'excess claim count = {xs:.5f}')
excess claim count = 1.95359

In [78]: a = build('agg Bahn.5.13b '
....: f'{xs} claims 5000 xs 3000 '
....: 'sev exp(5.9809) * lognorm 1.8 '
....: 'poisson')
....:

In [79]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1.9536 0.71546 0.71546
Sev 2961.3 2961.3 -3.4956e-09 0.63853 0.63853 -0.16374 -0.16374
Agg 5785.3 5785.3 -3.4982e-09 0.84887 0.84887 0.93405 0.93405
log2 = 16, bandwidth = 1, validation: not unreasonable.

In [80]: fig, ax = plt.subplots(1,1,figsize=(3.5, 2.45))

In [81]: a.density_df.F.plot(ax=ax, label='FFT');

In [82]: fz = a.approximate('gamma')

In [83]: ax.plot(a.density_df.loss, fz.cdf(a.density_df.loss), c='C1',␣
↪→label='gamma approx.');

In [84]: ax.axvline(5000, c='C7', lw=.5);

In [85]: ax.axvline(10000, c='C7', lw=.5);

In [86]: ax.axvline(15000, c='C7', lw=.5);

In [87]: ax.set(ylabel='cdf');

In [88]: ax.legend(loc='lower right');

2.13. Published Problems and Examples 243

aggregate Documentation, Release 0.22.0

Lognormal Increased Limits Factors (ILFs), Example 6.3

Indemnity losses for a portfolio of insurance policies have a lognormal claim-size distribution with parameters
(µ, σ) = (7, 2.4). The policy per-claim limit applies only to the indemnity portion of a claim, and the average
per-claim loss adjustment expense is 2,200. Claim frequency for these policies is 0.0005 per exposure unit, and
variable expenses equal 35% of premium.
A lognormal with σ = 2.4 has cv

√
exp(2.42)− 1 = 17.78 and is extremely thick-tailed, despite having moments

of all orders. It is challenging to approximate numerically. Luckily, we only need to compute up to 5M. The ag-
gregate parameters deliberately select a range that is too narrow for the entire distribution, but adequate for our
purposes. Use log2=17 and select bs greater than 5e6 // 2**17 = 38. We use bs=50. It is important
to set normalize=False to avoid rescaling bucket probabilities to sum to one. These parameters are not a good
model for the entire distribution; the mean error is too high.
The density_df dataframe includes limited expected values. Here is a sample.

In [89]: a = build('agg Bahn.6.3 '
....: '1 claim '
....: 'sev exp(7) * lognorm 2.4 '
....: 'fixed',
....: bs=50, log2=17,
....: normalize=False,
....:)
....:

In [90]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 19536 18328 -0.061835 17.786 7.7935 5680 27.885
Agg 19536 18328 -0.061835 17.786 7.7935 5680 27.885
log2 = 17, bandwidth = 50, validation: fails sev mean, agg mean.

In [91]: xs = [1e5, 5e5, 7.5e5, 1e6, 2e6, 3e6, 4e6, 5e6]

In [92]: qd(a.density_df.loc[xs, ['F', 'S', 'lev']], accuracy=4)

F S lev
loss
100000.0 0.96998 0.030021 8895.8
500000.0 0.99463 0.0053706 13625
750000.0 0.99674 0.0032647 14668
1000000.0 0.99774 0.002257 15345
2000000.0 0.99912 0.00087817 16738
3000000.0 0.99951 0.00048765 17390
4000000.0 0.99968 0.00031609 17782
5000000.0 0.99978 0.00022372 18048

The following reproduces Table 6.1. The ILF factors assume fixed (middle) and variable ALAE (right).

244 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [93]: alae = 2200

In [94]: bit = a.density_df.loc[xs, ['lev']]

In [95]: bit['Fixed ALAE'] = (bit.lev + alae) / (bit.lev.iloc[0] + alae)

In [96]: bit['Prop ALAE'] = bit.lev / bit.lev.iloc[0]

In [97]: qd(bit, accuracy=4)

lev Fixed ALAE Prop ALAE
loss
100000.0 8895.8 1 1
500000.0 13625 1.4262 1.5317
750000.0 14668 1.5202 1.6488
1000000.0 15345 1.5812 1.725
2000000.0 16738 1.7067 1.8815
3000000.0 17390 1.7655 1.9549
4000000.0 17782 1.8009 1.9989
5000000.0 18048 1.8248 2.0288

Layer Premium, Example 6.4

(Continues Example 6.3.) Calculate the premium for successive excess layers of insurance for a policy with expo-
sure equal 400. Use the ILFs under the assumption that the average per-claim ALAE payment is 2,200. Premium
amounts for the successive million-dollar layers obtained from these layer factors applied to the basic-limit premium
are displayed in Table 6.2 and reproduced below.

In [98]: exposure = 400

In [99]: var_exp = 0.35

In [100]: frequency = 0.0005

In [101]: bit['Premium'] = exposure * frequency * (bit['lev'] + alae) / (1 - var_
↪→exp)

In [102]: bit['Layer Premium'] = np.diff(bit.Premium, prepend=0)

In [103]: qd(bit)

lev Fixed ALAE Prop ALAE Premium Layer Premium
loss
100000.0 8895.8 1 1 3414.1 3414.1
500000.0 13625 1.4262 1.5317 4869.3 1455.2
750000.0 14668 1.5202 1.6488 5190.1 320.73
1000000.0 15345 1.5812 1.725 5398.4 208.38
2000000.0 16738 1.7067 1.8815 5827 428.52
3000000.0 17390 1.7655 1.9549 6027.7 200.71
4000000.0 17782 1.8009 1.9989 6148.3 120.63
5000000.0 18048 1.8248 2.0288 6230.1 81.76

2.13. Published Problems and Examples 245

aggregate Documentation, Release 0.22.0

Risk Loads, Example 6.5

Example 6.5, computes risk loads as a percentage of standard deviation. aggregate can compute multiple limits
at once, and the report_df dataframe returns individual severity and aggregate distribution statistics. The risk
loads can be deduced from these. The risk load can be computed as k' * ex2 or k * agg_cv (not shown).
The following code reproduces Table 6.3. First, define the controlling variables, and then set up the tower of limits
within one object, using Vectorization: Limit Profiles and Mixed Severity.

In [104]: k_prime = 0.0277

In [105]: m = 400

In [106]: ϕ = 0.0005

In [107]: u = 0.2

In [108]: k = k_prime / np.sqrt(m * ϕ)

In [109]: limits = [1e5, 5e5, 1e6, 2e6, 3e6, 4e6, 5e6]

In [110]: bl = build('agg Bahn.6.5 '
.....: f'{m * ϕ} claims '
.....: f'{limits} xs 0 '
.....: 'sev exp(7) * lognorm 2.4 '
.....: 'poisson'
.....: , bs=50, log2=18)
.....:

In [111]: qd(bl.report_df.iloc[:, :-4], accuracy=4)

view 0 1 2 3 4 5 6
statistic
name Bahn.6.5 Bahn.6.5 Bahn.6.5 Bahn.6.5 Bahn.6.5 Bahn.6.5 Bahn.6.5
limit 1e+05 5e+05 1e+06 2e+06 3e+06 4e+06 5e+06
attachment 0 0 0 0 0 0 0
el 1779.2 2725.1 3069 3347.6 3478 3556.5 3609.6
freq_m 0.2 0.2 0.2 0.2 0.2 0.2 0.2
freq_cv 2.2361 2.2361 2.2361 2.2361 2.2361 2.2361 2.2361
freq_skew 2.2361 2.2361 2.2361 2.2361 2.2361 2.2361 2.2361
sev_m 8896 13626 15345 16738 17390 17782 18048
sev_cv 2.3401 3.7719 4.63 5.6565 6.3357 6.851 7.2685
sev_skew 3.3416 7.0585 9.9524 14.303 17.849 20.975 23.827
agg_m 1779.2 2725.1 3069 3347.6 3478 3556.5 3609.6
agg_cv 5.6903 8.7257 10.592 12.844 14.342 15.482 16.406
agg_skew 8.1747 15.898 22.157 31.683 39.494 46.396 52.704

Next, extract the required columns from report_df and manipulate to compute the ILFs.

In [112]: bit = bl.report_df.loc[['sev_m', 'sev_cv', 'agg_m', 'agg_cv']].iloc[:, :-
↪→4].T

In [113]: bit.index = limits

In [114]: bit.index.name = 'limit'

In [115]: bit['vx'] = (bit.sev_m * bit.sev_cv) ** 2

In [116]: bit['ex2'] = bit.vx + bit.sev_m**2

In [117]: bit['risk load'] = k_prime * bit.ex2 ** 0.5

(continues on next page)

246 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [118]: bit['lev'] = (1+u) * bit.sev_m

In [119]: bit['ILF w/o risk'] = bit['lev'] / bit.loc[100000, 'lev']

In [120]: bit['ILF with risk'] = (bit['lev'] + bit['risk load']) / (bit.loc[100000,
↪→ 'lev'] + bit.loc[100000, 'risk load'])

In [121]: qd(bit, accuracy=4)

statistic sev_m sev_cv agg_m agg_cv vx ex2 risk load lev ILF w/o␣
↪→risk \
limit ␣
↪→

100000.0 8896 2.3401 1779.2 5.6903 4.3337e+08 5.1251e+08 627.09 10675 ␣
↪→ 1
500000.0 13626 3.7719 2725.1 8.7257 2.6414e+09 2.8271e+09 1472.8 16351 1.
↪→5316
1000000.0 15345 4.63 3069 10.592 5.0478e+09 5.2833e+09 2013.4 18414 1.
↪→7249
2000000.0 16738 5.6565 3347.6 12.844 8.964e+09 9.2441e+09 2663.3 20085 1.
↪→8815
3000000.0 17390 6.3357 3478 14.342 1.2139e+10 1.2442e+10 3089.7 20868 1.
↪→9548
4000000.0 17782 6.851 3556.5 15.482 1.4842e+10 1.5158e+10 3410.4 21339 1.
↪→9989
5000000.0 18048 7.2685 3609.6 16.406 1.7208e+10 1.7534e+10 3667.9 21658 2.
↪→0288

statistic ILF with risk
limit
100000.0 1
500000.0 1.577
1000000.0 1.8074
2000000.0 2.0127
3000000.0 2.1197
4000000.0 2.1897
5000000.0 2.2407

Aggregate Premiums, Example 6.6

(Continues Example 6.3.) Compute expected losses across a variety of occurrence and aggregate limit combinations.
Assume 20% ALAE outside the limits, expected claim count 1.2 with contagion parameter 0.1 (cv of mixing

√
0.1),

and lognormal severity (µ, σ) = (7.6, 2.4) (see errata).
The following code calculates Table 6.4 using FFT aggregate distributions. The last column, showing unlimited
aggregate losses, agrees, but the other columns are slightly different because Bahnemann uses a shifted gamma ap-
proximation.
First, we compute all the aggregates.

In [122]: b = {}

In [123]: for per_claim in [0.5e6, 1e6, 2e6, 3e6, 4e6, 5e6]:
.....: tower = np.array([0] + [i for i in [0, 1e6, 2e6, 3e6, 4e6, 5e6, np.

↪→inf]
.....: if i >= per_claim])
.....: b[per_claim] = build('agg Bahn.6.6 1.2 claims '
.....: f'{per_claim} xs 0 '
.....: 'sev exp(7.6) * lognorm 2.4 '
.....: f'mixed gamma {0.1}**.5 '

(continues on next page)

2.13. Published Problems and Examples 247

aggregate Documentation, Release 0.22.0

(continued from previous page)
.....: f'aggregate ceded to tower {tower} '
.....: , bs=50, log2=18,
.....: normalize=False,
.....:)
.....:

In [124]: qd(pd.concat([i.describe[['E[X]', 'CV(X)', 'Skew(X)']] for i in b.
↪→values()],

.....: keys=b.keys(), names=['Occ limit', 'X']),

.....: accuracy=4)

.....:

E[X] CV(X) Skew(X)
Occ limit X
500000.0 Freq 1.2 0.96609 1.0696

Sev 21743 3.1549 5.3107
Agg 26091 3.0377 4.9943

1000000.0 Freq 1.2 0.96609 1.0696
Sev 25279 3.8778 7.3846
Agg 30335 3.6694 6.7822

2000000.0 Freq 1.2 0.96609 1.0696
Sev 28338 4.7579 10.437
Agg 34006 4.4495 9.4728

3000000.0 Freq 1.2 0.96609 1.0696
Sev 29851 5.3511 12.892
Agg 35821 4.9795 11.66

4000000.0 Freq 1.2 0.96609 1.0696
Sev 30791 5.8075 15.04
Agg 36949 5.3888 13.582

5000000.0 Freq 1.2 0.96609 1.0696
Sev 31444 6.1815 16.99
Agg 37733 5.725 15.332

Next, manipulate the output to determine layer loss costs using the reinsurance_audit_df dataframe. It
tracks statistics for gross, ceded, and net loss across all requested layers, separately for occurrence and aggregate. In
this case there are no occurrence layers. This step takes longer than computing the aggregates!

In [125]: bit = pd.concat([i.reinsurance_audit_df['ceded'].iloc[:-1]
.....: for i in b.values()], keys=b.keys(),
.....: names=['Occ limit', 'kind', 'share', 'limit', 'attach'])
.....:

In [126]: bit['Agg limit'] = bit.index.get_level_values('limit') + bit.index.get_
↪→level_values('attach')

In [127]: bit = bit.droplevel(['kind', 'share', 'limit', 'attach'])

In [128]: bit = bit.set_index('Agg limit', append=True)

In [129]: bit = bit.groupby(level='Occ limit')[['ex']].cumsum()

In [130]: el = bit.unstack('Agg limit').droplevel(0, axis=1)

In [131]: table = pd.concat((el, el / el.loc[500000, np.inf]),
.....: keys=['Loss', 'ILF'])
.....:

In [132]: qd(table.fillna(' - '), accuracy=4)

Agg limit 1000000.0 2000000.0 3000000.0 4000000.0 5000000.0 inf
Occ limit

(continues on next page)

248 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
Loss 500000.0 26088 26091 26091 26091 26091 26091

1000000.0 30133 30334 30335 30335 30335 30335
2000000.0 - 33910 33998 34006 34006 34006
3000000.0 - - 35761 35813 35819 35820
4000000.0 - - - 36908 36942 36949
5000000.0 - - - - 37703 37733

ILF 500000.0 0.99988 1 1 1 1 1
1000000.0 1.1549 1.1626 1.1627 1.1627 1.1627 1.1627
2000000.0 - 1.2997 1.3031 1.3034 1.3034 1.3034
3000000.0 - - 1.3707 1.3726 1.3728 1.3729
4000000.0 - - - 1.4146 1.4159 1.4162
5000000.0 - - - - 1.4451 1.4462

Here is a reconciliation to Table 6.4 of the 2M per claim and 2M aggregate limit expected loss, using the shifted
gamma approximation. The limited aggregate loss is computed using the integral of the survival function fz.sf.
quad is a general purpose numerical integration routine. It returns the integral and estimated error.

In [133]: fz = b[2000000].approximate('sgamma')

In [134]: print(fz.stats())
(34005.90148815674, 22895161300.37269)

In [135]: mv(b[2000000])
mean = 34006.1
variance = 2.289516e+10
std dev = 151311

In [136]: from scipy.integrate import quad

In [137]: quad(fz.sf, 0, 2000000)
Out[137]: (33523.06658768903, 0.000447320519015193)

Deductible Credits, Example 6.7

(Continues Example 6.3.) Consider a portfolio of policies for which the ground-up indemnity claim size has a lognor-
mal distribution with parameters (µ, σ) = (7.0, 2.4) and allocated loss adjustment expense is 20% of the indemnity
amount. The basic limit is 100,000. Calculate the credit factors, as well as the resulting frequency and severity, for
six straight deductible options: 1,000; 2,000; 3,000; 4,000; 5,000; and 10,000. Base frequency equals 0.0005.
We can build all of the required distributions simultaneously using vectorization. Remember that the basic limit is
ground up. The severity is unconditional, indicated by ! at the end of the severity clause. The limit is eroded by the
deductible.

In [138]: deductibles = [0, 1e3, 2e3, 3e3, 4e3, 5e3, 10e3]

In [139]: limits = [100000 - i for i in deductibles]

In [140]: ϕ = 0.0005

In [141]: alae = 1.2

In [142]: bl = build('agg Bahn.6.7 '
.....: f'{ϕ} claims '
.....: f'{limits} xs {deductibles} '
.....: 'sev exp(7) * lognorm 2.4 ! '
.....: 'poisson'
.....: , bs=50, log2=18)
.....:

(continues on next page)

2.13. Published Problems and Examples 249

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [143]: qd(bl.report_df.iloc[:, :-4], accuracy=4)

view 0 1 2 3 4 5 6
statistic
name Bahn.6.7 Bahn.6.7 Bahn.6.7 Bahn.6.7 Bahn.6.7 Bahn.6.7 Bahn.6.7
limit 1e+05 99000 98000 97000 96000 95000 90000
attachment 0 1000 2000 3000 4000 5000 10000
el 4.448 4.1183 3.8926 3.7092 3.5517 3.4124 2.8758
freq_m 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
freq_cv 44.721 44.721 44.721 44.721 44.721 44.721 44.721
freq_skew 44.721 44.721 44.721 44.721 44.721 44.721 44.721
sev_m 8896 8236.6 7785.2 7418.4 7103.4 6824.9 5751.7
sev_cv 2.3401 2.5106 2.6287 2.7269 2.813 2.8907 3.2067
sev_skew 3.3416 3.3681 3.4054 3.4444 3.4833 3.5215 3.6997
agg_m 4.448 4.1183 3.8926 3.7092 3.5517 3.4124 2.8758
agg_cv 113.81 120.85 125.78 129.89 133.51 136.79 150.22
agg_skew 163.49 165.89 168.03 170.02 171.89 173.66 181.54

Next, manipulate the report_df dataframe to compute the required quantities. The final exhibit replicates Table
6.5.

In [144]: bit = bl.report_df.iloc[:, :-4].loc[['attachment', 'freq_m', 'sev_m',
↪→'agg_m']].T

In [145]: bit = bit.rename(columns={'attachment': 'deductible'}).set_index(
↪→'deductible')

In [146]: bit['F(d)'] = np.array([bl.sevs[0].fz.cdf(i) for i in bit.index])

In [147]: bit['freq_m'] = bit.loc[0, 'freq_m'] * (1 - bit['F(d)'])

In [148]: bit['E[X;d]'] = (bit.sev_m[0] - bit.sev_m)

In [149]: bit['C(d)'] = bit['E[X;d]'] / bit.sev_m[0]

In [150]: bit['sev_m'] = bit['sev_m'] / (1 - bit['F(d)']) * alae

In [151]: bit = bit.iloc[:, [-2, 3, -1, 0, 1]]

In [152]: bit['pure prem'] = bit.freq_m * bit.sev_m

In [153]: qd(bit, accuracy=4)

statistic E[X;d] F(d) C(d) freq_m sev_m pure prem
deductible
0.0 0 0 0 0.0005 10675 5.3376
1000.0 659.42 0.48467 0.074125 0.00025766 19180 4.942
2000.0 1110.8 0.59885 0.12487 0.00020057 23289 4.6711
3000.0 1477.7 0.66251 0.16611 0.00016875 26377 4.451
4000.0 1792.7 0.70512 0.20151 0.00014744 28907 4.262
5000.0 2071.2 0.73636 0.23282 0.00013182 31064 4.0949
10000.0 3144.4 0.82147 0.35346 8.9266e-05 38660 3.451

250 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

Summary

Here is a summary of all the objects created in this section.

In [154]: from aggregate import pprint_ex

In [155]: for n, r in build.qlist('^Bahn').iterrows():
.....: pprint_ex(r.program, split=20)
.....:

2.13.7 Enterprise Risk Analysis

This section re-analyzes reinsurance structure alternatives introduced in Brehm et al. [2007], Enterprise Risk Analysis
for Property & Liability Insurance Companies. This book is the ERM text on the syllabus for CAS Exam Part 7.

Reinsurance Example

This section analyzes the example given in Section 2.5 of Enterprise Risk Analysis.
Assumptions. ABCD writes 33M excess property and casualty business.

• ABCD total gross
– Loss ratio: 69.36%
– Expense ratio: 23%
– Combined ratio: 92.36%
– Margin 2.52M

• Casualty
– 14M premium
– 78% expected loss ratio
– 5M limits
– 4M xs 1M reinsurance, ceded premium 4.41M

• Property
– 19M premium
– 63% expected loss ratio
– 20M limits
– 17M xs 3M per risk reinsurance, ceded premium 2.36M
– 95% share of 24M xs 1M cat reinsurance, ceded premium 1.53M with 1@100%
– Cat program designed to cover to 250-year event.

• Reinsurance total
– Average recoveries 5.08M
– Ceded premium 8.3M
– Net premium 24.7M

• Mythical alternative program
– Stop-loss, 20 xs 30, ceded premium 1.98

Additional assumptions. There are no details of the stochastic model, so we assume

2.13. Published Problems and Examples 251

aggregate Documentation, Release 0.22.0

• Frequency and severity models per DecL below,
• Split the property losses into cat and non-cat by assuming that cat premium equals 2M, non-cat premium 17M,
at the same loss ratios (this is just a split of losses, the by line loss ratios are not used), and

• Cat, non-cat and casualty are independent.
• Free and unlimited reinstatements on the catastrophe protection. See REF for a discussion of reinstatements.

Stochastic Models and Baseline Analysis

Construct the gross and net portfolios. All amounts in millions.

Gross Portfolio

The 250-year cat PML is printed last, to compare with the 25M program.

In [1]: from aggregate import build, qd, mv

In [2]: import pandas as pd

In [3]: import matplotlib.pyplot as plt

In [4]: abcd = build('port ABCD '
...: 'agg Casualty 14.0 premium at 78% lr '
...: '5 xs 0 '
...: 'sev lognorm 0.1 cv 10 '
...: 'mixed gamma 0.3 '
...: 'agg PropertyNC 17.0 premium at 63% lr '
...: '25 xs 0 '
...: 'sev lognorm [0.1 1] cv [5 10] wts [.7 .3] '
...: 'mixed gamma 0.1 '
...: 'agg PropertyC 2.0 premium at 63% lr '
...: '150 xs 0 '
...: 'sev 3 * pareto 2.375 - 3 '
...: 'poisson ', bs=1/128, approximation='exact')
...:

In [5]: qd(abcd)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est␣
↪→Skew(X)
unit X ␣
↪→

Casualty Freq 125.93 0.31296 0.60054 ␣
↪→

Sev 0.086717 0.086436 -0.0032438 4.0147 4.0286 9.5592 9.
↪→5552

Agg 10.92 10.885 -0.0032438 0.47532 0.47626 0.88481 0.
↪→88565
PropertyNC Freq 34.918 0.19657 0.24744 ␣
↪→

Sev 0.30672 0.30659 -0.00041535 4.91 4.9121 11.569 11.
↪→569

Agg 10.71 10.706 -0.00041535 0.85384 0.85419 1.9358 1.
↪→9358
PropertyC Freq 0.5801 1.3129 1.3129 ␣
↪→

Sev 2.172 2.172 -9.2692e-07 2.0207 2.0207 11.511 11.
↪→511

Agg 1.26 1.26 -9.2692e-07 2.9601 2.9601 12.398 12.

(continues on next page)

252 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
↪→398
total Freq 161.42 0.24785 0.57516 ␣
↪→

Sev 0.1418 0.14155 -0.0017419 5.8043 23.386 ␣
↪→

Agg 22.89 22.85 -0.0017419 0.48741 0.48813 1.6182 1.
↪→6193
log2 = 16, bandwidth = 1/128, validation: fails sev mean, agg mean.

In [6]: mv(abcd)
mean = 22.89
variance = 124.4768
std dev = 11.1569

In [7]: print(abcd['PropertyC'].q(0.996))
22.859375

Net Portfolio

In [8]: abcd_net = build('port ABCD:Net '
...: 'agg Casualty 14.0 premium at 78% lr '
...: '5 xs 0 '
...: 'sev lognorm 0.1 cv 10 '
...: 'occurrence net of 4 xs 1 '
...: 'mixed gamma 0.3 '
...: 'agg PropertyNC 17.0 premium at 63% lr '
...: '25 xs 0 '
...: 'sev lognorm [0.1 1] cv [5 10] wts [.7 .3] '
...: 'occurrence net of 17 xs 3 '
...: 'mixed gamma 0.1 '
...: 'agg PropertyC 2.0 premium at 63% lr '
...: '150 xs 0 '
...: 'sev 3 * pareto 2.375 - 3 '
...: 'occurrence net of 24 xs 1 '
...: 'poisson ', bs=1/128, approximation='exact')
...:

In [9]: qd(abcd_net)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
Casualty Freq 125.93 0.31296 0.60054

Sev 0.086717 0.065564 -0.24393 4.0147 2.5318 9.5592 4.1714
Agg 10.92 8.2563 -0.24393 0.47532 0.3858 0.88481 0.65534

PropertyNC Freq 34.918 0.19657 0.24744
Sev 0.30672 0.2098 -0.31597 4.91 2.8604 11.569 6.1847
Agg 10.71 7.3259 -0.31597 0.85384 0.52244 1.9358 1.0361

PropertyC Freq 0.5801 1.3129 1.3129
Sev 2.172 0.80417 -0.62976 2.0207 2.7345 11.511 36.228
Agg 1.26 0.4665 -0.62976 2.9601 3.8228 12.398 40.649

total Freq 161.42 0.24785 0.57516
Sev 0.1418 0.099419 -0.29888 5.8043 23.386
Agg 22.89 16.049 -0.29888 0.48741 0.32957 1.6182 2.0938

log2 = 16, bandwidth = 1/128, validation: n/a, reinsurance.

In [10]: qd(abcd_net.est_sd)
5.2892

2.13. Published Problems and Examples 253

aggregate Documentation, Release 0.22.0

Ceded Portfolio

In [11]: abcd_ceded = build('port ABCD:Ceded '
....: 'agg Casualty 14.0 premium at 78% lr '
....: '5 xs 0 '
....: 'sev lognorm 0.1 cv 10 '
....: 'occurrence ceded to 4 xs 1 '
....: 'mixed gamma 0.3 '
....: 'agg PropertyNC 17.0 premium at 63% lr '
....: '25 xs 0 '
....: 'sev lognorm [0.1 1] cv [5 10] wts [.7 .3] '
....: 'occurrence ceded to 17 xs 3 '
....: 'mixed gamma 0.1 '
....: 'agg PropertyC 2.0 premium at 63% lr '
....: '150 xs 0 '
....: 'sev 3 * pareto 2.375 - 3 '
....: 'occurrence ceded to 24 xs 1 '
....: 'poisson ', bs=1/128, approximation='exact')
....:

In [12]: qd(abcd_ceded)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
Casualty Freq 125.93 0.31296 0.60054

Sev 0.086717 0.020872 -0.75931 4.0147 11.205 9.5592 14.019
Agg 10.92 2.6283 -0.75931 0.47532 1.0464 0.88481 1.3572

PropertyNC Freq 34.918 0.19657 0.24744
Sev 0.30672 0.096787 -0.68444 4.91 10.657 11.569 13.51
Agg 10.71 3.3796 -0.68444 0.85384 1.8142 1.9358 2.3095

PropertyC Freq 0.5801 1.3129 1.3129
Sev 2.172 1.3679 -0.37024 2.0207 2.254 11.511 4.2512
Agg 1.26 0.7935 -0.37024 2.9601 3.2375 12.398 5.6851

total Freq 161.42 0.24785 0.57516
Sev 0.1418 0.042134 -0.70286 5.8043 23.386
Agg 22.89 6.8014 -0.70286 0.48741 1.0577 1.6182 1.7643

log2 = 16, bandwidth = 1/128, validation: n/a, reinsurance.

In [13]: qd(abcd_ceded.est_sd)
7.1941

Reinsurance Summary

The bottom table shows expected losses, counts, severity, loss ratios and margins implicit in the given reinsurance
structure, pricing, and the gross stochastic model. The non-cat property reinsurance has the highest ceded loss ratio
and the cat program the lowest.

In [14]: re_all = pd.concat((a.reinsurance_occ_layer_df for a in abcd_net),
....: keys=abcd_net.unit_names, names=['unit', 'share', 'limit', 'attach']);

↪→ \
....: re_all = re_all.drop('gup', axis=0, level=3); \
....: qd(re_all, sparsify=False)
....:

stat ex ex ex cv cv cv en␣
↪→severity pct
view ceded net subject ceded net subject ceded ␣
↪→ ceded ceded
unit share limit attach ␣
↪→

(continues on next page)

254 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
Casualty 1.0 4.0 1.0 2.6283 8.2563 10.885 11.205 2.5318 4.0286 2.007 ␣
↪→ 1.3096 0.24147
PropertyNC 1.0 17.0 3.0 3.3796 7.3259 10.706 10.657 2.8604 4.9121 0.65611 ␣
↪→ 5.151 0.31569
PropertyC 1.0 24.0 1.0 0.7935 0.4665 1.26 2.254 2.7345 2.0207 0.29294 ␣
↪→ 2.7088 0.62976

In [15]: re_summary = re_all.iloc[:, [0, 3, 6, 7]]; \
....: re_summary.columns = ['ex', 'cv', 'en', 'severity']; \
....: re_summary['premium'] = [4.41, 2.36, 1.53]; \
....: re_summary['lr'] = re_summary.ex / re_summary.premium; \
....: re_summary['margin'] = re_summary.premium - re_summary.ex; \
....: qd(re_summary)
....:

ex cv en severity premium lr ␣
↪→margin
unit share limit attach ␣
↪→

Casualty 1.0 4.0 1.0 2.6283 11.205 2.007 1.3096 4.41 0.59599 1.
↪→7817
PropertyNC 1.0 17.0 3.0 3.3796 10.657 0.65611 5.151 2.36 1.432 -1.
↪→0196
PropertyC 1.0 24.0 1.0 0.7935 2.254 0.29294 2.7088 1.53 0.51863 0.
↪→7365

Underwriting Result Distributions

Make the underwriting result distributions, including the proposed stop loss reinsurance (computed by hand). The
dataframe compare accumulates the gross, ceded, and net probability mass functions. We use these to determine
statistics and to plot.

In [16]: compare = abcd.density_df[['loss', 'p_total']]; \
....: compare.columns = ['loss', 'gross']; \
....: compare['gross_uw'] = 33 - compare.loss; \
....: compare['net_current'] = abcd_net.density_df.p_total; \
....: compare['net_current_uw'] = 33 - 4.41 - 2.36 - 1.53 - compare.loss;
....:

In [17]: from aggregate import make_ceder_netter

In [18]: compare['net_stoploss'] = abcd.density_df.p_total; \
....: c, n = make_ceder_netter([(1, 20, 30)]); \
....: compare['nsll'] = n(compare.loss); \
....: g = compare.groupby('nsll').net_stoploss.sum(); \
....: compare['net_stoploss'] = 0.0; \
....: compare.loc[g.index, 'net_stoploss'] = g; \
....: compare['net_stoploss_uw'] = 33 - 1.98 - compare.loss;
....:

2.13. Published Problems and Examples 255

aggregate Documentation, Release 0.22.0

Comparison with ERA Book Figures

Statistics summary, compare Figure 2.5.2.

In [19]: from aggregate import MomentWrangler

In [20]: from scipy.interpolate import interp1d

In [21]: ans = []; cdfs = []

In [22]: for xs, den in [(compare.gross_uw, compare.gross), (compare.net_current_
↪→uw, compare.net_current),

....: (compare.net_stoploss_uw, compare.net_stoploss)]:

....: xd = xs * den

....: ex1 = np.sum(xd)

....: xd *= xs

....: ex2 = np.sum(xd)

....: ex3 = np.sum(xd * xs)

....: mw = MomentWrangler()

....: mw.noncentral = ex1, ex2, ex3

....: ans.append(mw)

....: cdfs.append(interp1d(den.cumsum(), xs))

....:

In [23]: fig_252 = pd.concat([i.stats for i in ans], keys=['Gross', 'Current',
↪→'StopLoss'], axis=1)

In [24]: for p in [0.01, 0.99]:
....: fig_252.loc[f'q({p})'] = [float(i(p)) for i in cdfs]
....:

In [25]: qd(fig_252)

Gross Current StopLoss
ex 10.15 8.6513 10.021
var 124.41 27.975 58.777
sd 11.154 5.2892 7.6666
cv 1.0989 0.61137 0.76502
skew -1.6193 -2.0938 -1.0088
q(0.01) 25.98 18.081 24
q(0.99) -25.76 -5.6036 -7.7399

Plot of densities and distributions, compare Figure 2.5.3 and 2.5.4.

In [26]: fig, axs = plt.subplots(1, 3, figsize=(3 * 3.5, 2.45), constrained_
↪→layout=True)

In [27]: ax0, ax1, ax2 = axs.flat

In [28]: for ax in [ax0, ax1]:
....: ax.plot(compare.gross_uw, compare.gross, label='Gross')
....: ax.plot(compare.net_current_uw, compare.net_current, label='Net,␣

↪→current')
....: yl = ax.get_ylim()
....: ax.plot(compare.net_stoploss_uw, compare.net_stoploss, label='Net,␣

↪→stop loss')
....: ax.legend(loc='upper left')
....: ax.set(xlim=[-45, 30], ylim=yl)
....: ax.axvline(0, lw=.25, c='C7')
....:

In [29]: ax1.set(yscale='log', ylim=[1e-9, 1], title='Log density'); \

(continues on next page)

256 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: ax0.set(title='Mixed density/mass function');
....:

In [30]: ax2.plot(compare.gross_uw, 1 - compare.gross.cumsum(), label='Gross'); \
....: ax2.plot(compare.net_current_uw, 1 - compare.net_current.cumsum(), label=

↪→'Net, current'); \
....: ax2.plot(compare.net_stoploss_uw, 1 - compare.net_stoploss.cumsum(),␣

↪→label='Net, stop loss'); \
....: ax2.legend(loc='upper left'); \
....: ax2.set(xlim=[-45, 30], ylim=[-0.025, 1.025]);
....:

In [31]: ax2.axvline(0, lw=.25, c='C7');

Numerical distribution of underwriting results at various return points, compare Figure 2.5.5. Given there was no
information about the stochastic model provided, and the model here is based on common benchmarks, the agreement
between the two distributions is striking.

In [32]: fig_255 = pd.DataFrame(columns=['Gross', 'Current', 'StopLoss'],␣
↪→dtype=float)

In [33]: for p in [.0025, .005, 0.0075, .01, .0125, .015, .0175, .02,
....: .04, .06, .08, .1, .12, .14, .16, .18, .2, .22, .24,
....: .25, .26, .28, .3, .32, .34, .36, .38, .4, .42, .44,
....: .46, .48, .5]:
....: fig_255.loc[p] = [float(i(1-p)) for i in cdfs]
....:

In [34]: fig_255.index.name = 'p'

In [35]: qd(fig_255, float_format=lambda x: f'{x:.3f}', max_rows=len(fig_255))

Gross Current StopLoss
p
0.0025 -38.503 -10.257 -20.483
0.0050 -32.113 -7.826 -14.093
0.0075 -28.394 -6.514 -10.374
0.0100 -25.760 -5.604 -7.740
0.0125 -23.740 -4.902 -5.720
0.0150 -22.114 -4.328 -4.094
0.0175 -20.758 -3.842 -2.738
0.0200 -19.595 -3.420 -1.575
0.0400 -13.603 -1.182 1.021
0.0600 -9.962 0.182 1.021
0.0800 -7.211 1.186 1.022
0.1000 -4.936 1.991 1.023
0.1200 -2.978 2.669 1.024
0.1400 -1.263 3.259 1.025
0.1600 0.246 3.784 1.026
0.1800 1.575 4.259 1.027
0.2000 2.752 4.695 1.028

(continues on next page)

2.13. Published Problems and Examples 257

aggregate Documentation, Release 0.22.0

(continued from previous page)
0.2200 3.801 5.100 1.821
0.2400 4.745 5.478 2.765
0.2500 5.183 5.659 3.203
0.2600 5.603 5.835 3.623
0.2800 6.391 6.173 4.411
0.3000 7.121 6.496 5.141
0.3200 7.802 6.805 5.822
0.3400 8.442 7.103 6.462
0.3600 9.047 7.390 7.067
0.3800 9.622 7.669 7.642
0.4000 10.171 7.941 8.191
0.4200 10.697 8.206 8.717
0.4400 11.203 8.465 9.223
0.4600 11.692 8.720 9.712
0.4800 12.167 8.970 10.187
0.5000 12.628 9.217 10.648

Modern Analysis

The first step is to analyze the pricing in the context of needed capital. Strip expenses out (at 23% across all units) to
determine a net (of expenses) technical premium.

In [36]: er = 0.23

In [37]: df = pd.DataFrame({'unit': ['Casualty', 'PropertyNC', 'PropertyC'],
....: 'prem': [14, 17, 2],
....: 'gross_loss': [a.est_m for a in abcd]}).set_

↪→index('unit')
....:

In [38]: df['ceded_prem'] = [4.41, 2.36, 1.53]; \
....: df['net_prem'] = df.prem - df.ceded_prem; \
....: df['tech_prem'] = df.prem * (1 - er); \
....: df['margin'] = df.tech_prem - df.gross_loss; \
....: df.loc['Total'] = df.sum(0); \
....: df['lr'] = df.gross_loss / df.prem; \
....: df['cr'] = df.lr + er; \
....: df['tech_lr'] = df.gross_loss / df.tech_prem;
....:

In [39]: fp = lambda x: f'{x:.1%}';

In [40]: fc = lambda x: f'{x:.2f}'

In [41]: qd(df, float_format=fc, formatters={'lr':fp, 'cr': fp, 'tech_lr': fp})

prem gross_loss ceded_prem net_prem tech_prem margin lr cr␣
↪→tech_lr
unit ␣
↪→

Casualty 14.00 10.88 4.41 9.59 10.78 -0.10 77.7% 100.7%␣
↪→ 101.0%
PropertyNC 17.00 10.71 2.36 14.64 13.09 2.38 63.0% 86.0%␣
↪→ 81.8%
PropertyC 2.00 1.26 1.53 0.47 1.54 0.28 63.0% 86.0%␣
↪→ 81.8%
Total 33.00 22.85 8.30 24.70 25.41 2.56 69.2% 92.2%␣
↪→ 89.9%

The example does not specify a capital standard. Let’s investigate the implied return on capital at different capital

258 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

standards. The capital standard is expressed as a loss percentile. The next calculation produces a table of returns
expressed as a cost of capital (coc). It also shows the expected policyholder deficit.

In [42]: tech_prem = df.loc['Total', 'tech_prem']; \
....: ps = [.99, .995, .996, .999]; \
....: As = [abcd.q(p) for p in ps]; \
....: el = abcd.density_df.loc[As, 'exa_total']; \
....: margin = tech_prem - el; \
....: cocs = margin / (As - tech_prem); \
....: summary = pd.DataFrame({'p': ps, 'a': As, 'prem':tech_prem, 'el': el,
....: 'margin': margin, 'tech_lr': el / tech_prem, 'coc

↪→': cocs,
....: 'epd': (abcd.est_m - el) / abcd.est_m}).set_index(

↪→'p')
....:

In [43]: summary.index = [fp(i) for i in summary.index]; \
....: summary.index.name = 'p'; \
....: qd(summary, float_format=fc, formatters={'coc': fp, 'tech_lr': fp, 'epd':␣

↪→fp})
....:

a prem el margin tech_lr coc epd
p
99.0% 58.77 25.41 22.75 2.66 89.5% 8.0% 0.5%
99.5% 65.12 25.41 22.79 2.62 89.7% 6.6% 0.3%
99.6% 67.16 25.41 22.80 2.61 89.7% 6.2% 0.2%
99.9% 80.90 25.41 22.83 2.58 89.8% 4.6% 0.1%

Based on this analysis, we assume a 99.5% (200-year) capital standard, which gives a reasonable 8% return on capital.
200-year capital is also the Solvency II standard.
From here, the analysis could proceed in many directions. The approach we select is

1. Calibrate a set of distortions to total pricing on a gross basis with the 200-year capital standard.
2. Analyze the pricing implied by these distortions on the net book and its natural allocation by unit.
3. Compare the model value (implied ceded premium) with market reinsurance price.

The model value is the maximum amount that is consistent with pricing according to each distortion. Reinsurance
cheaper than the model value is efficient: replacing traditional capital with reinsurance capital lowers the economic
cost of bearing risk.

Calibrate Distortions

Extract the exact cost of capital implied by given gross pricing.

In [44]: coc = summary.loc['99.5%', 'coc']

In [45]: print(coc)
0.06591531668710866

Calibrate distortions to current pricing. Use five one-parameter distortion families
1. constant cost of capital (CCoC),
2. proportional hazard (PH)
3. Wang,
4. dual, and
5. TVaR.

2.13. Published Problems and Examples 259

aggregate Documentation, Release 0.22.0

They are sorted from most tail-centric (expensive for tail risk) to cheapest. See Mildenhall and Major [2022].
The next dataframe shows the asset level and implied loss ratio, distortion name, survival probability (0.5%), expected
loss, premium, premium to capital leverage (PQ), the cost of (return on) capital, the distortion family parameter, and
the parameterization error. The calibrated premium matches the technical premium.

In [46]: abcd.calibrate_distortions(ROEs=[coc], Ps=[.995], strict='ordered');

In [47]: qd(abcd.distortion_df)

S L P PQ Q COC param ␣
↪→ error
a LR method ␣
↪→

65.117188 0.896997 ccoc 0.0049978 22.793 25.41 0.63993 39.707 0.065915 0.065915 ␣
↪→ 0

ph 0.0049978 22.793 25.41 0.63993 39.707 0.065915 0.7966 ␣
↪→4.7227e-06

wang 0.0049978 22.793 25.41 0.63993 39.707 0.065915 0.24044 ␣
↪→1.1474e-06

dual 0.0049978 22.793 25.41 0.63993 39.707 0.065915 1.3749 -
↪→7.4227e-11

tvar 0.0049978 22.793 25.41 0.63993 39.707 0.065915 0.17864 ␣
↪→9.4873e-06

The plot show this effect: COC is fattest on the left for small exceedance probabilities (high losses), whereas TVaR
is fattest on the right.

In [48]: fig, axs = plt.subplots(1, 5, figsize=(10.0, 2.1), constrained_
↪→layout=True)

In [49]: for ax, (k, v) in zip(axs.flat, abcd.dists.items()):
....: v.plot(ax=ax)
....:

In [50]: fig.suptitle('Comparison of distortion functions giving current market␣
↪→premium in total')
Out[50]: Text(0.5, 0.98, 'Comparison of distortion functions giving current market␣
↪→premium in total')

Analyze Implied Pricing

Apply the distortions to the net portfolio and analyze the resulting pricing using analyze_distortions(),
which includes a by-unit margin allocation. The dataframe ans.comp_df contains a wealth of other information;
we just focus on the premium. The last row, Technical, shows market reinsurance pricing.

In [51]: abcd_net.dists = abcd.dists

In [52]: ansn = abcd_net.analyze_distortions(p=0.996, add_comps=False); \
....: ans = abcd.analyze_distortions(p=0.996, add_comps=False); \
....: bit = pd.concat((ans.comp_df.xs('P', 0, 1), ansn.comp_df.xs('P', 0, 1),

(continues on next page)

260 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: ans.comp_df.xs('P', 0, 1) - ansn.comp_df.xs('P', 0, 1)),
....: axis=1, keys=['gross', 'net', 'ceded']); \
....: bit = bit.iloc[[0, 2,-1, 1, -2]]; \
....: bit.loc['Technical'] = 0.0; \
....: bit.loc['Technical', 'gross'] = df.tech_prem.sort_index().values; \
....: bit.loc['Technical', 'ceded'] = df.ceded_prem.sort_index().values; \
....: bit.loc['Technical', 'net'] = df.net_prem.sort_index().values; \
....: qd(bit, sparsify=False, line_width=50)
....:

gross gross gross gross \
line Casualty PropertyC PropertyNC total
Method
Dist ccoc 10.371 4.6237 10.55 25.545
Dist ph 11.347 1.5483 12.542 25.438
Dist wang 11.514 1.4754 12.439 25.428
Dist dual 11.698 1.4415 12.283 25.423
Dist tvar 11.908 1.4298 12.084 25.421
Technical 10.78 1.54 13.09 25.41

net net net net \
line Casualty PropertyC PropertyNC total
Method
Dist ccoc 7.8043 2.3449 6.9327 17.082
Dist ph 8.6519 0.53481 7.977 17.164
Dist wang 8.7296 0.49483 8.0137 17.238
Dist dual 8.8065 0.47931 8.0416 17.327
Dist tvar 8.8941 0.47972 8.0693 17.443
Technical 9.59 0.47 14.64 24.7

ceded ceded ceded ceded
line Casualty PropertyC PropertyNC total
Method
Dist ccoc 2.5669 2.2788 3.6172 8.4632
Dist ph 2.6952 1.0135 4.5651 8.2738
Dist wang 2.784 0.98056 4.4253 8.1898
Dist dual 2.8917 0.96217 4.2413 8.0952
Dist tvar 3.0137 0.95009 4.0143 7.9781
Technical 4.41 1.53 2.36 8.3

Compare Model Value and Market Price

Focus on the last block above, under ceded. The rows Dist ... show the model value of reinsurance according
to each distortion. The row Technical shows the market price. The market suggests to buy when the value is
greater than the price.
The analysis provides a clear answer only for casualty, where the model value of reinsurance is much lower than the
market price for all distortions: don’t buy the reinsurance.
For property cat, CCoC, the most tail-centric distortion, sees a lot of value in the reinsurance — hardly surprising.
All the other less tail-centric distortions do not see it as adding value overall (lower value than market price). The
order of the distortions and their assessment of the value of cat reinsurance are perfectly aligned, as they were for
casualty albeit in the opposite order.
For property non-cat, the PH and Wang distortions see value, the others do not, though dual is close. This is the
most interesting case because the ranking does not agree with the distortion ordering (as it does for the other two
units). Property non-cat contributes to volatility and tail-risk, and so is more nuanced. Management often struggles
with property risk reinsurance because tail-centric measures understate the value it provides. Actuaries stuggle to find
analytic methods that capture its management-perceived value. The range of distortions considered covers the two
views well.

2.13. Published Problems and Examples 261

aggregate Documentation, Release 0.22.0

In total the program is not seen as good value by any of the distortions. Since they span the reasonable range of risk
preferences, this is a robust result.
Management often cares about more than just tail risk and they generally rejects the findings from CCoC. Whether
or not they see value in reinsurance is sensitive to their exact risk appetite. These findings are consistent with the fact
that each company tends to structure its reinsurance differently, tailored to their own risk appetite. Difference in risk
appetite have a material impact on decision making.

Analysis for Stop Loss Reinsurance

Here is the analysis for the stop loss reinsurance. This analysis is manual, because the net of stop loss distribution
for a Portfolio is not currently built-in. We have to extract the relevant distributions and apply the distortions,
estimate a_stoploss the net asset requirement at p=0.995 (rounded to be a multiple of bs), determine the net
expected loss and the model value. Recall compare.net_stoploss is the density of the net of stop-loss loss
outcome. S1 is used to create its survival function, to which the distortion is applied to determine pricing. exa and
exag are the objective and risk adjusted losses (model value) given an asset level a, computed as

∫ a

0
S and

∫ a

0
g(S)

respectively (see PIR REF). We then select the relevant row and assemble the answer.

In [53]: S0 = pd.Series(compare.net_stoploss, index=compare.loss); \
....: S0.name = 'S'; \
....: S1 = S0[::-1].shift(1, fill_value=0).cumsum(); \
....: a0 = float(interp1d(S0.cumsum(), S0.index)(0.995)); \
....: a_stoploss = abcd.snap(a0); \
....: print(f'Net of stoploss assets {a_stoploss:.3f}');
....:

Net of stoploss assets 45.109

In [54]: net_el_stoploss_unlim = (compare.loss * compare.net_stoploss).sum(); \
....: net_el_stoploss = (np.minimum(compare.loss, a_stoploss) * compare.net_

↪→stoploss).sum(); \
....: epd = 1 - net_el_stoploss / net_el_stoploss_unlim; \
....: qd(pd.Series([net_el_stoploss_unlim, net_el_stoploss, epd], index=[

↪→'unlimited net loss', 'net loss limited by assets', 'epd']));
....:

unlimited net loss 20.999
net loss limited by assets 20.941
epd 0.0027373

In [55]: pricer = S1.to_frame().sort_index();

In [56]: for nm, dist in abcd.dists.items():
....: pricer[f'{nm}_exa'] = pricer['S'].shift(1, fill_value=0).cumsum() *␣

↪→abcd.bs
....: pricer[f'{nm}_gS'] = dist.g(pricer.S)
....: pricer[f'{nm}_exag'] = pricer[f'{nm}_gS'].shift(1, fill_value=0).

↪→cumsum() * abcd.bs
....: pricer = pricer.sort_index()
....:

In [57]: try:
....: pricer = pricer.loc[[a_stoploss]]; \
....: pricer.columns = pricer.columns.str.split('_', expand=True); \
....: comp = pricer.stack(0).droplevel(0,0); \
....: comp.loc['Technical'] = [net_el_stoploss, tech_prem - 1.98, np.nan]; \
....: comp['stoploss_value'] = tech_prem - comp.exag; \
....: comp = comp.sort_values('stoploss_value', ascending=False); \
....: qd(comp)
....: except:
....: print('Unspecfied error: TODO investigate.')

(continues on next page)

262 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
....:

Unspecfied error: TODO investigate.

The output table reveals that the stop loss value is greater than its market price for the CCoC, PH, and Wang dis-
tortions, but less for the dual and TVaR. Thus, management averse to tail risk regard it as beneficial, but those more
concerned with volatility and body risk do not see it as worthwhile.
A note of caution is in order on this analysis. Stop loss structures are a broker favorite, but are generally not liked
by reinsurers. Aggregate features are hard to underwrite and price, and the lower premium is not attractive. A treaty
similar to the proposed stop loss would be very hard to find in the market.

Visualizing Risk

The next figure shows the kappa functions, a handy way to visualize which units are contributing to total risk across
the loss spectrum (see REF). Here the horizontal axis is total loss. The middle plot shows the reinsurance is quite
effective at lowering the risk from Property NC (green line), but less effective at altering the risk profile of the other
two lines. In particular, cat (red line) still dominates the tail risk.

In [58]: fig, axs = plt.subplots(1, 3, figsize=(3 * 3.5, 2.55), constrained_
↪→layout=True)

In [59]: for ax, a in zip(axs.flat, [abcd, abcd_net, abcd_ceded]):
....: mx = a.q(0.9999)
....: a.density_df.filter(regex='exeqa_[CPt]').plot(ax=ax,
....: xlim=[0, mx], ylim=[0, mx], title=a.name);
....: ax.set(xlabel='loss, x');
....:

In [60]: axs.flat[0].set(ylabel='$E[X_unit | X=x]$');

In [61]: fig.suptitle('Conditional loss as a function of x for each unit');

2.13. Published Problems and Examples 263

aggregate Documentation, Release 0.22.0

2.13.8 Other Papers

Miscellaneous short examples from various texts.

Contents

• Wang on the Wang Transform

• Wang on Weather Derivatives

• Gerber: Stop Loss Premiums

• Richardson’s Deferred Approach to the Limit

Wang on the Wang Transform

Source paper: Wang [2000].

Pricing by Layer

Concepts: Layer expected loss and risk adjusted layer technical premium with Wang and proportional spectral risk
measures.
Setup: Ground-up Pareto risk, shape 1.2, scale 2000. Layer and compare Wang(0.1) and PH(0.9245) pricing.
Source Exhibits:

Thanks: Zach Eisenstein of Aon.
Code:
Build the portfolio.

In [1]: from aggregate import build, qd

In [2]: layers = [0, 50e3, 100e3, 200e3, 300e3, 400e3, 500e3, 1000e3, 2000e3,␣
↪→5000e3, 10000e3]

(continues on next page)

264 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [3]: a1 = build('agg Wang.t1 '

...: '1 claim '

...: '10000e3 xs 0 ' # limit the severity to avoid infinite variance

...: 'sev 2000 * pareto 1.2 - 2000 '

...: f'occurrence ceded to tower {layers} '

...: 'fixed'

...:)

...:

In [4]: qd(a1)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 8179.5 8178.5 -0.00012201 11.595 11.596 70.841 70.841
Agg 8179.5 8178.5 -0.00012201 11.595 11.596 70.841 70.841
log2 = 16, bandwidth = 200, validation: n/a, reinsurance.

Expected loss and other ceded statistics by layer.

In [5]: ff = lambda x: x if type(x)==str else (
...: f'{x/1e6:,.1f}M' if x >= 500000 else
...: (f'{x:,.3f}' if x < 100 else f'{x:,.0f}'))
...:

In [6]: fp = lambda x: f'{x:.1%}'

In [7]: qdl = lambda x: qd(x, index=False, line_width=200, formatters={'pct': fp},
...: float_format=ff, col_space=10)
...:

In [8]: qdl(a1.reinsurance_occ_layer_df .xs('ceded', 1, 1).droplevel(0).reset_
↪→index(drop=False))

limit attach ex cv en severity pct
50,000 0.000 4,787 1.908 1.000 4,787 58.5%
50,000 50,000 657 8.058 0.020 32,776 8.0%

100,000 100,000 582 12.148 0.009 65,143 7.1%
100,000 200,000 307 17.279 0.004 78,055 3.8%
100,000 300,000 204 21.484 0.002 83,955 2.5%
100,000 400,000 150 25.182 0.002 87,349 1.8%

0.5M 0.5M 428 31.751 0.001 324,046 5.2%
1.0M 1.0M 373 48.091 0.001 0.6M 4.6%
3.0M 2.0M 420 76.476 0.000 1.7M 5.1%
5.0M 5.0M 271 126 0.000 3.2M 3.3%
infM gup 8,179 11.596 1.000 8,179 100.0%

ZE provided function to make the exhibit table. The column pct shows the relative loading.

In [9]: def make_table(agg, layers):
...: agg_df = agg.density_df
...: layer_df = agg_df.loc[layers, ['F', 'S', 'lev', 'gS', 'exag']]
...: layer_df['layer_el'] = np.diff(layer_df.lev, prepend = 0)
...: layer_df['premium'] = np.diff(layer_df.exag, prepend = 0)
...: layer_df['pct'] = layer_df['premium'] / layer_df['layer_el'] - 1
...: layer_df = layer_df.rename_axis("exhaust").reset_index()
...: layer_df['attach'] = layer_df['exhaust'].shift(1).fillna(0)
...: qdl(layer_df.loc[1:, ['attach', 'exhaust', 'layer_el', 'premium', 'pct

↪→']])
...:

Make the distortions and apply. First, Wang.

2.13. Published Problems and Examples 265

aggregate Documentation, Release 0.22.0

In [10]: d1 = build('distortion wang_d1 wang 0.1')

In [11]: a1.apply_distortion(d1)

In [12]: make_table(a1, layers)

attach exhaust layer_el premium pct
0.000 50,000 4,787 5,481 14.5%

50,000 100,000 657 845 28.6%
100,000 200,000 582 769 32.2%
200,000 300,000 307 414 34.9%
300,000 400,000 204 278 36.6%
400,000 0.5M 150 207 37.8%

0.5M 1.0M 428 598 39.9%
1.0M 2.0M 373 533 43.0%
2.0M 5.0M 420 616 46.5%
5.0M 10.0M 271 406 49.9%

Make the distortions and apply. Second, PH.

In [13]: d2 = build('distortion wang_d2 ph 0.9245')

In [14]: a1.apply_distortion(d2)

In [15]: make_table(a1, layers)

attach exhaust layer_el premium pct
0.000 50,000 4,787 5,480 14.5%

50,000 100,000 657 910 38.4%
100,000 200,000 582 856 47.2%
200,000 300,000 307 475 54.7%
300,000 400,000 204 325 59.6%
400,000 0.5M 150 246 63.3%

0.5M 1.0M 428 727 70.1%
1.0M 2.0M 373 675 81.1%
2.0M 5.0M 420 818 94.7%
5.0M 10.0M 271 567 109.5%

It appears the layer 50000 xs 0 is reported incorrectly in the paper.

Satellite Pricing

Concepts: The cost of a Bernoulli risk with a 5% probability of a total loss of $100m using Wang(0.1) distortion.
Thanks: Zach Eisenstein of Aon.
Code:
Build the portfolio. Illustrates how to set up a Bernoulli.

In [16]: a2 = build('agg wang2 0.05 claims dsev [100] bernoulli')

In [17]: qd(a2)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 0.05 4.3589 4.1295
Sev 100 100 0 0 0
Agg 5 5 8.8818e-16 4.3589 4.3589 4.1295 4.1295
log2 = 8, bandwidth = 1, validation: not unreasonable.

Check the distribution output.

266 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

In [18]: qd(a2.density_df.query('p_total > 0')[['p_total', 'F', 'S']])

p_total F S
loss
0.0 0.95 0.95 0.05
100.0 0.05 1 0

Build and apply the distortion. Use the price() method. The first argument selects the 100% quantile for pricing,
i.e., the limit is fully collateralized. First with the Wang from above. The relative loading reported is the complement
of the loss ratio.

In [19]: qd(a2.price(1, d1))

statistic L P M Q a LR PQ ROE
line
wang2 5 6.1191 1.1191 93.881 100 0.81712 0.065179 0.01192

Try with a more severe distortion.

In [20]: d3 = build('distortion wang_d2 wang 0.15')

In [21]: qd(a2.price(1, d2))

statistic L P M Q a LR PQ ROE
line
wang2 5 6.269 1.269 93.731 100 0.79758 0.066883 0.013539

Wang on Weather Derivatives

Source paper: Wang [2002].
Concepts: Applying Wang transform to empirical distribution via an Aggregate object.
Source Exhibits:

Data:
Create a dataframe from the heating degree days (HDD) history laid out in Table 1.

In [22]: d = '''Dec-79
....: 972.5
....: Dec-87
....: 1018.5
....: Dec-95
....: 1199.5
....: Dec-80
....: 1147.0
....: Dec-88

(continues on next page)

2.13. Published Problems and Examples 267

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: 1155.0
....: Dec-96
....: 1156.0
....: Dec-81
....: 1244.0
....: Dec-89
....: 1474.5
....: Dec-97
....: 1040.0
....: Dec-82
....: 901.0
....: Dec-90
....: 1129.5
....: Dec-98
....: 940.5
....: Dec-83
....: 1573.0
....: Dec-91
....: 1077.5
....: Dec-99
....: 1090.5
....: Dec-84
....: 1055.0
....: Dec-92
....: 1129.5
....: Dec-00
....: 1517.5
....: Dec-85
....: 1488.0
....: Dec-93
....: 1090.5
....: Dec-86
....: 1065.5
....: Dec-94
....: 938.5'''
....:

In [23]: import pandas as pd

In [24]: d = d.split('\n')

In [25]: df = pd.DataFrame(zip(d[::2], d[1::2]), columns=['month', 'hdd'])

In [26]: df['hdd'] = df.hdd.astype(float)

In [27]: qd(df.head())

month hdd
0 Dec-79 972.5
1 Dec-87 1018.5
2 Dec-95 1199.5
3 Dec-80 1147
4 Dec-88 1155

In [28]: qd(df.describe())

hdd
count 22
mean 1154.7
std 193.37
min 901

(continues on next page)

268 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
25% 1043.8
50% 1110
75% 1188.6
max 1573

Code:
Create an empirical aggregate based on the HDD data.

In [29]: hdd = build(f'agg HDD 1 claim dsev {df.hdd.values} fixed'
....: , bs=1/32, log2=16)
....:

In [30]: qd(hdd)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 1154.7 1154.7 2.2204e-16 0.16362 0.16362 0.95984 0.95984
Agg 1154.7 1154.7 2.2204e-16 0.16362 0.16362 0.95984 0.95984
log2 = 16, bandwidth = 1/32, validation: not unreasonable.

Build the distortion and apply to call options at different strikes. Reproduces Table 2.

In [31]: from aggregate.extensions import Formatter

In [32]: d1 = build('distortion w25 wang .25')

In [33]: ans = []

In [34]: strikes = np.arange(1250, 1501, 50)

In [35]: bit = hdd.density_df.query('p_total > 0')[['p_total']]

In [36]: for strike in strikes:
....: ser = bit.groupby(by= lambda x: np.maximum(0, x - strike)).p_total.

↪→sum()
....: ans.append(d1.price(ser, kind='both'))
....:

In [37]: df = pd.DataFrame(ans, index=strikes,
....: columns=['bid', 'el', 'ask'])
....:

In [38]: df.index.name = 'strike'

In [39]: df['loading'] = (df.ask - df.el) / df.el

In [40]: qd(df.T, float_format=Formatter(dp=2, w=8))

strike 1250 1300 1350 1400 1450 1500
bid 32.01 25.84 19.67 13.51 7.34 2.44
el 47.86 38.77 29.68 20.59 11.50 4.11
ask 68.21 55.45 42.70 29.94 17.18 6.59
loading 42.5% 43.0% 43.8% 45.4% 49.4% 60.1%

2.13. Published Problems and Examples 269

aggregate Documentation, Release 0.22.0

Gerber: Stop Loss Premiums

Source papers: Gerber [1982].
Concepts: Stop loss and survival functions for Poisson uniform(1,3) aggregate. Claim count 1, 10, and 100.
Source Exhibits: Matches columns labeled exact in Tables 1-6.
Code:
Expected claim count 1.

In [41]: gerber1 = build('agg Gerber1 1 claim sev 2 * uniform + 1 poisson'
....: , bs=1/1024)
....:

In [42]: qd(gerber1)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 1 1
Sev 2 2 0 0.28868 0.28868 -1.846e-14 0
Agg 2 2 -5.5511e-16 1.0408 1.0408 1.1086 1.1086
log2 = 16, bandwidth = 1/1024, validation: fails sev skew.

In [43]: bit = gerber1.density_df.loc[0:21:2*1024, ['S', 'lev']]

In [44]: bit['stop_loss'] = gerber1.agg_m - bit.lev

In [45]: qd(bit)

S lev stop_loss
loss
0.000 0.63212 0 2
2.000 0.44809 1.1723 0.82773
4.000 0.17095 1.7311 0.26891
6.000 0.048993 1.9282 0.071838
8.000 0.012406 1.9837 0.016267
10.000 0.0027232 1.9967 0.0032535
12.000 0.00052133 1.9994 0.00058146
14.000 8.7627e-05 1.9999 9.3461e-05
16.000 1.3371e-05 2 1.3664e-05
18.000 1.8774e-06 2 1.84e-06
20.000 2.4358e-07 2 2.3017e-07

Expected claim count 10.

In [46]: gerber10 = build('agg Gerber10 10 claim sev 2 * uniform + 1 poisson'
....: , bs=1/128)
....:

In [47]: qd(gerber10)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 10 0.31623 0.31623
Sev 2 2 0 0.28868 0.28868 -1.846e-14 0
Agg 20 20 -8.8818e-16 0.32914 0.32914 0.35056 0.35056
log2 = 16, bandwidth = 1/128, validation: fails sev skew.

In [48]: bit = gerber10.density_df.loc[15:61:5*128, ['S', 'lev']]

In [49]: bit['stop_loss'] = gerber10.agg_m - bit.lev

(continues on next page)

270 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [50]: qd(bit)

S lev stop_loss
loss
15.000 0.76769 14.243 5.7565
20.000 0.47646 17.374 2.6255
25.000 0.21683 19.068 0.93214
30.000 0.072549 19.744 0.25632
35.000 0.018223 19.945 0.055073
40.000 0.0035238 19.991 0.0093834
45.000 0.00053724 19.999 0.0012887
50.000 6.5977e-05 20 0.00014495
55.000 6.6491e-06 20 1.3552e-05
60.000 5.5879e-07 20 1.0673e-06

Expected claim count 100.

In [51]: gerber100 = build('agg Gerber100 100 claim sev 2 * uniform + 1 poisson'
....: , bs=1/16)
....:

In [52]: qd(gerber100)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 100 0.1 0.1
Sev 2 2 0 0.28868 0.28896 -1.846e-14 0
Agg 200 200 -1.0658e-14 0.10408 0.10409 0.11086 0.11088
log2 = 16, bandwidth = 1/16, validation: fails sev skew.

In [53]: bit = gerber100.density_df.loc[180:301:20*16, ['S', 'lev']]

In [54]: bit['stop_loss'] = gerber100.agg_m - bit.lev

In [55]: qd(bit)

S lev stop_loss
loss
180.000 0.83089 178.23 21.774
200.000 0.49203 191.69 8.3051
220.000 0.16763 198.04 1.9595
240.000 0.030257 199.74 0.26481
260.000 0.0028586 199.98 0.019934
280.000 0.000144 200 0.00083749
300.000 3.982e-06 200 1.9972e-05

Richardson’s Deferred Approach to the Limit

Source papers: Embrechts et al. [1993], Grübel and Hermesmeier [2000].
Concepts: Given estimators of an unknown quantity A∗ = A(h) + chα + O(hβ) with α < β. Evaluate at h and
h/t. Multiply the estimate at h/t by tα, subtract the original estimate, and rearrange to get

A∗ =
tαA(h/t)−A(h)

tα − 1
+O(hβ).

The truncation error order of magnitude has decreased. The constant c need not be known. Applying this approach
to estimate the density as pmf divided by bucket size, fh/h, Embrechts et al. [1993] report the following.
Setup: Poisson(20) exponential aggregate.
Source Exhibits: Figure 1.

2.13. Published Problems and Examples 271

aggregate Documentation, Release 0.22.0

The variable egp3 is treated as the exact answer. It could also be approximated using the series expansion, but this
has been shown already, in REF. Set up basic portfolios evaluated at different bucket sizes.

In [56]: egp1 = build('agg EGP 20 claims sev expon 1 poisson',
....: bs=1/16, log2=10)
....:

In [57]: qd(egp1)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 20 0.22361 0.22361
Sev 1 0.99984 -0.00016274 1 1.0005 2 1.998
Agg 20 19.997 -0.00016277 0.31623 0.3163 0.47434 0.47429
log2 = 10, bandwidth = 1/16, validation: fails sev mean, agg mean.

In [58]: egp2 = build('agg EGP 20 claims sev expon 1 poisson',
....: bs=1/32, log2=11)
....:

In [59]: qd(egp2)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 20 0.22361 0.22361
Sev 1 0.99996 -4.0689e-05 1 1.0001 2 1.9995
Agg 20 19.999 -4.0713e-05 0.31623 0.31625 0.47434 0.47432
log2 = 11, bandwidth = 1/32, validation: not unreasonable.

In [60]: egp3 = build('agg EGP 20 claims sev expon 1 poisson',
....: log2=16)
....:

In [61]: qd(egp3)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 20 0.22361 0.22361
Sev 1 1 -1.5895e-07 1 1 2 2
Agg 20 20 -1.5895e-07 0.31623 0.31623 0.47434 0.47434
log2 = 16, bandwidth = 1/512, validation: not unreasonable.

Concatenate and estimated densities from pmf. Compute errors to egp3. Compute the Richardson extrapolation. It
is indistinguishable from egp3. The last table shows cases with the largest errors.

In [62]: import pandas as pd

In [63]: df = pd.concat((egp1.density_df.p_total, egp2.density_df.p_total, egp3.
↪→density_df.p_total),

....: axis=1, join='inner', keys=[1, 2, 3])

....:

In [64]: df[1] = df[1] * 16; \
....: df[2] = df[2] * 32; \
....: df[3] = df[3] * (1<<10); \
....: df['rich'] = (4 * df[2] - df[1]) / 3; \
....: df['diff_1'] = df[1] - df[3]; \
....: df['diff_2'] = df[2] - df[3]; \
....: m = df.diff_2.max() * .9; \
....: ax = df[['diff_1', 'diff_2']].plot(figsize=(3.5, 2.45)); \
....: (df['rich'] - df[3]).plot(ax=ax, lw=.5, label='Richardson');
....:

(continues on next page)

272 Chapter 2. User Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)

In [65]: ax.legend(loc='upper right')
Out[65]: <matplotlib.legend.Legend at 0x7fe3e92cfe80>

In [66]: qd(df.query(f'diff_2 > {m}').iloc[::10])

Empty DataFrame
Columns: [1, 2, 3, rich, diff_1, diff_2]
Index: []

2.13. Published Problems and Examples 273

aggregate Documentation, Release 0.22.0

274 Chapter 2. User Guides

CHAPTER

THREE

API REFERENCE

3.1 Underwriter Module

3.1.1 Underwriter Class

class aggregate.underwriter.Underwriter(name='Rory', databases=None, update=False,
log2=10, debug=False)

The Underwriter class manages the creation of Aggregate and Portfolio objects, and maintains a database
of standard Severity (curves) and Aggregate (unit or line level) objects called the knowledge base.

• Handles persistence to and from agg files
• Is interface into program parser
• Handles safe lookup from the knowledge for parser

Objects have a kind and a name. The kind is one of ‘sev’, ‘agg’ or ‘port’. The name is a string. They have a
representation as a program. When the program is interpreted it produces a dictionary spec that can be used
to create the object. The static method factory can create any object from the (kind, name, spec, program)
quartet, though, strictly, program is not needed.
The underwriter knowledge is stored in a dataframe indexed by kind and name with columns spec and program.

__init__(name='Rory', databases=None, update=False, log2=10, debug=False)
Create an underwriter object. The underwriter is the interface to the knowledge base of the aggregate
system. It is the interface to the parser and the interpreter, and to the database of curves, portfolios and
aggregates.

Parameters
• name – name of underwriter. Defaults to Rory, after Rory Cline, the best underwriter I
know and a supporter of an analytic approach to underwriting.

• databases – name or list of database files to read in on creation. if None: nothing
loaded; if ‘default’ (installed) or ‘site’ (user, in ~/aggregate/databases) database *.agg files
in default or site directory are loaded. If ‘all’ both default and site databases loaded. A
string refers to a single database; an interable of strings is also valid. See read_database
for search path.

• update – if True, update database files with new objects.
• log2 – log2 of number of buckets in discrete representation. 10 is 1024 buckets.
• debug – if True, print debug messages.

_interpreter_work(iterable, debug=False)
Do all the work for the test, allows input to be marshalled into the tester in different ways. Unlike
production interpret_program, runs one line at a time. Each line is preprocessed and then run through a
clean parser, and the output analyzed.

275

aggregate Documentation, Release 0.22.0

Last column, program as input is only changed if the preprocessor changes the program
Returns

DataFrame
build(program, update=None, log2=0, bs=0, recommend_p=0.99999, logger_level=None, **kwargs)

Convenience function to make work easy for the user. Intelligent auto updating. Detects discrete distri-
butions and sets bs = 1.
build method sets loger level to 30 by default.
__call__ is set equal to build.

Parameters
• program –
• update – build’s update
• log2 – 0 is default: Estimate log2 for discrete and self.log2 for all others. Inupt value
over-rides and cancels discrete computation (good for large discrete outcomes where
bucket happens to be 1.)

• bs –
• logger_level – temporary log(ger) level for this build
• recommend_p – passed to recommend bucket functions. Increase (closer to 1) for
thick tailed distributions.

• kwargs – passed to update, e.g., padding. Note force_severity=True is applied auto-
matically

Returns
created object(s)

dir(pattern='')
List all agg databases in site and default directories. If entries is True then read them and return named
objects.

Parameters
pattern – glob pattern for filename; .agg is added

factory(answer)
Create object of kind from spec, a dictionary. Creating from uw obviously needs the uw, so this is NOT
a staticmethod!

Parameters
answer – an Answer class with members kind, name, spec, and program

Returns
creates answer.object

interpret_program(portfolio_program)
Preprocess and then parse a program one line at a time. Each output is stored in the Underwriter’s
knowledge database. No objects are created.
Error handling through parser.

Parameters
portfolio_program –

Returns
interpreter_file(*, filename='', where='')

Run a suite of test programs. For detailed analysis, run_one. filename is a string or Path. If a csv it is
read into a dataframe, with the first column used as index. If it is an agg file (e.g. an agg database), it is

276 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

preprocessed to remove comments and replace nt agg with a space, then split on new lines and converted
to a dataframe. Other file formats are rejected.
These methods are called interpreter_… rather than interpret_… because they are for testing and debug-
ging the interpreter, not for actually interpreting anything!

interpreter_line(program, name='one off', debug=True)
Interpret single line of code in debug mode. name is index of output

interpreter_list(program_list)

Interpret elements in a list in debug mode.
static logger_level(level)

Convenience function.
Parameters

level –
Returns

more(regex)

More information about methods and properties matching regex
qlist(regex)

Wrapper for show to just list elements in knowledge that match regex. Returns a dataframe.
qshow(regex, tacit=True)

Wrapper for show to just show (display) elements in knowledge that match regex. No reutrn value if
tacit, else returns a dataframe.

read_database(fn)
read database of curves, aggs and portfolios. These can live in the default directory that is part of the
instalation or ~/aggregate/
fn can be a string filename, with or without extension. A .agg extension is added if there is no suffix.
Search path:
• in the current dir
• in site_dir (user)
• in default_dir (installation)

Parameters
fn – database file name

run_test_suite()

Run interpreter on the test suite
safe_lookup(buildinid)

Lookup buildinid=kind.name in uw to find expected kind and merge safely into self.arg_dict.
Different from getitem because it splits the item into kind and name and double checks you get the
expected kind.

Parameters
buildinid – a string in kind.name format

Returns
show(regex, kind='', plot=True, describe=True, logger_level=30, verbose=False, **kwargs)

Create from knowledge by name or match to name. Optionally plot. Returns the created object plus
dataframe with more detailed information. Allows exploration of preloaded databases.
Eg regex = "A.*[234] to run examples named A…2, 3 and 4.

3.1. Underwriter Module 277

aggregate Documentation, Release 0.22.0

See qshow for a wrapper that just returns the matches, with no object creation or plotting.
Examples.

from aggregate.utilities import pprint
pretty print all prgrams starting A; no object creation
build.show('^A.*', 'agg', False, False).program.apply(pprint);

build and plot A..234
ans, df = build.show('^A.*')

Parameters
• regex – for filtering name
• kind – the kind of object, port, agg, etc.
• plot – if True, plot (default True)
• describe – if True, print the describe dataframe
• logger_level – work silently!
• verbose – if True, return the dataframe and objects; else no return value
• kwargs – passed to build for calculation instructions

Returns
dictionary of created objects and DataFrame with info about each.

property test_suite_file

Return the test_suite filename, or None if it does not exist
write(portfolio_program, log2=0, bs=0, update=None, **kwargs)

Write a natural language program. Write carries out the following steps.
1. Read in the program and cleans it (e.g. punctuation, parens etc. are removed and ignored, replace ;

with new line etc.)
2. Parse line by line to create a dictionary definition of sev, agg or port objects.
3. Replace sev.name, agg.name and port.name references with their objects.
4. If update set, update all created objects.

Sample input:

port MY_PORTFOLIO
agg Line1 20 loss 3 x 2 sev gamma 5 cv 0.30 mixed gamma 0.4
agg Line2 10 claims 3 x 2 sevgamma 12 cv 0.30 mixed gamma 1.2
agg Line 3100 premium at 0.4 3 x 2 sev 4 @ lognormal 3 cv 0.8 fixed 1

The indents are required if each agg item appears on a new line.
See parser for full language spec! See Aggregate class for many examples.

Parameters
• log2 –
• bs –
• portfolio_program –
• update – override class default
• kwargs – passed to object’s update method if update==True

Returns
single created object or dictionary name: object

278 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

write_from_file(file_name, log2=0, bs=0, update=False, **kwargs)
Read program from file. Delegates to write.

Parameters
• file_name –
• log2 –
• bs –
• update –
• kwargs –

Returns

3.1.2 Other Underwriter functions

3.2 Parser Module

3.2.1 Lexer Class

class aggregate.parser.UnderwritingLexer

Implements the Lexer for the agg language.
static preprocess(program)

Separate preprocessor step, allowing it to be called separately. Preprocessing involves six steps:
1. Remove // comments, through end of line
2. Remove n in [] (vectors) that appear from using f'{np.linspace(...)}'
3. Backslash (line continuation) mapped to space
4. nt is replaced with space, supporting the tabbed indented Portfolio layout
5. Split on newlines

Parameters
program –

Returns

3.2.2 Parser Class

class aggregate.parser.UnderwritingParser(safe_lookup_function, debug=False)
Implements the Parser for the agg language.
Here are testers for the math expressions:

from aggregate import build
for t in ['-123', '-2%', '45%', '1e-3%', 'inf', '-inf', 'exp(1)', 'exp(1/2)',
↪→'exp(-1)', '-1/8',

'exp(10)/exp(3**2/2)', '2**10', '50/exp(.3**2/2)', '1/exp(1.9**2 / 2)
↪→']:

a = build(t)
print(a.name)
assert float(a.name) == eval(t.replace('%', '/100').replace('exp', 'np.exp

↪→').replace('inf', 'np.inf'))

To test on the test_suite:

3.2. Parser Module 279

aggregate Documentation, Release 0.22.0

df = build.run_test_suite()
assert len(df.query('error != 0')) == 0

static enhance_debugfile(f_out='')

Put links in the parser.out debug file, if DEBUGFILE != ‘’.
Parameters

f_out – Path or filename of output. If “” then DEBUGFILE.html used.
Returns

error(p)

Default error handling function. This may be subclassed.

3.2.3 Remaining Functions

aggregate.parser.grammar(add_to_doc=False, save_to_fn='')
Write the grammar at the top of the file as a docstring
To work with multi-rules enter them on one line, like so:

@_('builtin_agg PLUS expr', 'builtin_agg MINUS expr')

Parameters
• add_to_doc – add the grammar to the docstring
• save_to_fn – save the grammar to a file

3.3 Distributions Module

3.3.1 Frequency Class

class aggregate.distributions.Frequency(freq_name, freq_a, freq_b, freq_zm, freq_p0)
Manages Frequency distributions: creates moment function and MGF.

• freq_moms(n): returns EN, EN^2 and EN^3 when EN=n
• freq_pgf(n, z): returns the moment generating function applied to z when EN=n

Frequency distributions are either non-mixture types or mixture types.
Non-Mixture Frequency Types

• fixed: no parameters
• bernoulli: exp_en interpreted as a probability, must be < 1
• binomial: Binomial(n/p, p) where p = freq_a, and n = exp_en
• poisson: Poisson(n)
• geometric: geometric(1/(n + 1)), supported on 0, 1, 2, …
• logarithmci: logarithmic(theta), supported on 1, 2, …; theta solved numerically
• negymana: Po(n/freq_a) stopped sum of Po(freq_a) freq_a = “eggs per cluster”
• negbin: freq_a is the variance multiplier, ratio of variance to mean
• pascal:

280 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

• pascal: (generalized) pascal-poisson distribution, a poisson stopped sum of negative binomial; exp_en
gives the overall claim count. freq_a is the CV of the frequency distribution and freq_b is the number of
claimants per claim (or claims per occurrence). Hence, the Poisson component has mean exp_en / freq_b
and the number of claims per occurrence has mean freq_b. This parameterization may not be ideal(!).

Mixture Frequency Types
These distributions are G-mixed Poisson, so N | G ~ Poisson(n G). They are labelled by the name of the mixing
distribution or the common name for the resulting frequency distribution. See Panjer and Willmot or JKK.
In all cases freq_a is the CV of the mixing distribution which corresponds to the asympototic CV of the
frequency distribution and of any aggregate when the severity has a variance.

• gamma: negative binomial, freq_a = cv of gamma distribution
• delaporte: shifted gamma, freq_a = cv of mixing disitribution, freq_b = proportion of certain claims
= shift. freq_b must be between 0 and 1.

• ig: inverse gaussian, freq_a = cv of mixing distribution
• sig: shifted inverse gaussian, freq_a = cv of mixing disitribution, freq_b = proportion of certain claims
= shift. freq_b must be between 0 and 1.

• sichel: generalized inverse gaussian mixing distribution, freq_a = cv of mixing distribution and freq_b
= lambda value. The beta and mu parameters solved to match moments. Note lambda = -0.5 corresponds
to inverse gaussian and 0.5 to reciprocal inverse gauusian. Other special cases are available.

• sichel.gamma: generalized inverse gaussian mixture where the parameters match the moments of a
delaporte distribution with given freq_a and freq_b

• sichel.ig: generalized inverse gaussian mixture where the parameters match the moments of a
shifted inverse gaussian distribution with given freq_a and freq_b. This parameterization has poor nu-
merical stability and may fail.

• beta: beta mixing with freq_a = Cv where beta is supported on the interval [0, freq_b]. This method
should be used carefully. It has poor numerical stability and can produce bizzare aggregates when the
alpha or beta parameters are < 1 (so there is a mode at 0 or freq_b).

Code proof for Neyman A:

from aggregate import build, qd
mean = 10
eggs_per_cluster = 4
neya = build(f'agg Neya {mean} claims dsev[1] neymana {eggs_per_cluster}')
qd(neya)

po = build(f'agg Po4 {eggs_per_cluster} claims dsev[1] poisson')
po_pmf = po.density_df.query('p_total > 1e-13').p_total

byhand = build(f'agg ByHand {mean / eggs_per_cluster} claims dsev {list(po_pmf.
↪→index)} {po_pmf.values} poisson')
qd(byhand)

df = pd.concat((neya.density_df.p_total, byhand.density_df.p_total), axis=1)
df.columns = ['neya', 'byhand']
df['err'] = df.neya - df.byhand
assert df.err.abs().max() < 1e-5
df.head(40)

Code proof for Pascal:

from aggregate import build, qd
mean = 10
claims_per_occ =1.24
overall_cv = 1.255
pascal = build(f'agg PascalEg {mean} claims dsev[1] pascal {overall_cv}

(continues on next page)

3.3. Distributions Module 281

aggregate Documentation, Release 0.22.0

(continued from previous page)
↪→{claims_per_occ}', log2=16)
qd(pascal)

c = (mean * overall_cv**2 - 1 - claims_per_occ) / claims_per_occ
th = claims_per_occ * c
a = 1 / c
from form of nb pgf identify r = a and beta = theta, mean is rb, var is␣
↪→rb(1+b)
nb = build(f'agg NB {claims_per_occ} claims dsev[1] negbin {th + 1}', log2=16)
nb_pmf = nb.density_df.query('p_total > 1e-13').p_total
qd(nb)

byhand = build(f'agg ByHand {mean / claims_per_occ} claims dsev {list(nb_pmf.
↪→index)} {nb_pmf.values} poisson', log2=16)
qd(byhand)

df = pd.concat((pascal.density_df.p_total, byhand.density_df.p_total), axis=1)
df.columns = ['pascal', 'byhand']
df['err'] = df.pascal - df.byhand
assert df.err.abs().max() < 1e-5
df.head(40)

Parameters
• freq_name – name of the frequency distribution, poisson, geometric, etc.
• freq_a –
• freq_b –

__init__(freq_name, freq_a, freq_b, freq_zm, freq_p0)
Creates the freq_pgf and moment function:
• moment function(n) returns EN, EN^2, EN^3 when EN=n.
• freq_pgf(n, z) is the freq_pgf evaluated at log(z) when EN=n

Parameters
• freq_name – name of the frequency distribution, poisson, geometric, etc.
• freq_a –
• freq_b –
• freq_zm – freq_zm True if zero modified, default False
• freq_p0 – modified p0, probability of zero claims

3.3.2 Severity Class

class aggregate.distributions.Severity(sev_name, exp_attachment=None, exp_limit=inf,
sev_mean=0, sev_cv=0, sev_a=nan, sev_b=0,
sev_loc=0, sev_scale=0, sev_xs=None, sev_ps=None,
sev_wt=1, sev_lb=0, sev_ub=inf,
sev_conditional=True, name='', note='')

__init__(sev_name, exp_attachment=None, exp_limit=inf, sev_mean=0, sev_cv=0, sev_a=nan, sev_b=0,
sev_loc=0, sev_scale=0, sev_xs=None, sev_ps=None, sev_wt=1, sev_lb=0, sev_ub=inf,
sev_conditional=True, name='', note='')

A continuous random variable, subclasses scipy.statistics_df.rv_continuous, adding
layer and attachment functionality. It overrides

282 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

• cdf

• pdf

• isf

• ppf

• sf

• stats

See scipy.stats continuous rvs for more details about available distributions. The following distributions
with two shape parameters are supported:
• Burr (burr)
• Generalized Pareto (genpareto)
• Generalized gamma (gengamma)

It is easy to add others in the code below. With two shape parameters the mean cv input format is not
available.
See code in Problems and Solutions to extract distributions from scipy stats by introsepection.

Parameters
• sev_name – scipy statistics_df continuous distribution | (c|d)histogram cts or discerte
| fixed

• exp_attachment – None if layer is missing, distinct from 0; if a = 0 then losses are
conditional on X>a, if a = None then losses are conditional on X>=0

• exp_limit –
• sev_mean –
• sev_cv –
• sev_a – first shape parameter
• sev_b – second shape parameter (e.g., beta)
• sev_loc – scipy.stats location parameter
• sev_scale – scipy.stats scale parameter
• sev_xs – for fixed or histogram classes
• sev_ps –
• sev_wt – this is not used directly; but it is convenient to pass it in and ignore it because
sevs are implicitly created with sev_wt=1.

• sev_conditional – conditional or unconditional; for severities use conditional
• name – name of the severity object
• note – optional note.

cv_to_shape(cv, hint=1)
Create a frozen object of type dist_name with given cv. The lognormal, gamma, inverse gamma and
inverse gaussian distributions are solved analytically. Other distributions solved numerically and may be
unstable.

Parameters
• cv –
• hint –

Returns

3.3. Distributions Module 283

https://docs.scipy.org/doc/scipy/tutorial/stats/continuous.html

aggregate Documentation, Release 0.22.0

mean_to_scale(shape, mean, loc=0)
Adjust the scale to achieved desired mean. Return a frozen instance.

Parameters
• shape –
• mean –
• loc – location parameter (note: location is added to the mean…)

Returns
moms()

Revised moments for Severity class. Trying to compute moments of
X(a,d) = min(d, (X-a)+)
==> E[X(a,d)^n] = int_a^d (x-a)^n f(x) dx + (d-a)^n S(d).

Let x = q(p), F(x) = p, f(x)dx = dp. for 1,2,…n(<=3).
E[X(a,d)^n] = int_{F(a)}^{F(d)} (q(p)-a)^n dp + (d-a)^n S(d)
The base is to compute int_{F(a)}^{F(d)} q(p)^n dp. These are exi below. They are then adjusted to
create the moments needed.
Old moments tried to compute int S(x)dx, but that is over a large, non-compact domain and did not work
so well. With 0.9.3 old_moms was removed. Old_moms code did this:

ex1 = safe_integrate(lambda x: self.fz.sf(x), 1)
ex2 = safe_integrate(lambda x: 2 * (x - self.attachment) * self.fz.sf(x),␣
↪→2)
ex3 = safe_integrate(lambda x: 3 * (x - self.attachment) ** 2 * self.fz.
↪→sf(x), 3)

Test examples

def test(mu, sigma, a, y):
global moms
import types
analytic with no layer attachment
fz = ss.lognorm(sigma, scale=np.exp(mu))
tv = np.array([np.exp(k*mu + k * k * sigma**2/2) for k in range(1,4)])

old method
s = agg.Severity('lognorm', sev_a=sigma, sev_scale=np.exp(mu),

exp_attachment=a, exp_limit=y)
est = np.array(s.old_moms())

swap out moment routine
setattr(s, moms.__name__, types.MethodType(moms, s))
ans = np.array(s.moms())

summarize and report
sg = f'Example: mu={mu} sigma={sigma} a={a} y={y}'
print(f'{sg}\n{"="*len(sg)}')
print(pd.DataFrame({'new_ans' : ans, 'old_ans': est,

'err': ans/est-1, 'no_la_analytic' : tv}))

test(8.7, .5, 0, np.inf)
test(8.7, 2.5, 0, np.inf)
test(8.7, 2.5, 10e6, 200e6)

Example: mu=8.7, sigma=0.5, a=0, y=inf

284 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

new_ans old_ans err no_la_analytic
0 6.802191e+03 6.802191e+03 3.918843e-11 6.802191e+03
1 5.941160e+07 5.941160e+07 3.161149e-09 5.941160e+07
2 6.662961e+11 6.662961e+11 2.377354e-08 6.662961e+11

Example: mu=8.7 sigma=2.5 a=0 y=inf (here the old method failed)

new_ans old_ans err no_la_analytic
0 1.366256e+05 1.366257e+05 -6.942541e-08 1.366257e+05
1 9.663487e+12 1.124575e+11 8.493016e+01 9.669522e+12
2 2.720128e+23 7.597127e+19 3.579469e+03 3.545017e+23

Example: mu=8.7 sigma=2.5 a=10000000.0 y=200000000.0

new_ans old_ans err no_la_analytic
0 1.692484e+07 1.692484e+07 2.620126e-14 1.366257e+05
1 1.180294e+15 1.180294e+15 5.242473e-13 9.669522e+12
2 1.538310e+23 1.538310e+23 9.814372e-14 3.545017e+23

The numerical issues are very sensitive. Goign for a compromise between speed and accuracy. Only
an issue for very thick tailed distributions with no upper limit - not a realistic situation. Here is a tester
program for two common cases:

logger_level(30) # see what is going on
for sh, dist in zip([1,2,3,4, 3.5,2.5,1.5,.5], ['lognorm']*3 + ['pareto
↪→']*4):

s = Severity(dist, sev_a=sh, sev_scale=1, exp_attachment=0)
print(dist,sh, s.moms())
if dist == 'lognorm':

print('actual', [(n, np.exp(n*n*sh*sh/2)) for n in range(1,4)])

Returns
vector of moments. np.nan signals unreliable but finite value. np.inf is correct, the
moment does not exist.

plot(n=100, axd=None, figsize=(7.0, 4.9), layout='AB\nCD')

Quick plot, updated for 0.9.3 with mosaic and no grid lines. (F(x), x) plot replaced with log
density plot.

param n
number of points to plot.

param axd
axis dictionary, if None, create new figure. Must have keys ‘A’, ‘B’, ‘C’, ‘D’.

param figsize
(width, height) in inches.

param layout
the subplot_mosaic layout of the figure. Default is ‘AB

CD’.
return

3.3. Distributions Module 285

aggregate Documentation, Release 0.22.0

3.3.3 Aggregate Class

class aggregate.distributions.Aggregate(name, exp_el=0, exp_premium=0, exp_lr=0,
exp_en=0, exp_attachment=None, exp_limit=inf,
sev_name='', sev_a=nan, sev_b=0, sev_mean=0,
sev_cv=0, sev_loc=0, sev_scale=0, sev_xs=None,
sev_ps=None, sev_wt=1, sev_lb=0, sev_ub=inf,
sev_conditional=True, sev_pick_attachments=None,
sev_pick_losses=None, occ_reins=None, occ_kind='',
freq_name='', freq_a=0, freq_b=0, freq_zm=False,
freq_p0=nan, agg_reins=None, agg_kind='', note='')

__init__(name, exp_el=0, exp_premium=0, exp_lr=0, exp_en=0, exp_attachment=None, exp_limit=inf,
sev_name='', sev_a=nan, sev_b=0, sev_mean=0, sev_cv=0, sev_loc=0, sev_scale=0,
sev_xs=None, sev_ps=None, sev_wt=1, sev_lb=0, sev_ub=inf, sev_conditional=True,
sev_pick_attachments=None, sev_pick_losses=None, occ_reins=None, occ_kind='',
freq_name='', freq_a=0, freq_b=0, freq_zm=False, freq_p0=nan, agg_reins=None,
agg_kind='', note='')

The Aggregate distribution class manages creation and calculation of aggregate distributions. It al-
lows for very flexible creation of Aggregate distributions. Severity can express a limit profile, a mixed
severity or both. Mixed frequency types share a mixing distribution across all broadcast terms to ensure
an appropriate inter- class correlation.

Parameters
• name – name of the aggregate
• exp_el – expected loss or vector
• exp_premium – premium volume or vector (requires loss ratio)
• exp_lr – loss ratio or vector (requires premium)
• exp_en – expected claim count per segment (self.n = total claim count)
• exp_attachment – occurrence attachment; None indicates no limit clause, which is
treated different from an attachment of zero.

• exp_limit – occurrence limit
• sev_name – severity name or sev.BUILTIN_SEV or meta.var agg or port or similar
or vector or matrix

• sev_a – scipy stats shape parameter
• sev_b – scipy stats shape parameter
• sev_mean – average (unlimited) severity
• sev_cv – unlimited severity coefficient of variation
• sev_loc – scipy stats location parameter
• sev_scale – scipy stats scale parameter
• sev_xs – xs and ps must be provided if sev_name is (c|d)histogram, xs are the bucket
break points

• sev_ps – ps are the probability densities within each bucket; if buckets equal size no
adjustments needed

• sev_wt – weight for mixed distribution
• sev_lb – lower bound for severity (length of sev_lb must equal length of sev_ub and
weights)

• sev_ub – upper bound for severity

286 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

• sev_conditional – if True, severity is conditional, else unconditional.
• sev_pick_attachments – if not None, a list of attachment points to define picks
• sev_pick_losses – if not None, a list of losses by layer
• occ_reins – layers: share po layer xs attach or XXXX
• occ_kind – ceded to or net of
• freq_name – name of frequency distribution
• freq_a – cv of freq dist mixing distribution
• freq_b – claims per occurrence (delaporte or sig), scale of beta or lambda (Sichel)
• freq_zm – True/False zero modified flag
• freq_p0 – if freq_zm, provides the modified value of p0; default is nan
• agg_reins – layers
• agg_kind – ceded to or net of
• note – note, enclosed in {}

_apply_reins_work(reins_list, base_density, debug=False)
Actually do the work. Called by apply_reins and reins_audit_df. Only needs self to get limits, which it
must guess without q (not computed at this stage). Does not need to know if occ or agg reins, only that
the correct base_density is supplied.

Parameters
• reins_list –
• kind – occ or agg, for debug plotting
• debug –

Returns
ceder, netter,

_reins_audit_df_work(kind='occ')
Apply each re layer separately and aggregate loss and other stats.

_repr_html_()

For IPython.display
aggregate_error_analysis(log2, bs2_from=None, **kwargs)

Analysis of aggregate error across a range of bucket sizes. If bs2_from is None use recom-
mend_bucket plus/mins 3. Note: if distribution does not have a second moment, you must enter
bs2_from.

Parameters
• log2 –
• bs2_from – lower bound on bs to use, in log2 terms; estimate using recom-
mend_bucket if not input.

• kwargs – passed to update
apply_agg_reins(debug=False, padding=1, tilt_vector=None)

Apply the entire agg reins structure and save output. For by layer detail create reins_audit_df. Makes
sev_density_gross, sev_density_net and sev_density_ceded, and updates sev_density to the requested
view.
Not reflected in statistics df.

Returns

3.3. Distributions Module 287

aggregate Documentation, Release 0.22.0

apply_distortion(dist)
Apply distortion to the aggregate density and append as exag column to density_df. # TODO check
consistent with other implementations. :param dist: :return:

apply_occ_reins(debug=False)
Apply the entire occ reins structure and save output For by layer detail create reins_audit_df Makes
sev_density_gross, sev_density_net and sev_density_ceded, and updates sev_density to the requested
view.
Not reflected in statistics df.

Parameters
debug – More verbose.

Returns
approximate(approx_type='slognorm', output='scipy')

Create an approximation to self using method of moments matching.
Compare to Portfolio.approximate which returns a single sev fixed freq agg, this returns a scipy dist by
default.
Use case: exam questions with the normal approacimation!

Parameters
• approx_type – norm, lognorn, slognorm (shifted lognormal), gamma, sgamma. If
‘all’ then returns a dictionary of each approx.

• output – scipy - frozen scipy.stats continuous rv object; sev_decl - DecL program for
severity (to substituate into an agg ; no name) sev_kwargs - dictionary of parameters to
create Severity agg_decl - Decl program agg T 1 claim sev_decl fixed any other string -
created Aggregate object

Returns
as above.

cdf(x, kind='previous')
Return cumulative probability distribution at x using kind interpolation.
2022-10 change: kind introduced; default was linear

Parameters
x – loss size

Returns
cramer_lundberg(rho, cap=0, excess=0, stop_loss=0, kind='index', padding=1)

Return the Pollaczeck-Khinchine Capital function relating surplus to eventual probability of ruin. As-
sumes frequency is Poisson.
See Embrechts, Kluppelberg, Mikosch 1.2, page 28 Formula 1.11
TODO: Should return a named tuple.

Parameters
• rho – rho = prem / loss - 1 is the margin-to-loss ratio
• cap – cap = cap severity at cap, which replaces severity with X | X <= cap
• excess – excess = replace severity with X | X > cap (i.e. no shifting)
• stop_loss – stop_loss = apply stop loss reinsurance to cap, so X > stop_loss replaced
with Pr(X > stop_loss) mass

• kind –
• padding – for update (the frequency tends to be high, so more padding may be needed)

288 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

Returns
ruin vector as pd.Series and function to lookup (no interpolation if kind==index; else interp)
capitals

property density_df

Create and return the density_df data frame. A read only property, though if you write d = a.density_df
you can obviously edit d. Some duplication of columns (p and p_total) to ensure consistency with Port-
folio.

Returns
DataFrame similar to Portfolio.density_df.

property describe

Theoretic and empirical stats. Used in _repr_html_.
discretize(sev_calc, discretization_calc, normalize)

Discretize the severity distributions and weight.
sev_calc describes how the severity is discretize, see `Discretizing the Severity Distribution`_. The
options are discrete=round, forward, backward or moment.
sev_calc='continuous' (same as forward, kept for backwards compatibility) is used when you
think of the resulting distribution as continuous across the buckets (which we generally don’t). The
buckets are not shifted and so Pr(X = bi) = Pr(bi−1 < X ≤ bi). Note that bi−1 = −bs/2 is
prepended.
We use the discretized distribution as though it is fully discrete and only takes values at the bucket points.
Hence, we should use sev_calc=’discrete’. The buckets are shifted left by half a bucket, so Pr(X =
bi) = Pr(bi − b/2 < X ≤ bi + b/2).
The other wrinkle is the righthand end of the range. If we extend to np.inf then we ensure we have
probabilities that sum to 1. But that method introduces a probability mass in the last bucket that is often
not desirable (we expect to see a smooth continuous distribution, and we get a mass). The other alternative
is to use endpoint = 1 bucket beyond the last, which avoids this problem but can leave the probabilities
short. We opt here for the latter and normalize (rescale).
discretization_calc controls whether individual probabilities are computed using backward-
differences of the survival function or forward differences of the distribution function, or both. The
former is most accurate in the right-tail and the latter for the left-tail of the distribution. We are usually
concerned with the right-tail, so prefer survival. Using both takes the greater of the two esimates giving
the best of both worlds (underflow makes distribution zero in the right-tail and survival zero in the left
tail, so the maximum gives the best estimate) at the expense of computing time.
Sensible defaults: sev_calc=discrete, discretization_calc=survival, normalize=True.

Parameters
• sev_calc – discrete=round, forward, backward, or continuous and method becomes
discrete otherwise

• discretization_calc – survival, distribution or both; in addition themethod then
becomes survival

• normalize – if True, normalize the severity so sum probs = 1. This is generally what
you want; but when dealing with thick tailed distributions it can be helpful to turn it off.

Returns
easy_update(log2=16, bs=0, recommend_p=0.99999, debug=False, **kwargs)

Convenience function, delegates to update_work. Avoids having to pass xs. Also aliased as easy_update
for backward compatibility.

Parameters
• log2 –
• bs –

3.3. Distributions Module 289

aggregate Documentation, Release 0.22.0

• recommend_p – p value passed to recommend_bucket. If > 1 converted to 1 - 10**-p
in rec bucket.

• debug –
• kwargs – passed through to update

Returns
entropy_fit(n_moments, tol=1e-10, verbose=False)

Find the max entropy fit to the aggregate based on n_moments fit. The constant is added (sum of proba-
bilities constraint), for two moments there are n_const = 3 constrains.
Based on discussions with, and R code from, Jon Evans
Run

ans = obj.entropy_fit(2)
ans['ans_df'].plot()

to compare the fits.
Parameters

• n_moments – number of moments to match
• tol –
• verbose –

Returns
explain_validation()

Explain validation result. Validation computed if needed.
freq_pmf(log2)

Return the frequency probability mass function (pmf) computed using 2**log2 buckets. Uses self.en to
compute the expected frequency. The Frequency does not know the expected claim count, so this is
a method of Aggregate.

html_info_blob()

Text top of _repr_html_
json()

Write spec to json string.
Returns

limits(stat='range', kind='linear', zero_mass='include')

Suggest sensible plotting limits for kind=range, density, etc., same as Portfolio.
Should optionally return a locator for plots?
Called by ploting routines. Single point of failure!
Must work without q function when not computed (apply_reins_work for occ reins; then use report_ser
instead).

Parameters
• stat – range or density (for y axis)
• kind – linear or log (this is the y-axis, not log of range…that is rarely plotted)
• zero_mass – include exclude, for densities

Returns

290 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

more(regex)
More information about methods and properties matching regex

pdf(x)

Probability density function, assuming a continuous approximation of the bucketed density.
Parameters

x –
Returns

picks(attachments, layer_loss_picks, debug=False)
Adjust the computed severity to hit picks targets in layers defined by a. Delegates work to utilities.
picks_work. See that function for details.

plot(axd=None, xmax=0, **kwargs)
Basic plot with severity and aggregate, linear and log plots and Lee plot.

Parameters
• xmax – Enter a “hint” for the xmax scale. E.g., if plotting gross and net you want all on
the same scale. Only used on linear scales?

• axd –
• kwargs – passed to make_mosaic_figure

Returns
pmf(x)

Probability mass function, treating aggregate as discrete x must be in the index (?)
pollaczeck_khinchine(rho, cap=0, excess=0, stop_loss=0, kind='index', padding=1)

Return the Pollaczeck-Khinchine Capital function relating surplus to eventual probability of ruin. As-
sumes frequency is Poisson.
See Embrechts, Kluppelberg, Mikosch 1.2, page 28 Formula 1.11
TODO: Should return a named tuple.

Parameters
• rho – rho = prem / loss - 1 is the margin-to-loss ratio
• cap – cap = cap severity at cap, which replaces severity with X | X <= cap
• excess – excess = replace severity with X | X > cap (i.e. no shifting)
• stop_loss – stop_loss = apply stop loss reinsurance to cap, so X > stop_loss replaced
with Pr(X > stop_loss) mass

• kind –
• padding – for update (the frequency tends to be high, so more padding may be needed)

Returns
ruin vector as pd.Series and function to lookup (no interpolation if kind==index; else interp)
capitals

ppf(p, kind='lower')

Return quantile function of density_df.p_total.
Definition 2.1 (Quantiles) x(α) = qα(X) = inf{x ∈ R : P[X ≤ x] ≥ α} is the lower α-quantile of X x(α) =
qα(X) = inf{x ∈ R : P[X ≤ x] > α} is the upper α-quantile of X.
kind=='middle' has been removed.

Parameters
• p –

3.3. Distributions Module 291

aggregate Documentation, Release 0.22.0

• kind – ‘lower’ or ‘upper’.
Returns

property pprogram

pretty print the program
property pprogram_html

pretty print the program to html
price(p, g, kind='var')

Price using regulatory and pricing g functions, mirroring Portfolio.price. Unlike Portfolio, cannot cal-
ibrate. Applying specified Distortions only. If calibration is needed, embed Aggregate in a one-line
Portfolio object.
Compute E_price (X wedge E_reg(X)) where E_price uses the pricing distortion and E_reg uses the
regulatory distortion.
Regulatory capital distortion is applied on unlimited basis: reg_g can be:
• if input < 1 it is a number interpreted as a p value and used to determine VaR capital
• if input > 1 it is a directly input capital number
• d dictionary: Distortion; spec { name = dist name | var, shape=p value a distortion used directly

pricing_g is { name = ph|wang and shape=}, if shape (lr or roe not allowed; require calibration).
if ly, must include ro in spec

Parameters
• p – a distortion function spec or just a number; if >1 assets, if <1 a prob converted to
quantile

• kind – var lower upper tvar
• g – pricing distortion function

Returns
q(p, kind='lower')

Return quantile function of density_df.p_total.
Definition 2.1 (Quantiles) x(α) = qα(X) = inf{x ∈ R : P[X ≤ x] ≥ α} is the lower α-quantile of X x(α) =
qα(X) = inf{x ∈ R : P[X ≤ x] > α} is the upper α-quantile of X.
kind=='middle' has been removed.

Parameters
• p –
• kind – ‘lower’ or ‘upper’.

Returns
q_sev(p)

Compute quantile of severity distribution, returning element in the index. Very similar code to q, but
only lower quantiles.

Parameters
p –

Returns

292 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

recommend_bucket(log2=10, p=0.99999, verbose=False)
Recommend a bucket size given 2**N buckets. Not rounded.
For thick tailed distributions need higher p, try p=1-1e-8.
If no second moment, throws a ValueError. You just can’t guess in that situation.

Parameters
• log2 – log2 of number of buckets. log2=10 is default.
• p – percentile to use to determine needed range. Default is RECOMMEND_P. if > 1
converted to 1-10**-n.

• verbose – print out recommended bucket sizes for 2**n for n in {log2, 16, 13, 10}
Returns

property reinsurance_audit_df

Create and return the _reins_audit_df data frame. Read only property.
Returns

reinsurance_description(kind='both', width=0)

Text description of the reinsurance.
Parameters

• kind – both, occ, or agg
• width – width of text for textwrap.fill; omitted if width==0

property reinsurance_df

Version of density_df tailored to reinsurance. Several cases
• occ program only: agg_density_.. is recomputed manually for all three outcomes
• agg program only: sev_density_… not set for gcn
• both programs: agg is gcn for the agg program applied to the requested occ output

_apply_reins_work

reinsurance_kinds()

Text desciption of kinds of reinsurance applied: None, Occurrence, Aggergate, both.
Returns

property reinsurance_occ_layer_df

How losses are layered by the occurrence reinsurance. Expected loss, CV layer loss, and expected counts
to layers.

reinsurance_occ_plot(axs=None)
Plots for occurrence reinsurance: occurrence log density and aggregate quantile plot.

property reinsurance_report_df

Create and return a dataframe with the reinsurance report. TODO: sort out the overlap with reinsur-
ance_audit_df (occ and agg)What this function adds is the ceded/net of occ aggregates before application
of the agg reinsurance. The pure occ and agg parts are in reinsurance_audit_df.

property report_df

Created on the fly report to audit creation of object. There were some bad choices of columns in au-
dit_df…but it [maybe] embedded in other code…. Eg the use of _1 vs _m for mean is inconsistent.

Returns

3.3. Distributions Module 293

aggregate Documentation, Release 0.22.0

rescale(scale, kind='homog')
Return a rescaled Aggregate object - used to compute derivatives.
All need to be safe multiplies because of array specification there is an array that is not a numpy array
TODO have parser return numpy arrays not lists!

Parameters
• scale – amount of scale
• kind – homog of inhomog

Returns
sample(n, replace=True)

Draw a sample of n items from the aggregate distribution. Wrapper around pd.DataFrame.sample.
property sev

Make exact sf, cdf and pdfs and store in namedtuple for use as sev.cdf etc.
severity_error_analysis(sev_calc='round', discretization_calc='survival', normalize=True)

Analysis of severity component errors, uses the current bs in self. Gives detailed, component by compo-
nent, error analysis of severities. Includes discretization error (bs large relative to mean) and truncation
error (tail integral large).
Total S shows the aggregate not severity. Generally about self.n * (1 - sum_p) (per Feller).

sf(x)
Return survival function using linear interpolation.

Parameters
x – loss size

Returns
snap(x)

Snap value x to the index of density_df, i.e., as a multiple of self.bs.
Parameters

x –
Returns

property spec

Get the dictionary specification, but treat as a read only property
Returns

property spec_ex

All relevant info.
Returns

property statistics

Pandas series of theoretic frequency, severity, and aggregate 1st, 2nd, and 3rd moments. Mean, cv, and
skewness.

Returns
tvar(p, kind='')

Updated June 2023, 0.13.0
Compute the tail value at risk at threshold p
Definition 2.6 (Tail mean and Expected Shortfall) Assume E[X−] < ∞. Then x¯(α) = TM_α(X) =
α^{−1}E[X 1{X≤x(α)}] + x(α) (α − P[X ≤ x(α)]) is α-tail mean at level α the of X. Acerbi and Tasche
(2002)

294 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

We are interested in the right hand exceedence [?? note > vs ≥] α^{−1}E[X 1{X > x(α)}] + x(α) (P[X
≤ x(α)] − α)
McNeil etc. p66-70 - this follows from def of ES as an integral of the quantile function
q is exact quantile (most of the time) q1 is the smallest index element (bucket multiple) greater than or
equal to q
tvar integral is int_p^1 q(s)ds = int_q^infty xf(x)dx = q + int_q^infty S(x)dx we use the last approach.
np.trapz approxes the integral. And the missing piece between q and q1 approx as a trapezoid too.

Parameters
• p –
• kind –

Returns
tvar_sev(p)

TVaR of severity - now available for free!
added June 2023

update(log2=16, bs=0, recommend_p=0.99999, debug=False, **kwargs)

Convenience function, delegates to update_work. Avoids having to pass xs. Also aliased as easy_update
for backward compatibility.

Parameters
• log2 –
• bs –
• recommend_p – p value passed to recommend_bucket. If > 1 converted to 1 - 10**-p
in rec bucket.

• debug –
• kwargs – passed through to update

Returns
update_work(xs, padding=1, tilt_vector=None, approximation='exact', sev_calc='discrete',

discretization_calc='survival', normalize=True, force_severity=False, debug=False)
Compute a discrete approximation to the aggregate density.
See discretize for sev_calc, discretization_calc and normalize.
Quick simple test with log2=13 update took 5.69 ms and _eff took 2.11 ms. So quicker but not an issue
unless you are doing many buckets or aggs.

Parameters
• xs – range of x values used to discretize
• padding – for FFT calculation
• tilt_vector – tilt_vector = np.exp(tilt_amount * np.arange(N)), N=2**log2, and
tilt_amount * N < 20 recommended

• approximation – ‘exact’ = perform frequency / severity convolution using FFTs.
‘slognorm’ or ‘sgamma’ use a shifted lognormal or shifted gamma approximation.

• sev_calc – discrete=round, forward, backward, or continuous and method becomes
discrete otherwise

• discretization_calc – survival, distribution or both; in addition themethod then
becomes survival

3.3. Distributions Module 295

aggregate Documentation, Release 0.22.0

• normalize – if True, normalize the severity so sum probs = 1. This is generally what
you want; but when dealing with thick tailed distributions it can be helpful to turn it off.

• force_severity – make severities even if using approximation, for plotting
• debug – run reinsurance in debug model if True.

Returns
property valid

Check if the model appears valid. An answer of True means the model is “not unreasonable”. It does not
guarantee the model is valid. On the other hand, False means it is definitely suspect. (The interpretation is
similar to the null hypothesis in a statistical test). Called and reported automatically by qd for Aggregate
objects.
Checks the relative errors (from self.describe) for:
• severity mean < eps
• severity cv < 10 * eps
• severity skew < 100 * eps (skewness is more difficult to estimate)
• aggregate mean < eps and < 2 * severity mean relative error (larger values indicate possibility of
aliasing and that bs is too small).

• aggregate cv < 10 * eps
• aggregate skew < 100 * esp

The default uses eps = 1e-4 relative error. This can be changed by setting the validation_eps variable.
Test only applied for CV and skewness when they are > 0.
Run with logger level 20 (info) for more information on failures.
A Type 1 error (rejecting a valid model) is more likely than Type 2 (failing to reject an invalide one).

Returns
True (interpreted as not unreasonable) if all tests are passed, else False.

var_dict(p, kind='lower', snap=False)
Make a dictionary of value at risks for the line, mirrors Portfolio.var_dict. Here is just marshals calls to
the appropriate var or tvar function.
No epd. Allows the price function to run consistently with Portfolio version.
Example Use:

for p, arg in zip([.996, .996, .996, .985, .01], ['var', 'lower', 'upper',
↪→'tvar', 'epd']):

print(port.var_dict(p, arg, snap=True))

Parameters
• p –
• kind – var (defaults to lower), upper, lower, tvar
• snap – snap tvars to index

Returns

296 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

3.4 Portfolio Module

3.4.1 Portfolio Class

class aggregate.portfolio.Portfolio(name, spec_list, uw=None)
Portfolio creates andmanages a portfolio of Aggregate objects eachmodeling one unit of business. Applications
include

• Model a book of insurance
• Model a large account with several sub lines
• Model a reinsurance portfolio or large treaty

__init__(name, spec_list, uw=None)
Create a new Portfolio object.

Parameters
• name – The name of the portfolio. No spaces or underscores.
• spec_list – A list of
1. dictionary: Aggregate object dictionary specifications or
2. Aggregate: An actual aggregate objects or
3. tuple (type, dict) as returned by uw[‘name’] or
4. string: Names referencing objects in the optionally passed underwriter
5. a single DataFrame: empirical samples (the total column, if present, is ignored); a

p_total column is used for probabilities if present
Returns

new Portfolio object.
_make_var_tvar(ser)

There is no severity version here, so this knows where to store the answer, cf Aggregate version.
_repr_html_()

Updated to mimic Aggregate
accounting_economic_balance_sheet(a=0, p=0)

story version assumes line 0 = reserves and 1 = prospective….other than that identical
usual a and p rules

add_exa(df, ft_nots=None)
Use fft to add exeqa_XXX = E(X_i | X=a) to each dist
also add exlea = E(X_i | X <= a) = sum_{x<=a} exa(x)*f(x) where f is for the total
ie. self.density_df[‘exlea_attrit’] = np.cumsum(self.density_df.exa_attrit * self.density_df.p_total) /
self.density_df.F
and add exgta = E(X_i | X>a) since E(X) = E(X | X<= a)F(a) + E(X | X>a)S(a) we have exgta = (ex -
exlea F) / S
and add the actual expected losses (not theoretical) the empirical amount: self.density_df[‘e_attrit’] =
np.sum(self.density_df.p_attrit * self.density_df.loss)
Mid point adjustment is handled by the example creation routines self.density_df.loss =
self.density_df.loss - bs/2
YOU CANNOT HAVE A LINE with a name starting t!!!
See LCA_Examples for original code

3.4. Portfolio Module 297

aggregate Documentation, Release 0.22.0

Alternative approach to exa: use UC=unconditional versions of exlea and exi_xgta:
• exleaUC = np.cumsum(port.density_df[‘exeqa_’ + col] * port.density_df.p_total) # unconditional
• exixgtaUC =np.cumsum(self.density_df.loc[::-1, ‘exeqa_’ + col] / self.density_df.loc[::-1, ‘loss’] *
self.density_df.loc[::-1, ‘p_total’])

• exa = exleaUC + exixgtaUC * self.density_df.loss

Parameters
• df – data frame to add to. Initially add_exa was only called by update and wrote to
self.density_df. But now it is called by gradient too which writes to gradient_df, so we
need to pass in this argument

• ft_nots – FFTs of the not lines (computed in gradients) so you don’t round trip an
FFT; gradients needs to recompute all the not lines each time around and it is stilly to
do that twice

add_exa_details(df, eta_mu=False)
From add_exa, details for epd functions and eta_mu flavors.
Note eta_mu=True is required for epd_2 functions.

add_exa_sample(sample, S_calculation='forwards')
Computes a version of density_df using sample to compute E[Xi | X]. Then fill in the other ex…. variables
using code from Portfolio.add_exa, stripped down to essentials.
If no p_total is given then samples are assumed equally likely. total is added if not given (sum across
rows) total is then aligned to the bucket size self.bs using (total/bs).round(0)*bs. The other loss columns
are then scaled so they sum to the adjusted total
Next, group by total, sum p_total and average the lines to create E[Xi|X]
This sample is merged into a stripped down density_df. Then the other ex… columns are added. Excludes
eta mu columns.
Anticipated use: replace density_df with this, invalidate quantile function and then compute various
allocation metrics.
The index on the input sample is ignored.
Formally extensions.samples.add_exa_sample.

analysis_collateral(line, c, a, debug=False)
E(C(a,c)) expected value of line against not line with collateral c and assets a, c <= a

Parameters
• line – line of business with collateral, analyzed against not line
• c – collateral, c <= a required; c=0 reproduces exa, c=a reproduces lev
• a – assets, assumed less than the max loss (i.e. within the square)
• debug –

Returns
analysis_priority(asset_spec, output='df')

Create priority analysis report_ser. Can be called multiple times with different asset_specs as-
set_spec either a float used as an epd percentage or a dictionary. Entering an epd percentage generates
the dictionary

base = {i: self.epd_2_assets[(‘not ‘ + i, 0)](asset_spec) for i in self.line_names}

Parameters
• asset_spec – epd

298 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

• output – df = pandas data frame; html = nice report, markdown = raw markdown text
Returns

analyze_distortion(dname, dshape=None, dr0=0.025, ddf=5.5, LR=None, ROE=None, p=None,
kind='lower', A=None, use_self=False, plot=False, a_max_p=0.99999999,
add_comps=True, efficient=True)

Graphic and summary DataFrame for one distortion showing results that vary by asset level. such as
increasing or decreasing cumulative premium.
Characterized by the need to know an asset level, vs. apply_distortion that produced values for all asset
levels.
Returns DataFrame with values upto the input asset level…differentiates from apply_distortion graphics
that cover the full range.
analyze_pricing will then zoom in and only look at one asset level for micro-dynamics…
Logic of arguments:

if data_in == 'self' use self.augmented_df; this implies a distortion self.
↪→distortion

else need to build the distortion and apply it
if dname is a distortion use it
else built one calibrated to input data

LR/ROE/a/p:
if p then a=q(p, kind) else p = MESSY
if LR then P and ROE; if ROE then Q to P to LR
these are used to calibrate distortion

A newly made distortion is run through apply_distortion with no plot

Logic to determine assets similar to calibrate_distortions.
Can pass in a pre-calibrated distortion in dname
Must pass LR or ROE to determine profit
Must pass p or A to determine assets
Output is an Answer class object containing

Answer(augmented_df=deets, trinity_df=df, distortion=dist, fig1=f1 if plot␣
↪→else None,

fig2=f2 if plot else None, pricing=pricing, exhibit=exhibit, roe_
↪→compare=exhibit2,

audit_df=audit_df)

Originally example_factory.
example_factory_exhibits included:
do the work to extract the pricing, exhibit and exhibit 2 DataFrames from deets Can also accept an ans
object with an augmented_df element (how to call from outside) POINT: re-run exhibits at different p/a
thresholds without recalibrating add relevant items to audit_df a = q(p) if both given; if not both given
derived as usual
Figures show

Parameters
• dname – name of distortion
• dshape – if input use dshape and dr0 to make the distortion
• dr0 –

3.4. Portfolio Module 299

aggregate Documentation, Release 0.22.0

• ddf – r0 and df params for distortion
• LR – otherwise use loss ratio and p or a loss ratio
• ROE –
• p – p value to determine capital.
• kind – type of VaR, upper or lower
• A –
• use_self – if true use self.augmented and self.distortion…else recompute
• plot –
• a_max_p – percentile to use to set the right hand end of plots
• add_comps – add old-fashioned method comparables (included = True as default to
make backwards comp.)

• efficient –
Returns

various dataframes in an Answer class object
analyze_distortion_add_comps(ans, a_cal, p, kind, ROE)

make exhibit with comparison to old-fashioned methods: equal risk var/tvar, scaled var/tvar, stand-alone
var/tvar, merton perold, co-TVaR. Not all of these methods is additive.
covar method = proportion of variance (additive)
Other methods could be added, e.g. a volatility method?
Note on calculation
Each method computes allocated assets a_i (which it calls Q_i) = Li + Mi + Qi All methods are constant
ROEs for capital We have Li in exhibit. Hence:

L = Li P = (Li + ROE ai) / (1 + ROE) = v Li + d ai Q = a - P M = P - L ratios
In most cases, ai is computed directly, e.g. as a scaled proportion of total assets etc.
The covariance method is slightly different.

Mi = vi M, vi = Cov(Xi, X) / Var(X) Pi = Li + Mi Qi = Mi / ROE ai = Pi + Qi
and sum ai = sum Li + sum Mi + sum Qi = L + M + M/ROE = L + M + Q = a as required. To fit it in
the same scheme as all other methods we compute qi = Li + Mi + Qi = Li + vi M + vi M / ROE = li +
viM(1+1/ROE) = Li + vi M/d, d=ROE/(1+ROE)

Parameters
• ans – answer containing dist and augmented_df elements
• a_cal –
• p –
• kind –
• LR –
• ROE –

Returns
ans Answer object with updated elements

analyze_distortion_plots(ans, dist, a_cal, p, a_max, ROE, LR)
Create plots from an analyze_distortion ans class note: this only looks at distortion related items…it
doesn’t use anything from the comps

Parameters

300 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

• ans –
• dist –
• a_cal –
• p –
• a_max –
• ROE –
• LR –

Returns
analyze_distortions(a=0, p=0, kind='lower', efficient=True, augmented_dfs=None, regex='',

add_comps=True)

Run analyze_distortion on self.dists
Parameters

• a –
• p – the percentile of capital that the distortions are calibrated to
• kind – var, upper var, tvar, epd
• efficient –
• augmented_dfs – input pre-computed augmented_dfs (distortions applied)
• regex – apply only distortion names matching regex
• add_comps – add traditional pricing comps to the answer

Returns
apply_distortion(dist, view='ask', plots=None, df_in=None, create_augmented=True,

S_calculation='forwards', efficient=True)

Apply the distortion, make a copy of density_df and append various columns to create augmented_df.
augmented_df depends on the distortion but only includes variables that work for all asset levels, e.g.
1. marginal loss, lr, roe etc.
2. bottom up totals

Top down total depend on where the “top” is and do not work in general. They are handled in ana-
lyze_distortions where you explicitly provide a top.
Does not touch density_df: that is independent of distortions
Optionally produce graphics of results controlled by plots a list containing none or more of:
1. basic: exag_sumparts, exag_total df.exa_total
2. extended: the full original set

Per 0.11.0: no mass at 0 allowed. If you want to use a distortion with mass at 0 you must use a close
approximation.

Parameters
• dist – agg.Distortion
• view – bid or ask price
• plots – iterable of plot types
• df_in – when called from gradient you want to pass in gradient_df and use that; oth-
erwise use self.density_df

• create_augmented (object) – store the output in self.augmented_df

3.4. Portfolio Module 301

aggregate Documentation, Release 0.22.0

• S_calculation – if forwards, recompute S summing p_total forwards…this gets
the tail right; the old method was backwards, which does not change S

• efficient – just compute the bare minimum (T. series, not M. series) and return
Returns

density_df with extra columns appended
apply_distortions(dist_dict, As=None, Ps=None, kind='lower', efficient=True)

Apply a list of distortions, summarize pricing and produce graphical output show loss values where sub >
S(loss) > slb by jump

Parameters
• kind –
• dist_dict – dictionary of Distortion objects
• As – input asset levels to consider OR
• Ps – input probs (near 1) converted to assets using self.q()

Returns
approximate(approx_type='slognorm', output='scipy')

Create an approximation to self using method of moments matching.
Returns a dictionary specification of the portfolio aggregate_project. If updated uses empirical moments,
otherwise uses theoretic moments

Parameters
• approx_type – slognorm | sgamma | normal
• output – return a dict or agg language specification

Returns
as_severity(limit=inf, attachment=0, conditional=False)

Convert portfolio into a severity without recomputing.
Throws an error if self not updated.

Parameters
• limit –
• attachment –
• conditional –

Returns
audits(kind='all', **kwargs)

produce audit plots to assess accuracy of outputs.
Currently only exeqa available

Parameters
• kind –
• kwargs – passed to pandas plot, e.g. set xlim

Returns
best_bucket(log2=16, recommend_p=0.99999)

Recommend the best bucket. Rounded recommended bucket for log2 points.
TODO: Is this really the best approach?!

Parameters

302 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

• log2 –
• recommend_p –

Returns
biv_contour_plot(fig, ax, min_loss, max_loss, jump, log=True, cmap='Greys', min_density=1e-15,

levels=30, lines=None, linecolor='w', colorbar=False, normalize=False, **kwargs)

Make contour plot of line A vs line B. Assumes port only has two lines.
Works with an extract density_df.loc[np.arange(min_loss, max_loss, jump), densities] (i.e., jump is the
stride). Jump = 100 * bs is not bad…just think about how big the outer product will get!

Parameters
• fig –
• ax –
• min_loss – the density for each line is sampled at min_loss:max_loss:jump
• max_loss –
• jump –
• log –
• cmap –
• min_density – smallest density to show on underlying log region; not used if log
• levels – number of contours or the actual contours if you like
• lines – iterable giving specific values of k to plot X+Y=k
• linecolor –
• colorbar – show color bar
• normalize – if true replace Z with Z / sum(Z)
• kwargs – passed to contourf (e.g., use for corner_mask=False, vmin,vmax)

Returns
bodoff(*, p=0.99, a=0)

Determine Bodoff layer asset allocation at asset level a or VaR percentile p, one of which must be pro-
vided. Uses formula 14.42 on p. 284 of Pricing Insurance Risk.

Parameters
• p – VaR percentile
• a – asset level

Returns
Bodoff layer asset allocation by unit

calibrate_blends(a, premium, s_values, gs_values=None, spread_values=None, debug=False)
Input s values and gs values or (market) yield or spread.
A bond with prob s (small) of default is quoted with a yield (to maturity) of r over risk free (e.g., a cat
bond spread, or a corporate bond spread over the appropriate Treasury). As a discount bond, the price is
v = 1 - d.
B(s) = bid price for 1(U<s) (bond residual value) A(s) = ask price for 1(U<s) (insurance policy)
By no arb A(s) + B(1-s) = 1. By definition g(s) = A(s) (using LI so the particular U doesn’t matter.
Applied to U = F(X)).
Let v = 1 / (1 + r) and d = 1 - v be the usual theory of interest quantities.
Hence B(1-s) = v = 1 - A(s) = 1 - g(s) and therefore g(s) = 1 - v = d.

3.4. Portfolio Module 303

aggregate Documentation, Release 0.22.0

The rate of risk discount δ and risk discount factor (nu) ν are defined so that B(1-s) = ν * (1 - s), it is the
extra discount applied to the actuarial value that is bid for the bond. It is a function of s. Therefore ν =
(1 - d) / (1 - s) = price of bond / actuarial value of payment.
Then, g(s) = 1 - B(1-s) = 1 - ν (1 - s) = ν s + δ.
Thus, if return (i.e., market yield spreads) are input, they convert to discount factors to define g points.
Blend can be defined by extrapolating the last points in a credit curve. If that fails, increase the return on
the highest s point and fill in with a constant return to 1.
The ROE on the investment is not the promised return, because the latter does not allow for default.
Set up to be a function of the Portfolio = self. Calibrated to hit premium at asset level a. a must be in the
index.

a = self.pricing_summary.at[‘a’, kind] premium = self.pricing_summary.at[‘P’, kind]
method = extend or roe
Input
blend_d0 is the Book’s blend, with roe above the equity point blend_d is calibrated to the same premium
as the other distortions
method = extend if f_blend_extend or ccoc

ccoc = pick and equity point and back into its required roe. Results in a poor fit to the calibration
data
extend = extrapolate out the last slope from calibrtion data

Initially tried interpolating the bond yield curve up, but that doesn’t work. (The slope is too flat and it
interpolates too far. Does not look like a blend distortion.) Now, adding the next point off the credit yield
curve as the “equity” point and solving for ROE.
If debug, returns more output, for diagnostics.

calibrate_distortion(name, r0=0.0, df=[0.0, 0.9], premium_target=0.0, roe=0.0, assets=0.0,
p=0.0, kind='lower', S_column='S', S_calc='cumsum')

Find transform to hit a premium target given assets of assets. Fills in the values in g_spec and
returns params and diagnostics…so you can use it either way…more convenient

Parameters
• name – name of distortion
• r0 – fixed parameter if applicable
• df – t-distribution degrees of freedom
• premium_target – target premium
• roe – or ROE
• assets – asset level
• p –
• kind –
• S_column – column of density_df to use for calibration (allows routine to be used in
other contexts; if so used must input a premium_target directly. If assets they are used;
else max assets used

Returns
calibrate_distortions(LRs=None, COCs=None, ROEs=None, As=None, Ps=None, kind='lower',

r0=0.03, df=5.5, strict='ordered', S_calc='cumsum')

Calibrate assets a to loss ratios LRs and asset levels As (iterables) ro for LY, it ro/(1 + ro) corresponds
to a minimum rate online

304 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

Parameters
• LRs – LR or ROEs given
• ROEs – ROEs override LRs
• COCs – CoCs override LRs, preferred terms to ROE; ROE maintained for backwards
compatibility.

• As – Assets or probs given
• Ps – probability levels for quantiles
• kind –
• r0 – for distortions that have a min ROL
• df – for tt
• strict – if==’ordered’ then use the book nice ordering else if True only use distortions
with no mass at zero, otherwise use anything reasonable for pricing

• S_calc –
Returns

cdf(x)

distribution function
Parameters

x –
Returns

collapse(approx_type='slognorm')
Returns new Portfolio with the fit
Deprecated…prefer uw.write(self.fit()) to go through the agg language approach.

Parameters
approx_type – slognorm | sgamma

Returns
cotvar(p)

Compute the p co-tvar asset allocation using ISA. Asset alloc = exgta = tail expected value, treating TVaR
like a pricing variable.

static create_from_sample(name, sample_df, bs, log2=16, **kwargs)

Create from a multivariate sample, update with bs, execute switcheroo, and return new Portfolio object.
OED: switcheroo, n. a change of position or an exchange, esp. one intended to surprise or deceive;
a reversal or turn-about; spec. an unexpected change or ‘twist’ in a story. Also attributive, reversible,
reversed.

density_sample(n=20, reg='loss|p_|exeqa_')
sample of equally likely points from density_df with interesting columns reg - regex to select the columns

property describe

Theoretic and empirical stats. Used in _repr_html_. Leverage Aggregate object stats; same format
property distortion_df

Nicely formatted version of self.dist_ans (that exhibited several bad choices!).
ROE returned as COC in modern parlance.

property epd_2_assets

Make epd to assets and vice versa Note that the Merton Perold method requies the eta_mu fields, hence
set True

3.4. Portfolio Module 305

aggregate Documentation, Release 0.22.0

equal_risk_epd(a)
determine the common epd threshold so sum sa equals a

equal_risk_var_tvar(p_v, p_t)
solve for equal risk var and tvar: find pv and pt such that sum of individual line VaR/TVaR at pv/pt equals
the VaR(p) or TVaR(p_t)
these won’t return elements in the index because you have to interpolate hence using kind=middle

explain_validation()

Explain the validation result. Can pass in if already calculated.
static from_DataFrame(name, df)

create portfolio from pandas dataframe uses columns with appropriate names
Can be fed the agg output of uw.write_test(agg_program)

Parameters
• name –
• df –

Returns
static from_Excel(name, ffn, sheet_name, **kwargs)

read in from Excel
works via a Pandas dataframe; kwargs passed through to pd.read_excel drops all blank columns (mostly
for auditing purposes) delegates to from_dataFrame

Parameters
• name –
• ffn – full file name, including path
• sheet_name –
• kwargs –

Returns
static from_dict_of_aggs(prefix, agg_dict, sub_ports=None, uw=None, bs=0, log2=0,

padding=2, **kwargs)

Create a portfolio from any iterable with values aggregate code snippets
e.g. agg_dict = {label: agg_snippet }
will create all the portfolios specified in subsets, or all if subsets==’all’
labels for subports are concat of keys in agg_dict, so recommend you use A:, B: etc. as the snippet names.
Portfolio names are prefix_[concat element names]
agg_snippet is line agg blah without the tab or newline

Parameters
• prefix –
• agg_dict –
• sub_ports –
• kwargs (bs, log2, padding,) – passed through to update; update if bs * log2
> 0

Returns

306 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

ft(x, tilt=None)
FT of x with padding and tilt applied

gamma(a=None, p=None, kind='lower', compute_stand_alone=False, axs=None, plot_mode='return')

Return the vector gamma_a(x), the conditional layer effectiveness given assets a. Assets specified by
percentile level and type (you need a in the index) gamma can be created with no base and no calibration
- it does not depend on a distortion. It only depends on total losses.
Returns the total and by layer versions, see “Main Result for Conditional Layer Effectiveness; Piano
Diagram” in OneNote
In total gamma_a(x) = E[(a ^ X) / X | X > x] is the average rate of reimbursement for losses above x
given capital a. It satisfies int_0^infty gamma_a(x) S(x) dx = E[a ^ X]. Notice the integral is to infinity,
regardless of the amount of capital a.
By line gamma_{a,i}(x) = E[E[X_i | X] / X {(X ^ a) / X} 1_{X>x}] / E[{E[X_i | X] / X} 1_{X>x}].
The denominator equals total weights. It is the line-i recovery weighted layer effectiveness. It equals
alpha_i(x) S(x).
Now we have
E[X_i(a)] = int_0^infty gamma_{a,i}(x) alpha_i(x) S(x) dx
Note that you need upper and lower q’s in aggs now too.
Nov 2020: added arguments for plots; revised axes, separate plots by line

Parameters
• a – input a or p and kind as usual
• p – asset level percentile
• kind – lower or upper
• compute_stand_alone – add stand-alone evaluation of gamma
• axs – enough axes; only plot if not None
• plot_mode – return or linear scale for y axis

Returns
gradient(epsilon=0.0078125, kind='homog', method='forward', distortion=None, remove_fuzz=True,

extra_columns=None, do_swap=True)

Compute the gradient of various quantities relative to a change in the volume of each portfolio component.
Focus is on the quantities used in rate calculations: S, gS, p_total, exa, exag, exi_xgta, exi_xeqq, exeqa,
exgta etc.
homog:
inhomog:

Parameters
• epsilon – the increment to use; scale is 1+epsilon
• kind – homog[ogeneous] or inhomog: homog computes impact of f((1+epsilon)X_i)-
f(X_i). Inhomog scales the frequency and recomputes. Note inhomog will have a slight
scale issues with E[Severity]

• method – forward, central (using epsilon/2) or backwards
• distortion – if included derivatives of statistics using the distortion, such as exag
are also computed

• extra_columns – extra columns to compute dervs of. Note there is virtually no
overhead of adding additional columns

3.4. Portfolio Module 307

aggregate Documentation, Release 0.22.0

• do_swap – force the step to replace line with line+epsilon in all not line2’s line2!=line1;
whether you need this or not depends on what variables you to be differentiated. E.g. if
you ask for exa_total only you don’t need to swap. But if you want exa_A, exa_B you
do, otherwise the d/dA exa_B won’t be correct. TODO: replace with code!

Returns
DataFrame of gradients and audit_df in an Answer class

ift(x, tilt=None)
IFT of x with padding and tilt applied

json(stream=None)
write object as json

Parameters
stream –

Returns
stream or text

limits(stat='range', kind='linear', zero_mass='include')

Suggest sensible plotting limits for kind=range, density, .. (same as Aggregate).
Should optionally return a locator for plots?
Called by ploting routines. Single point of failure!
Must work without q function when not computed (apply_reins_work for occ reins…uses report_ser
instead).

Parameters
• stat – range or density or logy (for log density/survival function…ensure consistency)
• kind – linear or log (this is the y-axis, not log of range…that is rarely plotted)
• zero_mass – include exclude, for densities

Returns
property line_renamer

plausible defaults for nicer looking names
replaces . or : with space and capitalizes (generally don’t use . because it messes with analyze distortion….
leaves : alone
converts X1 to tex
converts XM1 to tex with minus (for reserves)

Returns
make_all(p=0, a=0, As=None)

make all exhibits with sensible defaults if not entered, paid line is selected as the LAST line
make_audit_df(columns, theoretical_stats=None)

Add or update the audit_df.
merton_perold(p, kind='lower')

Compute Merton-Perold capital allocation at VaR(p) capital using VaR as risk measure.
TODO TVaR version of Merton Perold

more(regex)
More information about methods and properties matching regex

308 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

multi_premium_capital(As, keys=None)
concatenate multiple prem_capital exhibits

natural_profit_segment_plot(ax, p, line_names, colors, translations)
Plot the natural allocations between 1-p and p th percentiles and optionally translate line(s). Works with
augmented_df, no input distortion. User must ensure the correct distortion has been applied.

Parameters
• ax –
• p –
• line_names –
• colors –
• translations –

Returns
nice_program(wrap_col=90)

return wrapped version of port program :return:
pdf(x)

probability density function, assuming a continuous approximation of the bucketed density :param x:
:return:

percentiles(pvalues=None)
report_ser on percentiles and large losses. Uses interpolation, audit_df uses nearest.

Parameters
pvalues – optional vector of log values to use. If None sensible defaults provided

Returns
DataFrame of percentiles indexed by line and log

plot(axd=None, figsize=(7.0, 2.45))
Defualt plot of density, survival functions (linear and log)

Parameters
• axd – dictionary with plots A and B for density and log density
• figsize – arguments passed to make_mosaic_figure if no axd

Returns
pmf(x)

Probability mass function, treating aggregate as discrete x must be in the index (?)
property pprogram

pretty print the program to html
property pprogram_html

pretty print the program to html
premium_capital(a=0, p=0)

at a if given else p level of capital
pricing story allows two asset levels…handle that with a concat
was premium_capital_detail

3.4. Portfolio Module 309

aggregate Documentation, Release 0.22.0

price(p, distortion=None, *, allocation='lifted', view='ask', efficient=True)
Price using regulatory capital and pricing distortion functions.
Compute E_price (X wedge E_reg(X)) where E_price uses the pricing distortion and E_reg uses the
regulatory distortion derived from p. p can be input as a probability level converted to assets using kind,
a level of assets directly (snapped to index).
Regulatory capital distortion is applied on unlimited basis.
Do not attempt to use with a weight_df dataframe from Bounds. For that, use the bounds object logic
directly which is much more efficient.
The argument kind has been dropped, it is always 'var'. If that is not the case, convert your asset
level to a VaR threshold.
Updated: May 2023 Turns out, really awkward to return the dictionary. In most calls there is just one
distortion passed in. The result of the last distortion are reported in ans.price, and there is a new price_dict
for the price of each distortion. T

Parameters
• p – float; if >1 assets if <1 a prob converted to quantile
• distortion – a distortion, list or dictionary (name: dist) of distortions. If None then
self.dists dictionary is used.

• allocation – ‘lifted’ (default for legacy reasons) or ‘linear’: treatment in default sce-
narios. See PIR.

• view – bid or ask
• efficient – for apply_distortion, lifted only

Returns
PricingResult namedtuple with ‘price’, ‘assets’, ‘reg_p’, ‘distortion’, ‘df’

price_ccoc(p, ccoc)
Convenience function to price with a constant cost of captial equal ccoc at VaR level p. Does not invoke
a Distortion. Returns standard DataFrame format.

pricing_bounds(premium, a=0, p=0, n_tps=64, kind='tail', slow=False, verbose=250)
Compute the natural allocation premium ranges by unit consistent with total premium at asset level a or
p (one of which must be provided).
Unlike typical case with even s values, this is run at the actual S values of the Portfolio.
Visualize:

from pandas.plotting import scatter_matrix
ans = port.pricing_bounds(premium, p=0.98)
scatter_matrix(ans.allocs, marker='.', s=5, alpha=1,

figsize=(10, 10), diagonal='kde')

profit_segment_plot(ax, p, line_names, dist_name, colors=None, translations=None)
Lee diagram for each requested line on a stand-alone basis, loss and risk adj premium using the dist_name
distortion. Optionally specify colors, using C{n}. Optionally specify translations applied to each line.
Generally, this applies to shift the cat line up by E[non cat] losses to show it overlays the total.
For a Portfolio with line names CAT and NC:

port.gross.profit_segment_plot(ax, 0.99999, ['total', 'CAT', 'NC'],
'wang', [2,0,1])

add translation to cat line:

port.gross.profit_segment_plot(ax, 0.99999, ['total', 'CAT', 'NC'],
'wang', [2,0,1], [0, E[NC], 0])

310 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

Parameters
• ax – axis on which to render
• p – probability level to set upper and lower y axis limits (p and 1-p quantiles)
• line_names –
• dist_name –
• colors –
• translations –

Returns

q(p, kind='lower')
Return quantile function of density_df.p_total.
Definition 2.1 (Quantiles) x(α) = qα(X) = inf{x ∈ R : P[X ≤ x] ≥ α} is the lower α-quantile of X x(α) =
qα(X) = inf{x ∈ R : P[X ≤ x] > α} is the upper α-quantile of X.
kind=='middle' has been removed.

Parameters
• p –
• kind – ‘lower’ or ‘upper’.

Returns
recommend_bucket()

Data to help estimate a good bucket size.
Returns

remove_fuzz(df=None, eps=0, force=False, log='')
remove fuzz at threshold eps. if not passed use np.finfo(float).eps.
Apply to self.density_df unless df is not None
Only apply if self.remove_fuzz or force :param eps: :param df: apply to dataframe df, default =
self.density_df :param force: do regardless of self.remove_fuzz :return:

property renamer

write a sensible renamer for the columns to use thusly
self.density_df.rename(columns=renamer)
write a tex version separately Create once per item…assume lines etc. never change

Returns
dictionary that can be used to rename columns

report(report_list='quick')

Parameters
report_list –

Returns
sample(n, replace=True, desired_correlation=None, keep_total=True)

Pull multivariate sample. Apply Iman Conover to induce correlation if required.
sample_compare(ax=None)

Compare the sample sum to the independent sum of the marginals.
sample_density_compare(fuzz=0)

Compare from density_df

3.4. Portfolio Module 311

aggregate Documentation, Release 0.22.0

save(filename='', mode='a')
persist to json in filename; if none save to user.json

Parameters
• filename –
• mode – for file open

Returns
scatter(marker='.', s=5, alpha=1, figsize=(10, 10), diagonal='kde', **kwargs)

Create a scatter plot of marginals against one another, using pandas.plotting scatter_matrix.
Designed for use with samples. Plots exeqa columns

set_a_p(a, p)
sort out arguments for assets and prob level and make them consistent neither => set defaults a only set p
p only set a both do nothing

sf(x)
survival function

Parameters
x –

Returns
show_enhanced_exhibits(fmt='{:.5g}')

show all the exhibits created by enhanced_portfolio methods
snap(x)

snap value x to the index of density_df
Parameters

x –
Returns

property spec

Get the dictionary specification.
Returns

property spec_ex

All relevant info.
Returns

stand_alone_pricing(dist, p=0, kind='var', S_calc='cumsum')

Run distortion pricing, use it to determine and ROE and then compute traditional and default pricing,
then consolidate the answer

Parameters
• self –
• roe –
• p –
• kind –

Returns
from common_scripts.py

312 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

stand_alone_pricing_work(dist, p, kind, roe, S_calc='cumsum')
Apply dist to the individual lines of self, with capital standard determined by a, p, kind=VaR, TVaR, etc.
Return usual data frame with L LR M P PQ Q ROE, and a
Dist can be a distortion, traditional, or defaut pricing modes. For latter two you have to input an ROE.
ROE not required for a distortion.

Parameters
• self – a portfolio object
• dist – “traditional”, “default”, or a distortion (already calibrated)
• p – probability level for assets
• kind – var (or lower, upper), tvar or epd (note, p should be small for EPD, to pander,
if p is large we use 1-p)

• roe – for traditional methods input roe
Returns

exhibit is copied and augmented with the stand-alone statistics
from common_scripts.py

property statistics

Same as statistics df, to be consistent with Aggregate objects :return:
property tm_renamer

rename exa -> TL, exag -> TP etc. :return:
trim_df()

Trim out unwanted columns from density_df
epd used in graphics

Returns
tvar(p, kind='')

Compute the tail value at risk at threshold p. Revised June 2023.
Really this function returns ES, CVaR, but in modern terminology this is called TVaR.
Definition 2.6 (Tail mean and Expected Shortfall) Assume E[X−] < ∞. Then x¯(α) = TM_α(X) =
α^{−1}E[X 1{X≤x(α)}] + x(α) (α − P[X ≤ x(α)]) is α-tail mean at level α the of X. Acerbi and Tasche
(2002)
McNeil etc. p66-70 - this follows from def of ES as an integral of the quantile function

Parameters
• p –
• kind – No longer neeed as the new method is exact (equals the old

tail) and about 1000x faster. :return:
tvar_threshold(p, kind)

Find the value pt such that TVaR(pt) = VaR(p) using Bisection method. Will fail if p=0 because signs
are the same.

twelve_plot(fig, axs, p=0.999, p2=0.9999, xmax=0, ymax2=0, biv_log=True, legend_font=0,
contour_scale=10, sort_order=None, kind='two', cmap='viridis')

Twelve-up plot for ASTIN paper and book, by rc index:
Greys for grey color map
11 density 12 log density 13 biv density plot
21 kappa 22 alpha (from alpha beta plot 4) 23 beta (?with alpha)

3.4. Portfolio Module 313

aggregate Documentation, Release 0.22.0

row 3 = line A, row 4 = line B from alpha beta four 2
1 S, gS, aS, bgS

32 margin 33 shift margin 42 cumul margin 43 natural profit compare
Args
self = portfolio or enhanced portfolio object p control xlim of plots via quantile; used if xmax=0 p2
controls ylim for 33 and 34: stand alone M and natural M; used if ymax2=0 biv_log - bivariate plot on
log scale legend_font - fine tune legend font size if necessary sort_order = plot sorts by column and then
.iloc[:, sort_order], if None [1,2,0]
from common_scripts.py

uat(As=None, Ps=[0.98], LRs=[0.965], r0=0.03, num_plots=1, verbose=False)
Reconcile apply_distortion(s) with price and calibrate

Parameters
• As – Asset levels
• Ps (object) – probability levels used to determine asset levels using quantile function
• LRs – loss ratios used to determine profitability
• r0 – r0 level for distortions
• verbose – controls level of output

Returns
uat_differential(line)

Check the numerical and theoretical derivatives of exa agree for given line
Parameters

line –
Returns

uat_interpolation_functions(a0, e0)
Perform quick audit of interpolation functions

Parameters
• a0 – base assets
• e0 – base epd

Returns
update(log2, bs, approx_freq_ge=100, approx_type='slognorm', remove_fuzz=False, sev_calc='discrete',

discretization_calc='survival', normalize=True, padding=1, tilt_amount=0, trim_df=False,
add_exa=True, force_severity=True, recommend_p=0.99999, approximation=None,
debug=False)

TODO: currently debug doesn’t do anything…
Create density_df, performs convolution. optionally adds additional information if add_exa=True for
allocation and priority analysis
tilting: [@Grubel1999]: Computation of Compound Distributions I: Aliasing Errors and Exponential
Tilting (ASTIN 1999) tilt x numbuck < 20 is recommended log. 210 num buckets and max loss from
bucket size
Aggregate reinsurance in parser has replaced the aggregate_cession_function (a function of a Portfolio
object that adjusts individual line densities; applied after line aggs created but before creating not-lines;
actual statistics do not reflect impact.) Agg re by unit is now applied in the Aggregate object.
TODO: consider aggregate covers at the portfolio level…Where in parse - at the top!

Parameters

314 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

• log2 –
• bs – bucket size
• approx_freq_ge – use method of moments if frequency is larger than ap-
prox_freq_ge

• approx_type – type of method of moments approx to use (slognorm or sgamma)
• remove_fuzz – remove machine noise elements from FFT
• sev_calc – how to calculate the severity, discrete (point masses as xs) or continuous
(uniform between xs points)

• discretization_calc – survival or distribution (accurate on right or left tails)
• normalize – if true, normalize the severity so sum probs = 1. This is generally what
you want; but

• padding – for fft 1 = double, 2 = quadruple
• tilt_amount – for tilingmethodology - see notes on density for suggested parameters
• epds – epd points for priority analysis; if None-> sensible defaults
• trim_df – remove unnecessary columns from density_df before returning
• add_exa – run add_exa to append additional allocation information needed for pricing;
if add_exa also add epd info

• force_severity – force computation of severities for aggregate components even
when approximating

• recommend_p – percentile to use for bucket recommendation.
• approximation – if not None, use these instructions (‘exact’)
• debug – if True, print debug information

Returns
property valid

Check if the model appears valid. See documentation for Aggregate.valid.
An answer of True does not guarantee the model is valid, but False means it is definitely suspect. (Similar
to the null hypothesis in a statistical test). Called and reported automatically by qd for Aggregate objects.
Checks the relative errors (from self.describe) for:
• severity mean < eps
• severity cv < 10 * eps
• severity skew < 100 * eps (skewness is more difficult to estimate)
• aggregate mean < eps and < 2 * severity mean relative error (larger values indicate possibility of
aliasing and that bs is too small).

• aggregate cv < 10 * eps
• aggregate skew < 100 * esp

eps = 1e-3 by default; change in validation_eps attribute.
Test only applied for CV and skewness when they are > 0.

Returns
True if all tests are passed, else False.

3.4. Portfolio Module 315

aggregate Documentation, Release 0.22.0

var(p)
value at risk = alias for quantile function

Parameters
p –

Returns
var_dict(p, kind='lower', total='total', snap=False)

make a dictionary of value at risks for each line and the whole portfolio.
Returns: {line : var(p, kind)} and includes the total as self.name line

if p near 1 and epd uses 1-p.
Example:

for p, arg in zip([.996, .996, .996, .985, .01], [‘var’, ‘lower’, ‘upper’, ‘tvar’, ‘epd’]):
print(port.var_dict(p, arg, snap=True))

Parameters
• p –
• kind – var (defaults to lower), upper, lower, tvar, epd
• total – name for total: total==’name’ gives total name self.name
• snap – snap tvars to index

Returns

3.4.2 Other Portfolio functions

aggregate.portfolio.check01(s)
add 0 1 at start end

aggregate.portfolio.convex_points(s, gs)
Extract the points that make the convex envelope, including 0 1
Testers:

%%sf 1 1 5 5

s_values, gs_values = [.001,.0011, .002,.003, 0.005, .008, .01], [0.002,.02, .
↪→03, .035, 0.036, .045, 0.05]
s_values, gs_values = [.001, .002,.003, .009, .011, 1], [0.02, .03, .035, .05,
↪→ 0.05, 1]
s_values, gs_values = [.001, .002,.003, .009, .01, 1], [0.02, .03, .035, .
↪→0351, 0.05, 1]
s_values, gs_values = [0.01, 0.04], [0.03, 0.07]

points = make_array(s_values, gs_values)
ax.plot(points[:, 0], points[:, 1], 'x')

s_values, gs_values = convex_points(s_values, gs_values)
ax.plot(s_values, gs_values, 'r+')

ax.set(xlim=[-0.0025, .1], ylim=[-0.0025, .1])

hull = ConvexHull(points)
for simplex in hull.simplices:

ax.plot(points[simplex, 0], points[simplex, 1], 'k-', lw=.25)

316 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

aggregate.portfolio.make_array(s, gs)
convert to np array and pad with 0 1

aggregate.portfolio.make_awkward(log2, scale=False)
Decompose a uniform random variable on range(2**log2) into two parts using Eamonn Long’s base 4 method.
Usage:

awk = make_awkward(16)
awk.density_df.filter(regex='p_[ABt]').cumsum().plot()
awk.density_df.filter(regex='exeqa_[AB]|loss').plot()

3.5 Utilities

3.5.1 Moment Aggregator Class

class aggregate.utilities.MomentAggregator(freq_moms=None)

Purely accumulates moments Used by Portfolio Not frequency aware makes report_ser df and statistics_df
Internal variables agg, sev, freq, tot = running total, 1, 2, 3 = noncentral moments, E(X^k)

Parameters
freq_moms – function of one variable returning first three noncentral moments of the un-
derlying frequency distribution

__init__(freq_moms=None)

add_f1s(f1, s1, s2, s3)
accumulate new moments defined by f1 and s - fills in f2, f3 based on stored frequency distribution
used by Aggregate
compute agg for the latest values

Parameters
• f1 –
• s1 –
• s2 –
• s3 –

Returns
add_fs(f1, f2, f3, s1, s2, s3)

accumulate new moments defined by f and s
used by Portfolio
compute agg for the latest values

Parameters
• f1 –
• f2 –
• f3 –
• s1 –
• s2 –
• s3 –

3.5. Utilities 317

aggregate Documentation, Release 0.22.0

Returns
add_fs2(f1, vf, s1, vs)

accumulate based on first two moments entered as mean and variance - this is how questions are generally
written.

static agg_from_fs(f1, f2, f3, s1, s2, s3)
aggregate_project moments from freq and sev components

Parameters
• f1 –
• f2 –
• f3 –
• s1 –
• s2 –
• s3 –

Returns
static agg_from_fs2(f1, vf, s1, vs)

aggregate_project moments from freq and sev ex and var x
Parameters

• f1 –
• vf –
• s1 –
• vs –

Returns
static column_names()

list of the moment and statistics_df names for f x s = a
Returns

static cumulate_moments(m1, m2, m3, n1, n2, n3)
Moments of sum of indepdendent variables

Parameters
• m1 – 1st moment, E(X)
• m2 – 2nd moment, E(X^2)
• m3 – 3rd moment, E(X^3)
• n1 –
• n2 –
• n3 –

Returns
get_fsa_stats(total, remix=False)

get the current f x s = agg statistics_df and moments total = true use total else, current remix = true for
total only, re-compute freq statistics_df based on total freq 1

Parameters
• total – binary
• remix – combine all sevs and recompute the freq moments from total freq

318 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

Returns
moments(mom_type, total=True)

vector of the moments; convenience function
Parameters

• mom_type –
• total –

Returns
moments_to_mcvsk(mom_type, total=True)

convert noncentral moments into mean, cv and skewness type = agg | freq | sev | mix delegates work
Parameters

• mom_type –
• total –

Returns
static static_moments_to_mcvsk(ex1, ex2, ex3)

returns mean, cv and skewness from non-central moments
Parameters

• ex1 –
• ex2 –
• ex3 –

Returns
stats_series(name, limit, pvalue, remix)

combine elements into a reporting series handles order, index names etc. in one place
Parameters

• name – series name
• limit –
• pvalue –
• remix – called from Aggregate want remix=True to collect mix terms; from Portfolio
remix=False

Returns

3.5.2 Moment Wrangler Class

class aggregate.utilities.MomentWrangler

Conversion between central, noncentral and factorial moments
Input any one and ask for any translation.
Stores moments as noncentral internally
__init__()

_make_factorial()

add factorial from central

3.5. Utilities 319

aggregate Documentation, Release 0.22.0

3.5.3 Axis Manager Class

class aggregate.utilities.AxisManager(n, figsize=None, height=2, aspect=1, nr=5)
Manages creation of a grid of axes for plotting. Allows pandas plot and matplotlib to plot to same set of axes.
Always created and managed through axiter_factory function

Parameters
• n – number of plots in grid
• figsize –
• height – height of individual plot
• aspect – aspect ratio of individual plot
• nr – number of plots per row

__init__(n, figsize=None, height=2, aspect=1, nr=5)

dimensions()

return dimensions (width and height) of current layout
Returns

static good_grid(n, c=4)
Good layout for n plots :param n: :return:

grid(size=0)
return a block of axes suitable for Pandas if size=0 return all the axes

Parameters
size –

Returns
grid_size(n, subgrid=False)

appropriate grid size given class parameters
Parameters

• n –
• subgrid – call is for a subgrid, no special treatment for 6 and 8

Returns
static make_figure(n, aspect=1.5, **kwargs)

make the figure and iterator :param n: :param aspect: :return:
static print_fig(n, aspect=1.5)

printout code…to insert (TODO copy to clipboard!) :param n: :param aspect: :return:
static size_figure(r, c, aspect=1.5)

reasonable figure size for n plots :param r: :param c: :param aspect: :return:
tidy()

delete unused axes to tidy up a plot
Returns

static tidy_up(f, ax)
delete unused frames out of a figure :param ax: :return:

320 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

3.5.4 Utilities Module

class aggregate.utilities.Answer(**kwargs)

__init__(**kwargs)

Generic answer wrapping class with plotting
Parameters

kwargs – key=value to wrap
_repr_html_()

List elements
list()

List elements
static nice(x)

return a nice rep of x
summary()

just print out the dataframes: horz or vertical as appropriate reasonable styling :return:
class aggregate.utilities.GCN(gross, net, ceded)

_asdict()

Return a new dict which maps field names to their values.
classmethod _make(iterable)

Make a new GCN object from a sequence or iterable
_replace(**kwds)

Return a new GCN object replacing specified fields with new values
ceded

Alias for field number 2
gross

Alias for field number 0
net

Alias for field number 1
class aggregate.utilities.GreatFormatter(sci=True, power_range=(-3, 3), offset=True,

mathText=False)

__init__(sci=True, power_range=(-3, 3), offset=True, mathText=False)

aggregate.utilities.approximate_work(m, cv, skew, name, agg_str, note, approx_type, output)
Does the work for Portfolio.approximate and Aggregate.approximate. See their documentation.

Parameters
output – scipy - frozen scipy.stats continuous rv object; agg_decl sev_decl - DecL program
for severity (to substituate into an agg ; no name) sev_kwargs - dictionary of parameters to
create Severity agg_decl - Decl program agg T 1 claim sev_decl fixed any other string - created
Aggregate object

aggregate.utilities.axiter_factory(axiter, n, figsize=None, height=2, aspect=1, nr=5)
axiter = check_axiter(axiter, …) to allow chaining TODO can this be done in the class somehow?

Parameters
• axiter –
• n –

3.5. Utilities 321

aggregate Documentation, Release 0.22.0

• figsize –
• height –
• aspect –
• nr –

Returns
aggregate.utilities.block_iman_conover(unit_losses, intra_unit_corrs, inter_unit_corr,

as_frame=False)

Apply Iman Conover to the unit loss blocks in unit_losses with correlation matrices in intra.
Then determine the ordering for the unit totals with correlation inter.
Re-order each unit, row by row, so that the totals have the desired correlation structure, but leaving the intra
unit correlation unchanged.
unit_losses = [np.arrays or pd.Series] of losses by subunit within units, without totals
len(unit_losses) == len(intra_unit corrs)

For simplicity all normal copula; can add other later if required.
No totals input or output anywhere.
if as_frame then a dataframe version returned, for auditing.
Here is some tester code, using great.test_df to make random unit losses. Vary num_units and num_sims as
required.

def bic_tester(num_units=3, num_sims=10000):
from aggregate import random_corr_matrix
from great import test_df

create samples
R = range(num_units)
unit_losses = [test_df(num_sims, 3 + i) for i in R]
totals = [u.sum(1) for u in unit_losses]

manual dataframe to check against
manual = pd.concat(unit_losses + totals, keys=[f'Unit_{i}' for i in R] + [

↪→'Total' for i in R], axis=1)

for input to method
unit_losses = [i.to_numpy() for i in unit_losses]
totals = [i.to_numpy() for i in totals]

make corrs
intra_unit_corrs = [random_corr_matrix(i.shape[1], p=.5, positive=True)␣

↪→for i in unit_losses]
inter_unit_corr = random_corr_matrix(len(totals), p=1, positive=True)

apply method
bic = block_iman_conover(unit_losses, intra_unit_corrs, inter_unit_corr,␣

↪→True)

extract frame answer, put col names back
bic.frame.columns = manual.columns
dm = bic.frame

achieved corr
for i, target in zip(dm.columns.levels[0], intra_unit_corrs + [inter_unit_

↪→corr]):
print(i)
print((dm[i].corr() - target).abs().max().max())

(continues on next page)

322 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

(continued from previous page)
print(dm[i].corr() - target)

total corr across subunits
display(dm.drop(columns=['Total']).corr())

total corr across subunits
display(dm.drop(columns=['Total']).corr())

return manual, bic, intra_unit_corrs, inter_unit_corr

manual, bic, intra, inter = bic_tester(3, 10000)

aggregate.utilities.easy_formatter(ax, which, kind, places=None, power_range=(-3, 3), sep='',
unit='', sci=True, mathText=False, offset=True)

set which (x, y, b, both) to kind = sci, eng, nice nice = engineering but uses e-3, e-6 etc. see docs for Scalar-
Formatter and EngFormatter

aggregate.utilities.estimate_agg_percentile(m, cv, skew, p=0.999)
Come up with an estimate of the tail of the distribution based on the three parameter fits, ln and gamma
Updated Nov 2022 with a way to estimate p based on lognormal results. How far in the tail you need to go to
get an accurate estimate of the mean. See 2_x_approximation_error in the help.
Retain p param for backwards compatibility.

Parameters
• m –
• cv –
• skew –
• p – if > 1 converted to 1 - 10**-n

Returns
aggregate.utilities.explain_validation(rv)

Explain the validation result rv. Don’t over report: if you fail CV don’t need to be told you fail Skew too.
aggregate.utilities.frequency_examples(n, ν, f, κ, sichel_case, log2, xmax=500)

Illustrate different frequency distributions and frequency moment calculations.
sichel_case = gamma | ig | ‘’
Sample call:

df, ans = frequency_examples(n=100, ν=0.45, f=0.5, κ=1.25,
sichel_case='', log2=16, xmax=2500)

Parameters
• n – E(N) = expected claim count
• ν – CV(mixing) = asymptotic CV of any compound aggregate whose severity has a second
moment

• f – proportion of certain claims, 0 <= f < 1, higher f corresponds to greater skewnesss
• κ – (kappa) claims per occurrence
• sichel_case – gamma, ig or ‘’
• xmax –

3.5. Utilities 323

aggregate Documentation, Release 0.22.0

aggregate.utilities.friendly(df)
Attempt to format df “nicely”, in a user-friendly manner. Not designed for big dataframes!

Parameters
df –

Returns
aggregate.utilities.ft(z, padding, tilt)

fft with padding and tilt padding = n makes vector 2^n as long n=1 doubles (default) n=2 quadruples tilt is
passed in as the tilting vector or None: easier for the caller to have a single instance

Parameters
• z –
• padding – = 1 doubles
• tilt – vector of tilt values

Returns
aggregate.utilities.gamma_fit(m, cv)

aggregate.utilities.get_fmts(df)
reasonable formats for a styler

Parameters
df –

Returns
aggregate.utilities.html_title(txt, n=1, title_case=True)

Parameters
• txt –
• n –
• title_case –

Returns
aggregate.utilities.ic_noise(n, d)

Implements steps 1, 2, 3, 4, 5, and 6 This is bottleneck function, therefore cache it It handles the true-up of
the random sample to ensure it is exactly independent :param n: row :param d: columns :return:

aggregate.utilities.ic_rank(N)
rankdata function: assign ranks to data, dealing with ties appropriately work by column N is a numpy array

aggregate.utilities.ic_reorder(ranks, samples)

put samples into the order determined by ranks array is calibrated to the reference distribution space for the
answer

aggregate.utilities.ic_t_noise(n, d, dof)
as above using multivariate t distribution noise

aggregate.utilities.ift(z, padding, tilt)
ift that strips out padding and adjusts for tilt

Parameters
• z –
• padding –
• tilt –

Returns

324 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

aggregate.utilities.iman_conover(marginals, desired_correlation, dof=0, add_total=True)
Perform Iman Conover shuffling on input marginals to achieve desired_correlation Desired_correlation must
be positive definite and of the correct size. The result has the same rank correlation as a reference sample with
the desired linear correlation. Thus, the process relies on linear and rank correlation (for the reference and the
input sample) being close.
if dof==0 use normal scores; else you mv t
Sample code:

n = 100
df = pd.DataFrame({ f'line_{i}': ss.lognorm(.1 + .2*np.random.rand(),

scale=10000).rvs(n) for i in range(3)})
desired = np.matrix([[1, -.3, 0], [-.3, 1, .8], [0, .8, 1]])
print(desired)
check it is a corr matrix
np.linalg.cholesky(desired)

df2 = iman_conover(df, desired)
df2.corr()
df_scatter(df2)

Iman Conover Method
Make rank order the same as a reference sample with desired correlation structure.
Reference sample usually chosen as multivariate normal because it is easy and flexible, but you can use any
reference, e.g. copula based.
The old @Risk software used Iman Conover.
Input: matrix $mathbf X$ of marginals and desired correlation matrix $mathbf S$
1. Make one column of scores $a_i=Phi^{-1}(i/(n+1))$ for $i=1,dots,n$ and rescale to have standard deviation
one. 1. Copy the scores r times to make the score matrix $mathbf M$. 1. Randomly permute the entries
in each column of $mathbf M$. 1. Compute the correlation matrix $n^{-1}mathbf M’mathbf M$ of the
sample scores $mathbf M$. 1. Compute the Choleski decomposition $n^{-1}mathbf M^tmathbf M=mathbf
Emathbf E^t$ of the score correlation matrix. 1. Compute $mathbf M’ = mathbf M(mathbf E^t)^{-1}$,
which is exactly uncorrelated. 1. Compute the Choleski decomposition $mathbf S=mathbf Cmathbf C^t$
of the desired correlation matrix $mathbf S$. 1. Compute $mathbf T=mathbf M’mathbf C^t$. The matrix
$mathbf T$ has exactly the desired correlation structure 1. Let $mathbf Y$ be the input matrix $mathbf X$
with each column reordered to have exactly the same rank ordering as the corresponding column of $mathbf
T$.
Relies on the fact that rank (Spearman) and linear (Pearson) correlation are approximately the same.

aggregate.utilities.integral_by_doubling(func, x0, err=1e-08)
Compute

∫∞
x0
f as the sum

∫ ∞

x0

f =
∑
n≥0

∫ 2n+1x0

2nx0

f

Caller should check the integral actually converges.
Parameters

• func – function to be integrated.
• x0 – starting x value
• err – desired accuracy: stop when incremental integral is <= err.

aggregate.utilities.introspect(ob)

Discover the non-private methods and properties of an object ob. Returns a pandas DataFrame.

3.5. Utilities 325

aggregate Documentation, Release 0.22.0

aggregate.utilities.kaplan_meier(df, loss='loss', closed='closed')
Compute Kaplan Meier Product limit estimator based on a sample of losses in the dataframe df. For each loss
you know the current evaluation in column loss and a 0/1 indicator for open/closed in closed.
The output dataframe has columns

• index x_i, size of loss
• open - the number of open events of size x_i (open claim with this size)
• closed - the number closed at size x_i
• events - total number of events of size x_i
• n - number at risk at x_i
• s - probability of suriviving past x_i = 1 - closed / n
• pl - cumulative probability of surviving past x_i

See ipython workbook kaplan_meier.ipynb for a check against lifelines and some kaggle data (telco cus-
tomer churn, https://www.kaggle.com/datasets/blastchar/telco-customer-churn?resource=download https://
towardsdatascience.com/introduction-to-survival-analysis-the-kaplan-meier-estimator-94ec5812a97a

Parameters
• df – dataframe of data
• loss – column containing loss amount data
• closed – column indicating if the obervation is a closed claim (1) or open (0)

Returns
dataframe as described above

aggregate.utilities.kaplan_meier_np(loss, closed)
Feeder to kaplan_meier where loss is np array of loss amounts and closed a same sized array of 0=open,
1=closed indicators.

aggregate.utilities.knobble_fonts(color=False)
Not sure we should get into this…
See FigureManager in Great or common.py
https://matplotlib.org/3.1.1/tutorials/intermediate/color_cycle.html
https://matplotlib.org/3.1.1/users/dflt_style_changes.html#colors-in-default-property-cycle
https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html
https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/linestyles.html
https://stackoverflow.com/questions/22408237/named-colors-in-matplotlib

aggregate.utilities.ln_fit(m, cv)
lognormal parameters

aggregate.utilities.log_test()

” Issue logs at each level
aggregate.utilities.logarithmic_theta(mean)

Solve for theta parameter given mean, see JKK p. 288
aggregate.utilities.logger_level(level=30, name='aggregate', verbose=False)

Code from common.py
Change logger level all loggers containing name Changing for EVERY logger is a really bad idea, you get the
endless debug info out of matplotlib find_font, for exapmle.
FWIW, to list all loggers:

326 Chapter 3. API Reference

https://www.kaggle.com/datasets/blastchar/telco-customer-churn?resource=download
https://towardsdatascience.com/introduction-to-survival-analysis-the-kaplan-meier-estimator-94ec5812a97a
https://towardsdatascience.com/introduction-to-survival-analysis-the-kaplan-meier-estimator-94ec5812a97a
https://matplotlib.org/3.1.1/tutorials/intermediate/color_cycle.html
https://matplotlib.org/3.1.1/users/dflt_style_changes.html#colors-in-default-property-cycle
https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html
https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/linestyles.html
https://stackoverflow.com/questions/22408237/named-colors-in-matplotlib

aggregate Documentation, Release 0.22.0

loggers = [logging.getLogger()] # get the root logger
loggers = loggers + [logging.getLogger(name) for name in logging.root.manager.
↪→loggerDict]
loggers

Parameters
level –

Returns

aggregate.utilities.lognorm_approx(ser)
Lognormal approximation to series, index = loss values, values = density.

aggregate.utilities.lognorm_lev(mu, sigma, n, limit)
return E(min(X, limit)^n) for lognormal using exact calculation currently only for n=1, 2

Parameters
• mu –
• sigma –
• n –
• limit –

Returns
aggregate.utilities.make_ceder_netter(reins_list, debug=False)

Build the netter and ceder functions. It is applied to occ_reins and agg_reins, so should be stand-alone.
The reinsurance functions are piecewise linear functions from 0 to inf which kinks as needed to express the
ceded loss as a function of subject (gross) loss.
For example, if reins_list = [(1, 10, 0), (0.5, 30, 20)] the program is 10 x 10 and 15
part of 30 x 20 (share=0.5). This requires nodes at 0, 10, 20, 50, and inf.
It is easiest to make the ceder function. Ceded loss at subject loss at x equals the sum of the limits below x plus
the cession to the layer in which x lies. The variable base keeps track of the layer, h of the sum (height) of
lower layers. xs tracks the knot points, ys the values.

Break (xs) Ceded (ys)
0 0

10 0
20 10
50 25

inf 25

For example:

%%sf 1 2

c, n, x, y = make_ceder_netter([(1, 10, 10), (0.5, 30, 20), (.25, np.inf, 50)],
↪→ debug=True)

xs = np.linspace(0,250, 251)
ys = c(xs)

ax0.plot(xs, ys)
ax0.plot(xs, xs, ':C7')
ax0.set(title='ceded')

ax1.plot(xs, xs-ys)
ax1.plot(xs, xs, 'C7:')
ax1.set(title='net')

3.5. Utilities 327

aggregate Documentation, Release 0.22.0

Parameters
• reins_list – a list of (share of, limit, attach), e.g., (0.5, 3, 2) means 50% share of
3x2 or, equivalently, 1.5 part of 3 x 2. It is better to store share rather than part because
it still works if limit == inf.

• debug – if True, return layer function xs and ys in addition to the interpolation functions.
Returns

netter and ceder functions; optionally debug information.

aggregate.utilities.make_corr_matrix(vine_spec)

Make a correlation matrix from a vine specification, https://en.wikipedia.org/wiki/Vine_copula.
A vine spececification is:

row 0: correl of X0...Xn-1 with X0
row 1: correl of X1....Xn-1 with X1 given X0
row 2: correl of X2....Xn-1 with X2 given X0, X1
etc.

For example

vs = np.array([[1,.2,.2,.2,.2],
[0,1,.3,.3,.3],
[0,0,1,.4, .4],
[0,0,0,1,.5],
[0,0,0,0,1]])

make_corr_matrix(vs)

Key fact is the partial correlation forumula

ρ(X,Y |Z) = (ρ(X,Y)− ρ(X,Z)ρ(Y, Z))√
(1− ρ(X,Z)2)(1− ρ(Y, Z)2)

and therefore

ρ(X,Y) = ρ(X,Z)ρ(Y, Z) + ρ(X,Y |Z)
√

((1− ρ(XZ)2)(1− ρ(Y Z)2))

see https://en.wikipedia.org/wiki/Partial_correlation#Using_recursive_formula.
aggregate.utilities.make_mosaic_figure(mosaic, figsize=None, w=3.5, h=2.45, xfmt='great',

yfmt='great', places=None, power_range=(-3, 3),
sep='', unit='', sci=True, mathText=False, offset=True,
return_array=False)

make mosaic of axes apply format to xy axes default engineering format default w x h per subplot
xfmt=’d’ for default axis formatting, n=nice, e=engineering, s=scientific, g=great great = engineering with
power of three exponents
if return_array then the returns are mor comparable with the old axiter_factory

aggregate.utilities.make_var_tvar(ser)
Make var (lower quantile), upper quantile, and tvar functions from a pd.Series ser, which has index given
by losses and p_total values.
ser must have a unique monotonic increasing index and all p_totals > 0.
Such a series comes from a.density_df.query('p_total > 0').p_total, for example.
Tested using numpy vs pd.Series lookup functions, and this version is much faster. See
var_tvar_test_suite function below for testers (obviously run before this code was integrated).
Changed in v. 0.13.0

328 Chapter 3. API Reference

https://en.wikipedia.org/wiki/Vine_copula
https://en.wikipedia.org/wiki/Partial_correlation#Using_recursive_formula

aggregate Documentation, Release 0.22.0

aggregate.utilities.moms_analytic(fz, limit, attachment, n, analytic=True)
Return moments of E[(X − attachment)+ ∧ limit]m for m = 1,2,…,n.
To check:

fz = ss.lognorm(1.24)
fz = ss.gamma(6.234, scale=100)
fz = ss.pareto(3.4234, scale=100, loc=-100)

a1 = moms_analytic(fz, 50, 1234, 3)
a2 = moms_analytic(fz, 50, 1234, 3, False)
a1, a2, a1-a2, (a1-a2) / a1

Parameters
• fz – frozen scipy.stats instance
• limit – double, limit (layer width)
• attachment – double, limit
• n – int, power
• analytic – if True use analytic formula, else numerical integrals

aggregate.utilities.more(self, regex)
Investigate self for matches to the regex. If callable, try calling with no args, else display.

aggregate.utilities.mu_sigma_from_mean_cv(m, cv)
lognormal parameters

aggregate.utilities.mv(x, y=None)
Nice display of mean and variance for Aggregate or Portfolios or entered values.
R style function, no return value.

Parameters
• x – Aggregate or Portfolio or float
• y – float, if x is a float

Returns
None

aggregate.utilities.nice_multiple(mx)
Suggest a nice multiple for an axis with scale 0 to mx. Used by the MultipleLocator in discrete plots, where
you want an integer multiple. Return 0 to let matplotlib figure the answer. Real issue is stopping multiples like
2.5.

Parameters
mx –

Returns
aggregate.utilities.parse_note(txt)

Extract kwargs from txt note. Recognizes bs, log2, padding, normalize, recommend_p. CSS format. Split on
; and then look for k=v pairs bs can be entered as 1/32 etc.

Parameters
txt – input text

Return value
dictionary of keyword: typed value

3.5. Utilities 329

aggregate Documentation, Release 0.22.0

aggregate.utilities.parse_note_ex(txt, log2, bs, recommend_p, kwargs)
Avoid duplication: this is how the function is used in Underwriter.build.

aggregate.utilities.partial_e(sev_name, fz, a, n)
Compute the partial expected value of fz. Computing moments is a bottleneck, so you want analytic compu-
tation for the most commonly used types.
Exponential (for mixed exponentials) implemented separate from gamma even though it is a special case.
for k=0,…,n as a np.array
To do: beta? weibull? Burr? invgamma, etc.

Parameters
• sev_name – scipy.stats name for distribution
• fz – frozen scipy.stats instance
• a – double, limit for integral
• n – int, power

Returns
partial expected value

aggregate.utilities.partial_e_numeric(fz, a, n)
Simple numerical integration version of partial_e for auditing purposes.

aggregate.utilities.picks_work(attachments, layer_loss_picks, xs, sev_density, n=1, sf=None,
debug=False)

Adjust the layer unconditional expected losses to target. You need int xf(x)dx, but that is fraught when f is
a mixed distribution. So we only use the int S version. fz was initially a frozen continuous distribution; but
adjusted to sf function and dropped need for pdf function.
See notes for how the parts are defined. Notice that:

np.allclose(p.layers.v - p.layers.f, p.layers.l - p.layers.e)

is true.
Parameters

• attachments – array of layer attachment points, in ascending order (bottom to top).
a[0]>0

• layer_loss_picks – Targetmeans. Iflen(layer_loss_picks)==len(attachments)
then the bottom layer, 0 to a[0], is added. Can be input as unconditional layer severity
(i.e., E[(X − a)+ ∧ y]) or as the layer loss pick (i.e., E[(X − a)+ ∧ y]′timesn where
n is the number of ground-up (to the insurer) claims. Multiplying and dividing by S(a)
shows this equals conditional severity in the layer times the number of claims in the
layer.) Actuaries usually estimate the loss pick to the layer in pricing. When called from
Aggregate the number of ground up claims is known.

• en – ground-up expected claims. Target is divided by en.
• xs – x values for discretization
• sev_density – Series of existing severity density from Aggregate.
• sf – cdf function for the severity distribution.
• debug – if True, return debug information (layers, density with adjusted probs, audit of
layer expected values.

aggregate.utilities.pprint(txt)

Simple text version of pprint with line breaking

330 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

aggregate.utilities.pprint_ex(txt, split=0, html=False)
Try to format an agg program. This is difficult because of dfreq and dsev, optional reinsurance, etc. Go for a
simple approach of removing unnecessary spacing and removing notes. Notes can be accessed from the spec
that is always to hand.
For long programs use split=60 or so, they are split at appropriate points.
Best to use html = True to get colorization.

Parameters
• txt – program text input
• split – if > 0 split lines at this length
• html – if True return html (via pygments) , else return text

aggregate.utilities.qd(*argv, accuracy=3, align=True, trim=True, ff=None, **kwargs)
Endless quest for a robust display format!
Quick display (qd) a list of objects. Dataframes handled in text with reasonable defaults. For use in documen-
tation.

Param
argv: list of objects to print

Param
accuracy: number of decimal places to display

Param
align: if True, align columns at decimal point (sEngFormatter)

Param
trim: if True, trim trailing zeros (sEngFormatter)

Param
ff: if not None, use this function to format floats, or ‘basic’, or ‘binary’

Kwargs
passed to pd.DataFrame.to_string for dataframes only. e.g., pass dict of formatters by column.

aggregate.utilities.qdp(df)
Quick describe with nice percentiles and cv for a dataframe.

aggregate.utilities.random_corr_matrix(n, p=1, positive=False)
make a random correlation matrix
smaller p results in more extreme correlation 0 < p <= 1
Eg

rcm = random_corr_matrix(5, .8)
rcm
np.linalg.cholesky(rcm)

positive=True for all entries to be positive
aggregate.utilities.rearrangement_algorithm_max_VaR(df, p=0, tau=0.001,

max_n_iter=100)

Implementation of the Rearragement Algorithm (RA). Determines the worst p-VaR rearrangement of the input
variables.
For loss random variables p is usually close to 1.
Embrechts, Paul, Giovanni Puccetti, and Ludger Ruschendorf, 2013,Model uncertainty and VaR aggregation,
Journal of Banking and Finance 37, 2750–2764.
Worst-Case VaR

3.5. Utilities 331

aggregate Documentation, Release 0.22.0

Worst value at risk arrangement of marginals.
See Actuarial Review article.
Worst TVaR / Variance arrangement of bivariate data = pair best with worst, second best with second worst,
etc., called countermonotonic arangement.
More than 2 marginals: can’t make everything negatively correlated with everything else. If X and Y are
negatively correlated and Y and Z are negatively correlated then X and Z will be positively correlated.
Next best attempt: makeX countermonotonic to Y +Z, Y toX+Z andZ toX+Y . Basis of rearrangement
algorithm.
The Rearrangement Algorithm

1. Randomly permute each column of X , the N × d matrix of top 1− p observations
2. Loop

• Create a new matrix Y as follows. For column j = 1, . . . , d

– Create a temporary matrix Vj by deleting the jth column of X
– Create a column vector v whose ith element equals the sum of the elements in the ith row of Vj
– Set the jth column of Y equal to the jth column ofX arranged to have the opposite order to v,
i.e. the largest element in the jth column of X is placed in the row of Y corresponding to the
smallest element in v, the second largest with second smallest, etc.

• Compute y, theN × 1 vector with ith element equal to the sum of the elements in the ith row of Y
and let y∗ = min(y) be the smallest element of y and compute x∗ from X similarly

• If y∗ − x∗ ≥ ϵ then set X = Y and repeat the loop
• If y∗ − x∗ < ϵ then break from the loop

3. The arrangement Y is an approximation to the worst :math:` ext{VaR}_p` arrangement of X .

Parameters
• df – Input DataFrame containing samples from each marginal. RA will only combine the
top 1-p proportion of values from each marginal.

• p – If p==0 assume df has already truncated to the top p values (for each marginal).
Otherwise truncate each at the int(1-p * len(df))

• tau – simulation tolerance
• max_iter – maximum number of iterations to attempt

Returns
the top 1-p values of the rearranged DataFrame

aggregate.utilities.round_bucket(bs)

Compute a decent rounded bucket from an input float bs.

if bs > 1 round to 2, 5, 10, ...

elif bs < 1 find the smallest power of two greater than bs

Test cases:

test_cases = [1, 1.1, 2, 2.5, 4, 5, 5.5, 8.7, 9.9, 10, 13,
15, 20, 50, 100, 99, 101, 200, 250, 400, 457,

500, 750, 1000, 2412, 12323, 57000, 119000,
1e6, 1e9, 1e12, 1e15, 1e18, 1e21]

for i in test_cases:
print(i, round_bucket(i))

(continues on next page)

332 Chapter 3. API Reference

https://ar.casact.org/the-re-arrangement-algorithm

aggregate Documentation, Release 0.22.0

(continued from previous page)
for i in test_cases:

print(1/i, round_bucket(1/i))

class aggregate.utilities.sEngFormatter(accuracy, min_prefix=-6, max_prefix=12, align=True,
trim=True)

Formats float values according to engineering format inside a range of exponents, and standard
scientific notation outside.
Uses the same number of significant digits throughout. Optionally aligns at decimal point. That
takes up more horizontal space but produces easier to read output.
Based on matplotlib.ticker.EngFormatter and pandas EngFormatter. Converts to scientific notation
outside (smaller) range of prefixes. Uses same number of significant digits?
Testers:

sef1 = sEngFormatter(accuracy=5, min_prefix=0, max_prefix=12,␣
↪→align=True, trim=True)
sef2 = sEngFormatter(accuracy=5, min_prefix=0, max_prefix=12,␣
↪→align=False, trim=True)
sef3 = sEngFormatter(accuracy=5, min_prefix=0, max_prefix=12,␣
↪→align=True, trim=False)
sef4 = sEngFormatter(accuracy=5, min_prefix=0, max_prefix=12,␣
↪→align=False, trim=False)
test = [1.234 * 10**n for n in range(-20,20)]
test = [-i for i in test] + test
for sef in [sef1, sef2, sef3, sef4]:

print('

‘.join([sef(i) for i in test]))
print(‘

‘)
print(‘===============’) test = [1.234 * 10**n + 3e-16 for n in range(-20,20)] test = [-i for i in test]
+ test for sef in [sef1, sef2, sef3, sef4]:

print(‘

‘.join([sef(i) for i in test]))
__init__(accuracy, min_prefix=-6, max_prefix=12, align=True, trim=True)

remove_trailing_zeros(str_x, x, dps)
Remove trailing zeros from a string representation str_x of a number x. The number of decimal places
is dps. If the number is in scientific notation then there is no change. Eg with dps == 3, 1.2000 becomes
1.2, 1.000 becomes 1, but 1.200 when x=1.20000001 is unchanged.

aggregate.utilities.sensible_jump(n, desired_rows=20)
return a sensible jump size to output desired_rows given input of n

Parameters
• n –
• desired_rows –

Returns
aggregate.utilities.sgamma_fit(m, cv, skew)

method of moments shifted gamma fit matching given mean, cv and skewness
Parameters

3.5. Utilities 333

aggregate Documentation, Release 0.22.0

• m –
• cv –
• skew –

Returns
aggregate.utilities.show_fig(f, format='svg', **kwargs)

Save a figure so it can be placed precisely in output. Used by Underwriter.show to interleaf tables and plots.
Parameters

• f – a plt.Figure
• format – svg or png
• kwargs – passed to savefig

aggregate.utilities.sln_fit(m, cv, skew)
method of moments shifted lognormal fit matching given mean, cv and skewness

Parameters
• m –
• cv –
• skew –

Returns
aggregate.utilities.style_df(df)

Style a df similar to pricinginsurancerisk.com styles.
graph background color is B4C3DC and figure (paler) background is F1F8F#
Dropped row lines; bold level0, caption

Parameters
df –

Returns
styled dataframe

aggregate.utilities.subsets(x)
all non empty subsets of x, an interable

aggregate.utilities.suptitle_and_tight(title, **kwargs)

deal with tight layout when there is a suptitle
Parameters

title –
Returns

aggregate.utilities.test_var_tvar(program, bs=0, n_ps=1025, normalize=False,
speed_test=False, log2=16)

Run a test suite of programs against new var and tvar functions compared to old aggregate.Aggregate versions
Suggestion:

args = [
('agg T dfreq [1,2,4,8] dsev [1]', 0, 1025, False),
('agg T dfreq [1:8] dsev [2:3]', 0, 1025, False),
('agg D dfreq [1:6] dsev [1]', 0, 7, False),
('agg T2 10 claims 100 x 0 sev lognorm 10 cv 1 poisson ', 1/64, 1025,␣

↪→False),
('agg T2 10 claims sev lognorm 10 cv 4 poisson ', 1/16, 1025, False),

(continues on next page)

334 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

(continued from previous page)
('agg T2 10 claims sev lognorm 10 cv 4 mixed gamma 1.2 ', 1/8, 1025,␣

↪→False),
('agg Dice dfreq [1] dsev [1:6]', 0, 7, False)

]

from IPython.display import display, Markdown
for t in args:

display(Markdown(f'## {t[0]}'))
bs = t[1]
test_suite(*t, speed_test=False, log2=16 if bs!= 1/8 else 20)

Expected output to show that new functions are 3+ orders of magnitude faster, and agree with the old functions.
q and q_upper agree everywhere except the jumps.

aggregate.utilities.tweedie_convert(*, p=None, μ=None, σ2=None, λ=None, α=None, β=None,
m=None, cv=None)

Translate between Tweedie parameters. Input p, μ, σ2 or λ, α, β or λ, m, cv. Remaining parameters are
computed and returned in pandas Series.
p, μ, σ2 are the reproductive parameters, μ is the mean and the variance equals σ2 μ^p λ, α, β are the additive
parameters; λαβ is the mean, λα(α + 1) β^2 is the variance (α is the gamma shape and β is the scale). λ, m,
cv specify the compound Poisson with expected claim count λ and gamma with mean m and cv
In addition, returns p0, the probability mass at 0.

aggregate.utilities.tweedie_density(x, *, p=None, μ=None, σ2=None, λ=None, α=None,
β=None, m=None, cv=None)

Exact density of Tweedie distribution from series expansion. Use any parameterization and convert between
them with Tweedie convert. Coded for clarity and flexibility not speed. See tweedie_convert for pa-
rameterization.

aggregate.utilities.xsden_to_meancv(xs, den)
Compute mean and cv from xs and density.
Consider adding: np.nan_to_num(den)
Note: cannot rely on pd.Series[-1] to work… it depends on the index. xs could be an index :param xs: :param
den: :return:

aggregate.utilities.xsden_to_meancvskew(xs, den)
Compute mean, cv and skewness from xs and density

Consider adding: np.nan_to_num(den)
param xs
param den
return

3.5.5 Constants

class aggregate.constants.Validation(value)

An enumeration.

3.5. Utilities 335

aggregate Documentation, Release 0.22.0

3.6 Distortion Module

class aggregate.spectral.Distortion(name, shape, r0=0.0, df=None, col_x='', col_y='',
display_name='')

Creation and management of distortion functions.
0.9.4: renamed roe to ccoc, but kept creator with roe for backwards compatibility. Oct 2022: renamed wtdtvar
to bitvar, but kept …
__init__(name, shape, r0=0.0, df=None, col_x='', col_y='', display_name='')

Create a new distortion.
Tester:

ps = np.linspace(0, 1, 201)
for dn in agg.Distortion.available_distortions(True):

if dn=='clin':
shape param must be > 1
g_dist = agg.Distortion(**{'name': dn, 'shape': 1.25, 'r0': 0.02,

↪→'df': 5.5})
else:

g_dist = agg.Distortion(**{'name': dn, 'shape': 0.5, 'r0': 0.02,
↪→'df': 5.5})

g_dist.plot()
g = g_dist.g
g_inv = g_dist.g_inv

df = pd.DataFrame({'p': ps, 'gg_inv': g(g_inv(ps)), 'g_invg': g_
↪→inv(g(ps)),

'g': g(ps), 'g_inv': g_inv(ps)})
print(dn)
print("errors")
display(df.query(' abs(gg_inv - g_invg) > 1e-5'))

Parameters
• name – name of an available distortion, call Distortion.
available_distortions() for a list

• shape – float or [float, float]
• shape – shape parameter
• r0 – risk free or rental rate of interest
• df – for convex envelope, dataframe with col_x and col_y used to parameterize or df
for t

• col_x –
• col_y –
• display_name – over-ride name, useful for parameterized convex fix distributions

classmethod available_distortions(pricing=True, strict=True)
List of the available distortions.

Parameters
• pricing – only return list suitable for pricing, excludes tvar and convex
• strict – only include those without mass at zero (pricing only)

Returns

336 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

static average_distortion(data, display_name, n=201, el_col='EL', spread_col='Spread')
Create average distortion from (s, g(s)) pairs. Each point defines a wtdTVaR with p=s and p=1 points.

Parameters
• data –
• display_name –
• n – number of s values (between 0 and max(EL), 1 is added
• el_col – column containing EL
• spread_col – column containing Spread

Returns
static bagged_distortion(data, proportion, samples, display_name='')

Make a distortion by bootstrap aggregation (Bagging) resampling, taking the convex envelope, and aver-
aging from data.
Each sample uses proportion of the data.
Data must have two columns: EL and Spread

Parameters
• data –
• proportion – proportion of data for each sample
• samples – number of resamples
• display_name – display_name of created distortion

Returns
static convex_example(source='bond')

Example convex distortion using data from https://www.bis.org/publ/qtrpdf/r_qt0312e.pdf.
Parameters

source – bond gives a bond yield curve example, cat gives cat bond / cat reinsurance
pricing based example

Returns
static distortions_from_params(params, index, r0=0.025, df=5.5, pricing=True, strict=True)

Make set of dist funs and inverses from params, output of port.calibrate_distortions. params must just
have one row for each method and be in the output format of cal_dist.
Called by Portfolio.

Parameters
• index –
• params – dataframe such that params[index, :] has a [lep, param] etc. pricing=True,
strict=True: which distortions to allow df for t distribution

• r0 – min rol parameters
• strict –
• pricing –

Returns
g_dual(x)

The dual of the distortion function g.

3.6. Distortion Module 337

https://www.bis.org/publ/qtrpdf/r_qt0312e.pdf

aggregate Documentation, Release 0.22.0

plot(xs=None, n=101, both=True, ax=None, plot_points=True, scale='linear', c=None, size='small',
**kwargs)

Quick plot of the distortion
Parameters

• xs –
• n – length of vector is no xs
• both – True: plot g and ginv and add decorations, if False just g and no trimmings
• ax –
• plot_points –
• scale – linear as usual or return plots -log(gs) vs -logs and inverts both scales
• size – ‘small’ or ‘large’ for size of plot, FIG_H or FIG_W. The default is ‘small’.
• kwargs – passed to matplotlib.plot

Returns
price(ser, a=inf, kind='ask', S_calculation='forwards')

Compute the bid and ask prices for the distribution determined by ser with an asset limit a. Index of
ser need not be equally spaced, so it can be applied to κ. To do this for unit A in portfolio port:

ser = port.density_df[['exeqa_A', 'p_total']].\
set_index('exeqa_A').groupby('exeqa_A').\
sum()['p_total']

dist.price(ser, port.q(0.99), 'both')

Always use S_calculation='forwards method to compute S = 1 - cumsum(probs). Computes
the price as the integral of gS.

Parameters
• ser – pd.Series of is probabilities, indexed by outcomes. Outcomes need not be spaced
evenly. ser is usually a probability column from density_df.

• kind – is “ask”, “bid”, or “both”, giving the pricing view.
• a – asset level. ser is truncated at a.

price2(ser, a=None, S_calculation='forwards')

Compute the bid and ask prices for the distribution determined by ser with an asset limits given by
values of ser. Index of ser need not be equally spaced, so it can be applied to κ. To do this for unit A
in portfolio port:

ser = port.density_df[['exeqa_A', 'p_total']].\
set_index('exeqa_A').groupby('exeqa_A').\
sum()['p_total']

dist.price(ser, port.q(0.99))

Parameters
ser – pd.Series of is probabilities, indexed by outcomes. Outcomesmust be spaced evenly.
ser is usually a probability column from density_df.

static s_gs_distortion(s, gs, display_name='')
Make a convex envelope distortion from {s, g(s)} points.

Parameters
• s – iterable (can be converted into numpy.array
• gs –

338 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

• display_name –
Returns

classmethod test(r0=0.035, df=[0.0, 0.9])
Tester: make some nice plots of available distortions.

Returns
static wtd_tvar(ps, wts, display_name='', details=False)

A careful version of wtd tvar with knots at ps and wts.
Parameters

• ps –
• wts –
• display_name –
• details –

Returns
aggregate.spectral.approx_ccoc(roe, eps=1e-14, display_name=None)

Create a continuous approximation to the CCoC distortion with return roe. Helpful utility function for creating
a distortion.

Parameters
• roe – return on equity
• eps – small number to avoid mass at zero

aggregate.spectral.tvar_weights(d)
Return tvar weight function for a distortion d. Use np.gradient to differentiate g’ but adjust for certain distor-
tions. The returned function expects a numpy array of p values.

Param
d distortion

3.7 Bounds Module

class aggregate.bounds.Bounds(distribution_spec)

Implement IME 2022 pricing bounds methodology.
Typical usage: First, create a Portfolio or Aggregate object a. Then

bd = cd.Bounds(a)
bd.tvar_cloud('line', premium=, a=, n_tps=, s=, kind=)
p_star = bd.p_star('line', premium)
bd.cloud_view(axes, ...)

Parameters
distribution_spec – A Portfolio or Portfolio.density_df dataframe or pd.Series (must
have loss as index) If DataFrame or Series values interpreted as desnsity, sum to 1. F, S, exgta
all computed using Portfolio methdology If DataFrame line –> p_{line}

__init__(distribution_spec)

3.7. Bounds Module 339

aggregate Documentation, Release 0.22.0

cloud_view(*, axs=None, n_resamples=0, scale='linear', alpha=0.05, pricing=True,
distortions='ordered', title='', lim=(-0.025, 1.025), check=False, add_average=True)

Visualize the distortion cloud with n_resamples. Execute after computing weights.
Parameters

• axs –
• n_resamples – if random sample
• scale – linear or return
• alpha – opacity
• pricing – restrict to p_max = 0, ensuring g(s)<1 when s<1
• distortions – ‘ordered’ shows the usual calibrated distortions, else list of dicts
name:distortion.

• title – optional title (applied to all plots)
• lim – axis limits
• check – construct and plot Distortions to check working ; reduces n_resamples to 5

Returns
compute_weight(premium, p0, p1, b=inf, kind='interp')

compute the weight for a single TVaR p0 < p1 value pair
Parameters

• line –
• premium –
• tp –
• b –

Returns
compute_weights(line, premium, n_tps, b=inf, kind='interp')

Compute the weights of the extreme distortions
Applied to min(line, b) (allows to work for net)
Note: independent of the asset level

Parameters
• line – within port, or total
• premium – target premium for the line
• n_tps – number of tvar p points (tps)number of tvar p points (tps)number of tvar p
points (tps)number of tvar p points (tps).

• b – loss bound: compute weights for min(line, b); generally used for net losses only.
Returns

distortion(pl, pu)
Return the BiTVaR with probabilities pl and pu

make_ps(n, mode)
If add_one then you want n = 2**m + 1 to ensure nicely spaced points.
Mode: making s points (always uniform) or tvar p points (use t_mode). self.t_mode == ‘u’: make uniform
s points against which to evaluate g from 0 to 1 self.t_mode == ‘gl’: makeGauss-Legndre p points at which
TVaRs are evaluated from 0 inclusive to 1 exclusive with more around 1

340 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

Parameters
n –

Returns
make_tvar_function(line, b=inf)

Change in 0.14.0 with new tvar methodology, this function reflects the b limit, it is the TVaR of min(X,
b)
Make unlimited TVaR function for line, self.tvar_unlimited_function, and set self.Fb.
• Portfolio or Aggregate: get from object
• DataFrame: make from p_{line} column
• Series: make from Series

In the last two cases, uses aggregate.utilties.make_var_tvar_function.
Includes determining sup and putting in value for zero. If sup is largest value in index, sup set to inf.
You generally want to apply with a limit, call self.tvar_with_bounds.

Parameters
• line – only used for portfolio objects, to specify line (or ‘total’)
• b – bound on the losses, e.g., to model limited liability insurer

Returns
p_star(line, premium, b=inf, kind='interp')

Compute p* so TVaR @ p* of min(X, b) = premium
In this case the cap b has an impact (think of integrating q(p) over p to 1, q is impacted by b)
premium <= b is required (no rip off condition)
If b < inf then must solve TVaR(p) - (1 - F(b)) / (1 - p)[TVaR(F(b)) - b] = premium Let k = (1 - F(b))
[TVaR(F(b)) - b], so solving
f(p) = TVaR(p) - k / (1 - p) - premium == 0
using NR

Parameters
• line –
• premium – target premium
• b – bound
• kind – now ignored

Returns
ped_distortion(n, solver='rs')

make the approximating distortion from the first n Principal Extreme Distortions (PED)s using rs or ip
solutions

Parameters
n –

Returns
principal_extreme_distortion_analysis(gs, pricing=False)

Find the principal extreme distortion analysis to solve for gs = g(s), s=self.cloud_df.index
Assumes that tvar_cloud has been called and that cloud_df exists len(gs) = len(cloud_df)
E.g., call

3.7. Bounds Module 341

aggregate Documentation, Release 0.22.0

b = Bounds(port) b.t_mode = ‘u’ # set premium and asset level a b.tvar_cloud(‘total’, premium,
a) # make gs b.principal_extreme_distortion_analysis(gs)

Parameters
• gs – either g(s) evaluated on s = cloud_df.index or the name of a calibrated distortion
in distribution_spec.dists (created by a call to calibrate_distortions)

• pricing – if try, try just using pricing distortions
Returns

quick_price(distortion, a)
price total to assets a using distortion
requires distribution_spec has a density_df dataframe with a p_total or p_total
TODO: add ability to price other lines :param distortion: :param a: :return:

tvar_array(line, n_tps=257, b=inf, kind='interp')
Compute tvars at n equally spaced points, tps.

Parameters
• line –
• n_tps – number of tvar p points, default 257 (assuming add-one mode)
• b – cap on losses applied before computing TVaRs (e.g., adjust losses for finite assets
b). Use np.inf for unlimited losses.

• kind – now ignored.
Returns

tvar_cloud(line, premium, a, n_tps, s, kind='interp')
weight down tvar functions to the extremal convex measures
asset level a acts like an agg stop on what is being priced, i.e. we are working with min(X, a)

Parameters
• line –
• premium –
• a –
• n_tps –
• s –
• b – bound, applies to min(line, b)

Returns
tvar_hinges(s)

make the tvar hinge functions by evaluating each tvar_p(s) = min(1, s/(1-p) for p in tps, at EP points s
all arguments in [0,1] x [0,1]

Parameters
s –

Returns

342 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

tvar_with_bound(p, b=inf, kind='interp')
Compute tvar taking bound into account. Assumes tvar_unfunction setup.
Warning: b must equal the b used when calibrated. The issue is computing F which varies with the type
of underlying portfolio. This is fragile. Added storing b and checking equal. For backwards comp. need
to keep b argument

Parameters
• p –
• b –
• kind – now ignored

Returns
class aggregate.bounds.Bounds(distribution_spec)

Implement IME 2022 pricing bounds methodology.
Typical usage: First, create a Portfolio or Aggregate object a. Then

bd = cd.Bounds(a)
bd.tvar_cloud('line', premium=, a=, n_tps=, s=, kind=)
p_star = bd.p_star('line', premium)
bd.cloud_view(axes, ...)

Parameters
distribution_spec – A Portfolio or Portfolio.density_df dataframe or pd.Series (must
have loss as index) If DataFrame or Series values interpreted as desnsity, sum to 1. F, S, exgta
all computed using Portfolio methdology If DataFrame line –> p_{line}

cloud_view(*, axs=None, n_resamples=0, scale='linear', alpha=0.05, pricing=True,
distortions='ordered', title='', lim=(-0.025, 1.025), check=False, add_average=True)

Visualize the distortion cloud with n_resamples. Execute after computing weights.
Parameters

• axs –
• n_resamples – if random sample
• scale – linear or return
• alpha – opacity
• pricing – restrict to p_max = 0, ensuring g(s)<1 when s<1
• distortions – ‘ordered’ shows the usual calibrated distortions, else list of dicts
name:distortion.

• title – optional title (applied to all plots)
• lim – axis limits
• check – construct and plot Distortions to check working ; reduces n_resamples to 5

Returns
compute_weight(premium, p0, p1, b=inf, kind='interp')

compute the weight for a single TVaR p0 < p1 value pair
Parameters

• line –
• premium –
• tp –

3.7. Bounds Module 343

aggregate Documentation, Release 0.22.0

• b –
Returns

compute_weights(line, premium, n_tps, b=inf, kind='interp')
Compute the weights of the extreme distortions
Applied to min(line, b) (allows to work for net)
Note: independent of the asset level

Parameters
• line – within port, or total
• premium – target premium for the line
• n_tps – number of tvar p points (tps)number of tvar p points (tps)number of tvar p
points (tps)number of tvar p points (tps).

• b – loss bound: compute weights for min(line, b); generally used for net losses only.
Returns

distortion(pl, pu)
Return the BiTVaR with probabilities pl and pu

make_ps(n, mode)
If add_one then you want n = 2**m + 1 to ensure nicely spaced points.
Mode: making s points (always uniform) or tvar p points (use t_mode). self.t_mode == ‘u’: make uniform
s points against which to evaluate g from 0 to 1 self.t_mode == ‘gl’: makeGauss-Legndre p points at which
TVaRs are evaluated from 0 inclusive to 1 exclusive with more around 1

Parameters
n –

Returns
make_tvar_function(line, b=inf)

Change in 0.14.0 with new tvar methodology, this function reflects the b limit, it is the TVaR of min(X,
b)
Make unlimited TVaR function for line, self.tvar_unlimited_function, and set self.Fb.
• Portfolio or Aggregate: get from object
• DataFrame: make from p_{line} column
• Series: make from Series

In the last two cases, uses aggregate.utilties.make_var_tvar_function.
Includes determining sup and putting in value for zero. If sup is largest value in index, sup set to inf.
You generally want to apply with a limit, call self.tvar_with_bounds.

Parameters
• line – only used for portfolio objects, to specify line (or ‘total’)
• b – bound on the losses, e.g., to model limited liability insurer

Returns
p_star(line, premium, b=inf, kind='interp')

Compute p* so TVaR @ p* of min(X, b) = premium
In this case the cap b has an impact (think of integrating q(p) over p to 1, q is impacted by b)
premium <= b is required (no rip off condition)

344 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

If b < inf then must solve TVaR(p) - (1 - F(b)) / (1 - p)[TVaR(F(b)) - b] = premium Let k = (1 - F(b))
[TVaR(F(b)) - b], so solving
f(p) = TVaR(p) - k / (1 - p) - premium == 0
using NR

Parameters
• line –
• premium – target premium
• b – bound
• kind – now ignored

Returns
ped_distortion(n, solver='rs')

make the approximating distortion from the first n Principal Extreme Distortions (PED)s using rs or ip
solutions

Parameters
n –

Returns
principal_extreme_distortion_analysis(gs, pricing=False)

Find the principal extreme distortion analysis to solve for gs = g(s), s=self.cloud_df.index
Assumes that tvar_cloud has been called and that cloud_df exists len(gs) = len(cloud_df)
E.g., call

b = Bounds(port) b.t_mode = ‘u’ # set premium and asset level a b.tvar_cloud(‘total’, premium,
a) # make gs b.principal_extreme_distortion_analysis(gs)

Parameters
• gs – either g(s) evaluated on s = cloud_df.index or the name of a calibrated distortion
in distribution_spec.dists (created by a call to calibrate_distortions)

• pricing – if try, try just using pricing distortions
Returns

quick_price(distortion, a)
price total to assets a using distortion
requires distribution_spec has a density_df dataframe with a p_total or p_total
TODO: add ability to price other lines :param distortion: :param a: :return:

tvar_array(line, n_tps=257, b=inf, kind='interp')
Compute tvars at n equally spaced points, tps.

Parameters
• line –
• n_tps – number of tvar p points, default 257 (assuming add-one mode)
• b – cap on losses applied before computing TVaRs (e.g., adjust losses for finite assets
b). Use np.inf for unlimited losses.

• kind – now ignored.
Returns

3.7. Bounds Module 345

aggregate Documentation, Release 0.22.0

tvar_cloud(line, premium, a, n_tps, s, kind='interp')
weight down tvar functions to the extremal convex measures
asset level a acts like an agg stop on what is being priced, i.e. we are working with min(X, a)

Parameters
• line –
• premium –
• a –
• n_tps –
• s –
• b – bound, applies to min(line, b)

Returns
tvar_hinges(s)

make the tvar hinge functions by evaluating each tvar_p(s) = min(1, s/(1-p) for p in tps, at EP points s
all arguments in [0,1] x [0,1]

Parameters
s –

Returns
tvar_with_bound(p, b=inf, kind='interp')

Compute tvar taking bound into account. Assumes tvar_unfunction setup.
Warning: b must equal the b used when calibrated. The issue is computing F which varies with the type
of underlying portfolio. This is fragile. Added storing b and checking equal. For backwards comp. need
to keep b argument

Parameters
• p –
• b –
• kind – now ignored

Returns
aggregate.bounds.plot_lee(port, ax, c, lw=1)

Lee diagram by hand
aggregate.bounds.plot_max_min(self, ax)

Extracted from bounds, self=Bounds object
aggregate.bounds.similar_risks_example()

Interesting beta risks and how to use similar_risks_graphs_sa.
Returns

aggregate.bounds.similar_risks_graphs_sa(axd, bounds, port, pnew, roe, prem, p_reg=1)
stand-alone ONLYWORKS FOR BOUNDED PORTFOLIOS (use for beta mixture examples) Updated ver-
sion in CaseStudy axd from mosaic bounds = Bounds class from port (calibrated to some base)it pnew = new
portfolio input new beta(a,b) portfolio, using existing bounds object
sample: see similar_risks_sample()
Provenance : from make_port in Examples_2022_post_publish

346 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

3.8 Extensions

Extensions contains optional, nice to have code that extends basic functionality. For example, all CaseStudy material
is included here. It is not required for core functionality. It is not included in the default import. It is included in the
default build.

3.8.1 Basic

3.8.2 Case Study Support

class aggregate.extensions.case_studies.ClassicalPremium(ports, calibration_premium)
manage classical premium examples

Net, no loading Expected value, constant loadingMaximum loss –> no VaR (as proxy for maximum
loss) Variance Std Dev Semi-variance (Artzner p. 210) Exponential (zero utility, convex!) Esscher

Originally in hack.py
calibrate(port_name, line_name, calibration_premium, df=None, ob=None, stats=None, mn=None,

var=None, sd=None)
calibrate all methods…

distribution(port_name, line_name)
classical methods all depend on the distribution…so pull it out pull the object that will provide q etc. pull
the audit stats

illustrate(port_name, line_name, ax, margin, *, p=0, K=0, n_big=10000, n_sample=25,
show_bounds=True, padding=2)

illustrate simulations at p level probability probability level determines capital or capital K input margin:
premium = (1 +margin) * EL, margin = rho n_big = number of policies - max of horizontal axis n_sample
= number of iterations to plot
Theoretic bounds use the actual moments, simulated use those from the process being estimated
From common_scripts Pentagon took out re-computation…

price(param, port_name, line_name, method, df=None, ob=None, stats=None, mn=None, var=None,
sd=None)

apply method to port_name, line_name with parameter(s) (all one param) these are all classical methods
method_dict = {method name : param } param = float | [float param, p ge 1 value] latter fro Fischer
method

prices(port_name, line_name, method_dict)

run lots of prices
pricing_exhibit(port_name, line_name, calibration_premium, re_line)

calibrate and apply to all other portfolios
aggregate.extensions.case_studies.add_defaults(dict_in, kind='agg')

add default values to dict_inin. Leave existing values unchanged Used to output to a data frame, where you
want all columns completed

Parameters
• dict_in –
• kind –

Returns

3.8. Extensions 347

aggregate Documentation, Release 0.22.0

aggregate.extensions.case_studies.bivariate_density_plots(axi, ports, xmax,
contour_scale,
biv_log=True,
cmap='viridis', levels=30,
color_bar=False)

bivarate plots of each line against the others for each portfolio in case arguments as for twelve_plot / bivden
plot
axi = iterator with enough exes ports = iterable of ports (list, dict.values(), etc.)
from common_scripts.py

aggregate.extensions.case_studies.extract_sort_order(summaries, _varlist_,
classical=False)

Pull out exhibits. Note difference: classical uses net_classical, calibrated to roe non-classical uses pricing
calibrated to

aggregate.extensions.case_studies.g_ins_stats(axi, dn0, dist, ls='-')
Six part plot with EL, premium, loss ratio, profit, layer ROE and P:S for g axi = axis iterator

aggregate.extensions.case_studies.macro_market_graphs(axi, port, dn, rp)
Create more succinct 4x4 graph to illustrate macro market structure and result, LR, P:S and ROE, etc.
Use a port object with calibrated distortion
see ch04_macro_market_stats_original
from: common_scripts.py ch04_macro_market_stats updated line colors
June 2022: removed all color=’k’

Parameters
• dist –
• rp – return period
• sigma –

Returns
aggregate.extensions.case_studies.pricing(port, p, roe, as_dataframe=True)

Make nice stats output for pricing from common_scripts.py
aggregate.extensions.case_studies.universal_renamer(x)

aggregate.extensions.case_studies.urn(df)
apply universal renamer

3.8.3 Pentagon

aggregate.extensions.pentagon.code(r)
determine binary code for row

aggregate.extensions.pentagon.make_possible_pentagons()

enumerate possible and impossible pentagon configurations
class aggregate.extensions.pentagon.pent_ans(L, P, M, a, Q, LR, PQ, COC)

COC

Alias for field number 7
L

Alias for field number 0

348 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

LR

Alias for field number 5
M

Alias for field number 2
P

Alias for field number 1
PQ

Alias for field number 6
Q

Alias for field number 4
a

Alias for field number 3

3.8.4 Samples

Warning: All functionality in extensions.samples has been moved into the base package.

3.8.5 Figures

aggregate.extensions.figures.adjusting_layer_losses()

Figure to illustrate the process of adjusting layer losses. TODO: Add reference
aggregate.extensions.figures.discretization_agg_example(outcomes)

For AAS paper. Convergence of sevs with smaller bucket size.
aggregate.extensions.figures.discretization_sev_example(outcomes)

For AAS paper. Convergence of sevs with smaller bucket size.
aggregate.extensions.figures.dual_distortion(dist=None, s=0.3)

Illustrate how the dual distortion relates to the distortion.
aggregate.extensions.figures.g_insurance_statistics(axi, dist, c='C0', ls='-', lw=1,

diag=False, grid=False)
Six part plot with EL, premium, loss ratio, profit, layer ROE and P:S for g axi = axis iterator with 6 axes dist
= distortion Used to create PIR Figs 11.6 and 11.7

aggregate.extensions.figures.g_risk_appetite(axi, dist, c='C0', ls='-', N=1000, lw=1,
grid=False, xlabel=True, title=True,
add_tvar=False)

Plot to illustrate the risk appetite associated with a distortion g. Derived from
g_insurance_statistics. Plots premium, loss ratio, margin, return (easier to understand than
discount), VaR wts and optionally TVaR wts axi = axis iterator with 6 axes dist = distortion Used to create
PIR Figs 11.6 and 11.7

aggregate.extensions.figures.gh_example(en)
Code to reproduce GHGrübel and Hermesmeier 1999, Table 1. The function exact_cdf calculates the
compound probability that x− 1/2 < X ≤ x+ 1/2. For AAS paper with en=20.

aggregate.extensions.figures.mixing_convergence(freq_cv, sev_cv, bs=0.015625)
Illustrate convergence of mixed distributions to the mixing distribution.

3.8. Extensions 349

aggregate Documentation, Release 0.22.0

aggregate.extensions.figures.power_variance_family()

Graph to illustrate the power variance exponential family distributions.
Reference: Jørgensen, Bent. 1997. The theory of dispersion models. CRC Press.

aggregate.extensions.figures.savings_charge()

Figure to illustrate the insurance savings and expense(charge).

3.8.6 PIR Figures

aggregate.extensions.pir_figures.curlyBrace(ax, p1, p2, k_r=0.1, bool_auto=True,
str_text='', int_line_num=2, fontdict={},
**kwargs)

Plot an optionally annotated curly bracket on the given axes of the given figure.
Note that the brackets are anti-clockwise by default. To reverse the text position, swap “p1” and “p2”.
Note that, when the axes aspect is not set to “equal”, the axes coordinates need to be transformed to screen
coordinates, otherwise the arcs may not be seeable.
Parameters
fig

[matplotlib figure object] The of the target axes.
ax

[matplotlib axes object] The target axes.
p1

[two element numeric list] The coordinates of the starting point.
p2

[two element numeric list] The coordinates of the end point.
k_r

[float] This is the gain controlling how “curvy” and “pointy” (height) the bracket is.
Note that, if this gain is too big, the bracket would be very strange.

bool_auto
[boolean] This is a switch controlling wether to use the auto calculation of axes scales.
When the two axes do not have the same aspects, i.e., not “equal” scales, this should be turned on, i.e.,
True.
When “equal” aspect is used, this should be turned off, i.e., False.
If you do not set this to False when setting the axes aspect to “equal”, the bracket will be in funny shape.
Default = True

str_text
[string] The annotation text of the bracket. It would displayed at the mid point of bracket with the same
rotation as the bracket.
By default, it follows the anti-clockwise convention. To flip it, swap the end point and the starting point.
The appearance of this string can be set by using “fontdict”, which follows the same syntax as the normal
matplotlib syntax for font dictionary.
Default = empty string (no annotation)

int_line_num
[int] This argument determines how many lines the string annotation is from the summit of the bracket.
The distance would be affected by the font size, since it basically just a number of lines appended to the
given string.

350 Chapter 3. API Reference

aggregate Documentation, Release 0.22.0

Default = 2
fontdict

[dictionary] This is font dictionary setting the string annotation. It is the same as normal matplotlib font
dictionary.
Default = empty dict

**kwargs
[matplotlib line setting arguments] This allows the user to set the line arguments using named arguments
that are the same as in matplotlib.

Returns
theta

[float] The bracket angle in radians.
summit

[list] The positions of the bracket summit.
arc1

[list of lists] arc1 positions.
arc2

[list of lists] arc2 positions.
arc3

[list of lists] arc3 positions.
arc4

[list of lists] arc4 positions.
Reference
https://uk.mathworks.com/matlabcentral/fileexchange/38716-curly-brace-annotation

aggregate.extensions.pir_figures.fig_10_3(dist=None, s=0.3)
Figure 10.3 Illustrating distortion functions (s, g(s)) with vertical line at s and split loss, premium, margin, and
capital labelled

aggregate.extensions.pir_figures.fig_10_5(port=None, dist=None, s=0.3)
three plot version of previous with more explanation of first picture
return_period_max = defines extend of yaxis return_period_x = capital level to illustrate
map from s space into loss space extended version of ch04_s_gs_loss_premium_capital which includes the
horizontal bar [loss][m][equity] plotted on the provided second axis
Suggested figure set up for extended:

f = plt.Figure(figsize=(4,3), tight_layout=True) a = f.add_axes([0, 100/3+1/27, 1, 2/3], label=’a’)
b = f.add_axes([0, 0, 1, 1/3], label=’b’)

aggregate.extensions.pir_figures.fig_10_6(port=None, dist=None)
Same distortion and portfolio as 10_5 Slight clarification of the diagram vs. book version.

aggregate.extensions.pir_figures.fig_4_1()

Figure 4.1: illustrating quantiles.
aggregate.extensions.pir_figures.getAxSize(fig, ax)

Get the axes size in pixels.
Reference: https://uk.mathworks.com/matlabcentral/fileexchange/38716-curly-brace-annotation

Parameters
• fig – matplotlib figure object The of the target axes.
• ax – matplotlib axes object The target axes.

3.8. Extensions 351

https://uk.mathworks.com/matlabcentral/fileexchange/38716-curly-brace-annotation
https://uk.mathworks.com/matlabcentral/fileexchange/38716-curly-brace-annotation

aggregate Documentation, Release 0.22.0

Returns
ax_width : float, the axes width in pixels; ax_height : float, the axes height in pixels.

aggregate.extensions.pir_figures.natural_scale(port)
For creating Table 9.15

3.8.7 Test Suite

352 Chapter 3. API Reference

CHAPTER

FOUR

DEC LANGUAGE REFERENCE

This section describes how a DecL program is pre-processed, lexed, and parsed according to the grammar specifica-
tion. It reports the results of interpreting the builtin test suite of programs.
The DecL introduction describes its design and purpose.

4.1 Pre-Processing

Programs are processed one line at a time. Before passing to the lexer, the following pre-processing occurs.
1. Remove Python and C++ style # or // comments, through end of line
2. Remove \n in [] (vectors) that appear from using f'{np.linspace(...)}'
3. Map semicolons to newline
4. Map backslash newline (Python line continuations) to space
5. Replace \n\t with space, to support the tabbed indented Portfolio layout
6. Split on remaining newlines

4.2 Lexer Term Definitions

Ignored characters: tab (remaining after pre-processing), colon, comma, and pipe. These characters can be used to
improve readability.
Aggregate names must not include underscore. Portfolio names may include underscore. Names can include a period,
A.Basic.01.

tokens = {ID, BUILTIN_AGG, BUILTIN_SEV,NOTE,
SEV, AGG, PORT,
NUMBER, INFINITY,
PLUS, MINUS, TIMES, DIVIDE, INHOMOG_MULTIPLY,
LOSS, PREMIUM, AT, LR, CLAIMS, EXPOSURE, RATE,
XS, PICKS,
DISTORTION,
CV, WEIGHTS, EQUAL_WEIGHT, XPS,
MIXED, FREQ, TWEEDIE, ZM, ZT,
NET, OF, CEDED, TO, OCCURRENCE, AGGREGATE, PART_OF, SHARE_OF, TOWER,
AND, PERCENT,
EXPONENT, EXP,
DFREQ, DSEV, RANGE
}

ignore = ' \t,\\|'
literals = {'[', ']', '!', '(', ')'}

(continues on next page)

353

aggregate Documentation, Release 0.22.0

(continued from previous page)
NOTE = r'note\{[^\}]*\}' # r'[^\}]+'
BUILTIN_AGG = r'agg\.[a-zA-Z][a-zA-Z0-9._:~]*'
BUILTIN_SEV = r'sev\.[a-zA-Z][a-zA-Z0-9._:~]*'
FREQ = 'binomial|pascal|poisson|bernoulli|geometric|fixed|neyman(a|A)?|logarithmic'
DISTORTION = 'dist(ortion)?'
NUMBER = r'\-?(\d+\.?\d*|\d*\.\d+)([eE](\+|\-)?\d+)?'
ID = r'[a-zA-Z][\.:~_a-zA-Z0-9]*'
EXPONENT = r'\^|**'
PLUS = r'\+'
MINUS = r'\-'
TIMES = r'*'
DIVIDE = '/'
PERCENT = '%'
INHOMOG_MULTIPLY = '@'
EQUAL_WEIGHT = '='
RANGE = ':'

ID['occurrence'] = OCCURRENCE
ID['unlimited'] = INFINITY
ID['aggregate'] = AGGREGATE
ID['exposure'] = EXPOSURE
ID['tweedie'] = TWEEDIE
ID['premium'] = PREMIUM
ID['tower'] = TOWER
ID['mixed'] = MIXED
ID['unlim'] = INFINITY
ID['picks'] = PICKS
ID['prem'] = PREMIUM
ID['claims'] = CLAIMS
ID['ceded'] = CEDED
ID['claim'] = CLAIMS
ID['dfreq'] = DFREQ
ID['dsev'] = DSEV
ID['loss'] = LOSS
ID['port'] = PORT
ID['rate'] = RATE
ID['net'] = NET
ID['sev'] = SEV
ID['agg'] = AGG
ID['xps'] = XPS
ID['wts'] = WEIGHTS
ID['inf'] = INFINITY
ID['and'] = AND
ID['exp'] = EXP
ID['wt'] = WEIGHTS
ID['at'] = AT
ID['cv'] = CV
ID['lr'] = LR
ID['xs'] = XS
ID['of'] = OF
ID['to'] = TO
ID['po'] = PART_OF
ID['so'] = SHARE_OF
ID['zm'] = ZM
ID['zt'] = ZT
ID['x'] = XS

354 Chapter 4. Dec Language Reference

aggregate Documentation, Release 0.22.0

4.3 Dec Language Grammar Specification

Here is the full DecL Grammar and a grammar railroad diagram.

answer ::= agg_out
| port_out
| distortion_out
| expr

distortion_out ::= DISTORTION name ID expr
| DISTORTION name ID expr "[" numberl "]"

port_out ::= PORT name note agg_list

agg_list ::= agg_list agg_out
| agg_out

agg_out ::= AGG name exposures layers sev_clause occ_reins␣
↪→freq agg_reins note

| AGG name dfreq layers sev_clause occ_reins agg_
↪→reins note

| AGG name TWEEDIE expr expr expr note
| AGG name builtin_agg occ_reins agg_reins note
| builtin_agg agg_reins note

sev_out ::= SEV name sev note
| SEV name dsev note

freq ::= freq ZM expr
| freq ZT
| MIXED ID expr expr
| MIXED ID expr
| FREQ expr expr
| FREQ expr
| FREQ

agg_reins ::= AGGREGATE NET OF reins_list
| AGGREGATE CEDED TO reins_list
| %prec LOW

occ_reins ::= OCCURRENCE NET OF reins_list
| OCCURRENCE CEDED TO reins_list
|

reins_list ::= reins_list AND reins_clause
| reins_clause
| tower

reins_clause ::= expr XS expr
| expr SHARE_OF expr XS expr
| expr PART_OF expr XS expr

sev_clause ::= SEV sev
| dsev
| BUILTIN_SEV

sev ::= sev picks
| sev "!"
| sev2 weights splice
| BUILTIN_SEV

dsev ::= dsev "!"
(continues on next page)

4.3. Dec Language Grammar Specification 355

_static/diagram.xhtml

aggregate Documentation, Release 0.22.0

(continued from previous page)
| DSEV doutcomes dprobs

sev2 ::= sev1 PLUS numbers
| sev1 MINUS numbers
| sev1

sev1 ::= numbers TIMES sev0
| sev0

sev0 ::= ids numbers CV numbers
| ids numbers numbers
| ids numbers
| ids xps
| ids

xps ::= XPS doutcomes dprobs

dfreq ::= DFREQ doutcomes dprobs

picks ::= PICKS "[" numberl "]" "[" numberl "]"

doutcomes ::= "[" numberl "]"
| "[" expr RANGE expr "]"
| "[" expr RANGE expr RANGE expr "]"

dprobs ::= "[" numberl "]"
|

weights ::= WEIGHTS EQUAL_WEIGHT expr
| WEIGHTS "[" numberl "]"
|

splice ::= SPLICE "[" numberl "]"
|

layers ::= numbers XS numbers
| tower
|

tower ::= TOWER doutcomes

note ::= NOTE
| %prec LOW

exposures ::= numbers CLAIMS
| numbers LOSS
| numbers PREMIUM AT numbers LR
| numbers EXPOSURE AT numbers RATE

ids ::= "[" idl "]"
| ID

idl ::= idl ID
| ID

builtin_agg ::= expr INHOMOG_MULTIPLY builtin_agg
| expr TIMES builtin_agg
| builtin_agg PLUS expr
| builtin_agg MINUS expr
| BUILTIN_AGG

(continues on next page)

356 Chapter 4. Dec Language Reference

aggregate Documentation, Release 0.22.0

(continued from previous page)
name ::= ID

numbers ::= "[" numberl "]"
| "[" expr RANGE expr "]"
| "[" expr RANGE expr RANGE expr "]"
| expr

numberl ::= numberl expr
| expr

expr ::= atom

atom ::= atom DIVIDE atom
| "(" atom ")"
| EXP atom
| atom EXPONENT atom
| NUMBER

FREQ ::= 'binomial|poisson|bernoulli|pascal|geometric|neymana?
↪→|fixed|logarithmic|negbin'

BUILTINID ::= 'sev|agg|port|meta.ID'

NOTE ::= 'note{TEXT}'

EQUAL_WEIGHT ::= "="

AGG ::= 'agg'

AGGREGATE ::= 'aggregate'

AND ::= 'and'

AT ::= 'at'

CEDED ::= 'ceded'

CLAIMS ::= 'claims|claim'

CONSTANT ::= 'constant'

CV ::= 'cv'

DFREQ ::= 'dfreq'

DSEV ::= 'dsev'

EXP ::= 'exp'

EXPONENT ::= '^|**'

INHOMOG_MULTIPLY ::= "@"

INFINITY ::= 'inf|unlim|unlimited'

LOSS ::= 'loss'

LR ::= 'lr'

MIXED ::= 'mixed'

(continues on next page)

4.3. Dec Language Grammar Specification 357

aggregate Documentation, Release 0.22.0

(continued from previous page)
NET ::= 'net'

OCCURRENCE ::= 'occurrence'

OF ::= 'of'

PART_OF ::= 'po'

PERCENT ::= '%'

PORT ::= 'port'

PREMIUM ::= 'premium|prem'

SEV ::= 'sev'

SHARE_OF ::= 'so'

TO ::= 'to'

WEIGHTS ::= 'wts|wt'

XPS ::= 'xps'

XS ::= "xs|x"

4.4 Test Suite Programs

To run the test suite for HTML output, svg graphics.

from aggregate.extensions.test_suite import TestSuite
TestSuite().run('^[A-KNO]', 'All Aggregate Tests', 'svg')

Test Suite Examples
===================

Comprehensive list of examples to test the parser and creation logic.

Contents
#
A. Creating Aggregates, Portfolios, and Distortion objects
B. Basic examples using dfreq and dsev notation, including dice examples
C. Frequency only fixed sev
D. Severity only, fixed freq, different distributions
E. Severity transformations: shift, scale, layer, and attachment, unconditional␣
↪→severities
F. Specifying exposure
G. Mixed severities
H. Limit profiles
I. Limit profiles with mixed severities
J. Reinsurance
K. Tweedie distribution examples
L. Examples from papers
M. Case Studies from Pricing Insurance Risk book
N. Proxies for US Lines
O. Novelties (the logo mixed distribution)

(continues on next page)

358 Chapter 4. Dec Language Reference

aggregate Documentation, Release 0.22.0

(continued from previous page)

Default severity used in many other examples
sev One dsev [1]

Guides examples
===============

Simple Dice Examples
=====================
agg A.Dice00 dfreq [1:6] dsev [1] note{The roll of a single dice.
↪→}
agg A.Dice01 dfreq [1] dsev [1:6] note{Same as previous example.}
agg A.Dice02 dfreq [2] dsev [1:6] note{Sum of the rolls of two␣
↪→dice.}
agg A.Dice03 dfreq [5] dsev [1:6] note{Sum of the rolls of five␣
↪→dice.}
agg A.Dice04 dfreq [1:6] dsev [1:6] note{Sum of a dice roll of␣
↪→dice rolls}
agg A.Dice05 dfreq [1:4] dsev [1:16] note{Something you can't do␣
↪→easily by hand}

Basic examples using freq and dsev notation
===
agg B.Basic01 dfreq [1] dsev [0 1] note{toss of a␣
↪→single coin}
agg B.Basic02 dfreq [12] dsev [0 1] note{toss of␣
↪→12 single coins}
agg B.Basic03 dfreq [1:3] dsev [1 2 10] note{1, 2 or 3␣
↪→claims using range notation, sev 1, 2, 10 all equally likely}
agg B.Basic03 dfreq [1:11:2] dsev [1 2 10] note{1 3...11␣
↪→claims range and step, sev 1, 2, 10 all equally likely}
agg B.Basic04 dfreq [1 2 3] [.5 1/4 1/4] dsev [1 2 10] note{specify␣
↪→probabilities of claims}
agg B.Basic05 dfreq [1:3] dsev [1 2 10] [.4 .4 .2] note{specify␣
↪→probabilities of sev}
agg B.Basic06 dfreq [1:3] [.5 1/4 1/4] dsev [1 2 10] [.4 .4 .2] note{specify␣
↪→both probabilities }
agg B.Basic07 dfreq [0 1 2] [.5 .3 .2] sev sev.One
agg B.Basic08 dfreq [0 1 2] [.5 .3 .2] sev.One
agg B.Basic09 dfreq [0 1 2] [.5 .3 .2] sev lognorm 10 cv .3

Frequency only, fixed severity
==============================
Using the usual exposure-based frequency clause
agg Ca.Freq01.Fixed 10 claims sev.One fixed
agg Ca.Freq02.Poisson 10 claims sev.One poisson
agg Ca.Freq03.Bernoulli .8 claims sev.One bernoulli
agg Ca.Freq04.Binomial 10 claims sev.One binomial 0.5
agg Ca.Freq05.Geometric 10 claims sev.One geometric
agg Ca.Freq06.Pascal 10 claims sev.One pascal .8 3
agg Ca.Freq07.NegBin 10 claims sev.One negbin 3 note{shape␣
↪→paramter equals variance multiplier}
agg Ca.Freq08.Logarithmic 10 claims sev.One logarithmic
agg Ca.Freq09.NeymanA 10 claims sev.One neymana 3 note{shape␣
↪→paramter number of eggs per cluster}
Mixing distributions
agg Cb.Freq10.NegBin 10 claims sev.One mixed gamma 0.65 note{shape␣
↪→paramter equals variance of mixing distribution}
agg Cb.Freq11.Delaporte 10 claims sev.One mixed delaporte .65 .25
agg Cb.Freq12.IG 10 claims sev.One mixed ig .65
agg Cb.Freq13.SIG 10 claims sev.One mixed sig 0.5 0.4

(continues on next page)

4.4. Test Suite Programs 359

aggregate Documentation, Release 0.22.0

(continued from previous page)
agg Cb.Freq14.Sichel 10 claims sev.One mixed delaporte .65 -0.25
agg Cb.Freq15.Sichel.gamma 10 claims sev.One mixed sichel.gamma .65 .25
agg Cb.Freq16.Sichel.ig 10 claims sev.One mixed sichel.ig .65 .25
agg Cb.Freq17.Beta 10 claims sev.One mixed beta .5 4
ZM and ZT distributions, note alternative way to specify fixed severity
agg Cc.Freq20.Poisson 4 claims dsev [1] poisson zt
agg Cc.Freq21.Poisson 4 claims dsev [1] poisson zm .5
agg Cc.Freq22.Geometric 4 claims dsev [1] geometric zm .5 note{pr(N=0)=1,␣
↪→there is no zt version}
agg Cc.Freq23.Logarithmic 4 claims dsev [1] logarithmic zm .5 note{pr(N=0)=1,␣
↪→there is no zt version}
agg Cc.Freq24.Binomial 4 claims dsev [1] binomial 0.6 zm .5 note{Cannot␣
↪→make p0 smaller than the natural p}
agg Cc.Freq25.Negbin 4 claims dsev [1] negbin 3 zm .5 note{Limits on␣
↪→p0}

Severity only, fixed freq, different distributions
==
zero parameter
agg D.Sev01 1 claim sev 100 * expon fixed note{zero␣
↪→param severity can look odd, but it works}
agg D.Sev02 1 claim sev 100 * expon 1 + 10 fixed
agg D.Sev03 1 claim sev 100 * expon + 10 fixed note{will this␣
↪→work?}
agg D.Sev04 1 claim sev 100 * norm +500 fixed
agg D.Sev05 1 claim sev 100 * uniform + 50 fixed
agg D.Sev05b 2 claims sev 100*uniform + 50 fixed
one parameter
agg D.Sev06 1 claim sev 10 * gamma 0.3 fixed
agg D.Sev07 1 claim sev gamma 12 cv .3 fixed
agg D.Sev08 1 claim sev lognorm 50 cv .3 fixed
agg D.Sev09 1 claim sev 50/exp(.3**2/2) * lognorm .3 fixed note{mean␣
↪→equals 50 and cv is slightly higher than .3}
agg D.Sev10 1 claim sev 100 * invgamma 4.07 fixed note{remember␣
↪→must set scale or mean}
agg D.Sev11 1 claim sev 100 * weibull_min 1.5 fixed
agg D.Sev12 1 claim sev invgauss 10 cv .5 fixed
agg D.Sev13 1 claim sev 10 * pareto 2.6 + -10 fixed note{entering␣
↪→Pareto is awkward}
two parameter distributions
agg D.Sev14 1 claim sev 50 * beta 3 2 + 10 fixed
empirical severities, continuous and discrete
agg D.Sev15 1 claim sev dhistogram xps [1 10 40] [.5 .3 .2] fixed note{old␣
↪→notation}
agg D.Sev16 dfreq [1] dsev [1 10 40] [.5 .3 .2] note
↪→{preferred new notation}
agg D.Sev17 1 claim sev chistogram xps [1 10 40] [.5 .3 .2] fixed note
↪→{continuous version}

Severity transformations: shift, scale, layer, and attachment, unconditional␣
↪→severities
#␣
↪→===
agg E.TSev00 1 claim sev lognorm 10 cv .09 fixed
agg E.TSev01 1 claim sev 10 * lognorm 10 cv .09 fixed
agg E.TSev02 1 claim sev lognorm 10 cv .09 + 20 fixed
agg E.TSev03 1 claim sev 10 * lognorm 10 cv .09 + 20 fixed
here, enter shape parameter directly rather than use mean and CV
agg E.TSev04 1 claim sev 9.559974818331 * lognorm .3 fixed
agg E.TSev05 1 claim sev 9.559974818331 * lognorm .3 + 5 fixed
with layer and attachments

(continues on next page)

360 Chapter 4. Dec Language Reference

aggregate Documentation, Release 0.22.0

(continued from previous page)
agg E.TSev06 1 claim 130 xs 20 sev lognorm 20 cv 0.75 fixed
agg E.TSev07 1 claim 130 xs 20 sev 20 * lognorm 0.75 fixed
agg E.TSev08 1 claim 130 xs 20 sev 20 * lognorm 1 cv 0.75 fixed
agg E.TSev09 1 claim 130 xs 20 sev 20 * lognorm 1 cv 0.75 + 20 fixed
ground up and unlimited
agg E.TSev10 10 claims sev lognorm 10 cv 0.8 poisson
agg E.TSev11 10 claims 30 xs 0 sev lognorm 10 cv 0.8 poisson
agg E.TSev12 10 claims 100 xs 10 sev lognorm 10 cv 0.8 poisson
agg E.TSev13 10 claims inf xs 0 sev lognorm 10 cv 0.8 poisson
agg E.TSev14 10 claims inf xs 10 sev lognorm 10 cv 0.8 poisson
unconditional severity
agg E.TSev15 5 claims 200 xs 0 sev 1.2343e2 * lognorm 2 poisson note
↪→{conditional severity}
agg E.TSev16 5 claims 200 xs 0 sev 1.2343e2 * lognorm 2 ! poisson note
↪→{unconditional severity}
agg E.TSev17 5 claims 200 xs 10 sev 1.2343e2 * lognorm 2 poisson note
↪→{conditional severity}
agg E.TSev18 5 claims 200 xs 10 sev 1.2343e2 * lognorm 2 ! poisson note
↪→{unconditional severity}

Specifying exposure
===================
agg F.Expos01 10 claims sev lognorm 50 cv 0.8 poisson note{specify␣
↪→number of claims}
agg F.Expos02 500 loss sev lognorm 50 cv 0.8 poisson note{specify␣
↪→expected loss, derive number of claims}
agg F.Expos03 1000 prem at .5 lr sev lognorm 50 cv 0.8 poisson note{specify␣
↪→premium and loss ratio, derive number of claims}

Mixed and Spliced severities
============================
agg G.Mixed00 1 claim 50 xs 0 sev lognorm 10 cv [0.2 0.4 0.6 0.8 1.0] wts [.2 .
↪→3 .3 .15 .05] poisson note{no shared mixing}
agg G.Mixed01 1 claim 50 xs 0 sev lognorm 10 cv [0.2 0.4 0.6 0.8 1.0] wts [.2 .
↪→3 .3 .15 .05] mixed gamma 0.3 note{shared mixing, compare audit␣
↪→and report dfs}
agg G.Mixed02 1 claim 50 xs 0 sev lognorm 10 cv [0.2 0.4 0.6 0.8 1.0] wts=5 ␣
↪→ mixed gamma 0.3
agg G.Mixed03 1 claim 50 xs 0 sev lognorm 10 cv [0.2 0.4 0.6 0.8 1.0] ␣
↪→ mixed gamma 0.3
agg G.Mixed04 1 claim 50 xs 0 sev lognorm [2 4 6 8 10] cv 1 wts [.2 .
↪→3 .3 .15 .05] mixed gamma 0.3
agg G.Mixed05 1 claim 250 xs 0 sev lognorm [10 15 20 25 50 100] cv [0.1 0.2 0.4␣
↪→0.6 0.8 1.0] wts=6 mixed gamma 0.3
agg G.Mixed07 1 claim sev 100 * beta [1 200 500 100]␣
↪→[100 800 500 1] + 10 wts=4 mixed gamma 0.3
agg G.Mixed08 1 claim sev [100 200 250 300] * beta [1 200 500 100]␣
↪→[100 800 500 1] + 10 wts=4 mixed gamma 0.3
agg G.Mixed09 8 claim sev 100 * [lognorm expon] [.5 1] wts [0.6 .
↪→4] mixed gamma 0.3 note{different severities}
agg G.Mixed10 1 claim sev [50 100] * [lognorm expon] [2 1] + 10 wts=2␣
↪→ mixed gamma 0.3
agg G.Mixed11 1 claim sev [50 100] * [lognorm expon] [2 1] + 10 ␣
↪→ mixed gamma 0.3

Limit profiles
==============
agg H.Limits01 1 claim [1 5 10 20] xs 0 sev lognorm 10␣
↪→cv 1.2 fixed
agg H.Limits02 5 claim 100 xs [0 10 50] sev lognorm 10␣
↪→cv 1.2 fixed

(continues on next page)

4.4. Test Suite Programs 361

aggregate Documentation, Release 0.22.0

(continued from previous page)
agg H.Limits02 5 claim [10 20 50 100] xs [0 0 50 100] sev lognorm 10␣
↪→cv 2.0 fixed
agg H.Limits03 [10 10 10 10] claims [inf 10 inf 10] xs [0 0 5 5] sev lognorm 10␣
↪→cv 1.25 fixed

Limit profiles with mixed severities
====================================
agg I.Blend01 10 claims [5 10 15] xs 0 sev lognorm 12 cv [1 1.5␣
↪→3] poisson
agg I.Blend02 10 claims [5 10 15] xs 0 sev lognorm 12 cv [1 1.5␣
↪→3] mixed gamma 0.25
agg I.Blend03 10 claims [5 10 15] xs 0 sev lognorm 12 cv [1 1.5␣
↪→3] wts=3 mixed gamma 0.25
agg I.Blend04 1 claims [1 5 10 20] xs 0 sev lognorm 10 cv 1.2 wts [.50␣
↪→.20 .20 .1] mixed gamma 0.25
agg I.Blend05 5 claims [10 20 50 100] xs 10 sev lognorm 10 cv 1.2 wts [.
↪→50 .20 .20 .1] mixed gamma 0.25
agg I.Blend06 [10 30 15 5] claims [inf 10 inf 10] xs [0 0 5 5] sev lognorm 10 cv␣
↪→[1.0 1.25 1.5] wts=3 mixed gamma 0.25
agg I.Blend07 [10 20 30] claims [100 200 75] xs [0 50 75] sev lognorm 100 cv␣
↪→[1 2] wts [.6 .4] mixed gamma 0.4
agg I.Blend08 [10 30] claims sev lognorm 100 cv␣
↪→[1 2] mixed gamma 0.4
agg I.Blend09 [1000 2000 500] prem at [.8 .7 .5] lr sev lognorm 10 cv␣
↪→[.2 .35 .5] wts [1/2 3/8 1/8] mixed gamma 0.5 note{log2=17;}
agg I.Blend10 [500 800 200] loss sev lognorm 10 cv␣
↪→[.2 .35 .5] wts=3 mixed gamma 0.5
agg I.Blend11 [1000 2000 500] prem at [.8 .7 .5] lr sev lognorm 10 cv␣
↪→[.2 .35 .5] wts [1/2 3/8 1/8] mixed gamma 0.5 note{log2=17;}
agg I.Blend12 [500 800 200] loss sev lognorm 10 cv␣
↪→[.2 .35 .5] wts=3 mixed gamma 0.5

Reinsurance
===========
agg J.Re01 5 claims 100 xs 0 sev lognorm 10 cv .75 occurrence net of 50% so 5 xs␣
↪→0 and 5 po 15 xs 5 and 30 xs 20 poisson
agg J.Re02 5 claims 100 xs 0 sev lognorm 10 cv .75 ␣
↪→ poisson aggregate net of 50% so 25 xs 0 and 75␣
↪→xs 25
agg J.Re03 5 claims 100 xs 0 sev lognorm 10 cv .75 occurrence net of 50% so 5 xs␣
↪→0 and 5 po 15 xs 5 and 30 xs 20 poisson aggregate net of 50% so 25 xs 0 and␣
↪→100 xs 25
agg J.Re04 5 claims 100 xs 0 dsev [1:100] occurrence net of 50% so 5 xs␣
↪→0 and 5 po 15 xs 5 and 30 xs 20 poisson aggregate net of 50% so 25 xs 0 and␣
↪→100 xs 25
agg J.Re05 5 claims 100 xs 0 sev lognorm 10 cv .75 occurrence ceded to 50% so 5␣
↪→xs 0 and 5 po 15 xs 5 and 30 xs 20 poisson
agg J.Re06 5 claims 100 xs 0 sev lognorm 10 cv .75 ␣
↪→ poisson aggregate ceded to 50% so 25 xs 0 and␣
↪→75 xs 25
agg J.Re07 5 claims 100 xs 0 sev lognorm 10 cv .75 occurrence ceded to 50% so 5␣
↪→xs 0 and 5 po 15 xs 5 and 30 xs 20 poisson aggregate ceded to 50% so 25 xs 0 and␣
↪→100 xs 25
agg J.Re08 5 claims 100 xs 0 dsev [1:100] occurrence ceded to 50% so 5␣
↪→xs 0 and 5 po 15 xs 5 and 30 xs 20 poisson aggregate ceded to 50% so 25 xs 0 and␣
↪→100 xs 25
agg J.Re09 5 claims 100 xs 0 sev lognorm 10 cv .75 occurrence ceded to 15 xs 5␣
↪→poisson
agg J.Re10 5 claims 100 xs 0 sev lognorm 10 cv .75 ␣
↪→poisson aggregate net of 20 xs 0
agg J.Re11 5 claims 100 xs 0 sev lognorm 10 cv .75 occurrence ceded to 15 xs 5␣

(continues on next page)

362 Chapter 4. Dec Language Reference

aggregate Documentation, Release 0.22.0

(continued from previous page)
↪→poisson aggregate net of 20 xs 0
agg J.Re12 5 claims 100 xs 0 dsev [1:100] occurrence ceded to 15 xs 5␣
↪→poisson aggregate net of 20 xs 0
agg J.Re13 5 claims 100 xs 0 dsev [1:100] occurrence net of 15 xs 5␣
↪→poisson aggregate ceded to 20 xs 0
agg J.Re14 1000 prem at .5 lr sev lognorm 10 cv [.2 .35 .5] wts=3 occurrence␣
↪→ceded to .5 xs .5 and .5 po 1.0 xs 1.0 and 25% so 3.0 xs 2.0 mixed gamma 0.
↪→5 aggregate ceded to 1.5 xs 1.5 and 5.0 po 10.0 xs 12.5
agg J.Re15 10 claims sev lognorm 3 cv 0.35 occurrence net␣
↪→of 1 xs 1 and 2.5 po 5 xs 5 and 25% so 30 xs 20 and inf xs 100 poisson ␣
↪→aggregate net of 10 xs 15
agg J.Re16 5 claims dsev [0:100] occurrence ceded to tower [10:50:10] poisson
agg J.Re17 5 claims dsev [0:100] poisson aggregate ceded to tower [200:500:100]

Tweedie distributions
=====================
agg K.Tweedie0 10.050251256281404 claims sev gamma 0.0995 cv 0.07088812050083283␣
↪→poisson note{Tweedie defined by claim count, gamma mean and cv}
agg K.Tweedie1 10.050251256281404 claims sev 0.0005 * gamma 199 poisson ␣
↪→ note{Tweedie defined by claim count, gamma scale and shape}
agg K.Tweedie2 tweedie 1 1.005 0.1 ␣
↪→ note{Tweedie defined using mean, p, and dispersion, variance = dispersion␣
↪→xs mean**p}

Examples from books and papers
==============================
The way this file is interpreted by the deubugger forces the programs to be␣
↪→written on one line
port L.Bodoff1 note{Bodoff Thought Experiment No. 1} agg wind1 1 claim sev␣
↪→dhistogram xps [0, 99] [0.80, 0.20] fixed agg quake1 1 claim sev dhistogram xps␣
↪→[0, 100] [0.95, 0.05] fixed

port L.Bodoff2 note{Bodoff Thought Experiment No. 2} agg wind2 1 claim sev␣
↪→dhistogram xps [0, 50] [0.80, 0.20] fixed agg quake2 1 claim sev dhistogram xps␣
↪→[0, 100] [0.95, 0.05] fixed

port L.Bodoff3 note{Bodoff Thought Experiment No. 3} agg wind3 1 claim sev␣
↪→dhistogram xps [0, 5] [0.80, 0.20] fixed agg quake3 1 claim sev dhistogram xps␣
↪→[0, 100] [0.95, 0.05] fixed

port L.Bodoff4 note{Bodoff Thought Experiment No. 4 (check!)} agg a 0.25 claims␣
↪→sev 4 * expon poisson agg b 0.05 claims sev 20 * expon poisson agg c 0.05␣
↪→claims sev 100 * expon poisson

PIR book case studies
=====================
hints: reg_p=1; roe=0.10;
numbers in names ensure correct sort order
port M.PIR.1.Discrete note{PIR Discrete case study. Change 8 to 9 for the equal␣
↪→points example.} agg Discrete.X1 1 claim dsev [0 8 10] [1/2 1/4 1/4] fixed agg␣
↪→Discrete.X2 1 claim dsev [0 1 90] [1/2 1/4 1/4] fixed note{bs=1; log2=8;␣
↪→padding=1}

hints: reg_p=.999, roe=0.10
port M.PIR.2.Tame note{PIR Tame case study. For reinsurance see text.} agg Tame.A␣
↪→1 claim sev gamma 50 cv 0.10 fixed agg Tame.B 1 claim sev gamma 50 cv 0.15␣
↪→fixed note{bs=1/64, log2=16, padding=1}

hints: reg_p=.999, roe=0.10
port M.PIR.3.CNC.Gross note{PIR Cat-Noncat gross case study.} agg CNC.NonCat 1␣
↪→claim sev gamma 80 cv 0.15 fixed agg CNC.Cat 1 claim sev lognorm 20 cv 1.00␣

(continues on next page)

4.4. Test Suite Programs 363

aggregate Documentation, Release 0.22.0

(continued from previous page)
↪→fixed note{bs=1/64, log2=16, padding=1}

port M.PIR.4.CNC.Net note{PIR Cat-Noncat net case study.} agg CNC.Net.NonCat 1␣
↪→claim sev gamma 80 cv 0.15 fixed agg CNC.Net.Cat 1 claim sev lognorm 20␣
↪→cv 1.00 fixed aggregate net of 79.64 xs 41.11 note{bs=1/64, log2=16, padding=1}

hints: reg_p=.999, roe=0.10,
port M.PIR.5.HuSCS.Gross note{PIR Hurricane SCS gross case study.} agg SCS 70␣
↪→claims sev exp(-1.9**2 / 2) * lognorm 1.9 poisson agg Hu 2 claims sev␣
↪→exp(-2.5**2/2)/(1/15) * lognorm 2.5 poisson note{bs=1/4, log2=19, padding=1}

port M.PIR.6.HuSCS.Net note{PIR Hurricane SCS net case study.} agg Net.SCS 70␣
↪→claims sev exp(-1.9**2 / 2) * lognorm 1.9 poisson agg Net.Hu 2 claims sev␣
↪→exp(-2.5**2/2)/(1/15) * lognorm 2.5 occurrence net of 372.4 xs 40.25 poisson note
↪→{bs=1/4, log2=19, padding=1}

Proxies for US Lines
====================
for portfolio construction: 10M sized books with "reasonable" severity curves
IRS: used cycle adjusted numbers, no further adjustments
RMI: see \S\Teaching\2019-09\RMI3388\Notes\pdf\Archive\QA16_RMI3388_Tue-29-Oct-
↪→2019_cat_models.pdf
SCS is a swag; last pages of 2021 cat report for EF3+ tornados shows 25-50/year;␣
↪→big
SCS events 3-6 billion; https://www.aon.com/reinsurance/catastropheinsight/
↪→global-regional-losses.html?region=United%20States&type=insured
shows avg / year about 25B, so mean severity is 25 / 37.5 = 2/3 = 666M
sigma 1.75 of makes 10B a 1 in 16 event; mu mean=666 eq np.log(666e6) - 1.75**2/
↪→2 = 18.785550228504665
agg N.US.Hurricane 1.79 claims 1e12 xs 0 sev exp(19.595) * lognorm 2.581 poisson ␣
↪→note{Based on NOAA reanalysis dataset and sample of hurricane loss. Source SJU␣
↪→RMI3388 Course.}
agg N.US.SCS 37.50 claims 50e9 xs 0 sev exp(18.785550228504665) * lognorm 1.
↪→75 poisson note{Judgmental based on fre3quency of EF4-5 tornadoes, AAL of 25B␣
↪→and extreme event loss of 10B}

CVs based on sigmas of 1.5 for liab, 1.75 for prof and 1.25 for ppa
Average severity selected judgmentally
agg N.Comm.Liability 10e6 loss 1e6 xs 0 sev lognorm 100e3 cv 3.77 mixed␣
↪→gamma 0.26 note{Source: CV from Aon IRS 10th ed, severity selected judgmentally.}
agg N.Comm.Professional 10e6 loss 5e6 xs 0 sev lognorm 850e3 cv 8.48 mixed␣
↪→gamma 0.27 note{Source: CV from Aon IRS 10th ed, severity selected judgmentally.}
agg N.Personal.Auto 10e6 loss 300e3 xs 0 sev lognorm 45e3 cv 20.4␣
↪→mixed gamma 0.13 note{Source: CV from Aon IRS 10th ed, severity selected␣
↪→judgmentally.}

limits profile low and high limits and attaching book: 1/1, 4/1 and 5/5
severity midway between liability and professional
agg N.Comm.Umbrella [6e6 3e6 1e6] loss [1e6 4e6 5e6] xs [1e6 1e6 5e6] sev lognorm␣
↪→250e3 cv 5.00 mixed gamma 0.26 note{Source: CV from Aon IRS 10th ed, severity␣
↪→selected judgmentally.}

property mixed severity property and cat, pass through mixing
note on CV of betas: for high cv it becomes a zero / one variable, to the␣
↪→variance maxes out at p (1-p) where p is the mean
thus the CV maxes out at 1/sqrt(p(1-p)). For a mean of 0.1 the variance equals 1/
↪→sqrt(0.09) = 0.3 and the cv is 0.3 / 0.1 = 3
could limit profile too, but keep simple
assumes full ITV
agg N.Comm.Property [7e6 3e6] loss 100e6 xs 0 sev 100e6 * beta 0.1 cv [1.25 2.5]␣
↪→mixed gamma 0.28 note{Source: CV from Aon IRS 10th ed, severity selected␣

(continues on next page)

364 Chapter 4. Dec Language Reference

aggregate Documentation, Release 0.22.0

(continued from previous page)
↪→judgmentally.}
agg N.Homeowners [8e6 2e6] loss 650e3 xs 0 sev 650e3 * beta 0.1 cv [0.75␣
↪→2.75] mixed gamma 0.37 note{Source: CV from Aon IRS 10th ed, severity selected␣
↪→judgmentally.}

really a severity curve, but you can't mix severity
agg N.Comm.Auto.MED 1 claim sev [2.764e3 24.548e3 275.654e3 1.917469e6 10e6] *␣
↪→expon 1 wts [0.824796 0.159065 0.014444 0.001624 0.000071] fixed note{Use␣
↪→log2=18 and bs=500 or apply limits. Source: Example from Mixed Exponential␣
↪→snippet and Similar Risks IME paper (2022).; log2=18; bs=500;}
sev N.Comm.Auto.MED [2.764e3 24.548e3 275.654e3 1.917469e6 10e6] * expon 1 wts [0.
↪→824796 0.159065 0.014444 0.001624 0.000071] note{Source: Example from Mixed␣
↪→Exponential snippet and Similar Risks IME paper (2022)}

Novelties
=========
agg O.Logo 1 claim [10:250:10] xs 0 sev lognorm 100 cv 1 fixed

To only parse:

from aggregate import build
filename = build.default_dir / 'test_suite.agg'
assert filename.exists()

build.logger_level(30)
df = build.interpreter_file(filename=filename)

df.query('error != 0')

4.5 sly Parser

The parser is built using the sly package, https://sly.readthedocs.io/en/latest/sly.html.

4.5. sly Parser 365

https://sly.readthedocs.io/en/latest/sly.html

aggregate Documentation, Release 0.22.0

366 Chapter 4. Dec Language Reference

CHAPTER

FIVE

TECHNICAL GUIDES

Technical Guides cover theory and implementation. How calculations work in theory and how they have been im-
plemented in aggregate.

5.1 Probability Background

Objectives: Statement and limited explanation of important probability concepts that underlie aggregate calcu-
lations.
Audience: Readers looking for a probability refresher.
Prerequisites: Knowledge of basic probability and calculus (real analysis).
See also: Insurance Probability.
Notation: The variance of a random variable X is var(X) = E[X2] − E[X]2. The standard deviation is σ(X) =√
var(X). The coefficient of variation (CV) of X is CV(X) = σ(X)/E[X]. The skewness of X is E[(X −

E[X])3]/σ(X)3.
Contents:

• Helpful References

• Types

• Severity Distributions

• Moment Generating Functions

• Frequency Distributions

• Aggregate Distributions

• Shifted Gamma and Lognormal Distributions

• list of freq distributions
• list of distributions

5.1.1 Helpful References

• Klugman et al. [2019]
• Panjer and Willmot [1992]
• Williams [1991]
• Feller [1971]
• Loeve [2017]
• Johnson et al. [2005]

367

aggregate Documentation, Release 0.22.0

• Mildenhall [2017]

5.1.2 Types

Todo: Documentation to follow.

5.1.3 Severity Distributions

Computing moments

Higher moments of a layer with a limit y excess of an attachment (deductible, retention) a can be computed as

E[((X − a)+ ∧ l)n] =
∫ a+l

a

(x− a)nf(x) dx+ lnS(a+ l)

=

n∑
k=0

(−1)k
(
n

k

)
an−k

∫ a+l

a

xkf(x) dx+ lnS(a+ l)

=

n∑
k=0

(−1)k
(
n

k

)
an−k (E[k; a+ l]− E[k; a]) + lnS(a+ l)

where

E[k; a] =
∫ a

0

xkf(x) dx

is the partial expectation function.

Lognormal

For the lognormal, the trick for higher moments is to observe that if X is lognormal (µ, σ) then Xk is lognormal
(kµ, kσ). The formula for partial expectations of the lognormal is easy to compute by substitution, giving

E[k, a] = exp(kµ+ k2σ2/2)Φ

(logx− µ− kσ2

σ

)

Densities of the form f(x) = xαc(α)g(x)

E[k, a] =
∫ a

0

xkxαc(α)g(x) dx

=
c(α)

c(n+ α)

∫ a

0

xk+αc(k + α)g(x) dx

=
c(α)

c(n+ α)
Fk+α(a)

are easy to express in terms of the distribution function. This is a broad class including the gamma.

368 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Pareto

An easy integral computation, substitute y = λ+ x to express in powers of y:

E[k, a] =
∫ a

0

αxk
λα

(λ+ x)α+1
dx

=

∫ λ+a

λ

αλα
(y − λ)k

yα+1
dy

=

k∑
i=0

(−1)k−iαλα
(
k

i

)∫ λ+a

λ

yi−α−1λk−i dy

=

k∑
i=0

(−1)k−iαλα+k−i

(
k

i

)
yi−α

i− α
|λ+a
λ .

scipy.stats Severity Distributions

All zero, one, and two shape parameter scipy.stats continuous random variable classes can be used as severity
distributions. See list of distributions for details about each available option.

5.1.4 Frequency Distributions

The following reference is from the scipy documentation.

Bernoulli Distribution

The probability mass function for bernoulli is:

f(k) =

{
1− p if k = 0

p if k = 1

for k in {0, 1}, 0 ≤ p ≤ 1 bernoulli takes p as shape parameter, where p is the probability of a single success and
1− p is the probability of a single failure.

Binomial Distribution

The probability mass function for binom is:

f(k) =

(
n

k

)
pk(1− p)n−k

for k ∈ {0, 1, . . . , n}, 0 ≤ p ≤ 1 binom takes n and p as shape parameters, where p is the probability of a single
success and 1− p is the probability of a single failure.

5.1. Probability Background 369

aggregate Documentation, Release 0.22.0

Geometric Distribution

The probability mass function for geom is:

f(k) = (1− p)k−1p

for k ≥ 1, 0 < p ≤ 1 geom takes p as shape parameter, where p is the probability of a single success and 1 − p is
the probability of a single failure.

Poisson Distribution

The probability mass function for poisson is:

f(k) = exp(−µ)µ
k

k!

for k ≥ 0. poisson takes µ ≥ 0 as shape parameter.

Neyman (A) Distribution

The Neyman distribution is a Poisson stopped-sum distribution of Poisson variables, see Johnson et al. [2005].

Fixed Distribution

The fixed distribution takes a single value with probability one.

5.1.5 Moment Generating Functions

The moment generating function of a random variable X is defined as

MX(z) = E[exp(zX)].

The moment generating function is related to the characteristic function of X which is defined as ϕX(z) =
E[exp(izX)] =MX(iz). ϕ is guaranteed to converge for all real z and so is preferred in certain situations.
Moment generating functions get their name from the fundamental property that

∂nMX

∂zn

∣∣∣
z=0

= E[Xn]

for all positive integers n provided the differential exists.
Let F be the distribution function ofX . Feller [1971] Section XVII.2a shows that if F has expectation µ then ϕ, the
characteristic function of F , has a derivative ϕ′ and ϕ′(0) = iµ. However the converse is false. Pitman proved that
the following are equivalent.

1. ϕ′(0) = iµ.
2. As t→∞, t(1− F (t) + F (−t))→ 0 and ∫ −t

t

xdF (x)→ µ,

where F (−t) := limF (s) as s ↑ t.

370 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

3. The average (X1 + · · ·+Xn)/n tends in probability to µ, that is Pr(|(X1 + · · ·+Xn)/n− µ| > ϵ)→ 0 as
n→∞.

The condition for the limit in 2 to exist is weaker than the requirement that E[X] exists ifX is supported on the whole
real line. For the expectation to exist requires

∫∞
−∞ xdF (x) exists which means limt→−∞ lims→∞

∫ s

t
xdF (x).

The moment generating function of a bivariate distribution (X1, X2) is defined as

MX1,X2
(z1, z2) = E[exp(z1X1 + z2X2)].

It has the property that

∂m+nMX1,X2

∂zm1 ∂z
n
2

∣∣∣
(0,0)

= E[Xm
1 X

n
2]

for all positive integers n,m.
The MGF of a normal variable with mean µ and standard deviation σ is

M(z) = exp(µzσ2z2/2).

The MGF of a Poisson variable with mean n is

M(z) = exp(n(ez − 1)).

See any standard text on probability for more information on moment generating functions, characteristic functions
and modes of convergence.

5.1.6 Mixed Frequency Distributions

A random variableN isG-mixed Poisson ifN | G has a Poisson nG distribution for some fixed non-negative n and
a non-negative mixing distribution G with E[G] = 1. Let var(G) = c and let E[G3] = g. Glenn Meyers calls c the
contagion.
The MGF of a G-mixed Poisson is

MN (z) = E[ezN] = E[E[ezN | G]] = E[enG(ez−1]) =MG(n(e
z − 1))

sinceMG(z) := E[ezG] and the MGF of a Poisson with mean n is exp(n(ez − 1)). Thus

E[N] =M ′
N (0) = nM ′

G(0) = n,

because E[G] =M ′
G(0) = 1. Similarly

E[N2] =M ′′
N (0) = n2M ′′

G(0) + nM ′
G(0) = n2(1 + c) + n

and so

var(N) = n(1 + cn).

Finally

E[N3] =M ′′′
N (0)

= n3M ′′′
G (0) + 3n2M ′′

G(0) + nM ′
G(0) = gn3 + 3n2(1 + c) + n

and therefore the central moment

E(N − E[N])3 = n3(g − 3c− 1) + 3cn2 + n.

We can also assume G has mean n and work directly with G rather than nG, E[G] = 1. We will call both forms
mixing distributions.

5.1. Probability Background 371

aggregate Documentation, Release 0.22.0

Gamma Mixing

A negative binomial is a gamma-mixed Poisson: if N | G is distributed as a Poisson with mean G, and G has a
gamma distribution, then the unconditional distribution ofN is a negative binomial. A gamma distribution has a shape
parameter a and a scale parameter θ so that the density is proportional to xa−1ex/θ, E[G] = aθ and var(G) = aθ2.
Let c = var(G) = ν2, so ν is the coefficient of variation of the mixing distribution. Then

• aθ = 1 and aθ2 = c

• θ = c = ν2, a = 1/c

The non-central moments of the gamma distribution are E[Gr] = θrΓ(a+ r)/Γ(a). Therefore V ar(G) = aθ2 and
E(G− E(G))3 = 2aθ3. The skewness of G is γ = 2/

√
(a) = 2ν.

Applying the general formula for the third central moment of N we get an expression for the skewness

skew(N) =
n3(γ − 3c− 1) + n2(3c+ 2) + n

(n(1 + cn))3/2
.

The corresponding MGF of the gamma isMG(z) = (1− θz)−a.
The gamma and negative binomial occur in the literature with many different parameterizations. The main ones are
shown in the next three tables.

Table 1: Parameterizations of the Gamma Distribution
Model Density MGF Mean Var

(a) α, β
xα−1e−x/β

βαΓ(α)
(1− βt)−α αβ αβ2

(b) α, β
xα−1βαe−xβ

Γ(α)
(1− t/β)−α α/β α/β2

(c) α, θ
xα−1e−x/θ

θαΓ(α)
(1− tθ)−α αθ αθ2

Model (a) is used by Microsoft Excel, Wang [1998], and Johnson et al. [2005] Chapter 17. Model (b) is used by
Bowers et al. [1997]. Model (c) is used by . Obviously model (c) is just model (a) with a change of notation.

Table 2: Parameterizations of the Negative Binomial Distribution
Model Density MGF Mean Var

(a) α, β
(α+ x− 1

x
) (β

1 + β

)x (
1

1 + β

)α
(1− β(et − 1))−α αβ αβ2

(b) P , k
(k + x− 1

x
) (P

Q

)x (Q− P
Q

)k
(Q− Pet)−k kP kPQ

(c) p, r > 0

(r + x− 1
x

)
prqx

pr

(1− qes)r rq/p rq/p2

Note that Q = P + 1, q = 1− p, 0 < p < 1 and r > 0, and P = 1/(β + 1).

372 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Table 3: Fitting the Negative Binomial Distribution
Model Parameters VM Scale VM Shape Ctg Scale Ctg Shape

(a) r, β r = m/(v − 1) β = v − 1 r = 1/c β = cn

(b) k, P k = m/(v − 1) P = v − 1 k = 1/c P = cn

(c) r, p r = m/(v − 1) p = 1/v r = 1/c p = 1/(1 + cn)

In model (c) the parameter r need not be an integer because the binomial coefficient can be computed as(
r + x− 1

x

)
=

Γ(r + x)

Γ(r)x!
,

an expression which is valid for all r. The cumulative distribution function of the negative binomial can be computed
using the cumulative distribution of the beta distribution. Using the model (c) parameterization, if N is negative
binomial p, r then

Pr(N ≤ k) = BETADIST(p; r, k + 1)

:=
1

B(r, k + 1)

∫ p

0

ur−1(1− u)kdu

where B is the complete beta function. See Johnson, Kotz and Kemp [Eqn. 5.31] for a derivation. BETADIST is
the Excel beta cumulative distribution function.
The name negative binomial comes from an analogy with the binomial. A binomial variable has parameters n and p,
meannp and variancenpq, where p+q = 1. It is a sum ofn independent Bernoulli variablesB wherePr(B = 1) = p
and Pr(B = 0) = q = 1 − p. The MGF for a binomial is (q + pez)n and the probabilities are derived from the
binomial expansion of the MGF. By analogy the negative binomial can be defined in terms of the negative binomial
expansion of (Q− Pez)−k where Q = 1 + P , P > 0 and k > 0.
The actuary can look at the negative binomial in two different way, each of which gives different results. It is important
to understand these two views. First there is the contagion view, where the mixing distribution G has mean n and
variance c producing a negative binomial with mean n and variance n(1 + cn). (In fact G is a gamma with model
(a) parameters α = r and β = 1/r.) The word contagion is used by Heckman and Meyers [1983] and is supposed
to indicate a “contagion” of claim propensity driven by common shock uncertainty, such as claim inflation, economic
activity, or weather. Here the variance grows with the square of n and the coefficient of variation tends to√c > 0 as
n→∞. Secondly, one can consider an over-dispersed family of Poisson variables with mean n and variance vn for
some v > 1. We call v the variance multiplier. Now, the coefficient of variation tends to 0 as n→∞. The notion
of over-dispersion and its application in modeling is discussed in Clark and Thayer [2004] and Verrall [2004].

The Variance Multiplier

The variance of a mixed Poisson equals n(1 + cn) where c equals the variance of the mixing distribution. Thus the
variance equals v = 1 + cn times the mean n, where v is called the variance multiplier. The variance multiplier
specification is used by some US rating bureaus. The dictionary to variance and mix CV is

c = (v − 1)/n

cv =
√
(v − 1)/n.

The frequency for an excess layer attaching at a equals nS(a). For fixed c, the implied variance multiplier v =
1 + cnS(a) decreases and the excess claim count distribution converges to a Poisson. This is an example of the law
of small numbers.
Per Mildenhall [2017], if ν is the CV ofG then the ν equals the asymptotic coefficient of variation for anyG-mixed
compound Poisson distribution whose variance exists. The variance will exist iff the variance of the severity term
exists. See 5_x_severity_irrelevant.

5.1. Probability Background 373

aggregate Documentation, Release 0.22.0

Negative Binomial Distribution

Negative binomial distribution describes a sequence of iid Bernoulli trials, repeated until a predefined, non-random
number of successes occurs.
The probability mass function of the number of failures for nbinom is:

f(k) =

(
k + n− 1

n− 1

)
pn(1− p)k

for k ≥ 0, 0 < p ≤ 1

nbinom takes n and p as shape parameters where n is the number of successes, p is the probability of a single success,
and 1− p is the probability of a single failure.
Another common parameterization of the negative binomial distribution is in terms of the mean number of failures
µ to achieve n successes. The mean µ is related to the probability of success as

p =
n

n+ µ

The number of successes n may also be specified in terms of a “dispersion”, “heterogeneity”, or “aggregation” pa-
rameter α, which relates the mean µ to the variance σ2, e.g. σ2 = µ+ αµ2. Regardless of the convention used for
α,

p =
µ

σ2

n =
µ2

σ2 − µ

Beta Binomial Distribution

The beta-binomial distribution is a binomial distribution with a probability of success p that follows a beta distribution.
The probability mass function for betabinom is:

f(k) =

(
n

k

)
B(k + a, n− k + b)

B(a, b)

for k ∈ {0, 1, . . . , n}, n ≥ 0, a > 0, b > 0, where B(a, b) is the beta function.
betabinom takes n, a, and b as shape parameters.

Shifted Mixing (General)

We can adjust the skewness of mixing with shifting. In addition to a target CV ν assume a proportion f of claims are
sure to occur. Use a mixing distribution G = f +G′ such that

• E[G] = f + E[G′] = 1 and
• CV(G) = σ(G′) = ν.

As f increases from 0 to 1 the skewness of G will increase. Delaporte first introduced this idea.
Since skew(G) = skew(G′) we have g = E[G3] = ν3skew(G′) + 3c+ 1.

374 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Delaporte Mixing (Shifted Gamma)

Inputs are target CV ν and proportion of certain claims f , 0 ≤ f ≤ 1. Find parameters f , a and θ for a shifted
gamma G = f +G′ with E(G′) = 1− f and SD(G′) = ν as

• f is input
• mean aθ = 1− s and CV = ν =

√
aθ so a = (1− f)2/ν2 = (1− f)2/c and θ = (1− f)/a

The skewness of G equals the skewness of G′ equals 2/√a = 2ν/(1− f), which is then greater than the skewness
2ν when f = 0. The third non-central moment g = 2ν4/(1− f) + 3c+ 1

Poisson Inverse Gaussian Distribution

The (a, b, 0) and (a, b, 1) Classes

See Klugman et al. [2019].

5.1.7 Aggregate Distributions

Let A = X1+ · · ·+XN be an aggregate distribution, whereN is the frequency component andXi are iid severity
random variables.

Aggregate Mean

The mean of a sum equals the sum of the means. Let A = X1 + · · ·+XN . If N = n is fixed then E[A] = nE[X],
because all E[Xi] = E[X]. In general,

E[A] = E[X]E[N]

by conditional probability.

Aggregate Variance

The variance of a sum of independent random variables equals the sum of the variances. If N = n is fixed then
Var(A) = nVar(X) and Var(N) = 0. IfX = x is fixed then Var(A) = x2Var(N) and Var(X) = 0. Making the
obvious associations n↔ E[N], x↔ E[X] suggests

Var(A) = E[N]Var(X) + E[X]2Var(N).

Using conditional expectations and conditioning on the value of N shows this is the correct answer!
Exercise. Confirm the formulas for an aggregate mean and variance hold for the Simple Example.

Aggregate Moment Generating Function

Using the tower property of conditional expectations and the independence of N and Xi gives

MA(z) = E[exp(z(X1 + · · ·XN))]

= E[E[exp(z(X1 + · · ·XN)) | N]]

= E[E[exp(zX1)
N]]

= E[E[exp(zX1)]
N]

=MN (log(MX(z)))

Differentiating and using XXs formula, yields the moments of A, see below.

5.1. Probability Background 375

aggregate Documentation, Release 0.22.0

The last expression is very important and underlies the use of FFTs to compute aggregate distributions.
Next, specialize to the case whereA = X1+ · · ·+XN is an aggregate distribution withN aG-mixed Poisson. Then

MA(z) = E[exp(z(X1 + · · ·XN))]

= E[E[exp(z(X1 + · · ·XN)) | N]]

= E[E[exp(zX1)
N]]

= E[E[MX(z)N | G]]
= E[exp(nG(MX(z)− 1))]

=MG(n(MX(z)− 1))

Thus

E[A] =M ′
A(0) = nM ′

G(0)M
′
X(0) = nE[X]

and
E[A2] =M ′′

A(0)

= n2M ′′
G(0)M

′
X(0)2 + nM ′

G(0)M
′′
X(0)

= n2E[G2]E[X]2 + nE[X2].

Hence, using the fact that E[G2] = 1 + c,
we get

var(A) = n2E[G2]E[X]2 + nE[X2]− n2E[X]2

= n2cE[X]2 + nE[X2]

= (var(N)− E[N])E[X]2 + E[N]E[X2]

= var(N)E[X]2 + E[N]var(X).

Continuing along the same vein we get

E[A3] =E[N]E[X3] + E[N3]E[X]3 + 3E[N2]E[X]E[X2]

− 3E[N]E[X]E[X2]− 3E[N2]E[X]3 + 2E[N]E[X]3.

and so we can compute the skewness of A, remembering that

E[(A− E[A])3] = E[A3]− 3E[A2]E[A] + 2E[A]3.

Further moments can be computed using derivatives of the moment generating function.
Having computed the mean, CV and skewness of the aggregate using these equations we can use the method of
moments to fit a shifted lognormal or shifted gamma distribution. We turn next to a description of these handy
distributions.

5.1.8 Shifted Gamma and Lognormal Distributions

The shifted gamma and shifted lognormal distributions are versatile three parameter distributions whose method of
moments parameters can be conveniently computed by closed formula. The examples below show that they also
provide a very good approximation to aggregate loss distributions. The shifted gamma approximation to an aggregate
is discussed in Bowers et al. [1997]. Properties of the shifted gamma and lognormal distributions, including the
method of moments fit parameters, are also shown in Daykin et al. [1993] chapter 3.
Let L have a lognormal distribution. Then S = s± L is a shifted lognormal, where s is a real number. Since s can
be positive or negative and since L can equal s + L or s − L, the shifted lognormal can model distributions which
are positively or negatively skewed, as well as distributions supported on the negative reals. The key facts about the
shifted lognormal are shown in Table 1.4. The variable η is a solution to the cubic equation

η3 + 3η − γ = 0

376 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

where γ is the skewness.
Let G have a gamma distribution. Then T = s ± G is a shifted gamma distribution, where s is a real number.
Table 1.1 shows some common parametric forms for the gamma distribution. The key facts about the shifted gamma
distribution are also shown in Table 1.4.
The exponential is a special case of the gamma where α = 1. The χ2 is a special case where α = k/2 and β = 2 in
the Excel parameterization. The Pareto is a mixture of exponentials where the mixing distribution is gamma.

Table 4: Shifted Gamma and Lognormal Distributions
Item Shifted Gamma Shifted Lognormal
Parameters s, α, θ s, µ, σ
Meanm s+ αθ s+ exp(µ+ σ2/2)
Variance αθ2 m2 exp(σ2 − 1)
CV, ν √

αβ/γ exp((σ2 − 1)/2)
Skewness, 2/

√
α γ = ν(ν2 + 3)

Method of Moments Parameters
η n/a η = u− 1/u where

u3 =
√
γ2 + 4/2 + γ/2

Shift variable, s m− αβ m(1− νη)
α or σ 4/γ2

√
ln(1 + η2)

β or µ mνγ/2 ln(m− s)− σ2/2

5.1.9 Appendix: Selected scipy.stats Discrete Random Variables

Here is the list of scipy.stats discrete random variables.

Num. args Min range Max range Parameters
Distribution
bernoulli 1 0 1 'p'
dlaplace 1 -inf inf 'a'
geom 1 1 inf 'p'
logser 1 1 inf 'p'
planck 1 0 inf 'lambda_'
poisson 1 0 inf 'mu'
yulesimon 1 1 inf 'alpha'
zipf 1 1 inf 'a'
binom 2 0 inf 'n' and 'p'
boltzmann 2 0 inf 'lambda_' and 'N'
nbinom 2 0 inf 'n' and 'p'
randint 2 0 inf 'low' and 'high'
skellam 2 -inf inf 'mu1' and 'mu2'
zipfian 2 1 inf 'a' and 'n'
betabinom 3 0 inf 'n', 'a', and 'b'
hypergeom 3 0 inf 'M', 'n', and 'N'
nhypergeom 3 0 inf 'M', 'n', and 'r'
nchypergeom_fisher 4 0 inf 'M', 'n', 'N', and
↪→'odds'
nchypergeom_wallenius 4 0 inf 'M', 'n', 'N', and
↪→'odds'

• bernoulli Bernoulli (help). The probability mass function for bernoulli is:

f(k) =

{
1− p if k = 0

p if k = 1

for k in {0, 1}, 0 ≤ p ≤ 1

5.1. Probability Background 377

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bernoulli.html

aggregate Documentation, Release 0.22.0

bernoulli takes p as shape parameter, where p is the probability of a single success and 1− p is the
probability of a single failure.
The probability mass function above is defined in the “standardized” form. To shift distribution use
the loc parameter. Specifically, bernoulli.pmf(k, p, loc) is identically equivalent to
bernoulli.pmf(k - loc, p).

• betabinom Betabinom (help). The beta-binomial distribution is a binomial distribution with a
probability of success p that follows a beta distribution.
The probability mass function for betabinom is:

f(k) =

(
n

k

)
B(k + a, n− k + b)

B(a, b)

for k ∈ {0, 1, . . . , n}, n ≥ 0, a > 0, b > 0, where B(a, b) is the beta function.
betabinom takes n, a, and b as shape parameters.

• binom Binom (help). The probability mass function for binom is:

f(k) =

(
n

k

)
pk(1− p)n−k

for k ∈ {0, 1, . . . , n}, 0 ≤ p ≤ 1

binom takes n and p as shape parameters, where p is the probability of a single success and 1 − p
is the probability of a single failure.

• boltzmann Boltzmann (help). The probability mass function for boltzmann is:

f(k) = (1− exp(−λ)) exp(−λk)/(1− exp(−λN))

for k = 0, ..., N − 1.
boltzmann takes λ > 0 and N > 0 as shape parameters.

• geom Geom (help). The probability mass function for geom is:

f(k) = (1− p)k−1p

for k ≥ 1, 0 < p ≤ 1

geom takes p as shape parameter, where p is the probability of a single success and 1 − p is the
probability of a single failure.

• logser Logser (help). The probability mass function for logser is:

f(k) = − pk

k log(1− p)

for k ≥ 1, 0 < p < 1

logser takes p as shape parameter, where p is the probability of a single success and 1 − p is the
probability of a single failure.

• nbinom Nbinom (help). Negative binomial distribution describes a sequence of i.i.d. Bernoulli
trials, repeated until a predefined, non-random number of successes occurs.
The probability mass function of the number of failures for nbinom is:

f(k) =

(
k + n− 1

n− 1

)
pn(1− p)k

378 Chapter 5. Technical Guides

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.betabinom.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boltzmann.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.geom.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logser.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nbinom.html

aggregate Documentation, Release 0.22.0

for k ≥ 0, 0 < p ≤ 1

nbinom takes n and p as shape parameters where n is the number of successes, p is the probability of a
single success, and 1− p is the probability of a single failure.
Another common parameterization of the negative binomial distribution is in terms of the mean number
of failures µ to achieve n successes. The mean µ is related to the probability of success as

p =
n

n+ µ

The number of successes n may also be specified in terms of a “dispersion”, “heterogeneity”, or “aggre-
gation” parameter α, which relates the mean µ to the variance σ2, e.g. σ2 = µ + αµ2. Regardless of
the convention used for α,

p =
µ

σ2

n =
µ2

σ2 − µ

• planck Planck (help). The probability mass function for planck is:

f(k) = (1− exp(−λ)) exp(−λk)

for k ≥ 0 and λ > 0.
planck takes λ as shape parameter. The Planck distribution can be written as a geometric distribu-
tion (geom) with p = 1− exp(−λ) shifted by loc = -1.

• poisson Poisson (help). The probability mass function for poisson is:

f(k) = exp(−µ)µ
k

k!

for k ≥ 0.
poisson takes µ ≥ 0 as shape parameter. When µ = 0, the pmf method returns 1.0 at quantile
k = 0.

• randint Randint (help). The probability mass function for randint is:

f(k) =
1

high− low

for k ∈ {low, . . . ,high− 1}.
randint takes low and high as shape parameters.

5.1.10 Appendix: scipy.stats Continuous Random Variables

The information below was extracted from the scipy help for continuous distributions. The basic list can be created
by introspection—wonderful Python!

In [1]: import scipy.stats as ss

In [2]: import pandas as pd

In [3]: ans = []

(continues on next page)

5.1. Probability Background 379

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.planck.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.randint.html
https://docs.scipy.org/doc/scipy/reference/stats.html#continuous-distributions

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [4]: for k in dir(ss):

...: ob = getattr(ss, k)

...: if str(type(ob)).find('continuous_distns') > 0:

...: try:

...: fz = ob()

...: except TypeError as e:

...: ee = e

...: ans.append([k, str(e), -1, ob.a, ob.b])

...: else:

...: ans.append([k, 'no args fine', 0, ob.a, ob.b])

...:

In [5]: df = pd.DataFrame(ans, columns=['dist', 'm', 'args', 'a', 'b'])

In [6]: for i in range(1,5):
...: df.loc[df.m.str.find(f'{i} required')>=0, 'args'] = i
...:

In [7]: df = df.sort_values(['args', 'dist'])

In [8]: df['params'] = ''

In [9]: df.loc[df.args > 0, 'params'] = df.loc[df.args > 0, 'm'].str.split(':').
↪→str[1]

In [10]: df = df.drop(columns='m')

In [11]: print(df.rename(columns={'dist': 'Distribution', 'args': 'Num. args',
....: 'a': 'Min range' , 'b': 'Max range', 'params': 'Parameters'}).\
....: set_index('Distribution').to_string(float_format=lambda x: f'{x:.

↪→4g}'))
....:

Num. args Min range Max range Parameters
Distribution
anglit 0 -0.7854 0.7854
arcsine 0 0 1
cauchy 0 -inf inf
cosine 0 -3.142 3.142
expon 0 0 inf
gibrat 0 0 inf
gumbel_l 0 -inf inf
gumbel_r 0 -inf inf
halfcauchy 0 0 inf
halflogistic 0 0 inf
halfnorm 0 0 inf
hypsecant 0 -inf inf
kstwobign 0 0 inf
laplace 0 -inf inf
levy 0 0 inf
levy_l 0 -inf 0
logistic 0 -inf inf
maxwell 0 0 inf
moyal 0 -inf inf
norm 0 -inf inf
rayleigh 0 0 inf
semicircular 0 -1 1
uniform 0 0 1
wald 0 0 inf
alpha 1 0 inf 'a'
argus 1 0 1 'chi'
bradford 1 0 1 'c'

(continues on next page)

380 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
chi 1 0 inf 'df'
chi2 1 0 inf 'df'
dgamma 1 -inf inf 'a'
dweibull 1 -inf inf 'c'
erlang 1 0 inf 'a'
exponnorm 1 -inf inf 'K'
exponpow 1 0 inf 'b'
fatiguelife 1 0 inf 'c'
fisk 1 0 inf 'c'
foldcauchy 1 0 inf 'c'
foldnorm 1 0 inf 'c'
gamma 1 0 inf 'a'
genextreme 1 -inf inf 'c'
genhalflogistic 1 0 inf 'c'
genlogistic 1 -inf inf 'c'
gennorm 1 -inf inf 'beta'
genpareto 1 0 inf 'c'
gompertz 1 0 inf 'c'
halfgennorm 1 0 inf 'beta'
invgamma 1 0 inf 'a'
invgauss 1 0 inf 'mu'
invweibull 1 0 inf 'c'
kappa3 1 0 inf 'a'
ksone 1 0 1 'n'
kstwo 1 0 1 'n'
laplace_asymmetric 1 -inf inf 'kappa'
loggamma 1 -inf inf 'c'
loglaplace 1 0 inf 'c'
lognorm 1 0 inf 's'
lomax 1 0 inf 'c'
nakagami 1 0 inf 'nu'
pareto 1 1 inf 'b'
pearson3 1 -inf inf 'skew'
powerlaw 1 0 1 'a'
powernorm 1 -inf inf 'c'
rdist 1 -1 1 'c'
recipinvgauss 1 0 inf 'mu'
rel_breitwigner 1 0 inf 'rho'
rice 1 0 inf 'b'
skewcauchy 1 -inf inf 'a'
skewnorm 1 -inf inf 'a'
t 1 -inf inf 'df'
triang 1 0 1 'c'
truncexpon 1 0 inf 'b'
tukeylambda 1 -inf inf 'lam'
vonmises 1 -inf inf 'kappa'
vonmises_line 1 -3.142 3.142 'kappa'
weibull_max 1 -inf 0 'c'
weibull_min 1 0 inf 'c'
wrapcauchy 1 0 6.283 'c'
beta 2 0 1 'a' and 'b'
betaprime 2 0 inf 'a' and 'b'
burr 2 0 inf 'c' and 'd'
burr12 2 0 inf 'c' and 'd'
crystalball 2 -inf inf 'beta' and 'm'
exponweib 2 0 inf 'a' and 'c'
f 2 0 inf 'dfn' and 'dfd'
gengamma 2 0 inf 'a' and 'c'
geninvgauss 2 0 inf 'p' and 'b'
jf_skew_t 2 -inf inf 'a' and 'b'
johnsonsb 2 0 1 'a' and 'b'

(continues on next page)

5.1. Probability Background 381

aggregate Documentation, Release 0.22.0

(continued from previous page)
johnsonsu 2 -inf inf 'a' and 'b'
kappa4 2 -inf inf 'h' and 'k'
loguniform 2 -inf inf 'a' and 'b'
mielke 2 0 inf 'k' and 's'
nct 2 -inf inf 'df' and 'nc'
ncx2 2 0 inf 'df' and 'nc'
norminvgauss 2 -inf inf 'a' and 'b'
powerlognorm 2 0 inf 'c' and 's'
reciprocal 2 -inf inf 'a' and 'b'
studentized_range 2 0 inf 'k' and 'df'
trapezoid 2 0 1 'c' and 'd'
trapz 2 0 1 'c' and 'd'
truncnorm 2 -inf inf 'a' and 'b'
truncpareto 2 1 inf 'b' and 'c'
genexpon 3 0 inf 'a', 'b', and 'c'
genhyperbolic 3 -inf inf 'p', 'a', and 'b'
ncf 3 0 inf 'dfn', 'dfd', and 'nc'
truncweibull_min 3 -inf inf 'c', 'a', and 'b'
gausshyper 4 0 1 'a', 'b', 'c', and 'z'

• alpha Alpha (help). The probability density function for alpha is:

f(x, a) =
1

x2Φ(a)
√
2π
∗ exp(−1

2
(a− 1/x)2)

where Φ is the normal CDF, x > 0, and a > 0.
alpha takes a as a shape parameter.

• anglit Anglit (help). The probability density function for anglit is:

f(x) = sin(2x+ π/2) = cos(2x)

for −π/4 ≤ x ≤ π/4.
• arcsine Arcsine (help). The probability density function for arcsine is:

f(x) =
1

π
√
x(1− x)

for 0 < x < 1.
• argus Argus (help). The probability density function for argus is:

f(x, χ) =
χ3

√
2πΨ(χ)

x
√

1− x2 exp(−χ2(1− x2)/2)

for 0 < x < 1 and χ > 0, where

Ψ(χ) = Φ(χ)− χϕ(χ)− 1/2

with Φ and ϕ being the CDF and PDF of a standard normal distribution, respectively.
argus takes χ as shape a parameter.

• beta Beta (help). The probability density function for beta is:

382 Chapter 5. Technical Guides

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.alpha.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anglit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.arcsine.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.argus.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.beta.html

aggregate Documentation, Release 0.22.0

f(x, a, b) =
Γ(a+ b)xa−1(1− x)b−1

Γ(a)Γ(b)

for 0 <= x <= 1, a > 0, b > 0, where Γ is the gamma function (scipy.special.gamma).
beta takes a and b as shape parameters.

• betaprime Beta Prime (help). The probability density function for betaprime is:

f(x, a, b) =
xa−1(1 + x)−a−b

β(a, b)

for x >= 0, a > 0, b > 0, where β(a, b) is the beta function (see scipy.special.beta).
betaprime takes a and b as shape parameters.

• bradford Bradford (help). The probability density function for bradford is:

f(x, c) =
c

log(1 + c)(1 + cx)

for 0 <= x <= 1 and c > 0.
bradford takes c as a shape parameter for c.

• burr Burr (Type III) (help). The probability density function for burr is:

f(x, c, d) = cdx−c−1/(1 + x−c)d+1

for x >= 0 and c, d > 0.
burr takes c and d as shape parameters.
This is the PDF corresponding to the third CDF given in Burr’s list; specifically, it is equation (11)
in Burr’s paper. The distribution is also commonly referred to as the Dagum distribution. If the
parameter c < 1 then the mean of the distribution does not exist and if c < 2 the variance does not
exist. The PDF is finite at the left endpoint x = 0 if c ∗ d >= 1.

• burr12 Burr (Type XII) (help). The probability density function for burr is:

f(x, c, d) = cdxc−1/(1 + xc)d+1

for x >= 0 and c, d > 0.
burr12 takes c and d as shape parameters for c and d.
This is the PDF corresponding to the twelfth CDF given in Burr’s list; specifically, it is equation
(20) in Burr’s paper.

• cauchy Cauchy (help). The probability density function for cauchy is

f(x) =
1

π(1 + x2)

for a real number x.
• chi Chi (help). The probability density function for chi is:

5.1. Probability Background 383

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.betaprime.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bradford.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.burr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.burr12.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cauchy.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi.html

aggregate Documentation, Release 0.22.0

f(x, k) =
1

2k/2−1Γ (k/2)
xk−1 exp

(
−x2/2

)
for x >= 0 and k > 0 (degrees of freedom, denoted df in the implementation). Γ is the gamma
function (scipy.special.gamma).
Special cases of chi are:
– chi(1, loc, scale) is equivalent to halfnorm

– chi(2, 0, scale) is equivalent to rayleigh

– chi(3, 0, scale) is equivalent to maxwell

chi takes df as a shape parameter.
• chi2 Chi-squared (help). The probability density function for chi2 is:

f(x, k) =
1

2k/2Γ (k/2)
xk/2−1 exp (−x/2)

for x > 0 and k > 0 (degrees of freedom, denoted df in the implementation).
chi2 takes df as a shape parameter.
The chi-squared distribution is a special case of the gamma distribution, with gamma parameters
a = df/2, loc = 0 and scale = 2.

• cosineCosine (help). The cosine distribution is an approximation to the normal distribution. The probability
density function for cosine is:

f(x) =
1

2π
(1 + cos(x))

for −π ≤ x ≤ π.
• crystalball Crystalball (help). The probability density function for crystalball is:

f(x, β,m) =

{
N exp(−x2/2), for x > −β
NA(B − x)−m for x ≤ −β

where A = (m/|β|)m exp(−β2/2), B = m/|β| − |β| and N is a normalisation constant.
crystalball takes β > 0 andm > 1 as shape parameters. β defines the point where the pdf changes
from a power-law to a Gaussian distribution. m is the power of the power-law tail.

• dgamma Double Gamma (help). The probability density function for dgamma is:

f(x, a) =
1

2Γ(a)
|x|a−1 exp(−|x|)

for a real number x and a > 0. Γ is the gamma function (scipy.special.gamma).
dgamma takes a as a shape parameter for a.

• dweibull Double Weibull (help). The probability density function for dweibull is given by

f(x, c) = c/2|x|c−1 exp(−|x|c)

for a real number x and c > 0.
dweibull takes c as a shape parameter for c.

384 Chapter 5. Technical Guides

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cosine.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.crystalball.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dgamma.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dweibull.html

aggregate Documentation, Release 0.22.0

• erlang Erlang (help). The Erlang distribution is a special case of the Gamma distribution, with the shape
parameter a an integer. Note that this restriction is not enforced by erlang. It will, however, generate a warning
the first time a non-integer value is used for the shape parameter.

Refer to gamma for examples.
• expon Exponential (help). The probability density function for expon is:

f(x) = exp(−x)

for x ≥ 0.
• exponnorm Exponentially Modified Normal (help). The probability density function for exponnorm is:

f(x,K) =
1

2K
exp

(
1

2K2
− x/K

)
erfc

(
−x− 1/K√

2

)
where x is a real number andK > 0.
It can be thought of as the sum of a standard normal random variable and an independent exponen-
tially distributed random variable with rate 1/K.

• exponweib Exponentiated Weibull (help). The probability density function for exponweib is:

f(x, a, c) = ac[1− exp(−xc)]a−1 exp(−xc)xc−1

and its cumulative distribution function is:

F (x, a, c) = [1− exp(−xc)]a

for x > 0, a > 0, c > 0.
exponweib takes a and c as shape parameters:
– a is the exponentiation parameter, with the special case a = 1 corresponding to the (non-
exponentiated) Weibull distribution weibull_min.

– c is the shape parameter of the non-exponentiated Weibull law.
• exponpow Exponential Power (help). The probability density function for exponpow is:

f(x, b) = bxb−1 exp(1 + xb − exp(xb))

for x ≥ 0, b > 0. Note that this is a different distribution from the exponential power distribution
that is also known under the names “generalized normal” or “generalized Gaussian”.
exponpow takes b as a shape parameter for b.

• f F (Snecdor F) (help). The probability density function for f is:

f(x, df1, df2) =
df

df2/2
2 df

df1/2
1 xdf1/2−1

(df2 + df1x)(df1+df2)/2B(df1/2, df2/2)

for x > 0.
f takes dfn and dfd as shape parameters.

• fatiguelife Fatigue Life (Birnbaum-Saunders) (help). The probability density function for fatiguelife
is:

5.1. Probability Background 385

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.erlang.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.exponnorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.exponweib.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.exponpow.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fatiguelife.html

aggregate Documentation, Release 0.22.0

f(x, c) =
x+ 1

2c
√
2πx3

exp(− (x− 1)2

2xc2
)

for x >= 0 and c > 0.
fatiguelife takes c as a shape parameter for c.

• fisk Fisk (help). The probability density function for fisk is:

f(x, c) = cx−c−1(1 + x−c)−2

for x >= 0 and c > 0.
fisk takes c as a shape parameter for c.
fisk is a special case of burr or burr12 with d=1.

• foldcauchy Folded Cauchy (help). The probability density function for foldcauchy is:

f(x, c) =
1

π(1 + (x− c)2)
+

1

π(1 + (x+ c)2)

for x ≥ 0.
foldcauchy takes c as a shape parameter for c.

• foldnorm Folded Normal (help). The probability density function for foldnorm is:

f(x, c) =
√

2/πcosh(cx) exp(−x
2 + c2

2
)

for c ≥ 0.
foldnorm takes c as a shape parameter for c.

• genlogistic Generalized Logistic (help). The probability density function for genlogistic is:

f(x, c) = c
exp(−x)

(1 + exp(−x))c+1

for x >= 0, c > 0.
genlogistic takes c as a shape parameter for c.

• gennorm Generalized normal (help). The probability density function for gennorm is:

f(x, β) =
β

2Γ(1/β)
exp(−|x|β)

Γ is the gamma function (scipy.special.gamma).
gennorm takes beta as a shape parameter for β. For β = 1, it is identical to a Laplace distribution.
For β = 2, it is identical to a normal distribution (with scale=1/sqrt(2)).

• genpareto Generalized Pareto (help). The probability density function for genpareto is:

f(x, c) = (1 + cx)−1−1/c

386 Chapter 5. Technical Guides

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisk.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.foldcauchy.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.foldnorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genlogistic.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gennorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genpareto.html

aggregate Documentation, Release 0.22.0

defined for x ≥ 0 if c ≥ 0, and for 0 ≤ x ≤ −1/c if c < 0.
genpareto takes c as a shape parameter for c.
For c = 0, genpareto reduces to the exponential distribution, expon:

f(x, 0) = exp(−x)

For c = −1, genpareto is uniform on [0, 1]:

f(x,−1) = 1

• genexpon Generalized Exponential (help). The probability density function for genexpon is:

f(x, a, b, c) = (a+ b(1− exp(−cx))) exp(−ax− bx+
b

c
(1− exp(−cx)))

for x ≥ 0, a, b, c > 0.
genexpon takes a, b and c as shape parameters.

• genextreme Generalized Extreme Value (help). For c = 0, genextreme is equal to gumbel_r. The proba-
bility density function for genextreme is:

f(x, c) =

{
exp(− exp(−x)) exp(−x) for c = 0

exp(−(1− cx)1/c)(1− cx)1/c−1 for x ≤ 1/c, c > 0

Note that several sources and software packages use the opposite convention for the sign of the
shape parameter c.
genextreme takes c as a shape parameter for c.

• gausshyper Gauss Hypergeometric (help). The probability density function for gausshyper is:

f(x, a, b, c, z) = Cxa−1(1− x)b−1(1 + zx)−c

for 0 ≤ x ≤ 1, a > 0, b > 0, z > −1, and C = 1
B(a,b)F [2,1](c,a;a+b;−z) . F [2, 1] is the Gauss

hypergeometric function scipy.special.hyp2f1.
gausshyper takes a, b, c and z as shape parameters.

• gamma Gamma (help). The probability density function for gamma is:

f(x, a) =
xa−1e−x

Γ(a)

for x ≥ 0, a > 0. Here Γ(a) refers to the gamma function.
gamma takes a as a shape parameter for a.
When a is an integer, gamma reduces to the Erlang distribution, and when a = 1 to the exponential
distribution.
Gamma distributions are sometimes parameterized with two variables, with a probability density
function of:

f(x, α, β) =
βαxα−1e−βx

Γ(α)

Note that this parameterization is equivalent to the above, with scale = 1 / beta.

5.1. Probability Background 387

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genexpon.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gausshyper.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html

aggregate Documentation, Release 0.22.0

• gengamma Generalized gamma (help). The probability density function for gengamma is:

f(x, a, c) =
|c|xca−1 exp(−xc)

Γ(a)

for x ≥ 0, a > 0, and c 6= 0. Γ is the gamma function (scipy.special.gamma).
gengamma takes a and c as shape parameters.

• genhalflogisticGeneralized Half Logistic (help). The probability density function for genhalflogistic
is:

f(x, c) =
2(1− cx)1/(c−1)

[1 + (1− cx)1/c]2

for 0 ≤ x ≤ 1/c, and c > 0.
genhalflogistic takes c as a shape parameter for c.

• genhyperbolic Generalized Hyperbolic (help). The probability density function for genhyperbolic is:

f(x, p, a, b) =
(a2 − b2)p/2

√
2πap−0.5Kp

(√
a2 − b2

)ebx × Kp−1/2(a
√
1 + x2)

(
√
1 + x2)1/2−p

for x, p ∈ (−∞;∞), |b| < a if p ≥ 0, |b| ≤ a if p < 0. Kp(.) denotes the modified Bessel
function of the second kind and order p (scipy.special.kn)
genhyperbolic takes p as a tail parameter, a as a shape parameter, b as a skewness parameter.

• geninvgauss Generalized Inverse Gaussian (help). The probability density function for geninvgauss is:

f(x, p, b) = xp−1 exp(−b(x+ 1/x)/2)/(2Kp(b))

where x > 0, and the parameters p, b satisfy b > 0. Kp is the modified Bessel function of second
kind of order p (scipy.special.kv).

• gilbrat Gilbrat (help). The probability density function for gilbrat is:

f(x) =
1

x
√
2π

exp(−1

2
(log(x))2)

gilbrat is a special case of lognorm with s=1.
• gompertz Gompertz (Truncated Gumbel) (help). The probability density function for gompertz is:

f(x, c) = c exp(x) exp(−c(ex − 1))

for x ≥ 0, c > 0.
gompertz takes c as a shape parameter for c.

• gumbel_r (help). The probability density function for gumbel_r is:

f(x) = exp(−(x+ e−x))

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also
related to the extreme value distribution, log-Weibull and Gompertz distributions.

388 Chapter 5. Technical Guides

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gengamma.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genhalflogistic.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genhyperbolic.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.geninvgauss.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gilbrat.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gompertz.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html

aggregate Documentation, Release 0.22.0

• gumbel_l (help). The probability density function for gumbel_l is:

f(x) = exp(x− ex)

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also
related to the extreme value distribution, log-Weibull and Gompertz distributions.

• halfcauchy Half Cauchy (help). The probability density function for halfcauchy is:

f(x) =
2

π(1 + x2)

for x ≥ 0.
• halflogistic Half Logistic (help). The probability density function for halflogistic is:

f(x) =
2e−x

(1 + e−x)2
=

1

2
sech(x/2)2

for x ≥ 0.
• halfnorm Half Normal (help). The probability density function for halfnorm is:

f(x) =
√

2/π exp(−x2/2)

for x >= 0.
halfnorm is a special case of chi with df=1.

• halfgennorm Generalized Half Normal (help). The probability density function for halfgennorm is:

f(x, β) =
β

Γ(1/β)
exp(−|x|β)

for x > 0. Γ is the gamma function (scipy.special.gamma).
gennorm takes beta as a shape parameter for β. For β = 1, it is identical to an exponential
distribution. For β = 2, it is identical to a half normal distribution (with scale=1/sqrt(2)).

• hypsecant Hyperbolic Secant (help). The probability density function for hypsecant is:

f(x) =
1

π
sech(x)

for a real number x.
• invgamma Inverse Gamma (help). The probability density function for invgamma is:

f(x, a) =
x−a−1

Γ(a)
exp(− 1

x
)

for x >= 0, a > 0. Γ is the gamma function (scipy.special.gamma).
invgamma takes a as a shape parameter for a.
invgamma is a special case of gengamma with c=-1, and it is a different parameterization of the
scaled inverse chi-squared distribution. Specifically, if the scaled inverse chi-squared distribution
is parameterized with degrees of freedom ν and scaling parameter τ2, then it can be modeled using
invgamma with a= ν/2 and scale= ντ2/2.

5.1. Probability Background 389

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_l.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halfcauchy.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halflogistic.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halfnorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halfgennorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypsecant.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invgamma.html

aggregate Documentation, Release 0.22.0

• invgauss Inverse Gaussian (help). The probability density function for invgauss is:

f(x, µ) =
1√
2πx3

exp(− (x− µ)2

2xµ2
)

for x >= 0 and µ > 0.
invgauss takes mu as a shape parameter for µ.

• invweibull Inverse Weibull (help). The probability density function for invweibull is:

f(x, c) = cx−c−1 exp(−x−c)

for x > 0, c > 0.
invweibull takes c as a shape parameter for c.

• johnsonsb Johnson SB (help). The probability density function for johnsonsb is:

f(x, a, b) =
b

x(1− x)
ϕ(a+ b log x

1− x
)

where x, a, and b are real scalars; b > 0 and x ∈ [0, 1]. ϕ is the pdf of the normal distribution.
johnsonsb takes a and b as shape parameters.

• johnsonsu Johnson SU (help). The probability density function for johnsonsu is:

f(x, a, b) =
b√

x2 + 1
ϕ(a+ b log(x+

√
x2 + 1))

where x, a, and b are real scalars; b > 0. ϕ is the pdf of the normal distribution.
johnsonsu takes a and b as shape parameters.

• kappa4 Kappa 4 parameter (help). The probability density function for kappa4 is:

f(x, h, k) = (1− kx)1/k−1(1− h(1− kx)1/k)1/h−1

if h and k are not equal to 0.
If h or k are zero then the pdf can be simplified:
h = 0 and k != 0:

kappa4.pdf(x, h, k) = (1.0 - k*x)**(1.0/k - 1.0)*
exp(-(1.0 - k*x)**(1.0/k))

h != 0 and k = 0:

kappa4.pdf(x, h, k) = exp(-x)*(1.0 - h*exp(-x))**(1.0/h - 1.0)

h = 0 and k = 0:

kappa4.pdf(x, h, k) = exp(-x)*exp(-exp(-x))

390 Chapter 5. Technical Guides

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invgauss.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.johnsonsb.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.johnsonsu.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kappa4.html

aggregate Documentation, Release 0.22.0

kappa4 takes h and k as shape parameters.
The kappa4 distribution returns other distributions when certain h and k values are used.

h k=0.0 k=1.0 -inf<=k<=inf
-
1.0

Logistic
logistic(x)

Generalized Logistic(1)

0.0 Gumbel
gumbel_r(x)

Reverse Exponen-
tial(2)

Generalized Extreme Value
genextreme(x, k)

1.0 Exponential
expon(x)

Uniform
uniform(x)

Generalized Pareto
genpareto(x, -k)

• kappa3 Kappa 3 parameter (help). The probability density function for kappa3 is:

f(x, a) = a(a+ xa)−(a+1)/a

for x > 0 and a > 0.
kappa3 takes a as a shape parameter for a.

• ksone Distribution of Kolmogorov-Smirnov one-sided test statistic (help). D+
n and D−

n are given by

D+
n = supx(Fn(x)− F (x)),

D−
n = supx(F (x)− Fn(x)),

where F is a continuous CDF and Fn is an empirical CDF. ksone describes the distribution under
the null hypothesis of the KS test that the empirical CDF corresponds to n i.i.d. random variates
with CDF F .

• kstwo Distribution of Kolmogorov-Smirnov two-sided test statistic (help). Dn is given by

Dn = supx|Fn(x)− F (x)|

where F is a (continuous) CDF and Fn is an empirical CDF. kstwo describes the distribution under
the null hypothesis of the KS test that the empirical CDF corresponds to n i.i.d. random variates
with CDF F .

• kstwobign Limiting Distribution of scaled Kolmogorov-Smirnov two-sided test statistic. (help).√
nDn is given by

Dn = supx|Fn(x)− F (x)|

where F is a continuous CDF and Fn is an empirical CDF. kstwobign describes the asymptotic
distribution (i.e. the limit of √nDn) under the null hypothesis of the KS test that the empirical
CDF corresponds to i.i.d. random variates with CDF F .

• laplace Laplace (help). The probability density function for laplace is

f(x) =
1

2
exp(−|x|)

for a real number x.
• laplace_asymmetric (help). The probability density function for laplace_asymmetric is

5.1. Probability Background 391

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kappa3.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ksone.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstwo.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstwobign.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.laplace.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.laplace_asymmetric.html

aggregate Documentation, Release 0.22.0

f(x, κ) =
1

κ+ κ−1
exp(−xκ), x ≥ 0

=
1

κ+ κ−1
exp(x/κ), x < 0

for −∞ < x <∞, κ > 0.
laplace_asymmetric takes kappa as a shape parameter for κ. For κ = 1, it is identical to a Laplace
distribution.

• levy Levy (help). The probability density function for levy is:

f(x) =
1√
2πx3

exp
(
− 1

2x

)
for x >= 0.
This is the same as the Levy-stable distribution with a = 1/2 and b = 1.

• logistic Logistic (help). The probability density function for logistic is:

f(x) =
exp(−x)

(1 + exp(−x))2

logistic is a special case of genlogistic with c=1.
Remark that the survival function (logistic.sf) is equal to the Fermi-Dirac distribution de-
scribing fermionic statistics.

• loggamma Log-Gamma (help). The probability density function for loggamma is:

f(x, c) =
exp(cx− exp(x))

Γ(c)

for all x, c > 0. Here, Γ is the gamma function (scipy.special.gamma).
loggamma takes c as a shape parameter for c.

• loglaplace Log-Laplace (Log Double Exponential) (help). The probability density function for
loglaplace is:

f(x, c) =

{
c
2x

c−1 for 0 < x < 1
c
2x

−c−1 for x ≥ 1

for c > 0.
loglaplace takes c as a shape parameter for c.

• lognorm Log-Normal (help). The probability density function for lognorm is:

f(x, s) =
1

sx
√
2π

exp
(
− log

2(x)

2s2

)
for x > 0, s > 0.
lognorm takes s as a shape parameter for s.

• loguniform Log-Uniform (help). The probability density function for this class is:

392 Chapter 5. Technical Guides

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levy.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.loggamma.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.loglaplace.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.loguniform.html

aggregate Documentation, Release 0.22.0

f(x, a, b) =
1

x log(b/a)

for a ≤ x ≤ b, b > a > 0. This class takes a and b as shape parameters.
• lomax Lomax (Pareto of the second kind) (help). The probability density function for lomax is:

f(x, c) =
c

(1 + x)c+1

for x ≥ 0, c > 0.
lomax takes c as a shape parameter for c.
lomax is a special case of pareto with loc=-1.0.

• maxwellMaxwell (help). A special case of a chi distribution, with df=3, loc=0.0, and given scale =
a, where a is the parameter used in the Mathworld description.

The probability density function for maxwell is:

f(x) =
√
2/πx2 exp(−x2/2)

for x >= 0.
• mielkeMielke’s Beta-Kappa (help). The probability density function for mielke is:

f(x, k, s) =
kxk−1

(1 + xs)1+k/s

for x > 0 and k, s > 0. The distribution is sometimes called Dagum distribution. It was already
defined in, called a Burr Type III distribution (burr with parameters c=s and d=k/s).
mielke takes k and s as shape parameters.

• moyalMoyal (help). The probability density function for moyal is:

f(x) = exp(−(x+ exp(−x))/2)/
√
2π

for a real number x.
• nakagami Nakagami (help). The probability density function for nakagami is:

f(x, ν) =
2νν

Γ(ν)
x2ν−1 exp(−νx2)

for x >= 0, ν > 0.
nakagami takes nu as a shape parameter for ν.

• ncx2 Non-central chi-squared (help). The probability density function for ncx2 is:

f(x, k, λ) =
1

2
exp(−(λ+ x)/2)(x/λ)(k−2)/4I(k−2)/2(

√
λx)

for x >= 0 and k, λ > 0. k specifies the degrees of freedom (denoted df in the implementation)
and λ is the non-centrality parameter (denoted nc in the implementation). Iν denotes the modified
Bessel function of first order of degree ν (scipy.special.iv).
ncx2 takes df and nc as shape parameters.

5.1. Probability Background 393

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lomax.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.maxwell.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mielke.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.moyal.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nakagami.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ncx2.html

aggregate Documentation, Release 0.22.0

• ncf Non-central F (help). The probability density function for ncf is:

f(x, n1, n2, λ) = exp
(
λ

2
+ λn1

x

2(n1x+ n2)

)
n
n1/2
1 n

n2/2
2 xn1/2−1

(n2 + n1x)
−(n1+n2)/2γ(n1/2)γ(1 + n2/2)

L
n1
2 −1

n2/2

(
−λn1 x

2(n1x+n2)

)
B(n1/2, n2/2)γ

(
n1+n2

2

)
for n1, n2 > 0, λ ≥ 0. Here n1 is the degrees of freedom in the numerator, n2 the degrees
of freedom in the denominator, λ the non-centrality parameter, γ is the logarithm of the Gamma
function, Lk

n is a generalized Laguerre polynomial and B is the beta function.
ncf takes df1, df2 and nc as shape parameters. If nc=0, the distribution becomes equivalent to
the Fisher distribution.

• nct Non-central Student’s T (help). If Y is a standard normal random variable and V is an independent
chi-square random variable (chi2) with k degrees of freedom, then

X =
Y + c√
V /k

has a non-central Student’s t distribution on the real line. The degrees of freedom parameter k
(denoted df in the implementation) satisfies k > 0 and the noncentrality parameter c (denoted nc
in the implementation) is a real number.

• norm Normal (Gaussian) (help). The probability density function for norm is:

f(x) =
exp(−x2/2)√

2π

for a real number x.
• norminvgauss Normal Inverse Gaussian (help). The probability density function for norminvgauss is:

f(x, a, b) =
aK1(a

√
1 + x2)

π
√
1 + x2

exp(
√
a2 − b2 + bx)

where x is a real number, the parameter a is the tail heaviness and b is the asymmetry parameter
satisfying a > 0 and |b| <= a. K1 is the modified Bessel function of second kind (scipy.special.k1).

• pareto Pareto (help). The probability density function for pareto is:

f(x, b) =
b

xb+1

for x ≥ 1, b > 0.
pareto takes b as a shape parameter for b.

• pearson3 Pearson type III (help). The probability density function for pearson3 is:

f(x, κ) =
|β|
Γ(α)

(β(x− ζ))α−1 exp(−β(x− ζ))

394 Chapter 5. Technical Guides

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ncf.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nct.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norminvgauss.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pareto.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearson3.html

aggregate Documentation, Release 0.22.0

where:

β =
2

κ

α = β2 =
4

κ2

ζ = −α
β

= −β

Γ is the gamma function (scipy.special.gamma). Pass the skew κ into pearson3 as the shape param-
eter skew.

• powerlaw Power-function (help). The probability density function for powerlaw is:

f(x, a) = axa−1

for 0 ≤ x ≤ 1, a > 0.
powerlaw takes a as a shape parameter for a.

• powerlognorm Power log normal (help). The probability density function for powerlognorm is:

f(x, c, s) =
c

xs
ϕ(log(x)/s)(Φ(− log(x)/s))c−1

where ϕ is the normal pdf, and Φ is the normal cdf, and x > 0, s, c > 0.
powerlognorm takes c and s as shape parameters.

• powernorm Power normal (help). The probability density function for powernorm is:

f(x, c) = cϕ(x)(Φ(−x))c−1

where ϕ is the normal pdf, and Φ is the normal cdf, and x >= 0, c > 0.
powernorm takes c as a shape parameter for c.

• rdist R-distribution (help). The probability density function for rdist is:

f(x, c) =
(1− x2)c/2−1

B(1/2, c/2)

for −1 ≤ x ≤ 1, c > 0. rdist is also called the symmetric beta distribution: if B has a beta
distribution with parameters (c/2, c/2), then X = 2*B - 1 follows a R-distribution with parameter c.
rdist takes c as a shape parameter for c.
This distribution includes the following distribution kernels as special cases:

c = 2: uniform
c = 3: `semicircular`
c = 4: Epanechnikov (parabolic)
c = 6: quartic (biweight)
c = 8: triweight

• rayleigh Rayleigh (help). The probability density function for rayleigh is:

f(x) = x exp(−x2/2)

for x ≥ 0.
rayleigh is a special case of chi with df=2.

5.1. Probability Background 395

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powerlaw.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powerlognorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powernorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rdist.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rayleigh.html

aggregate Documentation, Release 0.22.0

• rice Rice (help). The probability density function for rice is:

f(x, b) = x exp(−x
2 + b2

2
)I0(xb)

for x >= 0, b > 0. I0 is the modified Bessel function of order zero (scipy.special.i0).
rice takes b as a shape parameter for b.

• recipinvgauss Reciprocal Inverse Gaussian (help). The probability density function for recipinvgauss
is:

f(x, µ) =
1√
2πx

exp
(
−(1− µx)2

2µ2x

)
for x ≥ 0.
recipinvgauss takes mu as a shape parameter for µ.

• semicircular Semicircular (help). The probability density function for semicircular is:

f(x) =
2

π

√
1− x2

for −1 ≤ x ≤ 1.
The distribution is a special case of rdist with c = 3.

• skewcauchy Skew Cauchy (help). The probability density function for skewcauchy is:

f(x) =
1

π
(

x2

(a sign(x)+1)2
+ 1
)

for a real number x and skewness parameter −1 < a < 1.
When a = 0, the distribution reduces to the usual Cauchy distribution.

• skewnorm Skew normal (help). The pdf is:

skewnorm.pdf(x, a) = 2 * norm.pdf(x) * norm.cdf(a*x)

skewnorm takes a real number a as a skewness parameter. When a = 0 the distribution is identical to a
normal distribution (norm).

• studentized_range (help). The probability density function for studentized_range is:

f(x; k, ν) =
k(k − 1)νν/2

Γ(ν/2)2ν/2−1

∫ ∞

0

∫ ∞

−∞
sνe−νs2/2ϕ(z)ϕ(sx+ z)[Φ(sx+ z)− Φ(z)]k−2 dz ds

for x≥0, k > 1, and ν > 0.
studentized_range takes k for k and df for ν as shape parameters.
When ν exceeds 100,000, an asymptotic approximation (infinite degrees of freedom) is used to
compute the cumulative distribution function.

• t Student’s T (help). The probability density function for t is:

396 Chapter 5. Technical Guides

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rice.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.recipinvgauss.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.semicircular.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewcauchy.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewnorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.studentized_range.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.t.html

aggregate Documentation, Release 0.22.0

f(x, ν) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

(1 + x2/ν)−(ν+1)/2

where x is a real number and the degrees of freedom parameter ν (denoted df in the implementa-
tion) satisfies ν > 0. Γ is the gamma function (scipy.special.gamma).

• trapezoid Trapezoidal (help). The trapezoidal distribution can be represented with an up-sloping line
from loc to (loc + c*scale), then constant to (loc + d*scale) and then downsloping from
(loc + d*scale) to (loc+scale). This defines the trapezoid base from loc to (loc+scale) and
the flat top from c to d proportional to the position along the base with 0 <= c <= d <= 1. When c=d,
this is equivalent to triang with the same values for loc, scale and c.
trapezoid takes c and d as shape parameters.

• triang Triangular (help). The triangular distribution can be represented with an up-sloping line from loc
to (loc + c*scale) and then downsloping for (loc + c*scale) to (loc + scale).
triang takes c as a shape parameter for c.

• truncexpon Truncated Exponential (help). The probability density function for truncexpon is:

f(x, b) =
exp(−x)

1− exp(−b)

for 0 <= x <= b.
truncexpon takes b as a shape parameter for b.

• truncnormTruncated Normal (help). The standard form of this distribution is a standard normal truncated
to the range [a, b] — notice that a and b are defined over the domain of the standard normal. To convert clip
values for a specific mean and standard deviation, use:

a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std

truncnorm takes a and b as shape parameters.
• tukeylambda Tukey-Lambda (help). A flexible distribution, able to represent and interpolate between the
following distributions:

– Cauchy (lambda = −1)
– logistic (lambda = 0)
– approx Normal (lambda = 0.14)
– uniform from -1 to 1 (lambda = 1)

tukeylambda takes a real number lambda (denoted lam in the implementation) as a shape param-
eter.

• uniform Uniform (help). a uniform continuous random variable
• vonmises Von-Mises (Circular) (help). The probability density function for vonmises and vonmises_line
is:

f(x, κ) =
exp(κ cos(x))

2πI0(κ)

for −π ≤ x ≤ π, κ > 0. I0 is the modified Bessel function of order zero (scipy.special.i0).
vonmises is a circular distribution which does not restrict the distribution to a fixed interval. Cur-
rently, there is no circular distribution framework in scipy. The cdf is implemented such that
cdf(x + 2*np.pi) == cdf(x) + 1.

5.1. Probability Background 397

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trapezoid.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.triang.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncexpon.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncnorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tukeylambda.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.uniform.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html

aggregate Documentation, Release 0.22.0

vonmises_line is the same distribution, defined on [−π, π] on the real line. This is a regular (i.e.
non-circular) distribution.
vonmises and vonmises_line take kappa as a shape parameter.

• vonmises_line (help). The probability density function for vonmises and vonmises_line is:

f(x, κ) =
exp(κ cos(x))

2πI0(κ)

for −π ≤ x ≤ π, κ > 0. I0 is the modified Bessel function of order zero (scipy.special.i0).
vonmises is a circular distribution which does not restrict the distribution to a fixed interval. Cur-
rently, there is no circular distribution framework in scipy. The cdf is implemented such that
cdf(x + 2*np.pi) == cdf(x) + 1.
vonmises_line is the same distribution, defined on [−π, π] on the real line. This is a regular (i.e.
non-circular) distribution.
vonmises and vonmises_line take kappa as a shape parameter.

• waldWald (help). The probability density function for wald is:

f(x) =
1√
2πx3

exp(− (x− 1)2

2x
)

for x >= 0.
wald is a special case of invgauss with mu=1.

• weibull_min (help). The probability density function for weibull_min is:

f(x, c) = cxc−1 exp(−xc)

for x > 0, c > 0.
weibull_min takes c as a shape parameter for c. (named k in Wikipedia article and a in numpy.
random.weibull). Special shape values are c = 1 and c = 2 where Weibull distribution
reduces to the expon and rayleigh distributions respectively.

• weibull_max (help). The probability density function for weibull_max is:

f(x, c) = c(−x)c−1 exp(−(−x)c)

for x < 0, c > 0.
weibull_max takes c as a shape parameter for c.

• wrapcauchyWrapped Cauchy (help). The probability density function for wrapcauchy is:

f(x, c) =
1− c2

2π(1 + c2 − 2c cos(x))

for 0 ≤ x ≤ 2π, 0 < c < 1.
wrapcauchy takes c as a shape parameter for c.

398 Chapter 5. Technical Guides

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises_line.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wald.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_max.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wrapcauchy.html

aggregate Documentation, Release 0.22.0

5.2 Quantiles and Related Risk Measures

Objectives: Definition and calculation of quantiles and related risk measures.
Audience: Readers interested in quantiles, VaR, and TVaR risk measures.
Prerequisites: Risk measures, probability.
See also: Insurance Probability.
Contents:

• Helpful References

• Quantiles

• Value at Risk

• The Failure of VaR to be Subadditive

• Tail VaR and Related Risk Measures

5.2.1 Helpful References

• Klugman et al. [2019]
• Mildenhall and Major [2022], Chapter 4
• Hyndman and Fan [1996]

5.2.2 Quantiles

A quantile function is inverse to the distribution function F (x) := Pr(X ≤ x). For each 0 < p < 1, it solves
F (x) = p for x, answering the question,

which x has non-exceedance probability equal to p?
Or, said another way,

which x has exceedance probability equal to 1− p?
When the distribution function is continuous and strictly increasing there is a unique such x. It is called the p-quantile,
and is denoted q(p). The resulting function q(p) = F−1(p) is called the quantile function; it satisfies F (q(p)) = p.
Two issues arise when defining quantiles.

1. The equation F (x) = p may fail to have a unique solution when F is not strictly increasing. This can occur
for any F . Is corresponds to a range of outcome values with probability zero.

2. When F is not continuous, the equation F (x) = p may have no solution: F can jump from below p to above
p. Simulation and catastrophe models, and all discrete random variables have discontinuous distributions.

Example.
Here’s an example of the problems that can occur.

In [1]: from aggregate.extensions.pir_figures import fig_4_1

In [2]: fig = fig_4_1()

5.2. Quantiles and Related Risk Measures 399

aggregate Documentation, Release 0.22.0

The distribution F has a flat spot between 0.9 and 1.5 at height p = 0.417. At x = 1.5 it jumps up to p = 0.791.
The “inverse” to F at p = 0.417 could be any value between 0.9 and 1.5—illustrated by the lower green horizontal
dashed line. The inverse at any value 0.417 < p < 0.791 does not exist because there is no p so that F (p) = 0.6.
However, any rational person looking at the graph would agree that the answer must be x = 1.5, where the black
dashed line intersects the vertical line x = 1.5.
When F is not continuous and F (x) = p has no solution because p lies is within a jump, we can still find an x so
that

Pr(X < x) ≤ p ≤ Pr(X ≤ x).

Pr(X < x) equals the height of F at the bottom of the jump and Pr(X ≤ x) at the top. Turning this around, we can
also say Pr(X ≥ x) ≥ 1−p ≥ Pr(X > x). At a p with no jump, Pr(X = x) = 0, Pr(X < x) = p = Pr(X ≤ x),
and we have a well defined inverse, as the lower line at p = 0.283 illustrates.
The vertical segment at x = 1.5 between p = 0.417 and p = 0.791 is not strictly a part of F ’s graph, because
a function must associate a unique value to each x in its domain. However, filling in the vertical segment makes it
easier to locate inverse values by finding the graph’s intersection with the horizontal line at p and is recommended in
Rockafellar and Royset [2014]. Mentally, you should always fill in jumps in this way, treating the added segment as
part of the graph.

Definition. Let X be a random variable with distribution function F and 0 < p < 1. Any x satisfying

Pr(X < x) ≤ p ≤ Pr(X ≤ x)

is a p quantile of X . Any function q(p) satisfying

Pr(X < q(p)) ≤ p ≤ Pr(X ≤ q(p))

for 0 < p < 1 is a quantile function of X .
Exercise. What are the 0.1 and 1/6 quantiles for the outcomes of the fair roll of a 6-sided die?
Solution. There are six outcomes {1, 2, 3, 4, 5, 6} each with probability 1/6. The distribution function jumps at
each outcome.

1. For p = 0.1 we seek x so that Pr(X < x) ≤ 0.1 ≤ Pr(X ≤ x). We know 0 = Pr(X < 1) < Pr(X ≤ 1) =
1/6 and therefore q(0.1) = 1. It is good to rule out other possible values. If x < 1 then Pr(X ≤ x) = 0 and
if x > 1 then Pr(X < x) ≥ 1/6, showing neither alternative satisfies the definition of a quantile.

2. For p = 1/6 we seek x so that Pr(X < x) ≤ 1/6 ≤ Pr(X ≤ x), which is satisfied by any 1 ≤ x ≤ 2. If we
pick x = 1 then 0 = Pr(X < 1) < 1/6 = Pr(X ≤ 1). If we pick 1 < x < 2 then Pr(X < x) = 1/6 =
Pr(X ≤ x). If x = 2 then Pr(X < 2) = 1/6 < Pr(X ≤ 2) = 1/3.

Since the distribution and quantile functions are inverse, their graphs are reflections of one another in a 45-degree
line through the origin. The distribution function is continuous from the right, hence the location of the probability
masses indicated by the circles.
Define

• The lower quantile function q−(p) := sup {x | F (x) < p} = inf {x | F (x) ≥ p}, and

400 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

• The upper quantile function q+(p) := sup {x | F (x) ≤ p} = inf {x | F (x) > p}.
The lower and upper quantiles both satisfy the requirements to be a quantile function. The lower quantile is left
continuous. The upper quantile is right continuous. When the quantile is not unique, it lies between the lower and
upper values.

5.2.3 Value at Risk

When a quantile is used as a risk measure it is called Value at Risk (VaR): VaRp(X) := q−(p) = inf {x | F (x) ≥
p}.
Thus l is VaRp(X) if it is the smallest loss such that the probability X ≤ l is ≥ p. This is sometimes phrased: the
smallest loss so that X ≤ l with confidence at least p. Smallest loss allows for the case F is flat at p. Probability ≥ p
allows for jumps in F .
VaR has several advantages. It is simple to explain, can be estimated robustly, and is always finite. It is widely used by
regulators, rating agencies, and companies in their internal risk management. Its principal disadvantage is its failure
to be subadditive.

5.2.4 The Failure of VaR to be Subadditive

It is easy to create simple discrete examples where VaR fails to be subadditive, for example:

Event Prob F X1 X2 X

1 0.98 0.98 0 0 0
2 0.01 0.99 1000 100 1100
3 0.01 1.00 150 1100 1250

X1 has 0.99 VaR 150 and X2 has 0.99 VaR 100 but X has 0.99 VaR 1100.
More interesting, 0.7-VaR applied to the sum of two independent exponential distributions is not subadditive, but
0.95-VaR is.

In [3]: from aggregate import build, qd

In [4]: import pandas as pd

In [5]: p = build('port NotSA '
...: 'agg A dfreq [1] sev 1 * expon '
...: 'agg B dfreq [1] sev 1 * expon')
...:

In [6]: ans = p.var_dict(0.7)

In [7]: ans['sum'] = ans['A'] + ans['B']

In [8]: ans2 = p.var_dict(0.95)

In [9]: ans2['sum'] = ans2['A'] + ans2['B']

In [10]: pd.DataFrame([ans, ans2], index=pd.Index(['0.70', '0.95'], name='p'))
Out[10]:

A B total sum
p
0.70 1.204 1.204 2.439 2.408
0.95 2.996 2.996 4.744 5.992

The function var_dict returns the VaR of each unit in p and the total. The total VaR is greater than the sum of
the parts. Subadditivity requires total VaR be less than or equal to the sum of the parts.

5.2. Quantiles and Related Risk Measures 401

aggregate Documentation, Release 0.22.0

5.2.5 Tail VaR and Related Risk Measures

Tail value at risk (TVaR) is the conditional average of the worst 1 − p outcomes. Let X be a loss random variable
and 0 ≤ p < 1. Then p-Tail Value at Risk is given by

TVaRp(X) : =
1

1− p

∫ 1

p

VaRs(X) ds

=
1

1− p

∫ 1

p

q−(s) ds.

In particular TVaR0(X) = E[X]. When p = 1, TVaR1(X) is defined to be sup(X) if X is unbounded.
TVaR is defined in terms of q−, that is, dual implicit events. The actual sample space on which X is defined is not
used. Recall, VaRp(X) refers to the lower quantile q−(p).
TVaR is a well behaved function of p. It is continuous, differentiable almost everywhere, and equal to the integral of
its derivative (fundamental theorem of calculus). It takes every value between E[X] and supX . TVaR has a kink at
jumps in F and is differentiable elsewhere.

Algorithm to Evaluate TVaR for a Discrete Distribution

Algorithm Input: X is a discrete random variable, taking N equally likely values Xj ≥ 0, j = 0, . . . , N − 1.
Probability level p.
Follow these steps to determine TVaRp(X).
Algorithm Steps
(1) Sort outcomes into ascending order X0 < · · · < XN−1.
(2) Find n so that n ≤ pN < (n+ 1).
(3) If n+ 1 = N then TVaRp(X) := XN−1 is the largest observation, exit;
(4) Else n < N − 1 and continue.
(5) Compute T1 := Xn+1 + · · ·+XN−1.
(6) Compute T2 := ((n+ 1)− pN)xn.
(7) Compute TVaRp(X) := (1− p)−1(T1 + T2)/N .

These steps compute the average of the largest N(1 − p) observations. Step (6) adds a pro-rata portion of the
bN(1 − p)c largest observation when N(1 − p) is not an integer. For instance, if N = 71 and p = 0.95, then
Np = 67.45 and n = 67, giving TVaRp = 20(0.55x67 + x68 + x69 + x70)/71.
Example.
LetX be defined on a sample space with ten equally likely events and outcomes 0, 1, 1, 1, 2, 3, 4, 8, 12, 25. Compute
TVaRp(X) for all p. Is it a piecewise linear function?
Solution. For p ≥ 0.9, q(p) = 25 and TVaRp(X) = 25. For 0.8 ≥ p < 0.9

(1− p)TVaRp(X) =

∫ 1

p

q−(s)ds

=

∫ 0.9

p

q−(s)ds+

∫ 1

0.9

q−(s)ds

= (0.9− p)× 12 + (1− 0.9)× TVaR0.9(X),

for 0.7 ≥ p < 0.8

(1− p)TVaRp(X) = (0.8− p)× 8 + (1− 0.8)× TVaR0.8(X),

and so forth. The TVaR function is shown below. TVaR is not piecewise linear. For example, for 0.8 ≤ p < 0.9,
TVaRp(X) = (12(0.9− p) + 2.5)/(1− p).

402 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

The default aggregate TVaR function ignores this slight non-linearity and just interpolates. To get a more exact answer
use kind='tail'. The difference is illustrated on the left in the next figure.

In [11]: from aggregate.extensions.pir_figures import fig_4_8

In [12]: fig_4_8()

CTE, and WCE: Alternatives to TVaR

There are two other risk measures (confusingly) similar to TVaR.
1. Tail value at risk (TVaR) is the conditional average of the worst 1− p outcomes.
2. Conditional tail expectation (CTE) refers to the conditional expectation of X over X ≥ VaRp(X).
3. Worst conditional expectation (WCE) refers to the greatest expected value of X conditional on a set of

probability > 1− p.
The formal definitions of CTE and WCE are as follows. Let X be a loss random variable and 0 ≤ p < 1.

• CTEp(X) := E[X | X ≥ VaRp(X)] (lower) conditional tail expectation (TCE).
• The upper CTE equals E[X | X ≥ q+(p)].
• WCEp(X) := sup {E[X | A] | Pr(A) > 1− p} is the worst conditional expectation.

Like TVaR, CTE is defined in terms of quantiles, and the sample space on whichX is defined is not used. In contrast,
WCE works with the original sample space and relies on its events. Some actuarial papers refer to CTE as tail value
at risk, e.g., Bodoff [2007].
For continuous random variables TVaR, CTE, andWCE are all equal, and they are easy to compute. The distinctions
between them arise for discrete and mixed variables when p coincides with a mass point.

Expected Policyholder Deficit

The expected policyholder deficit EPD when a riskX is supported by assets a equals E[(X−a)+], the unconditional
excess loss cost. The insurer defaults on the EPD amount.
The EPD ratio is defined as the ratio of the EPD to expected losses. It gives the proportion of losses that are unpaid
when X is supported by assets a.
Example.
We can use the EPD to define a tail risk measure that is analogous to VaR and TVaR. Define the EPD risk measure
EPDs(X) to be the amount of assets resulting in an EPD ratio of 0 < s < 1, i.e., solving

E[(X − EPDp(X))+] = sE[X].

5.2. Quantiles and Related Risk Measures 403

aggregate Documentation, Release 0.22.0

The EPD risk measure is a stricter standard for smaller s. It accounts for the degree of default relative to promised
payments, making it attractive to regulators. It is used to set risk based capital standards in Butsic [1994] and as a
capital standard in Myers and Read Jr. [2001].
EPD is available in aggregate as the epd column in density_df.

5.3 Insurance Probability

Objectives: AEP and OEP points; theory of the insurance charge; adjusting severity distributions to achieve selected
loss picks by layer in an excess of loss program; theory of the Tweedie distribution; when is severity relevant?
Audience: Actuaries at the Associate or Fellow level.
Prerequisites: Individual risk and retro rating; GLM modeling; Tweedie distributions.
See also: Individual Risk Pricing, Reinsurance Pricing, The tweedie Keyword.
Contents.

• q aep oep
• ir stop loss
• Adjusting Layer Loss Picks

• 2_x_tweedie
• Excess Frequency Distributions

• p sev irrel

5.3.1 Helpful References

• Klugman et al. [2019]
• Panjer and Willmot [1992]
• Mildenhall and Major [2022]
• Woo [2002]

5.3.2 Occurrence and Aggregate Probable Maximal Loss

Probable maximal loss (PML)

Probable maximal loss or PML and the relatedmaximum foreseeable loss (MFL) originated in fire underwriting
in the early 1900s. The PML estimates the largest loss that a building is likely to suffer from a single fire if all critical
protection systems function as expected. The MFL estimates the largest fire loss likely to occur if loss-suppression
systems fail. For a large office building, the PML could be a total loss to 4 to 6 floors, and the MFL could be a total
loss within four walls, assuming a single structure burns down. McGuinness [1969] discusses PMLs.
Today, PML is used to quantify potential catastrophe losses. Catastrophe risk is typically managed using reinsurance
purchased on an occurrence basis and covering all losses from a single event. Therefore insurers are interested in
the annual frequency of events greater than an attachment threshold, leading to the occurrence PML, now known as
occurrence exceeding probabilities.

404 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Occurrence Exceeding Probability (OEP)

To describe occurrence PMLs, we need to specify the stochastic model used to generate events. It is standard to
use a homogeneous Poisson process, with a constant event intensity λ per year. The number of events in time t has
a Poisson distribution with mean λt. If X is the severity distribution (size of loss conditional on an event) then the
number of events per year above size x has Poisson distribution with mean λS(x). Therefore the probability of one
or more events causing loss x or more is 1 minus the probability that a Poisson(λS(x)) random variable equals zero,
which equals 1 − e−λS(x). The n year occurrence PML, PMLn,λ(X) = PMLn,λ, is the smallest loss x so that
the probability of one or more events causing a loss of x or more in a year is at least 1/n. It can be determined by
solving 1− e−λS(PMLn,λ) = 1/n, giving

S(PMLn,λ) =
1

λ
log
(

n

n− 1

)
=⇒ PMLn,λ = qX

(
1− 1

λ
log
(

n

n− 1

))
(if S(x) = s then F (x) = 1 − s and x = qX(1 − s) = VaR1−s(X)). Thus, the occurrence PML is a quantile of
severity at an adjusted probability level, where the adjustment depends on λ.
Converting to non-exceedance probabilities, if p = 1 − 1/n (close to 1) then n/(n − 1) = 1/p and we obtain a
relationship between the occurrence PML and severity VaR:

PMLn,λ = qX

(
1 +

log(p)
λ

)
= VaR1+log(p)/λ(X)

Catastrophe models output a sample of N loss events, each with an associated annual frequency λi and an expected
loss xi, i = 1, . . . , N . Each event is assumed to have a Poisson occurrence frequency distribution. The associated
severity distribution is concentrated on the set {x1, . . . , xN} with Pr(X = xi) = λi/λ, where λ =

∑
i λi is the

expected annual event frequency. It is customary to fit or smooth X to get a continuous distribution, resulting in
unique quantiles.

Return Periods

VaR points are often quoted by return period, such as a 100 or 250 year loss, rather than by probability level. By
definition, the exceedance probability Pr(X > VaRp(X)) of p-VaR is less than or equal to 1− p, meaning at most
a 1 − p probability per year. If years are independent, then the average waiting time to an exceedance is at least
1/(1− p). (The waiting time has a geometric distribution, with parameter p. Let q = 1− p. The average wait time
is q + 2pq + 3p2q + · · · = q(1 + 2p+ 3p2 + · · ·) = 1/q.)
Standard return periods and their probability representation are shown below.

VaR threshold Exceedance probability Return Period Applications
p 1− p 1/(1− p)
0.99 0.01 100 years
0.995 0.005 200 years Solvency 2
0.996 0.004 250 years AM Best, S&P, RBC
0.999 0.001 1,000 years

In a Poisson model, the waiting time between events with a frequency of λ has an exponential distribution with mean
1/λ. Thus, an event with frequency 0.01 is often quoted as having a 100 year return period. Notice, however, the
distinction between the chances of no events in a year and the waiting time until the next event. If λ is large, say
12 (one event per month on average), the chances of no events in a year equals exp(−12) = 6.1 × 10−6 is vs. a
one-month return period. For small λ there is very little difference between the two since the probability of one or
more events equals 1− exp(−λ) ≈ λ.
To reiterate the definition above, when X represents aggregate annual losses, the statement x = VaR0.99(X), p =
0.99 means

• x is the smallest loss for which X ≤ x with an annual probability of at least 0.99, or
• x is the smallest loss with an annual probability at most 0.01 of being exceeded.

5.3. Insurance Probability 405

aggregate Documentation, Release 0.22.0

Aggregate Exceeding Probability (AEP)

Severity VaR (quantile) and occurrence PML are distinct but related concepts. However, aggregate PML or aggre-
gate exceeding probability is often used as a synonym for aggregate VaR, i.e., VaR of the aggregate loss distribution..
LetA equal the annual aggregate loss random variable. A has a compound Poisson distribution with expected annual
frequency λ and severity random variable X . X is usually thick tailed. Then, as we explain shortly,

VaRp(A) ≈ VaR1−(1−p)/λ(X).

This equation is a relationship between aggregate and severity VaRs.
We can sometimes estimate aggregate VaRs in terms of occurrence PMLs with no simulation. For large n and a thick
tailed X occurrence PMLs and aggregate VaRs contain the same information—there is not more information in the
aggregate, as is sometimes suggested. The approximation follows from the equation

Pr(X1 + · · ·+Xn > x)→ nPr(X > x) as x→∞

for all n, which holds whenX is sufficiently thick tailed. See Embrechts et al. [1997], Corollary 1.3.2 for the details.

5.3.3 Self-Insurance Plan Stop-Loss Insurance

Self-insurance plans often purchase per occurrence (specific) insurance, to limit the amount from any one loss that
flows into the plan, and aggregate stop-loss insurance, to limit their aggregate liability over all occurrences in a year.
Retro rating plans need to estimate the insurance charge for the aggregate cover. It is a function of the expected
loss, the specific loss limit, and the aggregate retention. They sometimes also want to know the insurance savings,
a credit for losses below a minimum. Tables tabulating insurance savings and charges are called Table L (California)
or Table M (rest of the US). The two differ in the denominator: limited or unlimited losses.
LetX denote unlimited severity,N annual frequency, l the occurrence limit and a the aggregate retention of limited
losses. The distribution of gross aggregate losses is given by

Ag := X1 + · · ·+XN .

Aggregate losses retained by the plan, reflecting the specific but not the aggregate insurance, are a function of l and
n := E[N] the expected ground-up claim count, with distribution

A(n, l) := (X1 ∧ l) + · · ·+ (XN ∧ l).

Aggregate limits are expressed in terms of the entry ratio r, which we define as the ratio

r =
a

E[A(n, l)]
of the aggregate limit to expected losses net of specific insurance. Therefore, the aggregate retention equals

a = rE[A(n, l)] = rnE[X1 ∧ l].

The insurance charge

ϕ(r) : =
E
[
A(n, l)1A(n,l)>rE[A(n,l)]

]
E[A(n, l)]

=
E [A(n, l) | A(n, l) > rE[A(n, l)]S(n,l)(rE[A(n, l)])

E[A(n, l)]
where S(n,l)(·) is the survival function of A(n, l). The aggregate protection loss cost equals ϕ(r)E[A(n, l)]. The
insurance savings equals

ψ(r) : =
E
[
A(n, l)1A(n,l)≤rE[A(n,l)]

]
E[A(n, l)]

=
E [A(n, l) | A(n, l) ≤ rE[A(n, l)]FA(n,l)(rE[A(n, l)])

E[A(n, l)] .

406 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

where F(n,l)(·) is the cdf of A(n, l).
With this notation, a retro programwithmaximum entry ratio r1 andminimum r0 has a net insurance charge (ignoring
expenses and the loss conversion factor) equal to

(ϕ(r1)− ψ(r0))nE[X1 ∧ l].

The charge and savings are illustrated below. Losses are scaled by expected (limited) losses in the figure and so the
area under the blue curve equal 1. The graph is the Lee diagram, plotting x against F (x).

In [1]: from aggregate.extensions.figures import savings_charge

In [2]: savings_charge();

The figure makes the put-call parity relationship, savings plus 1 equals entry plus charge obvious:

ψ(r) + 1 = r + ϕ(r).

Remember r is the area under the horizontal line because the width of the plot equals 1. Taking r = 1 in put-call
parity shows that ψ(1) = ϕ(1): at expected losses, the savings equals the charge.

5.3.4 Adjusting Layer Loss Picks

Reinsurance actuaries apply experience and exposure rating to excess of loss programs. Experience rating trends and
develops layer losses to estimate loss costs. Exposure rating starts with a (ground-up) severity curve. In the US, these
are often published by a rating agency (ISO, NCCI). It then applies a limit profit and uses difference of ILFs with a
ground up loss ratio to estimate layer losses. The actuary then selects a loss cost by layer based on the two methods.
When the selection is different from the exposure rate, the actuary no longer has a well-defined stochastic model for
the business. In this section we show how to adjust the severity curve to match the selected loss picks by layer. The
adjusted curve can then be used in a stochastic model that will replicate the layer loss selections.
Layer severity equals the integral of the survival function and layer expected losses equals layer frequency times
severity. The easiest way to adjust a single layer is to scale the frequency. The simple approach fails when there
are multiple layers because higher layer frequency impacts lower layers. We are led to adjust the survival function
in each layer to hit the all selected layer loss picks. The method described next creates a legitimate, non-increasing
survival function and retains its continuity properties whenever possible. It is easy to select inconsistent layer losses
which produces negative probabilities or values greater than 1. When such inconsistencies occur the selections must
be altered.
Here is the layer adjustment process. Adjustments to higher layers impact all lower layers because they change the
probability of limit losses. The approach is to start from the top-most layer, figure its adjustment, and then take the
impact of that adjustment into account on the next layer down, and so forth. The adjusted severity curve to maintain
the shape of the curve and it continuity properties, conditional on a loss in each layer.
To make these ideas rigorous requires a surprising amount of notation. Define

5.3. Insurance Probability 407

aggregate Documentation, Release 0.22.0

• Specify layer attachment points 0 = a0 < a1 < a2 < · · · < an and corresponding layer limits yi = ai−ai−1

for i = 1, 2, . . . , n. The layers are li excess ai−1.
• li = LEV(ai)−LEV(ai−1) =

∫ ai

ai−1
S(x)dx = E[(X−ai−1)

+∧yi] equals the unconditional expected layer
loss (per ground-up claim).

• pi = Pr(ai−1 < X ≤ ai) = S(ai−1)−S(ai) equals the probability of a loss in the layer, excluding the mass
at the limit.

• ei = yiS(ai) equals the part of li from full limit losses.
• fi = ai−1pi

• mi =
∫ ai

ai−1
xdF (x)− fi =

∫ ai

ai−1
(x− ai−1)dF (x) = li − ei equals the part of li from losses in the layer.

• ti are selected unconditional expected losses by layer. ti = li results in no adjustment. ti is computed by
dividing the layer loss pick by the expected number of ground-up claims.

Integration by parts gives ∫ ai

ai−1

S(x)dx = xS(x)
∣∣ai

ai−1
+

∫ ai

ai−1

xdF (x)

= aiS(ai) +

∫ ai

ai−1

(x− ai−1)dF (x)

= ei +mi.

These quantities are illustrated in the next figure.

In [1]: from aggregate.extensions.figures import adjusting_layer_losses

In [2]: adjusting_layer_losses();

There is no adjustment to S for x ≥ an. In the top layer, adjust to S̃(x) = S(an) + wn(S(x)− S(an)), so

tn =

∫ an

an−1

S̃(x)dx

= S(an)yn + wn(ln − en)
= ωnyn + wnmn

=⇒ wn =
tn − ωnyn

mn
,

where ωn = S(an). Set ωi = ωi+1 + wi+1pi+1 and S̃(x) = ωi + wn(S(x) − S(an)) in the ith layer. We can
compute all the weights by proceeding down the tower:

ti =

∫ ai

ai−1

S̃(x)dx

= ωiyi + wi(li − ei)

=⇒ wi =
ti − ωiyi
mi

.

408 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

S̃ is continuous is S is because of the definition of ω at the layer boundaries. When x = ai−1, S̃(ai−1) = ωi +
wi(S(ai−1)− S(ai)) = ωi + wipi = ωi=1.
The function utilities.picks_work computes the adjusted severity. In debug mode, it returns useful layer
information. A severity can be adjusted on-the-fly by Aggregate using the picks keyword after the severity
specification and before any occurrence reinsurance.

5.3.5 The Tweedie Distribution

The Tweedie distribution is a Poisson mixture of gammas. It is an exponential family distribution [Jørgensen, 1997].
Tweedie distributions are a suitable model for pure premiums and are used as unit distributions in GLMs [McCullagh
and Nelder, 2019]. Tweedie distributions do not have a closed form density, but estimating the density is easy using
aggregate.
The Tweedie family of distributions is a three-parameter exponential family. A variable X ∼ Twp(µ, σ

2) when
E[X] = µ and Var(X) = σ2µp, 1 ≤ p ≤ 2. p is a shape parameter and σ2 > 0 is a scale parameter called the
dispersion.
A Tweedie with 1 < p < 2 is a compound Poisson distribution with gamma distributed severities. The limit when
p = 1 is an over-dispersed Poisson and when p = 2 is a gamma. More generally: Tw0(µ, σ

2) is normal (µ, σ2),
Tw1(µ, σ

2) is over-dispersed Poisson σ2Po(µ/σ2), and Tw2(µ, σ
2) is a gamma with CV σ.

Let Ga(α, β) denote a gamma with shape α and scale β, with density f(x;α, β) = xα − e−x/β/βαxΓ(α). It has
mean αβ, variance αβ2, expected square α(α+1)β and coefficient of variation 1/√α. We can define an alternative
parameterization Tw∗(λ, α, β) = CP(λ, (Ga(α, β)) as a compound Poisson of gammas, with expected frequency
λ.
The dictionary between the two parameterizations relies on the relation between the two shape parameters α and p
given by

α =
2− p
p− 1

, p =
2 + α

1 + α
.

Starting from Twp(µ, σ
2): λ =

µ2−p

(2− p)σ2
and β =

µ1−p

(p− 1)σ2
= µ/λα

Starting from Tw∗(λ, α, β): µ = λαβ and σ2 = λα(α+ 1)/(β2µp), by equating expressions for the variance.
It is easy to convert from the gamma meanm and CV ν to α = 1/ν2 and β = m/α. Remember, scipy.stats
scale equals β.
Tweedie distributions are mixed: they have a probability mass of p0 = e−λ at 0 and are continuous on (0,∞).
Jørgensen calls Tw(λ, α, β) the additive form of the model because

∑
i

Tw(λi, α, β) = Tw
(∑

i

λi, α, β

)
.

He calls Twp(µ, σ) the reproductive exponential dispersion model. If Xi ∼ Twp(µ, σ/wi) then

1

w

∑
i

wiXi ∼ Twp

(
µ,
σ2

w

)
where w =

∑
i wi. The weights wi represents volume in cell i andXi represents the pure premium. The sum on the

left represents the total pure premium.
The next diagram shows how the Tweedie family fits within the broader power variance exponential family of distri-
butions. See the blog post The Tweedie-Power Variance Function Family for more details.

In [1]: from aggregate.extensions.figures import power_variance_family

In [2]: power_variance_family()

5.3. Insurance Probability 409

https://www.mynl.com/blog?id=c9a74f2055686bb2c250c4fc4f627a89

aggregate Documentation, Release 0.22.0

5.3.6 Excess Frequency Distributions

Given a ground-up claim count distribution N , what is the distribution of the number of claims exceeding a certain
threshold? We assume that severities are independent and identically distributed and that the probability of exceeding
the threshold is q. Define an indicator variable I which takes value 0 if the claim is below the threshold and the value
1 if it exceeds the threshold. Thus Pr(I = 0) = p = 1− q and Pr(I = 1) = q. LetMN be the moment generating
function of N and N ′ is the number of claims in excess of the threshold. By definition we can express N ′ as an
aggregate

N ′ = I1 + · · ·+ IN .

Thus the moment generating function of N ′ is

MN ′(ζ) =MN (log(MI(ζ)))

=MN (log(p+ qeζ))

Using indicator variables I is called p-thinning by Grandell [1997].
Here are some examples.
Let N be Poisson with mean n. Then

MN ′(ζ) = exp(n(p+ qeζ − 1)) = exp(qn(eζ − 1))

so N ′ is also Poisson with mean qn—the simplest possible result.
Next let N be a G-mixed Poisson. Thus

MN ′(ζ) =MN (log(p+ qeζ))

=MG(n(p+ qeζ − 1))

=MG(nq(e
ζ − 1)).

410 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Hence N ′ is also a G-mixed Poisson with lower underlying claim count nq in place of n.
In particular, if N has a negative binomial with parameters P and c (mean cP , Q = 1 + P , moment generating
function MN (ζ) = (Q − Peζ)−1/c), then N ′ has parameters qP and c. If N has a Poisson-inverse Gaussian
distribution with parameters µ and β, so

MN (ζ) = exp
(
−µ(

√
1 + 2β(eζ − 1)− 1)

)
,

then N is also Poisson inverse Gaussian with parameters µq and βq.
In all cases the variance of N ′ is lower than the variance of N and N ′ is closer to Poisson than N in the sense that
the variance to mean ratio has decreased. For the general G-mixed Poisson the ratio of variance to mean decreases
from 1+cn to 1+cqn. As q → 0 the variance to mean ratio approaches 1 andN ′ approaches a Poisson distribution.
The fact that N ′ becomes Poisson is called the law of small numbers.

5.3.7 When Is Severity Irrelevant?

In some cases the actual form of the severity distribution is essentially irrelevant to the shape of the aggregate distri-
bution. Consider an aggregate with aG-mixed Poisson frequency distribution. If the expected claim count n is large
and if the severity is tame (roughly tame means bounded or has a log concave density; a policy with a limit has a tame
severity; unlimited workers compensation or cat losses may not be tame) then particulars of the severity distribution
diversify away in the aggregate. Moreover, the variability from the Poisson claim count component also diversifies
away, and the shape of the aggregate distribution converges to the shape of the frequency mixing distributionG. An-
other way of saying the same thing is that the normalized distribution of aggregate losses (aggregate losses divided
by expected aggregate losses) converges in distribution to G.
We can prove these assertions using moment generating functions. Let Xn be a sequence of random variables with
distribution functions Fn and let X another random variable with distribution F . If Fn(x) → F (x) as n → ∞ for
every point of continuity of F then we say Fn converges weakly to F and that Xn converges in distribution to F .
Convergence in distribution is a relatively weak form of convergence. A stronger form is convergence in probability,
which means for all ϵ > 0 Pr(|Xn −X| > ϵ) → 0 as n → ∞. If Xn converges to X in probability then Xn also
converges to X in distribution. The converse is false. For example, let Xn = Y and X = 1 − Y be binomial 0/1
random variables with Pr(Y = 1) = Pr(X = 1) = 1/2. Then Xn converges to X in distribution. However, since
Pr(|X − Y | = 1) = 1, Xn does not converge to X in probability.
It is a fact thatXn converges toX if theMGFsMn ofXn converge to theMFG ofM ofX for all t: Mn(t)→M(t)
as n→∞. See Feller [1971] for more details. We can now prove the following result.
Proposition. Let N be a G-mixed Poisson distribution with mean n, G with mean 1 and variance c, and let X be
an independent severity with mean x and variance x(1 + γ2). Let A = X1 + · · · + XN and a = nx. Then A/a
converges in distribution to G, so

Pr(A/a < α)→ Pr(G < α)

as n→∞. Hence

σ(A/a) =

√
c+

x(1 + γ2)

a
→
√
c.

Proof. We know

MA(ζ) =MG(n(MX(ζ)− 1))

and so using Taylor’s expansion we can write
lim

n→∞
MA/a(ζ) = lim

n→∞
MA(ζ/a)

= lim
n→∞

MG(n(MX(ζ/nx)− 1))

= lim
n→∞

MG(n(M
′
X(0)ζ/nx+R(ζ/nx)))

= lim
n→∞

MG(ζ + nR(ζ/nx)))

=MG(ζ)

5.3. Insurance Probability 411

aggregate Documentation, Release 0.22.0

for some remainder function R(t) = O(t2). Note that the assumptions on the mean and variance of X guarantee
M ′

X(0) = x = E[X] and that the remainder term in Taylor’s expansion actually is O(t2). The second part is trivial.
The proposition implies that if the frequency distribution is actually a Poisson, so the mixing distributionG = 1 with
probability 1, then the loss ratio distribution of a very large book will tend to the distribution concentrated at the
expected, hence the expression that “with no parameter risk the process risk completely diversifies away.”
The next figure illustrate the proposition, showing how aggregates change shape as expected counts increase.

In [1]: from aggregate.extensions import mixing_convergence

In [2]: mixing_convergence(0.25, 0.5)

On the top, G = 1 and the claim count is Poisson. Here the scaled distributions get more and more concentrated
about the expected value (scaled to 1.0). Notice that the density peaks (left) are getting further apart as the claim
count increases. The distribution (right) is converging to a Dirac delta step function at 1.
On the bottom, G has a gamma distribution with variance 0.0625 (asymptotic CV of 25%). The density peaks are
getting closer, converging to the mixing gamma. The scaled aggregate distributions converge to G (thick line, right).
It is also interesting to compute the correlation between A and G. We have

cov(A,G) = E[AG]− E[A]E[G]
= EE[AG | G]− nx
= E[nxG2]− nx
= nxc,

and therefore

corr(A,G) = nxc/
√
nxγ + n(1 + cn)

√
c→ 1

as n→∞.
The proposition shows that in some situations severity is irrelevant to large books of business. However, it is easy to
think of examples where severity is very important, even for large books of business. For example, severity becomes
important in excess of loss reinsurance when it is not clear whether a loss distribution effectively exposes an excess
layer. There, the difference in severity curves can amount to the difference between substantial loss exposure and
none. The proposition does not say that any uncertainty surrounding the severity distribution diversifies away; it is
only true when the severity distribution is known with certainty. As is often the case with risk management metrics,
great care needs to be taken when applying general statements to particular situations!

412 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

5.4 Numerical Methods and FFT Convolution

Objectives: Describe the numerical distribution representation and FFT convolution algorithm that underlie all
computations in aggregate.
Audience: User who wants a detailed understanding of the computational algorithms, potential errors, options, and
parameters.
Prerequisites: Probability theory and aggregate distributions; complex numbers and matrix multiplication; numer-
ical analysis, especially numerical integration; basics of Fourier transforms and series helpful.
See also: User Guides.
Contents:

• Helpful References

• Overview

• Digital Representation of Distributions

• Fourier Transform Convolution Algorithm

• Floating Point Arithmetic and Rounding Errors

5.4.1 Helpful References

Actuarial and operational risk books and papers
• Gerber [1982]
• Bühlmann [1984]
• Embrechts et al. [1993]
• Wang [1998]
• Grübel and Hermesmeier [1999]
• Mildenhall [2005]
• Schaller and Temnov [2008]
• Kaas et al. [2008]
• Embrechts and Frei [2009]
• Shevchenko [2010]

Books on probability covering characteristic functions, t 7→ E[eitX]

• Loeve [1955]
• Feller [1971]
• Lukacs [1970]
• Billingsley [1986]
• Malliavin et al. [1995]
• McKean [2014]

Books on Fourier analysis and Fourier transforms, t 7→ E[e−2πitX], the same concept with slightly different notation.
Malliavin is a sophisticated treatment of both Fourier analysis and probability.

• Stein and Weiss [1971]
• Stein and Shakarchi [2011]
• Strang [1986]

5.4. Numerical Methods and FFT Convolution 413

aggregate Documentation, Release 0.22.0

• Terras [2013]
• Körner [2022]

5.4.2 Overview

A Trilemma

Numerical analysts face a trilemma: they can pick two of fast, accurate, or flexible. Simulation is flexible, but trades
speed against accuracy. Fewer simulations is faster but less accurate; many simulations improves accuracy at the cost
of speed. aggregate delivers the third trilemma option using a fast Fourier transform (FFT) convolution algorithm
to deliver speed and accuracy but with less flexibility than simulation.

The aggregate Convolution Algorithm

Complaint It is the most natural thing in the world to decompose an oscillating electrical signal into
sines and cosines of various frequencies via the Fourier transform - but probabilities, no. Basically,
these are positive numbers adding up to 1, and what have sines and cosines to do with that? Indeed, in
many applications done first by Fourier, a simpler, more understandable proof may emerge upon taking
Fourier away. Still, the Fourier transform is a very effective, sometimes indispensable technical tool in
much of our business here. [McKean, 2014]

This section describes the core convolution algorithm implemented in aggregate. It is an application where the
caveat in McKean’s complaint holds true. The use of Fourier transform methods is unnatural but very effective. As
usual, letA = X1+ · · ·+XN where severityXi are iid and independent of the claim countN . We want to explicitly
compute the distribution

Pr(A < a) =
∑
n

Pr(A < a | N = n)Pr(N = n)

=
∑
n

Pr(X∗n < a)Pr(N = n).

Here, X∗n denotes the sum of n independent copies of X . This problem is usually hard to solve analytically. For
example, ifX is lognormal then there is no closed form expression for the distribution ofX∗2 ∼ X1+X2. However,
things aremore promising in the Fourier domain. The characteristic function ofA can be written, using independence,
as

ϕA(t) : = E[eitA]
= E[E[eitA | N]]

= E[E[eitX]N]

= PN (ϕX(t))

where PN (z) = E[zN] is the probability generating function. The pgfs of most common frequency distributions
are know. For example, N is Poisson with mean λ then it is easy to see that PN (z) = exp(λ(z − 1)).

Note: The algorithm assumes the pgf can be written an explicit function. That, in turn, implies that frequency is
thin tailed (it is not subexponential). This is generally not a problem because of how insurance events are defined.
Losses from a catastrophe event, which can produce a large number of claims, are combined into a single occurrence.
As a result, we usually model a small and thin tailed number of events with a thick tailed severity distribution. For
example, there are approximately 1.75 US landfalling hurricanes per year, and the distribution of events since 1850
is well-fit by a (thin-tailed) Poisson distribution.

Knowing the characteristic function is useful because it can be inverted to determine the density of A. Subject to
certain terms and conditions, described below, these arguments can be carried out in a finite discrete setting which is
helpful for two reasons. First, it makes the problem tractable for a digital computer, and second, many A that arise
in insurance problems that are discrete or mixed, because policy limits introduce mass points. For these reasons, we
model a discrete approximation to A, see also Digital Representation of Distributions.

414 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

In a discrete approximation, the functionϕX(t) is replaced by a vector sample computed either by taking the discrete
Fourier transform (DFT) of a discretized approximation to the distribution of X or by directly sampling ϕX . We
usually do the former, computing the DFT using the Fast Fourier transform (FFT) algorithm. However, certain X ,
such as stable distributions, have known characteristic functions but no closed-form distribution or density function.
In that case, a sample of the characteristic function can be used directly. The pgf is then applied element-by-element
to the characteristic function sample vector, and the inverse FFT routine used to obtain a discrete approximation
to the aggregate distribution. The exact rationale for this process are discussed in Fourier Transform Convolution
Algorithm. The errors it introduces are discussed there and in num error analysis.
In summary, the FFT algorithm is simply:

1. Discretize the severity cdf.
2. Apply the FFT to discrete severity.
3. Apply the frequency pgf to the FFT.
4. Apply the inverse FFT to create a discretized approximation to the aggregate distribution.

This algorithm has appeared numerous times in the literature, see Related Actuarial Literature. The details are laid out
in The aggregate Convolution Algorithm: Details. A plain Python implementation is presented in Aggregate Algorithm
in Detail.

Strengths and Weaknesses

I’ve been using the FFT algorithm since Glenn Meyers explained it to me at a COTOR meeting around 1996, and I
still find it miraculous. It is very fast and its speed is largely independent of the expected claim count—in contrast to
simulations. The algorithm is also very accurate, both in absolute and relative terms. It is essentially exact in many
cases and eight-plus digit precision is often easy to obtain. The algorithm works well in almost all situations and for
many use-cases it is unbeatable, including computing:

• The distribution of aggregate losses from a portfolio with a complex limit and attachment profile, and a mixed
severity.

• Ceded or net outcome distributions for an occurrence reinsurance program.
• Ceded or net outcome distributions for reinsurance contracts with variable features such as sliding commissions,
swing rated programs, profit commissions, aggregate limits, see Reinsurance Pricing.

• The distribution of retained losses net of specific and aggregate insurance, as found in a risk-retention group,
see Individual Risk Pricing, including exact computation of Table L and Table M charges in US worker com-
pensation ratemaking.

• The distribution of the sum of independent distributions, e.g., aggregating units such as line of business, busi-
ness unit, geographic unit etc.

• The distribution of the sum of dependent units, where the dependence structure is driven by common frequency
mixing variables.

The algorithm is particularly well-suited to compute aggregates with low claim counts and a thick-tailed severity and
where accuracy is important, such as catastrophe risk PML, AEP, and OEP points. Outcomes with low expected loss
rates are hard to simulate accurately.
The FFT algorithm is not a panacea. On the downside, its mysterious Fourier-nature presents the user with a choice
of trusting in magic or a steep learning curve to understand the theory. It relies on hard-to-select parameters and
can fail spectacularly and without warning if they are not chosen judiciously. A big contribution of aggregate
is to provide the user with sensible default parameters and a test of model validity, see num error analysis. It does
not work well for a high mean, thick-tailed frequency combined with a thick-tailed severity distribution that has an
intricate distribution—an unusual situation that stresses any numerical method. However, when either frequency or
severity is thin-tailed, it excels. Finally, the aggergate implementation is limited to tracking one variable at a
time. It cannot model joint distributions, such as ceded and net loss or derived quantities such as the total cession to
a specific and aggregate cover, or the cession to an occurrence program with limited reinstatements. Both of these
require a bivariate distribution. It can model the net position after specific and aggregate cessions, and ceded losses
to an occurrence program with an aggregate limit. See num extensions for an approach to bivariate extensions.

5.4. Numerical Methods and FFT Convolution 415

aggregate Documentation, Release 0.22.0

Related Actuarial Literature

The earliest reference to Fourier transforms in actuarial science I have found is Heckman and Meyers [1983]. They
used continuous Fourier transforms to compute aggregate distributions by numerically integrating the characteristic
function. Their analysis includes severity and frequency uncertainty, that they call contagion and mixing.
Explicit use of the FFT appears first in [Bertram, 1983]. It has subsequently appeared in numerous places.
Bühlmann [1984] compares the FFT algorithm with Panjer recursion for compound Poisson distributions. It con-
cludes that usually FFTs can be computed in fewer operations. Hürlimann [1986] obtains an error bound for stop-loss
premium computed with FFTs.
Robertson [1992] considers a quasi-FFT algorithm, using discrete-continuous adjustments to reflect a piecewise linear
as opposed to a fully discrete, distribution function. These greatly complicate the analysis for little tangible benefit.
We recommend using a fully discrete distribution as explained in Digital Representation of Distributions.
Embrechts et al. [1993] describes the FFT algorithm and considers Richardson extrapolation to estimate the density.
Wang [1998] describes the FFT algorithm, using padding to control aliasing (wrapping) error. The first edition of
Klugman et al. [2019], published in 1998, describes the algorithm, although it no longer appears in the fifth edition.
Grübel and Hermesmeier [1999] describes the use of exponential tilting to reduce aliasing error and Grübel and
Hermesmeier [2000] explains how to use Richardson extrapolation to improve density estimates. Exponential tilting
is the same process used in GLM exponential families to adjust the mean, and it is also used in large deviation theory.
Mildenhall [2005] describes the FFT algorithm.
Approximate inversion of the Fourier transform is also possible using FFTs. Menn and Rachev [2006] uses of
FFTs to determine densities for distributions which have analytic MGFs but not densities, notably the class of stable
distributions. This method is shown in Fourier Transform Convolution Algorithm.
Kaas et al. [2008] section 3.6 presents the FFT algorithm in R.
Embrechts and Frei [2009] revisits Panjer recursion compared to the FFT algorithm. It also explores exponential
tilting for aliasing error. It comments “Compared to the Panjer recursion, FFT has two main advantages: It works
with arbitrary frequency distributions and it is much more efficient.” It concludes:

The Panjer recursion is arguably the most widely used method to “exactly” evaluate compound distri-
butions. However, FFT is a viable alternative: It can be applied with arbitrary frequencies and offers
a tremendous timing advantage for a large number of lattice points; moreover, the use of exponential
tilting—which practically rules out any aliasing effects—facilitates applications (such as evaluation of
the lower tail) that were thought to be an exclusive task for recursive procedures.

More recently, Papush et al. [2021], extending Papush et al. [2001], considers the best two parameter approximation
to an frequency severity convolution. It shows that the gamma provides the best fit across a wide range of synthetic
examples. However, all of their examples have a bounded (hence thin tailed) severity. A simple model:

agg 10 claims sev lognorm 2 poisson

is not best fit by a gamma.
Homer and Clark [2003] and Mildenhall [2005] describe the use of two-dimensional FFTs to model aggregates with
bivariate frequency (for two different lines) and bivariate severity (net and ceded).

Other Applications

The FFT algorithm is applied to model operational risk in Schaller and Temnov [2008], Temnov andWarnung [2008],
Luo and Shevchenko [2009], Luo and Shevchenko [2011], and Shevchenko [2010]. These applications mirror the
actuarial approach, using either padding or exponential tilting (exponential window) to control aliasing error. They
are interesting because they include modeling with a very high expected claim counts and a very thick tailed severity
(no mean). See Truncation Example.
In finance, FFTs are used in option pricing, Carr and Madan [1999]. These applications can use distributions derived
from stable-α and Levy process families that have a closed for characteristic function but no analytic density. Duan
et al. [2012] describe more recent innovations. FFTs are also used as a general purpose convolution routine, Černý
[2004]

416 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Wilson and Keich [2016] describes an interesting approach to accurate pairwise convolution that splits each com-
ponent to limit the ratio of its most and least (non-zero) likely outcome. It provides helpful estimates for assessing
relative error and determining when an FFT estimate can be trusted.

Conditional Expectations (Kappa)

The function κi(x) := E[Xi | X = x] is the basis for many of the computations in Portfolio. It can be computed
using Fourier transforms because it is a convolution. There is no loss in generality assuming X = X1 + X2. For
simplicity suppose (X1, X2) have a bivariate density f . Then

E[X1 | X = x] =

∫ x

0

t
f(t, x− t)
f(x)

dt

=
1

f(x)

∫ x

0

tf1(t)f2(x− t) dt

can be computed from the convolution of tf1(t) and f2. The convolution can be computed using Fourier transforms
in the usual way: transform, product, inverse transform. Using FFTs and relying on the discretized version of Xi,
the algorithm becomes:

1. Compute the discrete approximation to Xî, the sum of all Xj , j 6= i, identifying distributions with their
discrete approximation vectors.

2. Compute FFTs of Xi and Xî, with optional padding.
3. Take the elementwise product of the FFTs.
4. Apply the inverse FFT and unpad if necessary.

A variable with density xf(x)/E[X] is called the size-bias of X . Size-biased variables have lots of interesting
applications, see Arratia et al. [2019].
The aggregate implementation computesXî by dividing out the distribution ofXi from the overall sum (decon-
volution), where that is possible, saving computing time.

5.4.3 Digital Representation of Distributions

“We come now to reality. The truth is that the digital computer has totally defeated the analog computer.
The input is a sequence of numbers and not a continuous function. The output is another sequence of
numbers.” [Strang, 1986]

How aggregate Represents a Distribution

aggregate aims to deliver the speed and accuracy of parametric distributions to aggregate probability distributions
andmake them as easy to use as the lognormal. To achieve that, it needs a representation of the underlying distribution
amenable to computation.
There is no analytic expression for the cdf of most aggregate distributions. For example, there is no closed form
expression for the distribution of the sum of two lognormals [Milevsky and Posner, 1998]. Therefore we must use a
numerical approximation to the exact cdf. There are two obvious ways to construct a numerical approximation to a
cdf:

1. As a discrete (arithmetic, lattice) distribution supported on a discrete set of points.
2. As a continuous random variable with a piecewise linear distribution function.

The next two figures illustrate of the two approaches. First, a discrete approximation, which results in a step-function,
piecewise constant cdf, is shown left and the corresponding quantile function, right. The cdf is continuous from the
right and the (lower) quantile function is continuous from the left. The distribution does not have a density function
(pdf); it only has a probability mass function (pmf).

5.4. Numerical Methods and FFT Convolution 417

aggregate Documentation, Release 0.22.0

In [1]: from aggregate.extensions.pir_figures import fig_4_5, fig_4_6

In [2]: fig_4_5()

Second, a piecewise linear continuous approximation, which results in a step-function pdf (not shown).

In [3]: fig_4_6()

The second approach assumes the aggregate has a continuous distribution, which is often not the case. For example,
the Tweedie and all other compound Poisson distributions are mixed (they have a mass at zero). An aggregate whose
severity has a limit will have a mass at multiples of the limit caused by the non-zero probability of limit-only claims.
When X is mixed it is impossible to distinguish the jump and continuous parts using a numerical approximation.
The large jumps may be obvious but the small ones are not.
There are three other arguments in favor of discrete models. First, we live in a discrete world. Monetary amounts
are multiples of a smallest unit: the penny, cent, yen, satoshi. Computers are inherently discrete. Second, probabil-
ity theory is based on measure theory, which approximates distributions using simple functions that are piecewise
constant. Third, the continuous model introduces unnecessary complexities in use, without any guaranteed gain in
accuracy across all cases. See the complicated calculations in Robertson [1992], for example.
For all of these reasons, we use a discrete approximation. Further, we assume that the distribution is known at integer
multiples of a fixed bandwidth or bucket size. This assumption is forced by the use of FFTs and has some undesirable
consequences. Ideally, we would use a stratified approach, sampling more points where the distribution changes shape
and using larger gaps to capture the tail. However, the computational efficiency of FFTs make this a good trade-off.
Based on the above considerations, saying we have computed an aggregate means that we have a discrete approx-
imation to its distribution function concentrated on integer multiples of a fixed bucket size b. This specifies the
approximation aggregate as

1. the value b and
2. a vector of probabilities (p0, p1, . . . , pn−1)

418 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

with the interpretation

Pr(X = kb) = pk.

All subsequent computations assume that the aggregate is approximated in this way. There are several impor-
tant consequences.

• The cdf is a step function with a jump of size pk at kb.
• The cdf is continuous from the right (it jumps up at kb).
• The cdf be computed from the cumulative sum of (p0, p1, . . . , pn−1).
• The approximation has moments given by ∑

k

krpib.

• The limited expected value (the integral of the survival function), can be computed at the points kb as b times
the cumulative sum of the survival function.

• The pdf, if it exists, can be approximated by pi/b.
All of these calculations are more straightforward than assuming a piecewise linear cdf.

Sidebar: Continuous Discretization

It is possible to approximate the continuous cdf approach in aggregate. For example, the following
code will reproduce the simple example in Section 4 of Robertson [1992]. Compare the output to his
Table 4. Using bs=1/200 approximates a continuous histogram. The use of a decimal bucket size is
never recommended, but is used here to approximate Robertson’s table values. We recommend against
this approach. It is unnecessarily complicated and does not improve accuracy in any example we have
encountered.

In [4]: from aggregate import build, qd

In [5]: s = build('agg Robertson '
...: '5 claims '
...: 'sev chistogram xps [0 .2 .4 .6 .8 1] [.2 .2 .2 .2 .2] '
...: 'fixed'
...: , bs=1/200, log2=12)
...:

In [6]: qd(s.density_df.loc[0:6:40, ['F']], max_rows=100,
...: float_format=lambda x: f'{x:.10f}')
...:

F
loss
0.000 0.0000000000
200.000m 0.0000028505
400.000m 0.0000881354
600.000m 0.0006619547
800.000m 0.0027744084
1.000 0.0084395964
1.200 0.0209413662
1.400 0.0447838984
1.600 0.0847627931
1.800 0.1446976504
2.000 0.2261520701
2.200 0.3271821577
2.400 0.4417953515

(continues on next page)

5.4. Numerical Methods and FFT Convolution 419

aggregate Documentation, Release 0.22.0

(continued from previous page)
2.600 0.5611682516
2.800 0.6755414579
3.000 0.7761395705
3.200 0.8570626840
3.400 0.9164675600
3.600 0.9559897985
3.800 0.9794889995
4.000 0.9917687630
4.200 0.9973109416
4.400 0.9993650547
4.600 0.9999172021
4.800 0.9999974838
5.000 1.0000000000
5.200 1.0000000000
5.400 1.0000000000
5.600 1.0000000000
5.800 1.0000000000
6.000 1.0000000000

Discretizing the Severity Distribution

This section discusses ways to approximate a severity distribution with a discrete distribution. Severity distributions
used by aggregate are supported on the non-negative real numbers; we allow a loss of zero, but not negative
losses. However, the discretization process allows severity to be derived from a distribution supported on the whole
real line—see the note below.
Let F be a distribution function and q the corresponding lower quantile function. It is convenient to be able to refer
to a random variable with distribution F , so letX = q(U) where U(ω) = ω is the standard uniform variable on the
sample space Ω = [0, 1]. X has distribution F [Föllmer and Schied, 2016].
We want approximate F with a finite, purely discrete distribution supported at points xk = kb, k = 0, 1, . . . ,m,
where b is called the bucket size or the bandwidth. Split this problem into two: first create an infinite discretization
on k = 0, 1, . . ., and then truncate it.
The calculations described in this section are performed in Aggregate.discretize().

Infinite Discretization

There are four common methods to create an infinite discretization.
1. The rounding method assigns probability to the k th bucket equal to

pk = Pr((k − 1/2)b < X ≤ (k + 1/2)b)

= F ((k + 1/2)b)− F ((k − 1/2)b)

p0 = F (b/2).

2. The forward difference method assigns

pk = Pr(kb < X ≤ (k + 1)b)

= F ((k + 1)b)− F (kb)
p0 = F (b).

3. The backward difference method assigns

pk = Pr((k − 1)b < X ≤ kb)
= F (kb)− F ((k − 1)b)

p0 = F (0).

420 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

4. The moment difference method [Klugman et al., 2019] assigns

pk =
2E[X ∧ kb]− E[X ∧ (k − 1)b]− E[X ∧ (k + 1)b]

b

p0 = 1− E[X ∧ b]
b

.

The moment difference ensures the discretized distribution has the same first moment as the original distribu-
tion. This method can be extended to match more moments, but the resulting weights are not guaranteed to be
positive.

Note: Setting the first bucket to F (b/2) for the rounding method (resp. F (b), F (0)) allows the use of random
variables with negative support. Any values ≤ 0 are included in the zero bucket. This behavior is useful because it
allows the normal, Cauchy, and other similar distributions can be used as the basis for a severity.

Each of these methods produces a sequence pk ≥ 0 of probabilities that sum to 1 that can be interpreted as the pmf
and distribution function F (d)

b of a discrete approximation random variable X(d)
b

Pr(X(d)
b = kb) = pk

F
(d)
b (kb) =

∑
i≤k

pi

where superscript d = r, f, b, m describes the discretization method and subscript b the bucket size.
There is a disconnect between how the rounding method is defined and how it is interpreted. By definition, it corre-
sponds to a distribution with jumps at (k+ 1/2)b, not kb. However, the approximation assumes the jumps are at kb
to simplify and harmonize subsequent calculations across the three discretization methods.
It is clear that [Embrechts and Frei, 2009]

F
(b)
b ≤ F ≤ F (f)

b

F
(b)
b ≤ F r

b ≤ F
(f)
b

X
(b)
b ≥ X ≥ X(f)

b

X
(b)
b ≥ Xr

b ≥ X
(f)
b

X
(b)
b ↑ X as b ↓ 0

X
(f)
b ↓ X as b ↓ 0

Xb, Xr, and Xf converge weakly (in L1) to X and the same holds for a compound distribution with severity X .
These inequalities are illustrated in the example below.

Rounding Method Used by Default

aggregate uses the roundingmethod by default and offers the forward and backwardsmethods to compute explicit
bounds on the distribution approximation if required. We found that the rounding method performs well across all
examples we have run. These options are available in update() through the sev_calc argument, which can
take the values round, forwards, and backwards. This decision is based in part on the following observations
about the moment method in Embrechts and Frei [2009] (emphasis added):

that both the forward/backward differences and the rounding method do not conserve any moments of
the original distribution. In this light Gerber [1982] suggests a procedure that locally matches the first
k moments. Practically interesting is only the case k = 1; for k ≥ 2 the procedure is not well defined,
potentially leading to negative probability mass on certain lattice points. The moment matching method
is much more involved than the rounding method in terms of implementation; we need to calculate
limited expected values. Apart from that, the gain is rather modest; moment matching only pays off
for large bandwidths, and after all, the rounding method is to be preferred. This is further reinforced
by the work of Grübel and Hermesmeier [1999]: if the severity distribution is absolutely continuous

5.4. Numerical Methods and FFT Convolution 421

aggregate Documentation, Release 0.22.0

with a sufficiently smooth density, the quantity fb,j/b, an approximation for the compound density, can
be quadratically extrapolated.

Klugman et al. [2019] report that Panjer and Lutek [1983] found two moments were usually sufficient and that
adding a third moment requirement adds only marginally to the accuracy. Furthermore, they report that the rounding
method and the first-moment method had similar errors, while the second-moment method provided significant
improvement but at the cost of no longer guaranteeing that the resulting probabilities are nonnegative.

Approximating the Density

The pdf at kb can be approximated as p_k / b. This suggests another approach to discretization. Using the
rounding method

pk = F ((k + 1/2)b)− F ((k − 1/2)b)

=

∫ (k+1)b

(k−1/2)b

f(x)dx

≈ f(kb)b.

Therefore we could rescale the vector (f(0), f(b), f(2b), . . .) to have sum 1. This method works well for continuous
distributions, but does not apply for mixed ones, e.g., when a policy limit applies.

Discretization Example

This example illustrates the impact of different discretization methods on the severity and aggregate distributions.
The example uses a severity that can take negative values. aggregate treats any negative values as a mass at zero.
This approach allows for the use of the normal and other distributions supported on the whole real line. The severity
has finite support, so truncation is not an issue, and it is discrete so it is easy to check the calculations are correct. The
severity is shown first, discretized using bs=1, 1/2, 1/4, 1/8. As expected, the rounding method (orange),
lies between the forward (blue) and backwards (green) methods.

In [7]: from aggregate import build, qd

In [8]: import matplotlib.pyplot as plt

In [9]: from matplotlib import ticker

In [10]: dsev = [-1, 0, .25, .5, .75, 1, 1.5 + 1 / 16, 2, 2 + 1/4, 3]

In [11]: a01 = build(f'agg Num:01 1 claim dsev {dsev} fixed', update=False)

In [12]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45 + 0.1),
....: constrained_layout=True)
....:

In [13]: for bs, ax in zip([1, 1/2, 1/4, 1/8], axs.flat):
....: for k in ['forward', 'round', 'backward']:
....: a01.update(log2=10, bs=bs, sev_calc=k)
....: a01.density_df.p_total.cumsum().\
....: plot(xlim=[-.25, 3.25], lw=2 if k=='round' else 1,
....: drawstyle='steps-post', ls='--', label=k, ax=ax)
....: ax.legend(loc='lower right')
....: ax.set(title=f'Bucket size bs={bs}')
....:

In [14]: axs[0,0].set(ylabel='distribution');

In [15]: axs[1,0].set(ylabel='distribution');

(continues on next page)

422 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [16]: fig.suptitle('Severity by discretization method for different bucket sizes
↪→');

Next, create aggregate distributions with a Poisson frequency, mean 4 claims, shown for the same values of bs.

In [17]: a02 = build(f'agg Num:02 4 claims dsev {dsev} poisson', update=False)

In [18]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45 + 0.1),
....: constrained_layout=True)
....:

In [19]: for bs, ax in zip([1, 1/2, 1/4, 1/8], axs.flat):
....: for k in ['forward', 'round', 'backward']:
....: a02.update(log2=10, bs=bs, sev_calc=k)
....: a02.density_df.p_total.cumsum().\
....: plot(xlim=[-2, 27], lw=2 if k=='round' else 1,
....: drawstyle='steps-post', label=k, ax=ax)
....: ax.legend(loc='lower right')
....: ax.set(title=f'Bucket size bs={bs}')
....:

In [20]: fig.suptitle('Aggregates by discretization method');

5.4. Numerical Methods and FFT Convolution 423

aggregate Documentation, Release 0.22.0

Note: Setting drawstyle='steps-post' joins dots with a step function that jumps on the right
(post=afterwards), making the result continuous from the right, appropriate for a distribution. Quantile functions
are continuous from the left and should be rendered using drawstyle='steps-pre' (before), which puts the
jump on the left.

Exact Calculation

The differences pk = F ((k + 1/2)b) − F ((k − 1/2)b) can be computed in three different ways, controlled by the
discretization_calc option. The options are:

1. discretization_calc='distribution' takes differences of the sequence F ((k + 1/2)b). This
results in a potential loss of accuracy in the right tail where the distribution function increases to 1. The
resulting probabilities can be no smaller than the smallest difference between 1 and a float. numpy reports this
as numpy.finfo(float).epsneg; it is of the order 1e-16.

2. discretization_calc='survival' takes the negative difference of the sequence S(k + 1/2)b) of
survival function values. This results in a potential loss of accuracy in the left tail where the survival function
increases to 1. However, it provides better resolution in the right.

3. discretization_calc='both' attempts to make the best of both worlds, computing:

np.maximum(np.diff(fz.cdf(adj_xs)), -np.diff(fz.sf(adj_xs)))

This does double the work and is marginally slower.
The update default is survival. The calculation method does not generally impact the aggregate distribution when
FFTs are used because they compute to accuracy about 1e-16 (there is a 1 in each row and column of F, see Fast
Fourier Transforms). However, the option can be helpful to create a pleasing graph of severity log density.

424 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Truncation and Normalization

The discrete probabilities pk must be truncated into a finite-length vector to use in calculations. The number of
buckets used is set by the log2 variable, which inputs its base 2 logarithm. The default is log2=16 corresponding
to 65,536 buckets. There are two truncation options, controlled by the normalize variable.

1. normalize=False simply truncates, possibly resulting in a vector of probabilities that sums to less than 1.
2. normalize=True truncates and then normalizes, dividing the truncated vector by its sum, resulting in a

vector of probabilities that does sums to 1 (approximately, see floats).
The default is normalize=True.
It is obviously desirable for the discrete probabilities to sum to 1. A third option, to put a mass at the maximum loss
does not produce intuitive results—since the underlying distributions generally do not have a mass the graphs look
wrong.
In general, it is best to use normalize=True in cases where the truncation error is immaterial, for example with
a thin tailed severity. It is numerically cleaner and avoids issues with quantiles close to 1. When there will be an
unavoidable truncation error, it is best to use normalize=False. The user needs to be aware that the extreme
right tail is understated. The bucket size and number of buckets should be selected so that the tail is accurate where
it is being relied upon. See num error analysis for more.

Warning: Avoid using normalize=True for thick tail severities. It results in unreliable and hard to interpret
estimated mean severity.

Truncation Example

Schaller and Temnov [2008] consider a Poisson-generalized Pareto model for operational risk. They assume an ex-
pected claim count equal to 18 and a generalized Pareto with shape 1, scale 12000 and location 7000. This distribution
does not have a mean. They want to model the 90th percentile point. They compare using exponential tilting [Grübel
and Hermesmeier, 1999] with padding, using up to 1 million log2=20 buckets. They use a right-hand endpoint
of 1 million on the severity. This example illustrates the impact of normalization and shows that padding and tilting
have a similar effect.
Setup the base distribution without recomputing. Note infinite severity.

In [21]: a = build('agg Schaller:Temnov '
....: '18 claims '
....: 'sev 12000 * genpareto 1 + 7000 '
....: 'poisson'
....: , update=False)
....:

In [22]: qd(a)

E[X] CV(X) Skew(X)
X
Freq 18 0.2357 0.2357
Sev inf
Agg inf
log2 = 0, bandwidth = na, validation: n/a, not updated.

Execute a variety of updates and assemble answer. Compare Schaller and Temnov [2008], Example 4.3.2, p. 197.
They estimate the 90th percentile as 3,132,643. In this case, normalizing severity has a material impact; it acts to
decrease the tail thickness and hence estimated percentiles.

In [23]: import time

In [24]: import pandas as pd

(continues on next page)

5.4. Numerical Methods and FFT Convolution 425

aggregate Documentation, Release 0.22.0

(continued from previous page)

In [25]: updates = {
....: 'a': dict(log2=17, bs=100, normalize=True, padding=0 , tilt_

↪→vector=None),
....: 'b': dict(log2=17, bs=100, normalize=False, padding=0, tilt_

↪→vector=None),
....: 'c': dict(log2=17, bs=100, normalize=False, padding=1, tilt_

↪→vector=None),
....: 'd': dict(log2=17, bs=100, normalize=False, padding=2, tilt_

↪→vector=None),
....: 'e': dict(log2=20, bs=25, normalize=True, padding=1 , tilt_

↪→vector=None),
....: 'f': dict(log2=20, bs=25, normalize=False, padding=1 , tilt_

↪→vector=None),
....: 'g': dict(log2=17, bs=100, normalize=False, padding=0, tilt_vector=20␣

↪→/ (1<<17))
....: }
....:

In [26]: ans = {}

In [27]: for k, v in updates.items():
....: start_time_ns = time.time_ns()
....: a.update(**v)
....: end_time_ns = time.time_ns()
....: ans[k] = [a.q(0.9), a.q(0.95), a.q(0.99), (-start_time_ns + end_time_

↪→ns) / 1e6]
....:

In [28]: df = pd.DataFrame(ans.values(), index=ans.keys(), columns=[.9, .95, .99,
↪→'millisec'])

In [29]: for k, v in updates['a'].items():
....: df[k] = [v[k] for v in updates.values()]
....:

In [30]: df = df.replace(np.nan, 'None')

In [31]: df = df.set_index(['log2', 'bs', 'normalize', 'padding', 'tilt_vector'])

In [32]: df.columns.name = 'percentile'

In [33]: qd(df, float_format=lambda x: f'{x:12,.0f}', sparsify=False, col_space=4)

percentile 900.000m 950.000m 990.000m ␣
↪→millisec
log2 bs normalize padding tilt_vector ␣
↪→

17 100 True 0 None 2,789,700 4,280,300 8,936,500 ␣
↪→ 22
17 100 False 0 None 3,090,100 5,294,500 13,107,100 ␣
↪→ 22
17 100 False 1 None 3,132,600 5,466,900 13,107,100 ␣
↪→ 29
17 100 False 2 None 3,132,700 5,467,100 13,107,100 ␣
↪→ 42
20 25 True 1 None 2,966,775 4,851,225 13,306,850 ␣
↪→ 283
20 25 False 1 None 3,132,675 5,467,125 23,117,100 ␣
↪→ 225
17 100 False 0 152.588u 3,132,700 5,467,100 13,107,100 ␣

(continues on next page)

426 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
↪→ 28

Estimating the Bucket Size

Warning: Estimating the bucket size correctly is critical to obtaining accurate results from the FFT algorithm.
This section is very important!

The bucket size is estimated as the p-percentile of a moment matched fit to the aggregate. By default p = 0.999, but
the user can selection another value using the recommend_p argument to update.
On creation, Aggregate automatically computes the theoretic mean, CV, and skewness γ of the requested distri-
bution. Using those values and p the bucket size is estimated as follows.

1. If the CV is infinite the user must input b. An ValueError is thrown if no value is provided. Without a
standard deviation there is no way to gauge the scale of the distribution. Note that the CV is automatically
infinite if the mean does not exist.

2. Else if the CV is finite and γ < 0, fit a normal approximation (matching two moments). Most insurance
applications have positive skewness.

3. Else if the CV is finite and 0 < γ < ∞, fit shifted lognormal and gamma distributions (matching three
moments), and a normal distribution.

4. Else if the CV is finite but skewness is infinite, fit lognormal, gamma, and normal distributions (two moments).
5. Compute b′ as the greatest of any fit distribution p-percentile (usually the lognormal).
6. If all severity components are limited, compute the maximum limit,m, otherwise setm = 0.
7. Take b = max(b′,m)/n, where n is the number of buckets.
8. If b ≥ 1 round up to 1, 2, 5, 10, 20, 100, 200, etc., and return. Else if b < 1 return the smallest power of 2

greater than b (e.g., 0.2 rounds to 0.25, 0.1 to 0.125).
Step 8 ensures that b ≥ 1 is a reasonable looking round number and is an exact float when b ≤ 1. The algorithm
performs well in practice, though it can under-estimate b for thick-tailed severities. The user should always look at
the diagnostics Aggregate Quick Diagnostics.

Occurrence Reinsurance and Loss Picks

If specific layer loss picks are selected, the adjustment occurs immediately after the gross severity is computed in
Step 2.
Occurrence reinsurance is applied after loss pick adjustment and before step 3.
Aggregate reinsurance is applied at the very end of the algorithm.

5.4.4 Fourier Transform Convolution Algorithm

We come now to reality. The truth is that the digital computer has totally defeated the analog computer.
The input is a sequence of numbers and not a continuous function. The output is another sequence of
numbers, whether it comes from a digital filter or a finite element stress analysis or an image processor.
The question is whether the special ideas of Fourier analysis still have a part to play, and the
answer is absolutely yes. [Strang, 1986]

The previous section quoted Strang in support of discrete models. Here we complete his quote in support of using
Fourier analysis, born in application to continuous functions, in a discrete setting.

5.4. Numerical Methods and FFT Convolution 427

aggregate Documentation, Release 0.22.0

The aggregate Convolution Algorithm: Details

This section expands on each step in the FFT algorithm presented at the end of The aggregate Convolution Algorithm
in more detail. Recall, the four steps:

1. Discretize the severity cdf.
2. Apply the FFT to discrete severity.
3. Apply the frequency pgf to the FFT.
4. Apply the inverse FFT to create a discretized approximation to the aggregate distribution.

Algorithm Objective

Compute a discrete approximation to the aggregate distribution

A = X1 + · · ·+XN ,

under the assumption that Xi are iid like X and N is independent of Xi.

Algorithm Inputs

1. Severity distribution (cdf, sf, and moments), optionally including loss pick and occurrence reinsurance adjust-
ments.

2. Frequency distribution (probability generating function P(z) := E[zN], and moments).
3. Number of buckets, expressed as log base 2, n = 2log2.
4. Bucket size, b.
5. Severity calculation method: round, forwards, or backwards
6. Discretization calculation method: survial, distribution, or both.
7. Normalization parameter, True or False.
8. Padding parameter, an integer d ≥ 0.
9. Tilt parameter, a real number θ ≥ 0.
10. Remove “fuzz” parameter, True or False

Usually either tilting or padding is applied to manage aliasing, but not both. When both are requested, tilting is
applied first and the result is zero padded.

Default and Reasonable Parameter Values

The severity and frequency distributions are required. Defaults and reasonable ranges for the other parameters are as
follows. Set xmax = bn to be the range of the discretized output.

3. log2 = 16, with a reasonable range 3 ≤ log2 ≤ 28− d (on a 64-bit computer with 32GB RAM).
4. Estimating the bucket size is quite involved and is described in Estimating the Bucket Size.
5. Severity calculation round, see Rounding Method Used by Default.
6. Discretization survival, see Exact Calculation.
7. Normalization defaults to True. It should only be used if it is immaterial, in the sense that 1 − F (xmax) is

small. See Truncation and Normalization.

428 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

8. Padding equals 1, meaning severity is doubled in size and padded with zeros. Padding equals to 2, which
quadruples the size of the severity vector, is sometimes necessary. Schaller and Temnov [2008] report requiring
padding equal to 2 in empirical tests with very high frequency and thick tailed severity.

9. Tilt equals 0 (no tilting applied). Embrechts and Frei [2009] recommend θn ≤ 20. Schaller and Temnov
[2008] section 4.2 discuss how to select θ to the decrease in aliasing error and impact on numerical precision.
Padding is an effective way to manage aliasing, but no more so than padding most circumstances. We prefer
the simpler padding approach.

10. Remove fuzz is True.

Algorithm Steps

The default steps are shown next, followed by further explanation.
1. If frequency is identically zero, then (1, 0, . . .) is returned with no further calculation.
2. If frequency is identically one, then the discretized severity is returned with no further calculation.
3. If needed, estimate the bucket size, Estimating the Bucket Size.
4. Discretize severity into a vector p = (p0, p1, . . . , pn−1), see Discretizing the Severity Distribution. This step

may include normalization.
5. Tilt severity, pk ← pke

−kθ.
6. Zero pad the vector p to length 2log2+d by appending zeros, to produce x.
7. Compute z := FFT(x).
8. Compute f := P(z).
9. Compute the inverse FFT, y := IFFT(f).
10. Take the first n entries in y to obtain a := y[0 : n].
11. Aggregate reinsurance is applied a if applicable.

Theory: Why the Algorithm Works

This section explains why the output output a = (a0, . . . , am−1) has ak very close to Pr(A = kb).
Fourier transforms provide an alternative way to represent a distribution function. The [Wikipedia](https://en.
wikipedia.org/wiki/Fourier_transform) article says:

The Fourier transform of a function is a complex-valued function representing the complex sinusoids
that comprise the original function. For each frequency, the magnitude (absolute value) of the complex
value represents the amplitude of a constituent complex sinusoid with that frequency, and the argument
of the complex value represents that complex sinusoid’s phase offset. If a frequency is not present, the
transform has a value of 0 for that frequency. The Fourier inversion theorem provides a synthesis process
that recreates the original function from its frequency domain representation.
Functions that are localized in the time domain have Fourier transforms that are spread out across the
frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for
this principle is the Gaussian function: the Fourier transform of a Gaussian function is another Gaussian
function.
Generalizations include the discrete-time Fourier transform (DTFT, group Z), the discrete Fourier
transform (DFT, group Z (mod N)) and the Fourier series or circular Fourier transform (group = S1,
the unit circle being a closed finite interval with endpoints identified). The latter is routinely employed
to handle periodic functions. The fast Fourier transform (FFT) is an algorithm for computing the DFT.

The Fourier transform (FT) of a distribution function F is usually written F̂ . The FT contains the same information
as the distribution and there is a dictionary back and forth between the two, using the inverse FT. Some computations

5.4. Numerical Methods and FFT Convolution 429

https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform

aggregate Documentation, Release 0.22.0

with distributions are easier to perform using their FT, which is what makes them useful. The FT is like exponentiation
for distributions. The exponential and log functions turn (difficult) multiplication into (easy) addition

ea × eb = ea+b.

FTs turn difficult convolution of distributions (addition of the corresponding random variables) into easy multiplica-
tion of Fourier transforms. If Xi are random variables, X = X1 +X2, and FX is the distribution of X , then

F̂X1+X2(t) = F̂X1(t)× F̂X2(t),

where the righthand side is a product of functions. Computing the distribution of a sum of random variables is
complicated because you have to consider all different ways an outcome can be split, but it is easy using FTs. Of
course, this depends on it being easy to compute the FT and its inverse—which is where FFTs come in.
There are three things going on here:

1. Fourier transform of a function,
2. Discrete Fourier transform of an infinite sequence, and
3. Fast Fourier transform of a finite vector.

Discrete Fourier transforms are a discrete approximation to continuous FTs, formed by sampling at evenly spaced
points. The DFT is a sequence, rather than a function. It retains the convolution property of FTs. They are sometimes
called discrete cosine transforms (DCT).
The Fast Fourier transform refers to a very fast way to compute finite discrete FTs, which are applied to finite samples
of FTs. General usage blurs the distinction between discrete FTs and their computation, and uses FFT as a catchall
for both.
Thus, there are four-steps from the continuous to the finite discrete computational strategy (notation explained below):

1. Analytic domain:

f → f̂ →P ◦ f̂ → P̂ ◦ f̂ =: g

2. Discrete approximation:

f → fb → f̂b →P ◦ f̂b → P̂ ◦ f̂b =: gb

3. Finite discrete approximation:

f → fb,n → ˆfb,n →P ◦ ˆfb,n → P̂ ◦ ˆfb,n =: gb,n

4. Finite discrete approximation, periodic inversion:

f → fb,n → ˆfb,n →Pm ◦ ˆfb,n → ̂Pm ◦ ˆfb,n =: gb,n,m

Here is the rationale for each step.
• Step 1 to 2: discretize f because we are working in a digital world, not an analog/analyic one (Strang quote)
and because the answers are often not continuous distributions. Discretize at multiples of a sampling interval
b. The sampling rate is 1/b samples per unit. The sampled distribution (which no longer has a density) is

fb =
∑
k

pkδkb.

fb has Fourier transform

f̂b(t) =
∑
k

pke
−2πikbt.

If f̂ is know analytically it can be sampled directly, see the stable example below. However, many relevant f
do not have analytic FTs, e.g., lognormal. At this point, fb is still defined of R.

430 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

• Step 2 to 3: truncate and take a finite discretization because we are working on a digital computer with finite
memory.

fb,n =

n−1∑
k=0

pkδkb.

Let P = nb. Now fb,n is non-zero only on [0, P). Finite discretization combined with an assumption of P
periodicity enables the use of FFTs to compute fb,n → ˆfb,n. (In order for a Fourier series to be P -periodic, it
can only weight frequencies that are a multiple of 1/P since exp(2πi(x+kP)t) = exp(2πixt) for all integers
k iff exp(2πikP t) = 1 iff Pt is an integer. Take the integer to be 1; higher values correspond to aliasing.
Hence Shannon-Nyquist and bandwidth limited functions etc.) Sampling f̂b,n(t) at t = 0, 1/P, . . . , (n−1)/P ,
requires calculating

ˆfb,n(
l
P) =

∑
k

pke
−2πikb

l
P =

∑
k

pke
− 2πi

n kl

which is exactly what FFTs compute very quickly.
• Step 3 to 4: finite convolution, Pm is computed with a sample of length m ≥ n, i.e., padding, to control
aliasing. We can also use exponential tilting (whichmust be done in the f domain). Pm◦ ˆfb,n is the application
of a function to a vector, element-by-element and is easy to compute. Pm ◦ ˆfb,n → ̂Pm ◦ ˆfb,n can be
computed using FFTs, whereas invertingP ◦ ˆfb,n would usually be very difficult because it usually has infinite
support. The price for using FFTs is assuming g is P -periodic, i.e., introducing aliasing error. For simplicity,
assumem = n by padding the samples in Step 2.
Now we can use the inverse DFT to recover g at the values kb:

g(kb) =
∑
l

ĝ(l
P)e2πikb

l
P (5.1)

=
∑
l

ĝf(l
P)e

2πi
n kl.(5.2)

However, this is an infinite sum (step 3), and we are working with computers, so it needs to be truncated (step
4). What is

n−1∑
l=0

ĝ(l
P)e

2πi
n kl?

It is an inverse DFT, that FFTs compute with alacrity. What does it equal?
Define gP (x) =

∑
k g(x+ kP) to be the P -periodic version of g. If g has finite support contained in [0, P)

then gP = g. If that is not the case there will be wrapping spill-over, see PICTURE.
Now

ĝ(l
P) : =

∫
R
g(x)e−2πix

l
P dx (5.3)

=
∑
k

∫ (k+1)P

kP

g(x)e−2πix
l
P dx(5.4)

=
∑
k

∫ P

0

g(x+ kP)e−2πi(x+kP)
l
P dx(5.5)

=

∫ P

0

∑
k

g(x+ kP)e−2πix
l
P dx(5.6)

=

∫ P

0

gP (x)e
−2πix

l
P dx(5.7)

= ĝP (
l
P)(5.8)

5.4. Numerical Methods and FFT Convolution 431

aggregate Documentation, Release 0.22.0

and therefore, arguing backwards and assuming that ĝ is quickly decreasing, for large enough n,
n−1∑
l=0

ĝ(l
P)e

2πi
n kl ≈

∑
l

ĝ(l
P)e

2πi
n kl (5.9)

=
∑
l

ĝP (
l
P)e

2πi
n kl(5.10)

= gP (kb)(5.11)

Thus the partial sum we can easily compute on the left approximates gP and in favorable circumstances it is
close to g.

There are four sources of error in the FFT algorithm. They can be controlled by different parameters:
1. Discretization error f ↔ fb (really f̂ ↔ f̂b): replacing the original distribution with a discretized approxima-

tion, controlled by decreasing the bucket size.
2. Truncation error f̂b ↔ ˆfb,n: shrinking the support of the severity distribution by right truncation, controlled

by increasing the bucket size and/or increasing the number of buckets.

3. Aliasing error P̂ ◦ ˆfb,n ↔ ̂Pm ◦ ˆfb,n: expect gk get
∑

l gk+ln: working with only finitely many frequencies
in the Fourier domain which results in visible the aggregate wrapping, controlled by padding or tilting severity.

4. FFT algorithm: floating point issues, underflow and (rarely) overflow, hidden by removing numerical “fuzz”
after the algorithm has run.

To summarize:
• If we know f̂ analyically, we can use this method to estimate a discrete approximation to f . We are estimating
fP (kb) not f(kb), so there is always aliasing error, unless f actually has finite support.

• If f is actually discrete, the only error comes from truncating the Fourier series. We can make this as small as
we please by taking enough terms in the series. This case is illustrated for the Poisson distribution. This method
is also applied by aggregate: the “analytic” chf is PN (MX(t)), whereMX(t) is the sum of exponentials
given above.

• When f̂ is known we have a choice between discretizing in the space (loss) or time domain.
• If f is not discrete, there is a discretization and potentially aliasing error. We can control the former with high
frequency (small b) sampling. We control the latter with large P = nb, arguing for large n or large b (in conflict
to managing discretization error).

Using FFT to Invert Characteristic Functions

The use of FFTs to recover the aggregate at the end of Step 4 is entirely generic. It can be used to invert any
characteristic function. In this section we provide some of examples.
Invert a gamma distribution from a sample of its characteristic function and compare with the true density. These
plots show the inversion is extremely accurate over a very wide range. The top right plot compares the log density,
highlighting differences only in the extreme tails.

In [1]: from aggregate.extensions import ft_invert

In [2]: import scipy.stats as ss

In [3]: import matplotlib.pyplot as plt

In [4]: df = ft_invert(
...: log2=6,
...: chf=lambda alpha, t: (1 - 1j * t) ** -alpha,
...: frz_generator=ss.gamma,
...: params=[30],
...: loc=0,

(continues on next page)

432 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
...: scale=1,
...: xmax=0,
...: xshift=0,
...: suptitle='Gamma distribution')
...:

Invert a Poisson distribution with a very high mean. This is an interesting case, because we do not need space for the
whole answer, just the effective range of the answer. We can use periodicity to “move” the answer to the right x range.
This example reproduces a Poisson with mean 10,000. The standard deviation is only 100 and so the effective rate
of the distribution (using the normal approximation) will be about 9500 to 10500. Thus a satisfactory approximation
can be obtained with only 210 = 1024 buckets.

In [5]: import aggregate.extensions.ft as ft

In [6]: df = ft.ft_invert(
...: log2=10,
...: chf=lambda en, t: np.exp(en * (np.exp(1j * t) - 1)),
...: frz_generator=ss.poisson,
...: params=[10000],
...: loc=0,
...: scale=None, # for freq dists, scaling does not apply
...: xmax=None, # for freq dists want bs = 1, so xmax=1<<log2
...: xshift=9500,
...: suptitle='Poisson distribution, large mean computed in small␣

↪→space.')
...:

5.4. Numerical Methods and FFT Convolution 433

aggregate Documentation, Release 0.22.0

Invert a stable distribution. Here there is more aliasing error because the distribution is so thick tailed. There is also
more on the left than right because of the asymmetric beta parameter.

In [7]: def levy_chf(alpha, beta, t):
...: Φ = np.tan(np.pi * alpha / 2) if alpha != 1 else -2 / np.pi * np.

↪→log(np.abs(t))
...: return np.exp(- np.abs(t) ** alpha * (1 - 1j * beta * np.sign(t) * Φ))
...:

In [8]: df = ft.ft_invert(
...: log2=12,
...: chf=levy_chf,
...: frz_generator=ss.levy_stable,
...: params=[1.75, 0.3], # alpha, beta
...: loc=0,
...: scale=1.,
...: xmax=1<<8,
...: xshift=-(1<<7),
...: suptitle='Stable Levy exponent $\\alpha=7/4$, '
...: 'slightly skewed')
...:

In [9]: f = plt.gcf()

In [10]: ax = f.axes[1]

In [11]: ax.grid(lw=.25, c='w');

434 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Fast Fourier Transforms

The trick with FFTs is how they are computed. What they compute is very straightforward and given by a simple
matrix multiplication.
The FFT of them× 1 vector x = (x0, . . . , xm−1) is just anotherm× 1 vector x̂ whose jth component is

xj =

m−1∑
k=0

xk exp(−2πijk/m),

where i =
√
−1. The coefficients of x̂ are complex numbers. It is easy to see that x̂ = Fx where

F =

1 1 . . . 1
1 w . . . wm−1

1 w2 . . . w2(m−1)

...
...

1 wm−1 . . . w(m−1)2

is a matrix of complex roots of unity and w = exp(−2πi/m). This shows there is nothing inherently mysterious
about an FFT. The trick is that there is a very efficient algorithm for computing the matrix multiplication [Press et al.,
1992]. Rather than taking time proportional tom2, as one would expect, it can be computed in time proportional to
m log(m). For large values ofm, the difference betweenm log(m) andm2 time is the difference between practically
possible and practically impossible.
The inverse FFT to recovers x from its transform x̂. The inverse FFT is computed using the same equation as the
FFT with F−1 (matrix inverse) in place of F. It is easy to see that inverse equals

F−1 =
1

m

1 1 . . . 1
1 w−1 . . . w−(m−1)

1 w2 . . . w2(m−1)

...
...

1 w−(m−1) . . . w−(m−1)2

 .

The (j, j) element ofmFF−1 is ∑
g

wjgw−jg =
∑
g

1 = m

5.4. Numerical Methods and FFT Convolution 435

aggregate Documentation, Release 0.22.0

and the (j, k), j 6= k element is ∑
g

wjgw−gk =
∑
g

wg(j−k) = 0.

The inversion process can also be computed inm log(m) time because the matrix equation is the same.
How does the FFT compute convolutions? Given two probability vectors for outcomes k = 0, 1, . . . , n − 1, say
p = (p0, . . . , pn−1) and q = (q0, . . . , qn−1), the product of the k th elements of the FFTs equals

(∑
g

pgw
gk

)(∑
h

phw
hk

)
=

n−1∑
m=0

 ∑
g,h

g+h≡m(n)

pgqh

wkm

is the k th element of the FFT of the wrapped convolution of p and q. For example, if n = 4 andm = 0, the inner
sum on the right equals

p0q0 + p1q3 + p2q2 + p3q1

which can be interpreted as

p0q0 + p1q−1 + p2q−2 + p3q−3

in arithmetic module n.
In the convolution algorithm, the product of functions F̂X1

× F̂X2
is replaced by the component-by-component

product of two vectors, which is easy to compute. Thus, to convolve two discrete distributions, represented as p =
(p0, . . . , pm−1) and q = (q0, . . . , qm−1) simply

• Take the FFT of each vector, p̂ = Fp and q̂ = Fq
• Compute the component-by-component product z = p̂q̂
• Compute the inverse FFT F−1z.

The answer is the exact convolution of the two input distributions, except that sum values wrap around: the extreme
right tail re-appears as probabilities around 0. This problem is called aliasing (the same as the wagon-wheel effect in
old Westerns), but it can be addressed by padding the input vectors.
Here is a simple example of wrapping, using a compound Poisson distribution with an expected claim count of 10
and severity taking the values 0, 1, 2, 3, or 4 equally often. The aggregate has a mean of 20 and is computed using
only 32 buckets. This is not enough space, and the right hand part of the distribution wraps around. The components
are shown in the middle and how they combine on the right.

In [12]: ft.fft_wrapping_illustration(ez=10, en=2)

The next figure illustrates more extreme FFTwrapping. It shows an attempt tomodel a compound Poisson distribution
with a mean of 80 using only 32 buckets. The result is the straight line on the left. The middle plot shows the true
distribution and the vertical slices of width 32 that are combined to get the total. These are shown shifted on the left.
The right plot zooms into the rate 0:32, and shows how the wrapped components sum to the result on the left. This
is a good example of how FFT methods can fail and can appear to give inexplicable results.

436 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

In [13]: ft.fft_wrapping_illustration(ez=10, en=8)

It is not necessary to understand the details of FTs to use aggregate although they are fascinating, see for example
Körner [2022]. In probability, the moment generating functions and characteristic function are based on FTs. They
are discussed in any serious probability text.

FFT Routines

Computer systems offer a range of FFT routines. aggregate uses two functions from scipy.fft called
scipy.fft.rfft() and scipy.fft.irfft(). There are similar functions in numpy.fft. They are
tailored to taking FFTs of vectors of real numbers (as opposed to complex numbers). The FFT routine automatically
handles padding the input vector. The inverse transform returns real numbers only, so there is no need to take the real
part to remove noise-level imaginary parts. It is astonishing that the whole aggregate library pivots on a single
line of code:

agg_density = rifft(\mathscr P(rfft(p)))

Obviously, a lot of work is done to marshal the input, but this line is where the magic occurs.
The FFT routines are accurate up to machine noise, of order 1e-16. The noise can be positive or negative—the latter
highly undesirable in probabilities. It appears random and does not accumulate undesirably in practical applications.
It is best to strip out the noise, setting to zero all values with absolute value less than machine epsilon (numpy.
finfo(float).esp). The remove_fuzz option controls this behavior. It is set True by default. CHECK
SURE?

5.4.5 Floating Point Arithmetic and Rounding Errors

The internal workings of computer floating point arithmetic can cause unexpected problems. You can read no further
in this section if you promise to obey

Warning: Only use a bucket size b with an exact floating point representation. It must have an exact binary
representation as a fraction a/b where b is a power of two.
1/3, 1/5 and 1/10 are not binary floats.

For those who choose to continue, this section presents random selection of results about floats that tripped me up as
I wrote aggregate.
Floating point arithmetic is not associative!

In [1]: x = .1 + (0.6 + 0.3)

In [2]: y = (0.1 + 0.6) + 0.3

In [3]: x, x.as_integer_ratio(), y, y.as_integer_ratio()
Out[3]: (0.9999999999999999, (9007199254740991, 9007199254740992), 1.0, (1, 1))

5.4. Numerical Methods and FFT Convolution 437

aggregate Documentation, Release 0.22.0

This fact can be used to create sequences with nasty accumulating errors.
Exercise Redux
Recall the exercise to compute quantiles of a dice roll. aggregate produces the consistent results—if we look
carefully and account for the foibles of floating point numbers. The case p = 0.1 is easy. But the case p = 1/6
appears wrong. There are two ways we can model the throw of a dice: with frequency 1 to 6 and fixed severity 1, or
as fixed frequency 1 and severity 1 to 6. They give different answers. The lower quantile is wrong in the first case (it
equals 1) and the upper quantile in the second (2).

In [4]: from aggregate import build, qd

In [5]: import pandas as pd

In [6]: d = build('agg Dice dfreq [1:6] dsev [1]')

In [7]: print(d.q(0.1, 'lower'), d.q(0.1, 'upper'))
1.0 1.0

In [8]: print(d.q(1/6, 'lower'), d.q(1/6, 'upper'))
1.0 2.0

In [9]: d2 = build('agg Dice2 dfreq [1] dsev [1:6]')

In [10]: print(d2.q(1/6, 'lower'), d2.q(1/6, 'upper'))
1.0 2.0

These differences are irritating! The short answer is to adhere to the warning above.
Here’s the long answer, if you want to know. Looking at the source code shows that the quantile function is imple-
mented as a previous or next look up on a dataframe of distinct values of the cumulative distribution function. These
two dataframes for the different dice models are:

In [11]: ff = lambda x: f'{x:.25g}'

In [12]: qd(d.density_df.query('p_total > 0')[['p', 'F']], float_format=ff)

p F
loss
1.000 0.1666666666666666574148081 0.1666666666666666574148081
2.000 0.1666666666666666296592325 0.333333333333333259318465
3.000 0.1666666666666666296592325 0.4999999999999998889776975
4.000 0.1666666666666666296592325 0.66666666666666651863693
5.000 0.1666666666666666574148081 0.8333333333333331482961626
6.000 0.1666666666666666574148081 0.9999999999999997779553951

In [13]: qd(d2.density_df.query('p_total > 0')[['p', 'F']], float_format=ff)

p F
loss
1.000 0.166666666666666740681535 0.166666666666666740681535
2.000 0.1666666666666666296592325 0.3333333333333333703407675
3.000 0.1666666666666666296592325 0.5
4.000 0.166666666666666740681535 0.666666666666666740681535
5.000 0.166666666666666740681535 0.83333333333333348136307
6.000 0.16666666666666651863693 1

In [14]: print(f'\n{d.cdf(1):.25f} < {1/6:.25f} < 1/6 < {d2.cdf(1):.25f}')

0.1666666666666666574148081 < 0.1666666666666666574148081 < 1/6 < 0.
↪→1666666666666667406815350

Based on these numbers, the reported quantiles are correct. p = 1/6 is strictly greater than d.cdf(1) and strictly
less than d2.cdf(1), as shown in the last row! d and d2 are different because the former runs through the FFT

438 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

routine to convolve the trivial severity, whereas the latter does not.
Exercise
X is a random variable defined on a sample space with ten equally likely events. The event outcomes are
0, 1, 1, 1, 2, 3, 4, 8, 12, 25. Compute VaRp(X) for all p.

In [15]: a = build('agg Ex.50 dfreq [1] '
....: 'dsev [0 1 2 3 4 8 12 25] [.1 .3 .1 .1 .1 .1 .1 .1]')
....:

In [16]: a.plot()

In [17]: print(a.q(0.05), a.q(0.1), a.q(0.2), a.q(0.4),
....: a.q(0.4, 'upper'), a.q(0.41), a.q(0.5))
....:

0.0 1.0 1.0 1.0 2.0 2.0 2.0

In [18]: qd(a.density_df.query('p_total > 0')[['p', 'F']],
....: float_format=ff)
....:

p F
loss
0.000 0.09999999999999997779553951 0.09999999999999997779553951
1.000 0.300000000000000044408921 0.4000000000000000222044605
2.000 0.09999999999999997779553951 0.5
3.000 0.09999999999999997779553951 0.5999999999999999777955395
4.000 0.09999999999999997779553951 0.699999999999999955591079
8.000 0.0999999999999999639177517 0.7999999999999999333866185
12.000 0.09999999999999997779553951 0.899999999999999911182158
25.000 0.100000000000000088817842 1

Solution. On the graph, fill in the vertical segments of the distribution function. Draw a horizontal line at height p
and find its intersection with the completed graph. There is a unique solution for all p except 0.1, 0.4, 0.5, . . . , 0.9.
Consider p = 0.4. Any x satisfying Pr(X < x) ≤ 0.4 ≤ Pr(X ≤ x) is a 0.4-quantile. By inspection the solutions
are 1 ≤ x ≤ 2. VaR is defined as the lower quantile, x = 1. The 0.41 quantile is x = 2. VaRs are not interpolated
in this problem specification. The loss 25 is the p-VaR for any p > 0.9. The apparently errant numbers for aggregate
(the upper quantile at 0.1 equals 2) are explained by the float representations. The float representation of 0.4 is
3602879701896397/9007199254740992 which actually equals 0.4000000000000000222044605.

5.4. Numerical Methods and FFT Convolution 439

aggregate Documentation, Release 0.22.0

5.5 Distortions and Spectral Risk Measures

Objectives: Introduce distortion functions and spectral risk measures.
Audience: Readers looking for a deeper technical understanding.
Prerequisites: Knowledge of probability and calculus; insurance terminology.
See also: 5_x_distortion_calculations.
Contents:

• Helpful References

• Distortion Function and Spectral Risk Measures

• Layer Densities

• The Equal Priority Default Rule

• Expected Loss Payments at Different Asset Levels

• The Natural Allocation Premium

• Properties of Alpha, Beta, and Kappa

• Properties of the Natural Allocation

• The Natural Allocation of Equity

• Appendix: Notation and Conventions

5.5.1 Helpful References

• Mildenhall and Major [2022]
• The text in this section is derived from Major and Mildenhall [2020].
• Mildenhall [2022]

5.5.2 Distortion Function and Spectral Risk Measures

We define SRMs and recall results describing their different representations. By De Waegenaere et al. [2003] SRMs
are consistent with general equilibrium and so it makes sense to consider them as pricing functionals. The SRM is
interpreted as the (ask) price for an insurer-written risk transfer.
Definition. A distortion function is an increasing concave function g : [0, 1] → [0, 1] satisfying g(0) = 0 and
g(1) = 1.
A spectral risk measure ρg associated with a distortion g acts on a non-negative random variable X as

ρg(X) =

∫ ∞

0

g(S(x))dx.

The simplest distortion if the identity g(s) = s. Then ρg(X) = E[X] from the integration-by-parts identity∫ ∞

0

S(x) dx =

∫ ∞

0

xdF (x).

Other well-known distortions include the proportional hazard g(s) = sr for 0 < r ≤ 1, its dual g(s) = 1−(1−s)r
for r ≥ 1, and theWang transform g(s) = Φ(Φ−1(s) + λ) for λ ≥ 0, Wang [1995].
Since g is concave g(s) ≥ 0g(0) + sg(1) = s for all 0 ≤ s ≤ 1, showing ρg adds a non-negative margin.
Going forward, g is a distortion and ρ is its associated distortion risk measure. We interpret ρ as a pricing functional
and refer to ρ(X) as the price or premium for insurance on X .

440 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

SRMs are translation invariant,monotonic, subadditive, and positive homogeneous, and hence coherent, Acerbi
[2002]. In addition, they are law invariant and comonotonic additive. In fact, all such functionals are SRMs. As
well has having these properties, SRMs are powerful because we have a complete understanding of their representation
and structure, which we summarize in the following theorem.
Theorem. Subject to ρ satisfying certain continuity assumptions, the following are equivalent.

1. ρ is a law invariant, coherent, comonotonic additive risk measure.
2. ρ = ρg for a concave distortion g.

3. ρ has a representation as a weighted average of TVaRs for ameasureµ on [0, 1]: ρ(X) =
∫ 1

0
TVaRp(X)µ(dp).

4. ρ(X) = maxQ∈Q EQ[X] where Q is the set of (finitely) additive measures with Q(A) ≤ g(P(A)) for all
measurable A.

5. ρ(X) = maxZ∈Z E[XZ] where Z is the set of positive functions on Ω satisfying
∫ 1

p
qZ(t)dt ≤ g(1 − p),

and qZ is the quantile function of Z.
The Theorem combines results from Föllmer and Schied [2011] (4.79, 4.80, 4.93, 4.94, 4.95), Delbaen [2000],
Kusuoka [2001], and Carlier and Dana [2003]. It requires that ρ is continuous from above to rule out the possibility
ρ = sup. In certain situations, the sup risk measure applied to an unbounded random variable can only be represented
as a sup over a set of test measures and not a max. Note that the roles of from above and below are swapped from
Föllmer and Schied [2011] because they use the asset, negative is bad, sign convention whereas we use the actuarial,
positive is bad, convention.
The relationship between µ and g is given by Föllmer and Schied [2011] 4.69 and 4.70. The elements of Z are the
Radon-Nikodym derivatives of the measures in Q.
The next four sections introduce the idea of layer densities and prove that SRM premium can be allocated to policy
in a natural and unique way.

5.5.3 Layer Densities

Risk is often tranched into layers that are then insured and priced separately. Meyers [1996] describes layering in
the context of liability increased limits factors and Culp and O'Donnell [2009], Mango et al. [2013] in the context of
excess of loss reinsurance.
Define a layer y excess x by its payout function I(x,x+y](X) := (X − x)+ ∧ y. The expected layer loss is

E[I(x,x+y](X)] =

∫ x+y

x

(t− x)dF (t) + yS(x+ y)

=

∫ x+y

x

tdF (t) + tS(t)|x+y
x

=

∫ x+y

x

S(t) dt.

Based on this equation, Wang [1996] points out that S can be interpreted as the layer loss (net premium) density.
Specifically, S is the layer loss density in the sense that S(x) = d/dx(E[I(0,x](X)]) is the marginal rate of increase
in expected losses in the layer at x. We use density in this sense to define premium, margin and equity densities, in
addition to loss density.
Clearly S(x) equals the expected loss to the cover 1{X>x}. By scaling, S(x)dx is the close to the expected loss for
I(x,x+dx] when dx is very small; Bodoff [2007] calls these infinitesimal layers.
Wang [1996] goes on to interpret ∫ x+y

x

g(S(t)) dt

as the layer premium and hence g(S(x)) as the layer premium density. We write P (x) := g(S(x)) for the premium
density.

5.5. Distortions and Spectral Risk Measures 441

aggregate Documentation, Release 0.22.0

We can decompose X into a sum of thin layers. All these layers are comonotonic with one another and with X ,
resulting in an additive decomposition of ρ(X), since ρ is comonotonic additive. The decomposition mirrors the
definition of ρ as an integral.
The amount of assets a available to pay claims determines the quality of insurance, and premium and expected losses
are functions of a. Premiums are well-known to be sensitive to the insurer’s asset resources and solvency, Phillips et
al. [1998]. Assets may be infinite, implying unlimited cover. When a is finite there is usually some chance of default.
Using the layer density view, define expected loss S̄ and premium P̄ functions as

S̄(a) = E[X ∧ a] =
∫ a

0

S(x) dx

P̄ (a) = ρ(X ∧ a) =
∫ ∞

0

g(SX∧a(x)) dx

=

∫ a

0

g(SX(x))dx.

Margin is M̄(a) := P̄ (a) − S̄(a) and margin density isM(a) = dM̄(a)/da. Assets are funded by premium and
equity Q̄(a) := a− P̄ (a). AgainQ(a) = dQ̄/da = 1−P (a). Together S,M , andQ give the split of layer funding
between expected loss, margin and equity. Layers up to a are, by definition, fully collateralized. Thus ρ(X ∧ a) is
the premium for a defaultable cover on X supported by assets a, whereas ρ(X) is the premium for an unlimited,
default-free cover.
The layer density view is consistent with more standard approaches to pricing. IfX is a Bernoulli risk with Pr(X =
1) = s and expected loss cost s, then ρ(X) = g(s) can be regarded as pricing a unit width layer with attachment
probability s. In an intermediated context, the funding constraint requires layers to be fully collateralized by premium
plus equity—without such funding the insurance would not be credible since the insurer has no other source of funds.
Given g we can compute insurance market statistics for each layer. The loss, premium, margin, and equity densities
are s, g(s), g(s) − s and 1 − g(s). The layer loss ratio is s/g(s) and (g(s) − s)/(1 − g(s)) is the layer return on
equity. These quantities are illustrated in the next figure for a typical distortion function. The corresponding statistics
for ground-up covers can be computed by integrating densities.

In [1]: from aggregate.extensions.pir_figures import fig_10_3

In [2]: fig_10_3()

For an insured risk, we regard the margin as compensation for ambiguity aversion and associated winner’s curse drag.
Both of these effects are correlated with risk, so the margin is hard to distinguish from a risk load, but the rationale
is different. Again, recall, although ρ is non-additive and appears to charge for diversifiable risk, De Waegenaere et
al. [2003] assures us the pricing is consistent with a general equilibrium.
The layer density is distinct from models that vary the volume of each unit in a homogeneous portfolio model. Our
portfolio is static. By varying assets we are implicitly varying the quality of insurance.

442 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

5.5.4 Portfolio Pricing with Spectral Risk Measures

Taken as read: a painful discussion that markets set prices, not actuaries and models. Pricing here means valuing
according to some model. For actuaries, valuation is a term of art it means reserving to a life actuary. Pricing
actuaries understanding that they are just determining a model value. Thus we will refer to the model price.
Several methods apply a distortion g to price by computing

ρg(X) =

∫
g(S(t))dt

notably:
1. Aggregate: price, apply_distortion
2. Portfolio: price, apply_distortion, (called by analyze distortion)
3. Distortion: price, price2
4. Working by hand using density_df.p_total.

All of these methods use the same approach, the integral is approximated as a left Riemann sum:∫ ∞

0

g(S(t))dt ≈
∑
k=0

ng(S(kb))b

The implementation computes
• S as 1 - p_total.cumsum(),
• gS = d.g(S), and
• (gS.loc[:a - bs] * np.diff(S.index)).sum() or .cumsum().iloc[-1].

The p_total.cumsum() idiom automatically accounts for the case where the output distribution is not normal-
ized (sums to < 1). Using sum vs. cumsum is usually an O(1e-16) difference. These methods all use the forward
difference of dt and match against the unlagged values of S or gS (per PIR p. 272-3). The Aggregate method
prepends 0 and then computes a cumsum, so the a index gives the right value. Remember, pandas.Series.
loc[:a] includes the element with index a (whereas iloc[:n] does not). When a is given, the series includes
a (based on .loc[:a]) and the last value is dropped from the sum product.
The next block of code provides a reconciliation of methods. Build an aggregate and put it in a Portfolio object
to expose calibrate_distortions.

In [3]: from aggregate import Portfolio, build, qd

In [4]: import pandas as pd

In [5]: a = build('agg CommAuto '
...: '10 claims '
...: '10000 xs 0 '
...: 'sev lognorm 50 cv 4 '
...: 'poisson')
...:

In [6]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 10 0.31623 0.31623
Sev 49.804 49.803 -4.6559e-06 3.5917 3.5918 20.434 20.434
Agg 498.04 498.03 -4.6559e-06 1.179 1.179 6.0196 6.0195
log2 = 16, bandwidth = 1/2, validation: not unreasonable.

In [7]: pa = Portfolio('test', [a])

(continues on next page)

5.5. Distortions and Spectral Risk Measures 443

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [8]: pa.update(log2=16, bs=1/4)

In [9]: qd(pa)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
CommAuto Freq 10 0.31623 0.31623

Sev 49.804 49.804 -3.0452e-07 3.5917 3.5918 20.434 20.434
Agg 498.04 498.04 -1.8636e-06 1.179 1.179 6.0196 6.0168

total Freq 10 0.31623 0.31623
Sev 49.804 49.804 -3.0452e-07 3.5917 20.434
Agg 498.04 498.03 -1.655e-05 1.179 1.1788 6.0196 6.0109

log2 = 16, bandwidth = 1/4, validation: fails agg mean error >> sev, possible␣
↪→aliasing; try larger bs.

Determine distortion parameters to achieve a 10% return at 99 percentile capital, and display them. Pull out the
achieved pricing.

In [10]: pa.calibrate_distortions(ROEs=[0.1], Ps=[0.99], strict='ordered');

In [11]: d = pa.dists['dual']

In [12]: qd(pa.distortion_df)

S L P PQ Q COC param ␣
↪→error
a LR method ␣
↪→

2.745k 700.875m ccoc 0.0099992 482.03 687.76 0.33431 2057.2 0.1 0.1 ␣
↪→ 0

ph 0.0099992 482.03 687.76 0.33431 2057.2 0.1 0.68741 1.
↪→7053e-12

wang 0.0099992 482.03 687.76 0.33431 2057.2 0.1 0.43983 2.
↪→558e-11

dual 0.0099992 482.03 687.76 0.33431 2057.2 0.1 1.9436 -1.
↪→1369e-13

tvar 0.0099992 482.03 687.76 0.33431 2057.2 0.1 0.39096 8.
↪→1372e-06

In [13]: f"Exact premium {pa.distortion_df.iloc[0, 2]:.15f}"
Out[13]: 'Exact premium 687.755319984361222'

Compute pricing in the four ways described above.

In [14]: dm = pa.price(.99, d)

In [15]: f'Exact value {dm.price:.15f}'
Out[15]: 'Exact value 687.755319984360540'

In [16]: bit = a.density_df[['loss', 'p_total', 'S']]

In [17]: bit['aS'] = 1 - bit.p_total.cumsum()

In [18]: bit['gS'] = d.g(bit.S)

In [19]: bit['gaS'] = d.g(bit.aS)

In [20]: test = pd.Series((d.price(bit.loc[:a.q(0.99), 'p_total'], kind='both')[-
↪→1],

....: d.price(a.density_df.p_total, a.q(0.99), kind='both')[-
↪→1],

(continues on next page)

444 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: d.price2(bit.p_total).loc[a.q(0.99)].ask, \
....: d.price2(bit.p_total, a.q(0.99)).ask.iloc[0],
....: a.price(0.99, d).iloc[0, 1],
....: dm.price,
....: bit.loc[:a.q(0.99)-a.bs, 'gS'].sum() * a.bs,
....: bit.loc[:a.q(0.99)-a.bs, 'gS'].cumsum().iloc[-1] * a.bs,
....: bit.loc[:a.q(0.99)-a.bs, 'gaS'].sum() * a.bs,
....: bit.loc[:a.q(0.99)-a.bs, 'gaS'].cumsum().iloc[-1] * a.

↪→bs),
....: index=['distortion.price',
....: 'distortion.price with a',
....: 'distortion.price2, find a',
....: 'distortion.price2(a)',
....: 'Aggregate.price',
....: 'Portfolio.price',
....: 'bit sum',
....: 'bit cumsum',
....: 'bit sum alt S',
....: 'bit cumsum alt S'
....:])
....:

Display the results and the relative difference to the largest price.

In [21]: qd(test.sort_values(),
....: float_format=lambda x: f'{x:.15f}')
....:

distortion.price2(a) 687.755319984360540
distortion.price2, find a 687.755319984360540
Portfolio.price 687.755319984360540
Aggregate.price 687.755319984360540
bit cumsum 687.755319984360540
bit cumsum alt S 687.755319984360540
distortion.price 687.755319984361108
distortion.price with a 687.755319984361108
bit sum 687.755319984361108
bit sum alt S 687.755319984361108

In [22]: qd(test.sort_values() / test.sort_values().iloc[-1] - 1,
....: float_format=lambda x: f'{x:.6e}')
....:

distortion.price2(a) -7.771561e-16
distortion.price2, find a -7.771561e-16
Portfolio.price -7.771561e-16
Aggregate.price -7.771561e-16
bit cumsum -7.771561e-16
bit cumsum alt S -7.771561e-16
distortion.price 0.000000e+00
distortion.price with a 0.000000e+00
bit sum 0.000000e+00
bit sum alt S 0.000000e+00

5.5. Distortions and Spectral Risk Measures 445

aggregate Documentation, Release 0.22.0

5.5.5 The Equal Priority Default Rule

If assets are finite and the provider has limited liability we need to to determine policy-level cash flows in default
states before we can determine the fair market value of insurance. The most common way to do this is using equal
priority in default.
Under limited liability, total losses are split between provider payments and provider default as

X = X ∧ a+ (X − a)+.

Next, actual payments X ∧ a must be allocated to each policy.
Xi is the amount promised to i by their insurance contract. Promises are limited by policy provisions but are not
limited by provider assets. At the policy level, equal priority implies the payments made to, and default borne by,
policy i are split as

Xi = Xi
X ∧ a
X

+Xi
(X − a)+

X
= (payments to policy i) + (default borne by policy i).

Therefore the payments made to policy i are given

Xi(a) := Xi
X ∧ a
X

=

{
Xi X ≤ a
Xi

a

X
X > a.

Xi(a) is the amount actually paid to policy i. It depends on a, X and Xi. The dependence on X is critical. It is
responsible for almost all the theoretical complexity of insurance pricing.
It is worth reiterating that with this definition

∑
iXi(a) = X ∧ a.

Example.
Here is an example illustrating the effect of equal priority. Consider a certain loss X0 = 1000 and X1 given by a
lognormal with mean 1000 and coefficient of variation 2.0. Prudence requires losses be backed by assets equal to
the 0.9 quantile. On a stand-alone basis X0 is backed by a0 = 1000 and is risk-free. X1 is backed by a1 = 2272
and the recovery is subject to a considerable haircut, since E[X1 ∧ 2272] = 732.3. If these risks are pooled, the
pool must hold a = a0 + a1 for the same level of prudence. When X1 ≤ a1 both units are paid in full. But when
X1 > a1,X0 receives 1000(a/(1000+X1)) andX1 receives the remainingX1(a/(1000+X1)). Payment to both
units is pro rated down by the same factor a/(1000 +X1)—hence the name equal priority. In the pooled case, the
expected recovery to X0 is 967.5 and 764.8 to X1. Pooling and equal priority result in a transfer of 32.5 from X0

toX1. This example shows what can occur when a thin tailed unit pools with a thick tailed one under a weak capital
standard with equal priority. We shall see how pricing compensates for these loss payment transfers, withX1 paying
a positive margin and X0 a negative one. The calculations are performed in aggregate as follows. First, set up
the Portfolio:

In [23]: from aggregate import build, qd

In [24]: port = build('port Dist:EqPri '
....: 'agg A 1 claim dsev [1000] fixed '
....: 'agg B 1 claim sev lognorm 1000 cv 2 fixed',
....: bs=4)
....:

In [25]: qd(port)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
A Freq 1 0

Sev 1000 1000 0 0 0
Agg 1000 1000 0 0 0

B Freq 1 0
Sev 1000 999.91 -8.6294e-05 2 1.9921 14 12.417

(continues on next page)

446 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
Agg 1000 999.91 -8.6294e-05 2 1.9921 14 12.417

total Freq 2 0
Sev 1000 999.96 -4.3147e-05 1.4142 19.799
Agg 2000 1999.9 -4.3673e-05 1 0.99599 14 12.41

log2 = 16, bandwidth = 4, validation: fails sev cv, agg cv.

var_dict() returns the 90th percentile points by unit and in total.

In [26]: port.var_dict(.9)
Out[26]: {'A': 1000.0, 'B': 2272.0, 'total': 3272.0}

Extract the relevant fields from density_df for the allocated loss recoveries. The first block shows standalone, the
second pooled.

In [27]: qd(port.density_df.filter(regex='S|lev_[ABt]').loc[[port.B.q(0.9)]])

S lev_total lev_A lev_B
2.272k 0.20463 1589 1000 732.35

In [28]: qd(port.density_df.filter(regex='S|exa_[ABt]').loc[[port.q(0.9)]])

S exa_total exa_A exa_B
3.272k 0.099939 1732.4 967.51 764.85

5.5.6 Expected Loss Payments at Different Asset Levels

Expected losses paid to policy i are S̄i(a) := E[Xi(a)]. S̄i(a) can be computed, conditioning on X , as

S̄i(a) = E[E[Xi(a) | X]] = E[Xi | X ≤ a]F (a) + aE
[
Xi

X
| X > a

]
S(a).

Because of its importance in allocating losses, define

αi(a) := E[Xi/X | X > a].

The value αi(x) is the expected proportion of recoveries by unit i in the layer at x. Since total assets available to pay
losses always equals the layer width, and the chance the layer attaches is S(x), it is intuitively clear αi(x)S(x) is the
loss density for unit i, that is, the derivative of S̄i(x) with respect to x. We now show this rigorously.
Proposition. Expected losses to policy i under equal priority, when total losses are supported by assets a, is given by

S̄i(a) = E[Xi(a)] =

∫ a

0

αi(x)S(x)dx

and so the policy loss density at x is Si(x) := αi(x)S(x).
Proof. By the definition of conditional expectation, αi(a)S(a) = E[(Xi/X)1X>a]. Conditioning on X , using the
tower property, and taking out the functions of X on the right shows

αi(a)S(a) = E[E[(Xi/X)1X>a | X]] =

∫ ∞

a

E[Xi | X = x]
f(x)

x
dx

and therefore
d

da
(αi(a)S(a)) = −E[Xi | X = a]

f(a)

a
.

Now we can use integration by parts to compute∫ a

0

αi(x)S(x) dx = xαi(x)S(x)
∣∣∣a
0
+

∫ a

0

xE[Xi | X = x]
f(x)

x
dx

= aαi(a)S(a) + E[Xi | X ≤ a]F (a)
= S̄i(a).

5.5. Distortions and Spectral Risk Measures 447

aggregate Documentation, Release 0.22.0

Therefore the policy i loss density in the asset layer at a, i.e. the derivative of cref{eq:eloss-main} with respect to a,
is Si(a) = αi(a)S(a) as required.
Note that Si is not the survival function of Xi(a) nor of Xi.

5.5.7 The Natural Allocation Premium

Premium under ρ is given by
∫ a

0
g(S). We can interpret g(S(a)) as the portfolio premium density in the layer at a.

We now consider the premium and premium density for each policy.
Using integration by parts we can express the price of an unlimited cover on X as

ρ(X) =

∫ ∞

0

g(S(x)) dx =

∫ ∞

0

xg′(S(x))f(x) dx = E[Xg′(S(X)))].

It is important that this integral is over all x ≥ 0 so the xg(S(x))|a0 term disappears. The formula makes sense
because a concave distortion is continuous on (0, 1] and can have at most countably infinitely many points where it is
not differentiable (it has a kink). In total these points have measure zero, Borwein and Vanderwerff [2010], and we
can ignore them in the integral. For more details see Dhaene et al. [2012].
Combining the integral and the properties of a distortion function, g′(S(X)) is the Radon-Nikodym derivative of
a measure Q with ρ(X) = EQ[X]. In fact, EQ[Y] = E[Y g′(S(X))] for all random variables Y . In general, any
non-negative function Z (measure Q) with E[Z] = 1 and ρ(X) = E[XZ] (= EQ[X]) is called a contact function
(subgradient) for ρ at X , see Shapiro et al. [2009]. Thus g′(S(X)) is a contact function for ρ at X . The name
subgradient comes from the fact that ρ(X + Y) ≥ EQ[X + Y] = ρ(X) + EQ[Y], by the representation theorem.
The set of subgradients is called the subdifferential of ρ atX . If there is a unique subgradient then ρ is differentiable.
Delbaen [2000] Theorem 17 shows that subgradients are contact functions.
We can interpret g′(S(X)) as a state price density specific to theX , suggesting that E[Xig

′(S(X))] gives the value
of the cash flows to policy i. This motivates the following definition.
Definition. ForX =

∑
iXi withQ ∈ Q so that ρ(X) = EQ[X], the natural allocation premium to policyXj as

part of the portfolio X is EQ[Xj]. It is denoted ρX(Xj).
The natural allocation premium is a standard approach, appearing in Delbaen [2000], Venter et al. [2006] and
Tsanakas and Barnett [2003] for example. It has many desirable properties. Delbaen shows it is a fair allocation in
the sense of fuzzy games and that it has a directional derivative, marginal interpretation when ρ is differentiable. It is
consistent with Jouini and Kallal [2001] and Campi et al. [2013], which show the rational price ofX in a market with
frictions must be computed by state prices that are anti-comonotonic X . In our application the signs are reversed:
g′(S(X)) and X are comonotonic.
The choice g′(S(X)) is economically meaningful because it weights the largest outcomes of X the most, which is
appropriate from a social, regulatory and investor perspective. It is also the only choice of weights that works for all
levels of assets. Since investors stand ready to write any layer at the price determined by g, their solution must work
for all a.
However, there are two technical issues with the proposed natural allocation. First, unlike prior works, we are allo-
cating the premium forX∧a, notX , a problem also considered in Major [2018]. And second,Qmay not be unique.
In general, uniqueness fails at capped variables like X ∧ a. Both issues are surmountable for a SRM, resulting in a
unique, well defined natural allocation. For a non-comonotonic additive risk measure this is not the case.
It is helpful to define the premium, risk adjusted, analog of the αi as

βi(a) := EQ[(Xi/X) | X > a].

βi(x) is the value of the recoveries paid to unit i by a policy paying 1 in states {X > a}, i.e. an allocation of the
premium for 1X>a. By the properties of conditional expectations, we have

βi(a) =
E[(Xi/X)Z | X > a]

E[Z | X > a]
.

The denominator equals Q(X > a)/P(X > a). Remember that while EQ[X] = E[XZ], for conditional expecta-
tions EQ[X | F] = E[XZ | F]/E[Z | F], see [Föllmer and Schied [2011], Proposition A.12].

448 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

To compute αi and βi we use a third function,

κi(x) := E[Xi | X = x],

the conditional expectation of loss by policy, given the total loss.
Theorem. Let Q ∈ Q be the measure with Radon-Nikodym derivative Z = g′(SX(X)). Then:

1. E[Xi | X = x] = EQ[Xi | X = x].
2. βi can be computed from κi as

βi(a) =
1

Q(X > a)

∫ ∞

a

κi(x)

x
g′(S(x))f(x) dx.

1. The natural allocation premium for policy i under equal priority when total losses are supported by assets a,
P̄i(a) := ρX∧a(Xi(a)), is given by

P̄i(a) = EQ[Xi | X ≤ a](1− g(S(a))) + aEQ[Xi/X | X > a]g(S(a))

= E[XiZ | X ≤ a](1− S(a)) + aE[(Xi/X)Z | X > a]S(a).

1. The policy i premium density equals

Pi(a) = βi(a)g(S(a)).

It is an important to know when the natural allocation premium is unique. It is so when Z is the only contact function
(i.e., there are no others). IfX has a strictly increasing quantile function or is injective thenQ is unique and therefore
given by g′S(X) and hence X measurable, see [Carlier and Dana, 2003] and Marinacci and Montrucchio [2004].
More generally, we can replace Q with its expectation given X to make a canonical choice, resulting in the linear
natural allocation [Cherny and Orlov, 2011].
The problem that can occur when Q is not unique, but that can be circumvented when ρ is a SRM, can be illustrated
as follows. Suppose ρ is given by p-TVaR. The measure Q weights the worst 1 − p proportion of outcomes of X
by a factor of (1 − p)−1 and ignores the others. Suppose a is chosen as p′-VaR for a lower threshold p′ < p. Let
Xa = X ∧ a be capped insured losses and C = {Xa = a}. By definition Pr(C) ≥ 1 − p′ > 1 − p. Pick any
A ⊂ C of measure 1 − p so that ρ(X) = E[X | A]. Let ψ be a measure preserving transformation of Ω that acts
non-trivially on C but trivially off C. Then Q′ = Qψ will satisfy EQ′ [Xa] = EQ[Xaψ

−1] = ρ(Xa) but in general
EQ′ [X] < ρ(X). The natural allocation with respect to Q′ will be different from that for Q. The theorem isolates a
specific Q to obtain a unique answer. The same idea applies to Q from other, non-TVaR, ρ: you can always shuffle
part of the contact function within C to generate non-unique allocations. See Mildenhall and Major [2022] Example
239 for an illustration.
WhenQ isX measurable, then EQ[Xi | X] = E[Xi | X], which enables explicit calculation. In this case there is no
risk adjusted version of κi. If Q is not X measurable, then there can be risk adjusted κi because

E[XiZ | X] 6= E[Xi | X]E[Z | X].

The proof writes the price of a limited liability cover as the price of default-free protection minus the value of the
default put. This is the standard starting point for allocation in a perfect competitive market taken by Phillips et al.
[1998], Myers and Read Jr. [2001], Sherris [2006], and Ibragimov et al. [2010]. They then allocate the default put
rather than the value of insurance payments directly.
To recap: the premium formulas have been derived assuming capital is provided at a cost g and there is equal priority
by unit. The formulas are computationally tractable (see implementation in 5_x_portfolio_calculations) and require
only that X have an increasing quantile function or that g′S(X) be used as the risk adjustment, but make no other
assumptions. There is no need to assume the Xi are independent. They produce an entirely general, canonical
determination of premium in the presence of shared costly capital. This result extends Grundl and Schmeiser [2007],
who pointed out that with an additive pricing functional there is no need to allocate capital in order to price, to the
situation of a non-additive SRM pricing functional.

5.5. Distortions and Spectral Risk Measures 449

aggregate Documentation, Release 0.22.0

5.5.8 Properties of Alpha, Beta, and Kappa

In this section we explore properties of αi, βi, and κi, and show how they interact to determine premiums by unit
via the natural allocation.
For a measurable h, E[Xih(X)] = E[κi(X)h(X)] by the tower property. This simple observation results in huge
simplifications. In general, E[Xih(X)] requires knowing the full bivariate distribution ofXi andX . Using κi reduces
it to a one dimensional problem. This is true even if the Xi are correlated. The κi functions can be estimated from
data using regression and they provide an alternative way to model correlations.
Despite their central role, the κi functions are probably unfamiliar so we begin by giving several examples to illustrate
how they behave. In general, they are non-linear and usually, but not always, increasing.

Examples of κ functions

1. If Yi are independent and identically distributed and Xn = Y1 + · · · + Yn then E[Xm | Xm+n = x] =
mx/(m + n) for m ≥ 1, n ≥ 0. This is obvious when m = 1 because the functions E[Yi | Xn] are
independent across i = 1, . . . , n and sum to x. The result follows because conditional expectations are linear.
In this case κi(x) = mx/(m+ n) is a line through the origin.

2. If Xi are multivariate normal then κi are straight lines, given by the usual least-squares fits

κi(x) = E[Xi] +
cov(Xi, X)

var(X)
(x− E[X]).

This example is familiar from the securities market line and the CAPM analysis of stock returns. IfXi are iid
it reduces to the previous example because the slope is 1/n.

3. If Xi, i = 1, 2, are compound Poisson with the same severity distribution then κi are again lines through the
origin. Suppose Xi has expected claim count λi. Write the conditional expectation as an integral, expand the
density of the compound Poisson by conditioning on the claim count, and then swap the sum and integral to
see that κ1(x) = E[X1 | X1 + X2 = x] = xE[N(λ1)/(N(λ1) + N(λ2))] where N(λ) are independent
Poisson withmean λ. This example generalizes the iid case. Further conditioning on a commonmixing variable
extends the result to mixed Poisson frequencies where each aggregate can have a separate or shared mixing
distribution. The common severity is essential. The result means that if a line of business is defined to be a
group of policies that shares the same severity distribution, then premiums for policies within the line will have
rates proportional to their expected claim counts.

4. A theorem of Efron says that if Xi are independent and have log-concave densities then all κi are non-
decreasing, Saumard and Wellner [2014]. The multivariate normal example is a special case of Efron’s theo-
rem.

Denuit and Dhaene [2012] define an ex post risk sharing rule called the conditional mean risk allocation by taking
κi(x) to be the allocation to policy i when X = x. A series of recent papers, see Denuit and Robert [2020] and
references therein, considers the properties of the conditional mean risk allocation focusing on its use in peer-to-peer
insurance and the case when κi(x) is linear in x.

5.5.9 Properties of the Natural Allocation

We now explore margin, equity, and return in total and by policy. We begin by considering them in total.
By definition the average return with assets a is

ῑ(a) :=
M̄(a)

Q̄(a)

where margin M̄ and equity Q̄ are the total margin and capital functions defined above.
The last formula has important implications. It tells us the investor priced expected return varies with the level of
assets. For most distortions return decreases with increasing capital. In contrast, the standard RAROC models use a
fixed average cost of capital, regardless of the overall asset level, Tasche [1999]. CAPM or the Fama-French three

450 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

factor model are often used to estimate the average return, with a typical range of 7 to 20 percent, Cummins and
Phillips [2005]. A common question of working actuaries performing capital allocation is about so-called excess cap-
ital, if the balance sheet contains more capital than is required by regulators, rating agencies, or managerial prudence.
Our model suggests that higher layers of capital are cheaper, but not free, addressing this concern.
The varying returns may seem inconsistent with Miller-Modigliani. But that says the cost of funding a given amount
of capital is independent of how it is split between debt and equity; it does not say the average cost is constant as the
amount of capital varies.

No-Undercut and Positive Margin for Independent Risks

The natural allocation has two desirable properties. It is always less than the stand-alone premium, meaning it satisfies
the no-undercut condition of Denault [2001], and it produces non-negative margins for independent risks.
Proposition. Let X =

∑n
i=1Xi, Xi non-negative and independent, and let g be a distortion. Then

1. the natural allocation is never greater than the stand-alone premium, and
2. the natural allocation to every Xi contains a non-negative margin.

Since P̄i = E[κi(X)g′(S(X))] we see the no-undercut condition holds if κi(X) and g′(S(X)) are comonotonic,
and hence if κi is increasing, or if κi(X) and X are positively correlated (recall E[g′(S(X))] = 1). A policy i∗
with increasing κi∗ is a capacity consuming line that always has a positive margin. However, it can occur that no κi
is increasing.

Policy Level Properties, Varying with Asset Level

We start with a corollary which gives a nicely symmetric and computationally tractable expression for the natural
margin allocation in the case of finite assets.
Corollary. The margin density for unit i at asset level a is given by

Mi(a) = βi(a)g(S(a))− αi(a)S(a).

Proof. We can compute margin M̄i(a) in P̄i(a) by line as

M̄i(a) =P̄i(a)− L̄i(a)

=

∫ a

0

βi(x)g(S(x))− αi(x)S(x) dx.

Differentiating we get the margin density for unit i at a expressed in terms of αi and βi as shown.
Margin in the current context is the cost of capital, thus this is an important result. It allows us to compute economic
value by unit and to assess static portfolio performance by unit—one of the motivations for performing capital allo-
cation in the first place. In many ways it is also a good place to stop. Remember these results only assume we are
using a distortion risk measure and have equal priority in default. We are in a static model, so questions of portfolio
homogeneity are irrelevant. We are not assuming Xi are independent.
What can we say about by margins by unit? Since g is increasing and concave P (a) = g(S(a)) ≥ S(a) for all a ≥ 0.
Thus all asset layers contain a non-negative total margin density. It is a different situation by unit, where we can see

Mi(a) ≥ 0 ⇐⇒ βi(a)g(S(a))− αi(a)S(a) ≥ 0 ⇐⇒ βi(a)

αi(a)
≥ S(a)

g(S(a))
.

The unit layer margin density is positive when βi/αi is greater than the all-unit layer loss ratio. Since the loss ratio
is ≤ 1 there must be a positive layer margin density whenever βi(a)/αi(a) > 1. But when βi(a)/αi(a) < 1 it is
possible the unit has a negative margin density. How can that occur and why does it make sense? To explore this we
look at the shape of α and β in more detail.
It is important to remember why the Proposition does not apply: it assumes unlimited cover, whereas here a < ∞.
With finite capital there are potential transfers between units caused by their behavior in default that overwhelm the

5.5. Distortions and Spectral Risk Measures 451

aggregate Documentation, Release 0.22.0

positive margin implied by the proposition. Also note the proposition cannot be applied to X ∧ a =
∑

iXi(a)
because the unit payments are no longer independent.
In general we can make two predictions about margins.
Prediction 1: Lines where αi(x) or κi(x)/x increase with x will have always have a positive margin.
Prediction 2: A log-concave (thin tailed) unit aggregated with a non-log-concave (thick tailed) unit can have a
negative margin, especially for lower asset layers.
Prediction 1 follows because the risk adjustment puts more weight onXi/X for largerX and so βi(x)/αi(x) > 1 >
S(x)/g(S(x)). Recall the risk adjustment is comonotonic with total losses X .
A thin tailed unit aggregated with thick tailed units will have αi(x) decreasing with x. Now the risk adjustment will
produce βi(x) < αi(x) and it is possible that βi(x)/αi(x) < S(x)/g(S(x)). In most cases, αi(x) approaches
E[Xi]/x and βi(x)/αi(x) increases with x, while the layer loss ratio decreases—and margin increases—and the thin
unit will eventually get a positive margin. Whether or not the thin unit has a positive total margin M̄i(a) > 0 depends
on the particulars of the units and the level of assets a. A negative margin is more likely for less well capitalized
insurers, which makes sense because default states are more material and they have a lower overall dollar cost of
capital. In the independent case, as a→∞ the proposition guarantees an eventually positive margins for all units.
These results are reasonable. Under limited liability, if assets and liabilities are pooled then the thick tailed unit
benefits from pooling with the thin one because pooling increases the assets available to pay losses when needed.
Equal priority transfers wealth from thin to thick in states of the world where thick has a bad event. But because thick
dominates the total, the total losses are bad when thick is bad. The negative margin compensates the thin-tailed unit
for transfers.
Another interesting situation occurs for asset levels within attritional loss layers. Most realistic insured loss portfolios
are quite skewed and never experience very low loss ratios. For low loss layers, S(x) is close to 1 and the layer at x is
funded almost entirely by expected losses; the margin and equity density components are nearly zero. Since the sum
of margin densities over component units equals the total margin density, when the total is zero it necessarily follows
that either all unit margins are also zero or that some are positive and some are negative. For the reasons noted above,
thin tailed units get the negative margin as thick tailed units compensate them for the improved cover the thick tail
units obtain by pooling.
In conclusion, the natural margin by unit reflects the relative consumption of assets by layer, Mango [2005]. Low
layers are less ambiguous to the provider and have a lower margin relative to expected loss. Higher layers are more
ambiguous and have lower loss ratios. High risk units consume more higher layer assets and hence have a lower loss
ratio. For independent units with no default the margin is always positive. But there is a confounding effect when
default is possible. Because more volatile units are more likely to cause default, there is a wealth transfer to them.
The natural premium allocation compensates low risk policies for this transfer, which can result in negative margins
in some cases.

5.5.10 The Natural Allocation of Equity

Although we have a margin by unit, we cannot compute return by unit, or allocate frictional costs of capital, because
we still lack an equity allocation, a problem we now address.
Definition. The natural allocation of equity to unit i is given by

Qi(a) =
βi(a)g(S(a))− αi(x)S(a)

g(S(a))− S(a)
× (1− g(S(a))).

Why is this allocation natural? In total the layer return at a is

ι(a) :=
M(a)

Q(a)
=
P (a)− S(a)
1− P (a)

=
g(S(a))− S(a)
1− g(S(a))

.

We claim that for a law invariant pricing measure the layer return must be the same for all units. Law invariance
implies the risk measure is only concerned with the attachment probability of the layer at a, and not with the cause
of loss within the layer. If return within a layer varied by unit then the risk measure could not be law invariant.

452 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

We can now compute capital by layer by unit, by solving for the unknown equity density Qi(a) via

ι(a) =
M(a)

Q(a)
=
Mi(a)

Qi(a)
=⇒ Qi(a) =

Mi(a)

ι(a)
.

Substituting for layer return and unit margin gives the result.
Since 1− g(S(a)) is the proportion of capital in the layer at a, the main allocation result says the allocation to unit i
is given by the nicely symmetric expression

βi(a)g(S(a))− αi(x)S(a)

g(S(a))− S(a)
.

To determine total capital by unit we integrate the equity density

Q̄i(a) :=

∫ a

0

Qi(x)dx.

And finally we can determine the average return to unit i at asset level a

ῑi(a) =
M̄i(a)

Q̄i(a)
.

The average return will generally vary by unit and by asset level a. Although the return within each layer is the same
for all units, the margin, the proportion of capital, and the proportion attributable to each unit all vary by a. Therefore
average returns will vary by unit and a. This is in stark contrast to the standard industry approach, which uses the
same return for each unit and implicitly all a. How these quantities vary by unit is complicated. Academic approaches
emphasized the possibility that returns vary by unit, but struggled with parameterization, Myers and Cohn [1987].
This formula shows the average return by unit is an Mi-weighted harmonic mean of the layer returns given by the
distortion g, viz

1

ῑi(a)
=

∫ a

0

1

ι(x)

Mi(x)

M̄i(a)
dx.

The harmonic mean solves the problem that the return for lower layers of assets is potentially infinite (when g′(1) =
0). The infinities do not matter: at lower asset layers there is little or no equity and the layer is fully funded by the
loss component of premium. When so funded, there is no margin and so the infinite return gets zero weight. In this
instance, the sense of the problem dictates that 0×∞ = 0: with no initial capital there is no final capital regardless
of the return.

5.5.11 Appendix: Notation and Conventions

An insurer has finite assets and limited liability and is a one-period stock company. At t = 0 it sells its residual value
to investors to raise equity. At time one it pays claims up to the amount of assets available. If assets are insufficient
to pay claims it defaults. If there are excess assets they are returned to investors.
Total insured loss, or total risk, is described by a random variable X ≥ 0. X reflects policy limits but is not limited
by provider assets. X =

∑
iXi describes the split of losses by policy. F , S, f , and q are the distribution, survival,

density, and (lower) quantile functions of X . Subscripts are used to disambiguate, e.g., SXi
is the survival function

of Xi. X ∧ a denotes min(X, a) and X+ = max(X, 0).
The letters S, P ,M and Q refer to expected loss, premium, margin and equity, and a refers to assets. The value of
survival function S(x) is the loss cost of the insurance paying 1{X>x}, so the two uses of S are consistent. Premium
equals expected loss plus margin; assets equal premium plus equity. All these quantities are functions of assets
underlying the insurance.
We use the actuarial sign convention: large positive values are bad. Our concern is with quantiles q(p) for p near 1.
Distortions are usually reversed, with g(s) for small s = 1 − p corresponding to bad outcomes. As far as possible
we will use p in the context p close to 1 is bad and s when small s is bad.
Tail value at risk is defined for 0 ≤ p < 1 by

TVaRp(X) =
1

1− p

∫ 1

p

q(t)dt.

5.5. Distortions and Spectral Risk Measures 453

aggregate Documentation, Release 0.22.0

Prices exclude all expenses. The risk free interest rate is zero. These are standard simplifying assumptions, e.g.
Ibragimov et al. [2010].
The terminology describing risk measures is standard, and follows Föllmer and Schied [2011]. We work on a standard
probability space, Svindland [2010], Appendix. It can be taken as Ω = [0, 1], with the Borel sigma-algebra and P
Lebesgue measure. The indicator function on a setA is 1A, meaning 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

5.6 Bodoff’s Percentile Layer Capital Method

Objectives: Compare Bodoff with the natural allocation and show how to compute both in aggregate.
Audience: Those interested in current allocation methods and CAS Exam 9 candidates.
Prerequisites: Background on allocation and Bodoff’s paper.
Contents:

• Helpful References

• Introduction

• Assumptions and Notation

• Three Possible Allocation Methods

• Percentile Layer Allocation: Definition

• Thought Experiments

• Thought Experiment Number 1

• Bodoff Examples 1-3

• Bodoff Example 4

• Bodoff Summary

• CAS Exam Question: Spring 2018 Question 15

5.6.1 Helpful References

• Bodoff [2007]
• Mildenhall and Major [2022]

5.6.2 Introduction

The abstract to Bodoff [2007], Capital Allocation by Percentile Layer reads:
This paper describes a new approach to capital allocation; the catalyst for this new approach is a new
formulation of the meaning of holding Value at Risk (VaR) capital. This new formulation expresses
the firm’s total capital as the sum of many granular pieces of capital, or “percentile layers of capital.”
As a result, one must allocate capital separately on each layer and perform the capital allocation across
all layers. The resulting capital allocation procedure, “capital allocation by percentile layer,” exhibits
several salient features. First, it allocates capital to all losses, rather than allocating capital only to
extreme losses in the tail of the distribution. Second, despite allocating capital to this broad range
of loss events, the proposed procedure does not allocate in proportion to average loss; rather, it
allocates disproportionate capital to severe losses. Third, it allocates capital by relying neither
upon esoteric parameters nor upon elusive risk preferences. Ultimately, on the practical plane,
capital allocation by percentile layer produces allocations that are different from many other
methods. Concomitantly, on the theoretical plane, capital allocation by percentile layer leads to new
continuous formulas for risk load and utility.

454 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Bodoff’s paper is an important contribution to capital allocation and actuarial science. Its key insight is that layers of
capital respond to a range of loss events and not just tail events and so it is not appropriate to focus solely on default
states when allocating capital. Bodoff takes capital to mean total claims paying ability, comprised of equity and
premium. Bodoff allocates capital by considering loss outcomes and assumes that expected loss, margin, premium,
and equity all have the same allocation within each layer.
Less favorably, Bodoff blurs the distinction between events and outcomes. He allocates to identifiable events (wind-
only loss, etc.) rather than to outcomes. In examples, outcome amounts distinguish events. In the Lee diagram,
events are on the horizontal axis and outcomes on the vertical axis.

5.6.3 Assumptions and Notation

The examples model two independent units X1 and X2, usually wind and quake, with total X = X1 + X2. F
and S represent the distribution and survival function of X and q its lower quantile function. The capital (asset)
requirement set equal to the (lower) a := p = 0.99-VaR capital

5.6.4 Three Possible Allocation Methods

Consider three allocations:
1. Conditional VaR: coVaR, method allocates using

a = E[X | X = a] = E[X1 | X = a] + E[X2 | X = a]

2. Alternative conditional VaR: alt coVaR, method allocates using

a = aE
[
X1

X
| X ≥ a

]
+ aE

[
X2

X
| X ≥ a

]

3. Naive conditional TVaR: naive coTVaR, method allocates a proportional to E[X1 | X ≥ a] and E[X2 |
X ≥ a]

Bodoff’s principal criticism of these methods is that they all ignore the possibility of outcomes < a.
• coVaR allocates based proportion of losses by unit on the events {X = a} of exact size a. It ignores other
events nearX = a and all eventsX < a, which seems unreasonable. The allocation is not numerically stable:
in simulation output {X = a} is often only a single event.

• alt coVaR allocates based proportion of losses by unit on the events {X ≥ a}. It still ignores all events
< a. It relies on the relationship

a = a

(
E
[
X1

X
| X ≥ a

]
+ aE

[
X2

X
| X ≥ a

])
= aα1(a) + aα2(a)

• naive coTVaR resorts to a pro rata kludge because E[X | X ≥ x] ≥ x and is usually > x. Pro rata
adjustments signal the lack of a rigorous rationale and should be avoided. Note: what Bodoff calls TVaR is
usually known as CTE.

• Alternative conditional TVaR: the coTVaR method (not considered by Bodoff but introduced by Mango,
Venter, Kreps, Major) solves a = TVaR(p∗) for p∗ ≤ p (we shall see below we really need to use expected
shortfall, not TVaR). Then determine a∗ = q(p∗), the p∗-VaR and allocate using a = E[X | X ≥ a∗] =
E[X1 | X ≥ a∗] + E[X2 | X ≥ a∗].

In addition, all methods can be criticized as actuarial allocation exercises without an economic motivation. They do
not consider premium: additional assumptions needed to derive a premium from an asset or capital allocation, such
as a target return on allocated capital. They just provide an allocation of premium plus capital, i.e., assets, and not a
split between the two.

5.6. Bodoff’s Percentile Layer Capital Method 455

aggregate Documentation, Release 0.22.0

5.6.5 Percentile Layer Allocation: Definition

Bodoff introduces the percentile layer of capital, plc, allocation method to address the criticism that methods 1-4
all ignore events causing losses below the level of capital, whereas capital is certainly used to pay such losses. It
allocates capital in the same proportion as losses for each layer.
In a one-dollar, all-or-nothing cover that attaches with probability s = 1 − p at x = q(p) (= p-VaR), under
equal priority unit i receives a proportion αi(x) := E

[
Xi

X
| X > x

]
of assets, conditional on a loss. Therefore,

unconditional expected loss recoveries equal αi(x)S(x), part of total layer losses S(x). Allocating each layer of
capital between 0 and a in the same way gives the percentile layer of capital plc allocation:

ai :=

∫ a

0

αi(x) dx =

∫ a

0

E
[
Xi

X
| X > x

]
dx

By construction,
∑

i ai = a. The plc allocation can be understood better by decomposing

a =

∫ a

0

1 dx

=

∫ a

0

α1(x) + α2(x) dx

=

∫ a

0

α1(x)S(x) + α1(x)F (x) dx+

∫ a

0

α2(x)S(x) + α2(x)F (x) dx

=

(
E[X1(a)] +

∫ a

0

α1(x)F (x) dx

)
+

(
E[X2(a)] +

∫ a

0

α2(x)F (x) dx

)
It splits unfunded assets (assets in excess of expected losses) in the same proportion as losses in each asset layer, using
αi(x). plc says nothing about how to split the allocated unfunded capital

∫ a

0
α2(x)F (x) dx into margin and equity.

This is not surprising, since there are no pricing assumptions. The natural allocation introduces a pricing distortion
to compute an allocation of premium, and hence margin.
There are six allocations considered by Bodoff, with the following allocations of assets to unit 1.

1. pct EX: E[X1]/E[X]

2. coVaR: E[X1 | X = a]

3. adj VaR: aE
[
X1

X
| X ≥ a

]
4. naive coTVaR: a E[X1 | X ≥ a]

E[X | X ≥ a]
5. coTVaR: E[X1 | X > a∗], where a = TVaR(p∗)

6. plc:
∫ a

0

αi(x) dx, where αi(x) := E
[
Xi

X
| X > x

]

5.6.6 Thought Experiments

Bodoff introduces four thought experiments:
1. Wind and quake, wind losses 0 or 99, quake 0 or 100, 0.2 probability of a wind loss and 0.01 probability of a

quake loss.
2. Wind and quake, wind 0 or 50, quake 0 or 100, same probabilities.
3. Wind and quake, wind 0 or 5, quake 0 or 100, same probabilities.
4. Bernoulli / exponential compound distribution (see Bodoff Example 4.)

The units are independent. The next block of code sets up and validates Portfolio objects for each. The Bodoff
portfolios are part of the base library and can be extracted with build.qlist.

456 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

In [1]: import pandas as pd

In [2]: from collections import OrderedDict

In [3]: from aggregate import build, qd

In [4]: from aggregate.extensions import bodoff_exhibit

In [5]: bodoff = list(build.qlist('.*Bodoff').program)

In [6]: ports = OrderedDict()

In [7]: for s in bodoff:
...: port = build(s)
...: port.name = port.name.replace('L.', '')
...: ports[port.name] = port
...:

In [8]: for port in ports.values():
...: if port.name != 'Bodoff4':
...: port.update(bs=1, log2=8, remove_fuzz=True, padding=1)
...: else:
...: port.update(bs=1/8, log2=16, remove_fuzz=True, padding=2)
...: port.density_df = port.density_df.apply(lambda x: np.round(x, 14))
...: qd(port)
...: print(port.name)
...: print('='*80 + '\n')
...:

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
wind1 Freq 1 0

Sev 19.8 19.8 -2.2204e-16 2 2 1.5 1.5
Agg 19.8 19.8 -2.2204e-16 2 2 1.5 1.5

quake1 Freq 1 0
Sev 5 5 8.8818e-16 4.3589 4.3589 4.1295 4.1295
Agg 5 5 8.8818e-16 4.3589 4.3589 4.1295 4.1295

total Freq 2 0
Sev 12.4 12.4 0 2.6458 2.2679
Agg 24.8 24.8 0 1.8226 1.8226 1.4715 1.4715

log2 = 8, bandwidth = 1, validation: not unreasonable.
Bodoff1
==

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
wind2 Freq 1 0

Sev 10 10 -2.2204e-16 2 2 1.5 1.5
Agg 10 10 -2.2204e-16 2 2 1.5 1.5

quake2 Freq 1 0
Sev 5 5 8.8818e-16 4.3589 4.3589 4.1295 4.1295
Agg 5 5 8.8818e-16 4.3589 4.3589 4.1295 4.1295

total Freq 2 0
Sev 7.5 7.5 2.2204e-16 2.8087 2.8984
Agg 15 15 2.2204e-16 1.972 1.972 2.1153 2.1153

log2 = 8, bandwidth = 1, validation: not unreasonable.
Bodoff2
==

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)

(continues on next page)

5.6. Bodoff’s Percentile Layer Capital Method 457

aggregate Documentation, Release 0.22.0

(continued from previous page)
unit X
wind3 Freq 1 0

Sev 1 1 -2.2204e-16 2 2 1.5 1.5
Agg 1 1 -2.2204e-16 2 2 1.5 1.5

quake3 Freq 1 0
Sev 5 5 8.8818e-16 4.3589 4.3589 4.1295 4.1295
Agg 5 5 8.8818e-16 4.3589 4.3589 4.1295 4.1295

total Freq 2 0
Sev 3 3 6.6613e-16 5.2015 5.9989
Agg 6 6 8.8818e-16 3.6477 3.6477 4.079 4.079

log2 = 8, bandwidth = 1, validation: not unreasonable.
Bodoff3
==

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
a Freq 0.25 2 2

Sev 4 3.9998 -4.0689e-05 1 1.0001 2 1.9995
Agg 1 0.99996 -4.0689e-05 2.8284 2.8286 4.2426 4.2426

b Freq 0.05 4.4721 4.4721
Sev 20 20 -1.6276e-06 1 1 2 2
Agg 1 1 -1.6276e-06 6.3246 6.3246 9.4868 9.4868

c Freq 0.05 4.4721 4.4721
Sev 100 100 -6.5104e-08 1 1 2 2
Agg 5 5 -6.5104e-08 6.3246 6.3246 9.4868 9.4868

total Freq 0.35 1.6903 1.6903
Sev 20 20 -6.0917e-06 2.5467 5.3022
Agg 7 7 -6.0918e-06 4.6247 4.6247 8.9162 8.9162

log2 = 16, bandwidth = 1/8, validation: not unreasonable.
Bodoff4
==

5.6.7 Thought Experiment Number 1

There are four possible events ω, leading to the loss outcomes X(ω) laid out next.

Event, ω X1 X2 X Pr(ω) F S

No loss 0 0 0 0.76 0.76 0.24
Wind 99 0 99 0.19 0.95 0.05
Quake 0 100 100 0.04 0.99 0.01
Both 99 100 199 0.01 1.00 0.00

Compute the allocation using all the methods. In the next block, EX shows expected unlimited loss by unit. sa
VaR and sa TVaR show stand-alone 0.99 VaR and TVaR. The remaining rows display results for the methods
just described. The apparent issue with the coTVaR method is caused by the probability mass at 100. A co ES
allocation would re-scale the coTVaR allocation shown.

In [9]: port = ports['Bodoff1']

In [10]: reg_p = 0.99

In [11]: a = port.q(reg_p, 'lower')

In [12]: print(f'VaR assets = {a}')
VaR assets = 100.0

In [13]: basic = bodoff_exhibit(port, reg_p)

(continues on next page)

458 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [14]: qd(basic, col_space=10)

wind1 quake1 total
method
EX 5 24.8 19.8
sa VaR 99 100 100
sa TVaR 99 100 199
pct EX 25.253 125.25 100
coVaR 0 100 100
alt coVaR 9.9497 90.05 100
naive coTVaR 16.528 83.472 100
coTVaR 82.5 20.833 103.33
plc 80.527 19.473 100

Graphs of the survival and allocation functions for Bodoff Example 1. Top row: survival functions, bottom row:
αi(x) allocation functions. Left side shows full range of 0 ≤ x ≤ 200 and right side highlights the functions around
the loss points, 96 ≤ x ≤ 103.

In [15]: fig, axs = plt.subplots(2, 2, figsize=(2 * 3.5, 2 * 2.45), constrained_
↪→layout=True)

In [16]: ax0, ax1, ax2, ax3 = axs.flat

In [17]: df = port.density_df

In [18]: for ax in axs.flat[:2]:
....: (1 - df.query('(S>0 or p_total>0) and loss<=210').filter(regex='p_').

↪→cumsum()).\
....: plot(drawstyle="steps-post", ax=ax, lw=1)
....: ax.lines[1].set(lw=2, alpha=.5)
....: ax.lines[2].set(lw=3, alpha=.5)
....: ax.grid(lw=.25)
....: ax.legend(loc='upper right')
....:

In [19]: ax0.set(ylim=(-0.025, .25), xlim=(-.5, 210), xlabel='Loss', ylabel=
↪→'Survival function');

In [20]: ax1.set(ylim=(-0.025, .3), xlim=[96,103], xlabel='Loss (zoom)', ylabel=
↪→'Survival function');

In [21]: for ax in axs.flat[2:]:
....: df.query('(S>0) and loss<=210').filter(regex='exi_xgta_[wq]').

↪→plot(drawstyle="steps-post", lw=1, ax=ax)
....: ax.lines[1].set(lw=2, alpha=.5)
....: ax.grid(lw=.25)
....: ax.legend(loc='upper right')
....:

In [22]: ax2.set(ylim=(-0.025, 1.025), xlabel='Loss', ylabel='$E[X_i/X | X]$');

In [23]: ax3.set(ylim=(-0.025, 1.025), xlim=(96,103), xlabel='Loss (zoom)', ylabel=
↪→'$E[X_i/X | X]$');

5.6. Bodoff’s Percentile Layer Capital Method 459

aggregate Documentation, Release 0.22.0

Expected Shortfall (usually called TVaR) differs fromBodoff’s Tail Value at Risk (generally called CTE) for a discrete
distribution. TVaR/CTE is a jump function. ES is a continuous, increasing function taking all values between the
mean and maximum value of X . The graph illustrates the functions for Bodoff Example 1.

In [24]: fig, ax = plt.subplots(1, 1, figsize=(3.5, 2.45), constrained_layout=True)

In [25]: ps = np.linspace(0, 1, 101)

In [26]: tp = port.tvar(ps)

In [27]: ax.plot(ps, tp, lw=1, label='ES');

In [28]: ax.plot(df.F, port.density_df.exgta_total, lw=1, label='TVaR', drawstyle=
↪→'steps-post');

In [29]: ax.plot([0, .76], [port.ex/.24, port.ex/.24,], c='C1', lw=1, label=None);

In [30]: ax.grid();

In [31]: ax.legend();

In [32]: ax.set(ylim=[-5, 205], xlabel='p', ylabel='ES or TVaR/CTE');

460 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

5.6.8 Bodoff Examples 1-3

Example 2 illustrates that plc can produce an answer that is different from expected losses. Example 3 it illustrates
fungibility of pooled capital, with losses fromX1 covered by the total premium. coTVaR suffers the same issues in
Examples 2 and 3 as it does in Example 1.

In [33]: basic1 = bodoff_exhibit(ports['Bodoff1'], reg_p)

In [34]: basic2 = bodoff_exhibit(ports['Bodoff2'], reg_p)

In [35]: basic3 = bodoff_exhibit(ports['Bodoff3'], reg_p)

In [36]: basic_all = pd.concat((basic1, basic2, basic3), axis=1,
....: keys=[f'Ex {i}' for i in range(1,4)])
....:

In [37]: qd(basic_all, col_space=7)

Ex 1 Ex 2 Ex 3 ␣
↪→

wind1 quake1 total wind2 quake2 total wind3 quake3 ␣
↪→total
method ␣
↪→

EX 5 24.8 19.8 5 15 10 5 6 ␣
↪→1
sa VaR 99 100 100 50 100 100 5 100 ␣
↪→100
sa TVaR 99 100 199 50 100 150 5 100 ␣
↪→105
pct EX 25.253 125.25 100 50 150 100 500 600 ␣
↪→100
coVaR 0 100 100 -0 100 100 0 100 ␣
↪→100
alt coVaR 9.9497 90.05 100 6.6667 93.333 100 0.95238 99.048 ␣
↪→100
naive coTVaR 16.528 83.472 100 9.0909 90.909 100 0.9901 99.01 ␣
↪→100
coTVaR 82.5 20.833 103.33 10 100 110 1 100 ␣
↪→101
plc 80.527 19.473 100 43.611 56.389 100 4.873 95.127 ␣
↪→100

5.6.9 Bodoff Example 4

The next table recreates the exhibit in Section 9.1 of Bodoff’s paper. There are three units labelled a, b, and c.
It shows the percent allocation of capital to each unit across different methods. Breakeven percentile equals the
percentile equal to expected losses. Bodoff’s calculation uses 10,000 simulations. The table shown here uses FFTs
to obtain a close-to exact answer. The exponential distribution is borderline thick tailed, and so is quite hard to work
with for both simulation methods and FFT methods.

In [38]: p4 = ports['Bodoff4']

In [39]: df91 = pd.DataFrame(columns=list('abc'), dtype=float)

In [40]: tv = p4.var_dict(.99, 'tvar')

In [41]: df91.loc['sa TVaR 0.99'] = np.array(list(tv.values())[:-1]) / sum(list(tv.
↪→values())[:-1])

(continues on next page)

5.6. Bodoff’s Percentile Layer Capital Method 461

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [42]: pbe = float(p4.cdf(p4.ex))

In [43]: for p in [.99, .95, .9, pbe]:
....: tv = p4.cotvar(p)
....: df91.loc[f'naive TVaR {p:.3g}'] = tv[:-1] / tv[-1]
....:

In [44]: v = ((p4.density_df.filter(regex='exi_xgta_[abc]').
....: shift(1).cumsum() * p4.bs).loc[p4.q(.99)]).values
....:

In [45]: df91.loc['plc'] = v / v.sum()

In [46]: df91.index.name = 'line'

In [47]: qd(df91, col_space=10, float_format=lambda x: f'{x:.1%}')

a b c
line
sa TVaR 0.99 5.5% 15.8% 78.8%
naive TVaR 0.99 0.4% 0.7% 98.9%
naive TVaR 0.95 1.3% 11.3% 87.5%
naive TVaR 0.9 6.7% 14.7% 78.6%
naive TVaR 0.876 9.0% 14.7% 76.3%
plc 4.5% 9.6% 85.8%

Pricing for Bodoff Example 4

Bodoff Example 4 is based on a three unit portfolio. Each unit has a Bernoulli 0/1 frequency and exponential severity:
• Unit a has a 0.25 probability of a claim and 4 severity
• Unit b has a 0.05 probability of a claim and 20 severity
• Unit c has a 0.01 probability of a claim and 100 severity

All units have unlimited expectation 1.0
Bodoff does not consider pricing per se. His allocation can be considered as Pi + Qi, with no opinion on the split
between margin and equity. Making additional assumptions we can compare the plc capital allocation with other
methods. Assume total roe = 0.1 at 0.99-VaR capital standard. Set up the target return, premium, and regulatory
capital threshold (99% VaR):

In [48]: roe = 0.1

In [49]: reg_p = 0.99

In [50]: v = 1 / (1 + roe)

In [51]: d = 1 - v

In [52]: port = ports['Bodoff4']

In [53]: a = port.q(reg_p)

In [54]: el = port.density_df.at[a, 'lev_total']

In [55]: premium = v * el + d * a

In [56]: q = a - premium

(continues on next page)

462 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [57]: margin = premium - el

In [58]: roe, a, el, port.ex, premium, el / premium, q, margin / q
Out[58]:
(0.1,
164.875,
5.97612830432361,
6.999957357424143,
20.42148027665783,
0.29263932992920433,
144.45351972334217,
0.10000000000000003)

Calibrate pricing distortions to required return.

In [59]: port.calibrate_distortions(ROEs=[roe], Ps=[reg_p], strict='ordered');

In [60]: qd(port.distortion_df)

S L P PQ Q COC param ␣
↪→error
a LR method ␣
↪→

164.875 292.639m ccoc 0.0099961 5.9761 20.421 0.14137 144.45 0.1 0.1 ␣
↪→ 0

ph 0.0099961 5.9761 20.421 0.14137 144.45 0.1 0.60427 1.
↪→7693e-10

wang 0.0099961 5.9761 20.421 0.14137 144.45 0.1 0.69321 3.
↪→3953e-06

dual 0.0099961 5.9761 20.421 0.14137 144.45 0.1 3.8032 -2.
↪→7904e-08

tvar 0.0099961 5.9761 20.421 0.14137 144.45 0.1 0.70736 4.
↪→3553e-06

Allocate premium plus equity to each unit across different pricing methods. All methods except percentile layer
capital calibrated to the same total premium and capital level. Distortions that price tail loss will allocate the most to
unit c, the most volatile. More bowed distortions will allocate most to a. The three units have the same expected loss
(last row). covar is covariance method; coVaR is conditional VaR. agg corresponds to the PIR approach and bod
to Bodoff’s methods. Only additive methods are shown. method ordered by allocation to unit a the least skewed; c
is the most skewed.

In [61]: ad_ans = port.analyze_distortions(p=reg_p, kind='lower')

In [62]: basic = bodoff_exhibit(port, reg_p)

In [63]: qd(basic, col_space=10)

a b c total
method
EX 1 1 5 7
sa VaR 14 32.5 162.5 164.88
sa TVaR 18.42 52.989 264.94 267.26
pct EX 23.554 23.554 117.77 164.88
coVaR 1.0864 2.7956 160.99 164.88
alt coVaR 0.74288 1.3108 162.82 164.87
naive coTVaR 0.66867 1.1279 163.08 164.88
coTVaR 1.1127 7.0366 156.86 165.01
plc 7.4527 15.899 141.52 164.87

In [64]: ans = pd.concat((ad_ans.comp_df.xs('P', 0, 1) + ad_ans.comp_df.xs('Q', 0,␣
↪→1),

(continues on next page)

5.6. Bodoff’s Percentile Layer Capital Method 463

aggregate Documentation, Release 0.22.0

(continued from previous page)
....: basic.rename(columns=dict(X='total')).iloc[3:]), keys=(

↪→'agg', 'bod'))
....:

In [65]: if port.name[-1] in list('123'):
....: ans = ans.sort_values('X1')
....: bit = ans.query(' abs(total - @a) < 1e-3 and abs(X1 + X2 - total) <␣

↪→1e-3 ').dropna()
....:

In [66]: if port.name[-1] not in list('123'):
....: ans = ans.sort_values('a')
....: bit = ans.query(' abs(total - @a) < 1e-2 and abs(a + b + c - total) <␣

↪→1e-2 ')
....:

In [67]: bit.index.names =['approach', 'method']

In [68]: qd(bit, col_space=10)

a b c total
approach method
bod naive coTVaR 0.66867 1.1279 163.08 164.88

alt coVaR 0.74288 1.3108 162.82 164.87
coVaR 1.0864 2.7956 160.99 164.88
plc 7.4527 15.899 141.52 164.87
pct EX 23.554 23.554 117.77 164.88

Premium for PIR and Bodoff methods, sorted by premium for a. All methods produce the same total premium by
calibration. Very considerable differences are evident across the methods.

In [69]: basic.loc['EXa'] = \
....: port.density_df.filter(regex='exa_[abct]').loc[a].rename(index=lambda x:␣

↪→x.replace('exa_', ''))
....:

In [70]: premium_df = basic.drop(index=['EX', 'sa TVaR', 'coTVaR'])

In [71]: premium_df = premium_df.loc['EXa'] * v + d * premium_df

In [72]: ans = pd.concat((ad_ans.comp_df.xs('P', 0, 1), premium_df),
....: keys=('agg', 'bod')).sort_values('a')
....:

In [73]: bit = ans.query(' abs(total - @premium) < 1e-2 and abs(a + b + c - total)
↪→< 1e-2 ')

In [74]: bit.index.names =['approach', 'method']

In [75]: qd(bit, col_space=10, sparsify=False)

a b c total
approach method
bod naive coTVaR 0.96674 1.0069 18.448 20.421
bod alt coVaR 0.97349 1.0236 18.424 20.421
bod coVaR 1.0047 1.1585 18.258 20.421
agg Dist ph 1.5177 2.1557 16.756 20.429
bod plc 1.5835 2.3497 16.488 20.421
agg Dist wang 1.8859 2.5978 15.944 20.428
agg Dist dual 2.6728 3.2827 14.471 20.426
bod pct EX 3.0472 3.0456 14.329 20.421

(continues on next page)

464 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
agg Dist tvar 3.4054 3.3995 13.621 20.426

Corresponding loss ratios (remember, these are cat lines).

In [76]: bit_lr = premium_df.loc['EXa'] / bit

In [77]: qd(bit_lr, col_space=10, sparsify=False,
....: float_format=lambda x: f'{x:.1%}')
....:

a b c total
approach method
bod naive coTVaR 103.1% 98.8% 21.6% 29.3%
bod alt coVaR 102.4% 97.2% 21.6% 29.3%
bod coVaR 99.2% 85.9% 21.8% 29.3%
agg Dist ph 65.7% 46.1% 23.8% 29.3%
bod plc 62.9% 42.3% 24.2% 29.3%
agg Dist wang 52.8% 38.3% 25.0% 29.3%
agg Dist dual 37.3% 30.3% 27.5% 29.3%
bod pct EX 32.7% 32.7% 27.8% 29.3%
agg Dist tvar 29.3% 29.3% 29.3% 29.3%

5.6.10 Bodoff Summary

Bodoff’s methods allocate all capital like loss and do not distinguish expected loss, margin and equity. It does not get
to a price. It is event-centric, allocating to events, but really allocating to peril=lines. Premium is not mentioned
until Section 7 (of 10). Then, it uses the basic CCoC formula P = vL+ da (eq. 8.2).

5.6.11 CAS Exam Question: Spring 2018 Question 15

An insurer has exposure to two independent perils, wind and earthquake:
• Wind has a 15% chance of a $5 million loss, and an 85% chance of no loss.
• Earthquake has a 1 % chance of a $15 million loss, and a 99% chance of no loss.

Using the capital allocation by percentile layer methodology with a 99.5% VaR capital requirement, determine how
much capital should be allocated to each peril.
Solution.
The last row gives the percentile layer capital.

In [78]: cas15 = build('port CASq15 '
....: 'agg X1 1 claim dsev [0, 5] [0.85, 0.15] fixed '
....: 'agg X2 1 claim dsev [0, 15] [0.99, 0.01] fixed ')
....:

In [79]: qd(cas15)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
X1 Freq 1 0

Sev 0.75 0.75 2.2204e-16 2.3805 2.3805 1.9604 1.9604
Agg 0.75 0.75 2.2204e-16 2.3805 2.3805 1.9604 1.9604

X2 Freq 1 0
Sev 0.15 0.15 8.8818e-16 9.9499 9.9499 9.8494 9.8494
Agg 0.15 0.15 8.8818e-16 9.9499 9.9499 9.8494 9.8494

total Freq 2 0

(continues on next page)

5.6. Bodoff’s Percentile Layer Capital Method 465

aggregate Documentation, Release 0.22.0

(continued from previous page)
Sev 0.45 0.45 2.2204e-16 3.7168 4.7835
Agg 0.9 0.9 2.2204e-16 2.5856 2.5856 3.4839 3.4839

log2 = 16, bandwidth = 1/128, validation: not unreasonable.

cas15.update(bs=1, log2=8, remove_fuzz=True, padding=1)
In [80]: cas15.density_df = cas15.density_df.apply(lambda x: np.round(x, 10))

In [81]: basic = bodoff_exhibit(cas15, reg_p=.995)

In [82]: qd(basic, col_space=10)

X1 X2 total
method
EX 0.75 0.15 0.9
sa VaR 5 15 15
sa TVaR 5 15 16.5
pct EX 12.5 2.5 15
coVaR 0 15 15
alt coVaR 0.5625 14.438 15
naive coTVaR 0.71429 14.286 15
coTVaR 0.75 15 15.75
plc 5.0714 9.9286 15

In [83]: df = cas15.density_df.query('S > 0 or p_total > 0')

The calculation of plc as the integral of α for unit 1 is simply:

In [84]: df.exi_xgta_X1.shift(1, fill_value=0).cumsum().loc[15] * cas15.bs
Out[84]: 5.071372239500204

5.7 The Pollaczeck-Khinchine Formula

Objectives: Illustrate and compute Pollaczeck-Khinchine formula for probability of eventual ruin for a compound
Poisson process.
Audience: Advanced users.
Prerequisites: Advanced risk theory.
Contents:

• Helpful References

• Classical Risk Theory and the Pollaczeck-Khinchine Formula

• FFT Computation

• Using The Pollaczeck-Khinchine Formula I

• Using The Pollaczeck-Khinchine Formula II

• Market Scale and Viability

466 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

5.7.1 Helpful References

• Embrechts et al. [1997] Section 1.2
• Mildenhall and Major [2022] sections 8.4.2 and 9.3 and references therein (largely reproduced here).

5.7.2 Classical Risk Theory and the Pollaczeck-Khinchine Formula

The Pollaczeck-Khinchine formula determines the probability of eventual ruin in a portfolio where claims are driven
by a compound Poisson process, in terms of starting surplus and the premium rate. Losses are generated by a Poisson
process with λ annual expected claims and iid severity X . Losses up to time t are given by

A(t) = X1 + · · ·+XN(t),

whereN(t) is Poisson with mean λt. Expected loss per year equals λE[X]. Premium per year equals (1+ r)λE[X]
where r is the ratio of profit to expected loss. The corresponding expected loss ratio is 1/(1 + r). If r ≤ 0 then
eventual ruin is certain, so assume r > 0.
Define the integrated severity distribution by

FI(x) =
1

E[X]

∫ x

0

S(t)dt

=
LEV(x)
E[X]

= 1− E[(X − x)
+]

E[X]

where S is the survival function of X . FI is a thicker tailed distribution than F . Let

Uu,r(t) = u+ (1 + r)λE[X]t−A(t)

denote accumulated surplus to time t given starting surplus u. U is called the surplus process. Finally, let

ψ(u, r) = Pr(Uu,r(t) < 0 for some t ≥ 0)

be the probability of eventual ruin.
The Pollaczeck-Khinchine formula says that

ψ(u, r) = 1− r

1 + r

∑
n≥0

(1 + r)−nFn∗
I (u)

where Fn∗
I is distribution of the sum of n independent variables with distribution FI . Note that

G(z) =
r

1 + r

∑
n≥0

zn

(1 + r)n
=

r

1 + r − z

is the probability generating function of a geometric distributionM with mean 1/r and Pr(M = m) = r
1+r

1
(1+r)m .

Therefore ψ(u) = Pr(Y > u) where Y is an aggregate distribution with frequencyM and severity FI . A surprising
consequence is that the probability of eventual ruin starting with no surplus, ψ(0) = 1−Pr(Y = 0) = 1−Pr(M =
0) = 1

1+r equals the expected loss ratio!
Embrechts et al. [1997] Section 1.2 shows how to derive the Pollaczeck-Khinchine formula. The key step is to
determine the distribution ofX − (1 + r)T where T is the exponential waiting time between claims, and to observe
that ruin can occur only at the moment of a claim.
The Pollaczeck-Khinchine formula gives combinations of u and r that are consistent with a top-down stability re-
quirement expressed as a target probability of eventual ruin. Overlaying a cost of capital provides a link between r
and u that determines a minimum viable market size. An example of this method is given below.
Because eventual is the same in days, weeks or years, ψX,m(u) is independent of the expected claim count λ. In
unit of time 1/λ all portfolios have an expected claim count of one. Therefore ψ−1(p) gives a capital requirement

5.7. The Pollaczeck-Khinchine Formula 467

aggregate Documentation, Release 0.22.0

(risk measure) that is a function of severity and not frequency, i.e., it is independent of portfolio size. Unlike most
risk measures, it does not regard small portfolios as more risky than large ones.
The Cramer-Lundberg formula is an approximation to ψ that applies for thin tailed severities. It says that

ψ(u, r) ≤ e−ku

where k > 0 is a constant called the adjustment coefficient solving

ekP = E[ekA(1)]

where P = (1 + r)λE[X] is the premium. Given a top-down stability requirement, we can work backwards from
the Cramer-Lundberg formula to determine a premium.
Exercise. Show that if k = − log(p)/u and premium

P =
1

k
logE[ekA(1)],

then the Cramer-Lundberg formula ensures the probability of eventual ruin is≤ p. The properties of P motivate the
exponential premium. In turn, the approximation P ≈ E[A(1)] + kVar(A(1))/2 motivates the variance principle.
Both the Cramer-Lundberg and Pollaczeck-Khinchine formulas assume independent and identically distributed sever-
ity and Poisson frequency. These can be reasonable assumptions for the loss process of a small portfolio. The case
of a mixed Poisson can be decomposed as a mixture of pure Poisson processes.

5.7.3 FFT Computation

The distribution of Y can be computed using Fast Fourier transforms in the same way as any aggregate distribution.
Some care is needed when the margin is very small because the claim count is very large. Aggregate includes
pollaczeck_khinchine() to determine the integrated distribution FI and convolve it with a geometric fre-
quency.

5.7.4 Using The Pollaczeck-Khinchine Formula I

This section reproduces two examples from the risk vignette for the actuar package.
The first is based on a mean 10 Poisson compound with shape 2 gamma severity. The vignette uses matched-moments
discretization and so our numbers do not exactly match, but they are very close. We build the compound, compute
some quantiles and tvars, display the density (compare p.8-10). Then using a premium loading of 20% using the
expected value premium (p.12), we reproduce the probabilities in Figure 5. Our computation is exact vs. using an
approximation.

In [1]: from aggregate import build, qd

In [2]: import matplotlib.pyplot as plt

In [3]: a = build('agg Actuar 10 claims sev gamma 2 poisson'
...: , bs=0.5, log2=8)
...:

In [4]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 10 0.31623 0.31623
Sev 2 1.9999 -7.4963e-05 0.70711 0.71102 1.4142 1.3901
Agg 20 19.999 -7.4963e-05 0.3873 0.38801 0.5164 0.51634
log2 = 8, bandwidth = 1/2, validation: fails sev cv, agg cv.

(continues on next page)

468 Chapter 5. Technical Guides

https://cran.r-project.org/web/packages/actuar/vignettes/risk.pdf

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [5]: ps = [0.25, .5, .75, .9, .95, .975, .99, .995, .999, 1-1e-14]

In [6]: qd(pd.DataFrame({'p': ps, 'q': a.q(ps)}), float_format=lambda x: f'{x:10.
↪→3f}' if x < 1 else f'{x:10.1f}')

p q
0 0.250 14.5
1 0.500 19.5
2 0.750 25.0
3 0.900 30.5
4 0.950 34.0
5 0.975 37.0
6 0.990 41.0
7 0.995 43.5
8 0.999 49.5
9 1.000 115.5

In [7]: fig, axs = plt.subplots(1, 3, figsize=(3 * 3.5, 2.45), constrained_
↪→layout=True)

In [8]: ax, ax0, ax1 = axs.flat

In [9]: a.density_df.F.plot(ax=ax, xlim=[0, 60], title='Po-Gamma distribution␣
↪→function');

In [10]: qd(a.density_df.p_total.head(20).reset_index(drop=False), float_
↪→format=lambda x: f' {x:<12.5g}' if 0 < x < .1 else f'{x:10.1f}')

loss p_total
0 0.0 5.9175e-05
1 0.5 8.6904e-05
2 1.0 0.00017152
3 1.5 0.00028809
4 2.0 0.00045063
5 2.5 0.00066863
6 3.0 0.0009508
7 3.5 0.0013052
8 4.0 0.001739
9 4.5 0.0022578
10 5.0 0.0028658
11 5.5 0.0035653
12 6.0 0.0043564
13 6.5 0.0052372
14 7.0 0.0062034
15 7.5 0.0072487
16 8.0 0.0083649
17 8.5 0.0095419
18 9.0 0.010768
19 9.5 0.01203

In [11]: qd(a.tvar([.9, .95, .99]))
[35.02023434 38.14387968 44.6199146]

In [12]: ruins, find_us, mean, dfi = a.cramer_lundberg(.2)

In [13]: ax0.plot(np.cumsum(dfi), label='integrated')
Out[13]: [<matplotlib.lines.Line2D at 0x7fe3de20bfd0>]

In [14]: ax0.plot(a.density_df.p_sev.cumsum(), label='severity')
Out[14]: [<matplotlib.lines.Line2D at 0x7fe3de1d83d0>]

(continues on next page)

5.7. The Pollaczeck-Khinchine Formula 469

aggregate Documentation, Release 0.22.0

(continued from previous page)
In [15]: ax0.set(xlim=[0, 40], title='Severity and integrated severity␣
↪→distributions')
Out[15]: [(0.0, 40.0), Text(0.5, 1.0, 'Severity and integrated severity␣
↪→distributions')]

In [16]: ax0.legend(loc='lower right')
Out[16]: <matplotlib.legend.Legend at 0x7fe3dff0b9d0>

In [17]: ruins.plot(ax=ax1, xlim=[0, 50],
....: title='Probability of eventual ruin against starting surplus',
....: ylabel='Probability', xlabel='Starting surplus');
....:

The second uses a Pareto severity, where the integrated distribution can be computed exactly. The following code
produces the exact values for the probability of eventual default against starting surplus. All the values fall in the
range between lower and upper shown on p.19.

In [18]: a = build('agg Actuar2 1 claim sev 4 * pareto 5 - 4 fixed')

In [19]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X
Freq 1 0
Sev 1 1 -4.2872e-06 1.291 1.2907 4.6476 4.5872
Agg 1 1 -4.2872e-06 1.291 1.2907 4.6476 4.5872
log2 = 16, bandwidth = 1/512, validation: fails sev skew, agg skew.

In [20]: ruins, find_us, mean, dfi = a.cramer_lundberg(.2)

In [21]: ruins.name = 'Prob'

In [22]: bit = ruins.loc[np.arange(0, 51, 5)].to_frame()

In [23]: bit.index = bit.index.astype(int)

In [24]: bit.index.name = 'Initial surplus'

In [25]: qd(bit, ff=lambda x: f'{x:.5f}')

Prob
Initial surplus
0 0.83306
5 0.42670
10 0.23477
15 0.13149
20 0.07439
25 0.04242
30 0.02435
35 0.01406
40 0.00818

(continues on next page)

470 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
45 0.00479
50 0.00282

The actual work, to get the answer as opposed to formatting the result, is only two lines of code in Aggregate (the
first and third) vs. 8 in actuar R.

5.7.5 Using The Pollaczeck-Khinchine Formula II

This section illustrates the theory using a lognormal severity with a mean of 50,000 and a CV of 10 (σ = 2.15)
corresponding to a moderately risky liability line. It compares starting surplus levels for different eventual ruin prob-
abilities assuming a margin r = 0.1 with a 1 million and 10 million occurrence limit. It also illustrates simulations
of the surplus process in each case with starting surplus calibrated to a 0.05 probability of eventual ruin.
Set up the portfolio.

In [26]: port = build('port PZTest '
....: 'agg Limit1 '
....: '0.1 claims '
....: '1000000 xs 0 '
....: 'sev lognorm 50000 cv 10 '
....: 'poisson'
....: 'agg Limit10 '
....: '0.1 claims '
....: ' 10000000 xs 0 '
....: 'sev lognorm 50000 cv 10 '
....: 'poisson'
....: , bs=500, log2=18, padding=1)
....:

In [27]: qd(port)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
unit X
Limit1 Freq 0.1 3.1623 3.1623

Sev 38064 38060 -0.0001105 3.0931 3.0935 5.9141 5.914
Agg 3806.4 3806 -0.0001105 10.28 10.281 18.845 18.845

Limit10 Freq 0.1 3.1623 3.1623
Sev 47900 47896 -8.7807e-05 5.6958 5.6963 20.969 20.969
Agg 4790 4789.6 -8.7807e-05 18.287 18.289 64.966 64.966

total Freq 0.2 2.2361 2.2361
Sev 42982 42978 -9.7853e-05 4.8898 23.502
Agg 8596.4 8595.6 -9.7853e-05 11.16 11.161 50.728 50.728

log2 = 18, bandwidth = 500, validation: fails sev mean, agg mean.

The left plots show the Pollaczeck-Khinchine formula starting surplus as a function of the eventual ruin probability
with margin 0.1 on linear (solid) and log (dashed) scales. The Cramer-Lundberg formula says that the probability of
eventual ruin is approximately exponential, which is a straight line on a log scale.
The right column show 500 simulated surplus paths, with × indicating ruin scenarios. Capital calibrated to 0.05
eventual ruin probability. Time and volume are symmetric in the model, so volume can be regarded as time for a
fixed size portfolio or a varying sized portfolio for a fixed time or a combination. Scale indicates cumulative exposure-
years.

In [28]: from aggregate.extensions.pir_figures import fig_9_1

In [29]: fig_9_1(port)

5.7. The Pollaczeck-Khinchine Formula 471

aggregate Documentation, Release 0.22.0

The right hand plots are computed here with only 100 samples, vs. 500 used in the book, and so the approximation
is not as accurate.
These simulations show that the probability of eventual ruin is constrained by the buildup of surplus in most scenarios.
Defaults occur early in the simulated history. This model could be appropriate for a mutual company—indeed some
mutual companies have accumulated substantial amounts of capital. For a stock company, a more realistic approach
adds dividends to manage capital.

5.7.6 Market Scale and Viability

Given severityX and ratio r of margin to expected loss, the Pollaczeck-Khinchine function ψ is monotone and hence
invertible, allowing us to find uX,r(p) = ψ−1

X,r(p), the starting capital necessary to guarantee probability p of eventual
ruin.
The amount of margin equals rλE[X], where λ is the annual expected claim count. Since the expected margin must
pay the cost of capital, we get a market viability constraint

rλE[X] ≥ ι uX,r(p)

where ι is the cost of capital. Each element is influenced by different factors:
• the hazard and contract design determines X ,
• the insurance product market determines r,
• the capital markets determine ι, and
• a regulator or rating agency determines (or strongly influences) p.

There are two ways to apply this formula.
First, consider a diversifying unit, such as motor liability, where insurers grow by adding new, independent insureds
with the same severity. Here, the formula gives a minimum size of market constraint

λ ≥ ι uX,r(p)

rE[X]
.

This function of four variables and λ is:
• Increasing and linear in ι: the market must be larger given more expensive capital.
• Decreasing in r: the market can be smaller with a higher margin.
• Decreasing in p: the market must be larger to support a stricter capital standard.

472 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

• Independent of expected severity (because ψ is homogeneous in E[X]) but dependent on the shape of severity
(which influences ψ).

It shows the natural scale using the lognormal example. Size, measured by expected annual claim count, is shown for
a range of margins, limits, and stability constraints. If claim frequency is 5%, the table shows that a market with 1M
limits is reasonable for all p and r. For example, the strictest stability constraint p = 0.01 and lowest margin rate
r = 0.025 needs 39,814 claims, or about 800,000 policies, to be viable. With a 10M limit and same r, the market
size needs to be >100,000 claims, or about 2.5 million policies, which is less achievable. However, if the margin rate
increases to r = 0.1, the market size reduces to 9,088 claims or about 180,000 policies.

In [30]: from aggregate.extensions.pir_figures import natural_scale

In [31]: df = natural_scale(port)
index 262144 is out of bounds for axis 0 with size 262144

In [32]: qd(df, float_format=lambda x: f'{x:,.0f}')

Margin 25.000m 50.000m 75.000m 100.000m 150.000m 200.000m 250.
↪→000m
Limit p ␣
↪→

1.000M 10.000m 39,814 10,182 4,625 2,657 1,230 718 ␣
↪→477

50.000m 25,808 6,577 2,978 1,705 784 455 ␣
↪→300

100.000m 19,777 5,025 2,269 1,295 593 342 ␣
↪→225

250.000m 11,803 2,973 1,331 754 339 193 ␣
↪→124
10.000M 10.000m NaN 33,612 15,552 9,088 4,335 2,600 1,
↪→765

50.000m NaN 21,571 9,916 5,758 2,714 1,610 1,
↪→079

100.000m NaN 16,386 7,489 4,324 2,015 1,182 ␣
↪→794

250.000m NaN 9,531 4,280 2,427 1,101 614 ␣
↪→382

Note: these numbers differ slightly from the book because of the update parameters used for port.
Second, consider a non-diversifying unit, writing catastrophe exposed business, where insurers grow by covering a
greater proportion of each event. Severity becomes market share times an industry severity X , and the number of
events is fixed. US hurricane reinsurance is an example. In this case, viability is independent of market share and
is controlled by whether the inequality has a solution that is acceptable to both the product market and the capital
market. Viability is harder to achieve

• with smaller λ: rare events are more difficult to insure,
• with lower p: higher quality insurance is more expensive,
• with higher ι: more costly capital, and
• with lower r because u increases quickly.

5.7. The Pollaczeck-Khinchine Formula 473

aggregate Documentation, Release 0.22.0

5.8 Calculations For Each aggregate Class

Objectives: Describe calculations performed by the Aggregate, Portfolio, Distortion, and Bounds
classes.
Audience: Advanced users and programmers.
Prerequisites: DecL, general use of aggregate, probability.
See also: API Reference, A Ten Minute Guide to aggregate.
Contents:

• Helpful References

• 5_x_aggregate_calculations
• 5_x_portfolio_calculations
• Distortions and Spectral Risk Measures

• 5_x_bounds

5.8.1 Helpful References

• Mildenhall and Major [2022]
• Wang [1995]
• Wang [1996]
• Mildenhall [2022]

5.8.2 Aggregate Class Calculations

Todo: Discussion to follow.

5.8.3 Portfolio Class Calculations

A Portfolio is a collection of Aggregate objects. The class computes the densities of each aggregate compo-
nent as well as the sum, and also computes the variables shown below. These variables are central to many allocation
algorithms. All computations use FFTs to compute relevant convolutions and surface integrals. Xi(a represents
recoveries to line i when total capital is a and lines have equal priority. It is given byXi(a) = Xi(X ∧ a)/X : when
X ≤ a line i is paid in full and Xi(a) = Xi and when X > a payments are a pro rata Xi/X share of available
assets a. Hence expected recoveries are

E[Xi(a)] = E[Xi(X ∧ a)/X]

= E[Xi(X ∧ a)/X | X ≤ a]F (a) + E[Xi(X ∧ a)/X | X > a]S(a)

= E[Xi | X ≤ a]F (a) + aE[Xi/X | X > a]S(a)

= E[Xi | X ≤ a]F (a) + aαi(a)S(a)

emphasizing the importance of knowing E[Xi/X | X].
Densities are computed using FFT in O(n log(n)) time.

474 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Table 5: Variables and computational complexity by line i
Variable Meaning Computation Complexity
All lines com-
bined
p_total Density of X =

∑
iXi FFT Convolution

exa_total E[min(X, a)] = E[X ∧ a] Cumsum of S O(n)
exlea_total E[X | X ≤ a]
exgta_total E[X | X > a]
By line
p_line Density of Xi FFT computation of aggregate using

MGF
exeqa_line E[Xi | X = a] Conv xfi(x), fî O(n log(n))
lev_line E[min(Xi, a)] = E[Xi ∧ a] Cumsum of Si O(n)
e2pri_line E[Xi,2(a)] Conv E[Xi ∧ x], fî O(n log(n))
exlea_line E[Xi | X ≤ a] Cumsum of E(Xi | X = x)fX(x) O(n)
e_line E[Xi]
exgta_line E[Xi | X > a] Conditional expectation formula
exi_x_line E[Xi/X] Sum using conditional expectation
exi_xlea_line E[Xi/X | X ≤ a] Cumsum of E[Xi | X = x]fX(x)/x
exi_xgta_line E[Xi/X | X > a] Conditional expectation formula
exa_line E[Xi(a)] Conditional expectation formula
epd_i_line (E[Xi]− E[X ∧ a)]/E[Xi] Stand-alone Expected Policyholder

Deficit
epd_i_line (E[Xi]− E[Xi(a)]/E[Xi] Equal priority EPD
epd_i_line (E[Xi]− E[Xi,2(a)]/E[Xi] Second priority EPD

For Total, All Lines X
• Density f computed by convolving each individual line using FFTs.
• F and S are computed from the cumulative sums of the density.
• exa_total = E[min(X, a)] = E[X ∧ a], also called lev_total for limited expected value, is computed as
cumulative sums of S times bucket size. Note exa_total= lev_total.

• exlea_total = E[X | X ≤ a] is computed using the relation E[X ∧ a] =
∫ a

0
tf(t)dt+ aS(a) as

E[X | X ≤ a] = 1

F (a)

∫ a

0

tf(t)dt =
E[X ∧ a]− aS(a)

F (a)
.

When F (a) is very small these values are unreliable and so the first values are set equal to zero.
• exgta_total = E[X | X > a] is computed using the relation E[X] = E[X | X ≤ a]F (a) + E[X | X >
a]S(a). Therefore

E[X | X > a] =
E[X]− E[X | X ≤ a]F (a)

/S(a)
.

For Individual Lines Xi

• Density and distributions as for total.
• exeqa_line= E[Xi | X = a] = κi(a) can be computed efficiently using FFTs in the caseXi are independent.
Without loss of generalityX = Xi+ X̂i where X̂i is the sum of all other lines (“not i”). Let fx(xi, x̂i) be the
conditional density of Xi = xi, X̂i = x̂i given X = x. Thus fx(xi, x̂i) = f(xi, x̂i)/fX(x) where f is the
bivariate density of Xi and X̂i and fX is the unconditional density of X . Assuming independence between
Xi and X̂i:

E[Xi | X = a] =

∫ a

0

xifa(xi, a− xi)dxi

=
1

fX(a)

∫ a

0

xifi(xi)fî(a− xi)dxi

5.8. Calculations For Each aggregate Class 475

aggregate Documentation, Release 0.22.0

showing E[Xi | X = a] is the convolution of the functions xi 7→ xifi(xi) and fî. The convolution can be
computed using FFTs. In the case fX(a) is very small these estimates may be numerically unreliable.

• exlea_line = E[Xi | X ≤ a] is given by

E[Xi | X ≤ a] = E[E(Xi | X ≤ a] | X)

=

∫ a

0

E[Xi | X ≤ a,X = x]f{X|X≤a}(x)dx

=
1

FX(a)

∫ a

0

E[Xi | X = x]fX(x)dx

can be computed for all a using the cumulative sums. Care is needed when a is so small that F (a) is very
small.

• exgta_line = E(Xi | X ≥ a) can be computed using E[X] = E(Xi | X ≤ a)F (a) + E[Xi | X > a]S(a).
It could also be computed with a reverse cumulative sum.

• exi_x_line = E[Xi/X], the unconditional average proportion of losses from line i is computed as

E[Xi/X] = EX [E[Xi/X | X]]

= EX [E[Xi | X]/X]

=

∫ ∞

0

E[Xi | X = x]x−1fX(x)dx.

• exi_xlea_line = E[Xi/X | X ≤ a] is computed using cumulative sums via

E[Xi/X | X ≤ a] =
1

F (a)

∫ a

0

E[Xi | X = x]x−1fX(x)dx.

• exi_xgta_line = E[Xi/X | X > a] = αi(a) computed from E[Xi/X] and E[Xi/X | X ≤ a] as usual.
• exa_line = E[Xi(a)] is the loss cost for line i using the equal priority rule. It is computed by conditioning on
X

E[Xi(a)] = E[Xi(a] | X ≤ a)F (a) + E[Xi(a] | X > a)S(a)

= E[Xi | X ≤ a]F (a) + aE[Xi/X | X > a]S(a)

showing it is a simple weighted average of E[Xi | X ≤ a] and E[Xi/X | X > a], both of which have already
been computed. The computation could also be carried out using E[Xi;X ≤ a] and E[Xi/X;X > a] which
would avoid multiplying and dividing by F and S.

• e2pri_line = E[Xi,2(a)] is the recovery toXi when it is subordinate to X̂i and total assets = a. It can also be
computed using FFTs. Assuming independence between the lines the recovery to line i given X̂i is

Xi,2(a, X̂i) = max(0,min(Xi,2, a− X̂i)) = Xi,2 ∧ (a− X̂i)
+

which can be computed as

E[Xi,2(a)] = EX̂i
[E[Xi,2(a) | X̂i]]

= EX̂i
[E[Xi ∧ (a− X̂i)

+ | X̂i]]

=

∫ a

0

E[Xi ∧ (a− x) | X̂i = x)fî(x)dx

=

∫ a

0

E[Xi ∧ (a− x)]fî(x)dx

showing E[Xi,2(a)] is the convolution of the functions x 7→ E[Xi ∧ x] and fî, i.e. of the limited expected
values of Xi on a stand-alone basis and the density of X̂i.

476 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

• epd_i_line are the expected policyholder deficits of line with assets a. When i = 1 the computation is for the
standalone line, when i = 1 for the line with equal priority and when i = 2 for the line with second priority
relative to all other lines. The calculation are all simple

epd0(Xi, a) =
E[Xi]− E[Xi ∧ a]

E[Xi]

epd1(Xi, a) =
E[Xi]− E[Xi(a)]

E[Xi]

epd2(Xi, a) =
E[Xi]− E[Xi,2(a)]

E[Xi]

The upshot of these calculations is that all the required values, for all levels of capital a can be computed in time
O(mn log(n)) where m is the number of lines of business and n is the length of the vector used to discretize the
underlying distributions. Without using FFTs the calculations would take O(mn2). Since n is typically in the range
210 to 220 FFTs provide a huge speed-up. Using simple simulations would be completely impractical for the delicate
calculations involved.
The calculation of E[Xi(a)] = E[Xi | X ≤ a]F (a) + aE[Xi/X | X > a]S(a) depends critically on the fact that
the same values E[Xi | X = x] and E[Xi/X | X > a] are used for all values of a. Only the weights F (a) and S(a)
change with a. As a result E[Xi(a)] can be computed in one sweep of length n. If different values were required for
each value of a the complexity would jump up to O(mn× n2) (or O(mn× n log(n)) if it is possible to use FFTs).
This is unfortunately the situation when one line is collateralized because the ratio of capital to collateral determines
the allocation of assets in insolvency.
Nowwe compute the impact of applying a distortion g to the underlying probabilities, i.e. discuss premium allocations.
Let Eg denote expected values with respect to the distorted probabilities defined by g.

Table 6: Variables and computational complexity by line i, with distorted
probabilities. Complexity refers to additional complexity beyond values
already computed.

Variable Meaning Computation Complexity
gS, gF g(S(x)) and 1− g(S(x)) O(n)
gp_total Estimate of

−dg(S(x))/dx
Difference of g(S) O(n)

exag_total Eg[X ∧ a] Cumulative sum of g(S) O(n)
exag_line Eg[Xi(a)] See below O(n)

• exag_total is easy to compute as the cumulative sums of g(S)
• exag_line is computed as

Eg[Xi(a)] = E
[
Xi
X ∧ a
X

g′S(X)

]
= E

[
E
[
Xi
X ∧ a
X

g′S(X) | X
]]

= E
[
E[Xi | X]1{X≤a}g

′S(X)
]
+ aE

[E[Xi | X]

X
1{X>a}g

′S(X)

]
=

∫ a

0

E[Xi | X = x]g′(S(x))fX(x)dx+

∫ ∞

a

E[Xi | X = x]x−1g′S(x)fX(x)dx.

The first integral is computed as a cumulative sum of its terms, the second is computed as a reverse cumulative
sum, both using exeqa. This expectation can also be expressed using βi(a).

• If g has a probability mass at s = 0 then how are the masses dealt with?
Finally we discuss computing the impact of line specific collateral.
Computing the impact of collateral on recoveries. Computes the expected recoveries to line Xi when there are
assets a but line i has collateral c ≤ a. This calculation, alas, cannot be performed quickly using FFTs. It has to
be computed mirroring the three way split of the default zone: no default, default and line i just paid full collateral
(which requires Xi < cx/a where x is total loss), and line i is paid its usual pro rata proportion of assets.

5.8. Calculations For Each aggregate Class 477

aggregate Documentation, Release 0.22.0

5.8.4 Distortion Class Calculations

Todo: Documentation to follow.

5.8.5 Bounds Class Calculations

Todo: Documentation to follow.

5.9 Working With Samples

Objectives: Describe working with samples including the switcheroo trick, the Iman-Conover algorithm and the
re-arrangement algorithm.
Audience: Advanced users and programmers.
Prerequisites: DecL, general use of aggregate, probability. Probability, measures of association, multivariate
distributions, matrix algebra.
See also: 5_x_iman_conover, 5_x_rearrangement_algorithm, Working With Samples, API Reference, and A Ten
Minute Guide to aggregate.
Contents:

• Helpful References

• Using Samples and The Switcheroo Trick

• The Iman-Conover Method

• The Rearrangement Algorithm

5.9.1 Helpful References

• Conover [1999]
• Mildenhall [2005]
• Puccetti and Ruschendorf [2012]
• Embrechts et al. [2013]
• Mildenhall and Major [2022], Section 4.2.5.

5.9.2 Using Samples and The Switcheroo Trick

Todo: Documentation to follow.

478 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

5.9.3 The Iman-Conover Method

Basic Idea

Here is the basic idea of the Iman-Conovermethod. Given samples ofn values from two knownmarginal distributions
X and Y and a desired correlation ρ between them, re-order the samples to have the same rank order as a reference
distribution, of size n× 2, with linear correlation ρ. Since linear correlation and rank correlation are typically close,
the re-ordered output will have approximately the desired correlation structure. What makes the IC method work
so effectively is the existence of easy algorithms to determine samples from reference distributions with prescribed
linear correlation structures.

Theoretical Derivation

Suppose that M is an n element sample from an r dimensional multivariate distribution, so M is an n × r matrix.
Assume that the columns of M are uncorrelated, have mean zero, and standard deviation one. Let M′ denote the
transpose ofM. These assumptions imply that the correlation matrix of the sampleM can be computed as n−1M′M,
and because the columns are independent, n−1M′M = id. (There is no need to scale the covariance matrix by the
row and column standard deviations because they are all one. In general n−1M′M is the covariance matrix ofM.)
Let S be a correlation matrix, i.e. S is a positive semi-definite symmetric matrix with 1’s on the diagonal and all
elements ≤ 1 in absolute value. In order to rule out linearly dependent variables assume S is positive definite. These
assumptions ensure S has a Choleski decomposition

S = C′C

for some upper triangular matrix C, see Golub Golub or Press et al. Set T = MC. The columns of T still have
mean zero, because they are linear combinations of the columns of M which have zero mean by assumption. It is
less obvious, but still true, that the columns of T still have standard deviation one. To see why, remember that the
covariance matrix of T is

n−1T′T = n−1C′M′MC = C′C = S,

since n−1M′M = id is the identity by assumption. Now S is actually the correlation matrix too because the diagonal
is scaled to one, so the covariance and correlation matrices coincide. The process of converting M, which is easy to
simulate, into T, which has the desired correlation structure S, is the theoretical basis of the IC method.
It is important to note that estimates of correlation matrices, depending on how they are constructed, need not have
the mathematical properties of a correlation matrix. Therefore, when trying to use an estimate of a correlation matrix
in an algorithm, such as the Iman-Conover, which actually requires a proper correlation matrix as input, it may be
necessary to check the input matrix does have the correct mathematical properties.
Next we discuss how to make n × r matrices M, with independent, mean zero columns. The basic idea is to take n
numbers a1, . . . , an with

∑
i ai = 0 and n−1

∑
i a

2
i = 1, use them to form one n×1 column ofM, and then to copy

it r times. Finally randomly permute the entries in each column to make them independent as columns of random
variables. Iman and Conover call the ai “scores”. They discuss several possible definitions for the scores, including
scaled versions of ai = i (ranks) and ai uniformly distributed. They note that the shape of the output multivariate
distribution depends on the scores. All of the examples in their paper use normal scores. We will discuss normal
scores here, and consider alternatives in Section 1.4.1.
Given that the scores will be based on normal random variables, we can either simulate n random standard normal
variables and then shift and re-scale to ensure mean zero and standard deviation one, or we can use a stratified sample
from the standard normal, ai = Φ−1(i/(n + 1)). By construction, the stratified sample has mean zero which is an
advantage. Also, by symmetry, using the stratified sample halves the number of calls to Φ−1. For these two reasons
we prefer it in the algorithm below.
The correlation matrix of M, constructed by randomly permuting the scores in each column, will only be approx-
imately equal to id because of random simulation error. In order to correct for the slight error which could be
introduced Iman and Conover use another adjustment in their algorithm. Let EE = n−1M′M be the actual correla-
tion matrix ofM and let EE = F′F be the Choleski decomposition of EE, and define T = MF−1C. The columns of

5.9. Working With Samples 479

aggregate Documentation, Release 0.22.0

T have mean zero, and the covariance matrix of T is

n−1T′T = n−1C′F′−1M′MF−1C
= C′F′−1EEF−1C
= C′F′−1F′FF−1C
= C′C
= S,

and hence T has correlation matrix exactly equal to S, as desired. If EE is singular then the column shuffle needs to
be repeated.
Now the reference distribution T with exact correlation structure S is in hand, all that remains to complete the IC
method is to re-order the each column of the input distribution X to have the same rank order as the corresponding
column of T.

Algorithm

Here is a more algorithmic description of the ICmethod. The description uses normal scores and the Choleski method
to determine the reference distribution. As we discussed above, it is possible to make other choices in place of these
and they are discussed in Section 1.4. We will actually present two versions of the core algorithm. The first, called
“Simple Algorithm” deals with the various matrix operations at a high level. The second “Detailed Algorithm” takes
a more sophisticated approach to the matrix operations, including referencing appropriate Lapack routines. Lapack
is a standard set of linear algebra functions. Software vendors provide very high performance implementations of
Lapack, many of which are used in CPU benchmarks. Several free Windows implementations are available on the
web. The reader should study the simple algorithm first to understand what is going in the ICmethod. In order to code
a high performance implementation you should follow the steps outlined in the detailed algorithm. Both algorithms
have the same inputs and outputs.
An n× r matrix X consisting of n samples from each of r marginal distributions, and a desired correlation matrix S.
The IC method does not address how the columns of X are determined. It is presumed that the reader has sampled
from the appropriate distributions in some intelligent manner. The matrix Smust be a correlation matrix for linearly
independent random variables, so it must be symmetric and positive definite. If S is not symmetric positive semi-
definite the algorithm will fail at the Choleski decomposition step. The output is a matrix T each of whose columns
is a permutation of the corresponding column of X and whose approximate correlation matrix is S.

1. Make one column of scores ai = Φ−1(i/(n+1)) for i = 1, . . . , n and rescale to have standard deviation one.
2. Copy the scores r times to make the score matrixM.
3. Randomly permute the entries in each column ofM.
4. Compute the correlation matrix EE = n−1M′M ofM.
5. Compute the Choleski decomposition EE = F′F of EE.
6. Compute the Choleski decomposition S = C′C of the desired correlation matrix S.
7. Compute T = MF−1C. The matrix T has exactly the desired correlation structure.
8. Let Y be the input matrix X with each column reordered to have exactly the same rank ordering as the corre-

sponding column of T.
9. Compute the Choleski decomposition of S, S = C′C, with C upper triangular. If the Choleski algorithm fails

then S is not a valid correlation matrix. Flag an error and exit. Checking S is a correlation matrix in Step 1
avoids performing wasted calculations and allows the routine to exit as quickly as possible. Also check that
all the diagonal entries of S are 1 so S has full rank. Again flag an error and exit if not. The Lapack routine
DPOTRF can use be used to compute the Choleski decomposition. In the absence of Lapack, C = (cij) can
be computed recursively using

cij =
sij −

∑j−1
k=1 cikcjk√

1−
∑j−1

k=1 c
2
jk

480 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

for 1 ≤ i ≤ j ≤ n—since all the diagonal elements of S equal one. The empty sum
∑0

0 = 0 and for j > i
the denominator equals cii and the elements of C should be calculated from left to right, top to bottom. See
Wang or Herzog.

10. Letm = bn/2c be the largest integer less than or equal to n/2 and vi = Φ−1(i/(2m+1)) for i = 1, . . . ,m.
11. If n is odd set

v = (vm, vm−1, . . . , v1, 0,−v1, . . . ,−vm)

and if n is even set

v = (vm, vm−1, . . . , v1,−v1, . . . ,−vm).

Here we have chosen to use normal scores. Other distributions could be used in place of the normal, as
discussed in Section 1.4.1. Also note that by taking advantage of the symmetry of the normal distribution
halves the number of calls to Φ−1 which is relatively computationally expensive. If multiple calls will be made
to the IC algorithm then store v for use in future calls.

12. Form the n× r score matrixM from r copies of the scores vector v.
13. Computemxx = n−1

∑
i v

2
i , the variance of v. Note that

∑
i vi = 0 by construction.

14. Randomly shuffle columns 2, . . . , r of the score matrix.
15. Compute the correlation matrix EE of the shuffled score matrix M. Each column of M has mean zero, by

construction, and variancemxx. The correlation matrix is obtained by dividing each element ofM′M bymxx.
The matrix product can be computed using the Lapack routine DGEMM. If EE is singular repeat step 6.

16. Determine Choleski decomposition EE = F′F of EE using the Lapack routine DPOTRF. Because EE is a
correlation matrix it must be symmetric and positive definite and so is guaranteed to have a Choleski root.

17. Compute F−1C using the Lapack routine DTRTRS to solve the linear equation FA = C for A. Solving the
linear equation avoids a time consumingmatrix inversion andmultiplication. The routineDTRTRS is optimized
for upper triangular input matrices.

18. Compute the correlated scores T = MF−1C = MA using DGEMM. The matrix T has exactly the desired
correlation structure.

19. Compute the ranks of the elements of T. Ranks are computed by indexing the columns of T as described in
Section 8.4 of Press et al. Let r(k) denote the index of the kth ranked element of T.

20. Let Y be the n× r matrix with ith column equal to the ith column of the input matrix X given the same rank
order as T. The re-ordering is performed using the ranks computed in the previous step. First sort the input
columns into ascending order if they are not already sorted and then set Yi,k = Xi,r(k).

The output of the algorithm is a matrix Y each of whose columns is a permutation of the corresponding column of
the input matrix X. The rank correlation matrix of Y is identical to that of a multivariate distribution with correlation
matrix S.

Simple Example of Iman-Conover

Having explained the IC method, we now give a simple example to explicitly show all the details. The example
will work with n = 20 samples and r = 4 different marginals. The marginals are samples from four lognormal

5.9. Working With Samples 481

aggregate Documentation, Release 0.22.0

distributions, with parameters µ = 12, 11, 10, 10 and σ = 0.15, 0.25, 0.35, 0.25. The input matrix is

X =

123, 567 44, 770 15, 934 13, 273
126, 109 45, 191 16, 839 15, 406
138, 713 47, 453 17, 233 16, 706
139, 016 47, 941 17, 265 16, 891
152, 213 49, 345 17, 620 18, 821
153, 224 49, 420 17, 859 19, 569
153, 407 50, 686 20, 804 20, 166
155, 716 52, 931 21, 110 20, 796
155, 780 54, 010 22, 728 20, 968
161, 678 57, 346 24, 072 21, 178
161, 805 57, 685 25, 198 23, 236
167, 447 57, 698 25, 393 23, 375
170, 737 58, 380 30, 357 24, 019
171, 592 60, 948 30, 779 24, 785
178, 881 66, 972 32, 634 25, 000
181, 678 68, 053 33, 117 26, 754
184, 381 70, 592 35, 248 27, 079
206, 940 72, 243 36, 656 30, 136
217, 092 86, 685 38, 483 30, 757
240, 935 87, 138 39, 483 35, 108

.

Note that the marginals are all sorted in ascending order. The algorithm does not actually require pre-sorting the
marginals but it simplifies the last step.
The desired target correlation matrix is

S =

1.000 0.800 0.400 0.000
0.800 1.000 0.300 −0.200
0.400 0.300 1.000 0.100
0.000 −0.200 0.100 1.000

 .

The Choleski decomposition of S is

C =

1.000 0.800 0.400 0.000
0.000 0.600 −0.033 −0.333
0.000 0.000 0.916 0.097
0.000 0.000 0.000 0.938

 .

Now we make the score matrix. The basic scores are Φ−1(i/21), for i = 1, . . . , 20. We scale these by
0.868674836252965 to get a vector v with standard deviation one. Then we combine four v’s and shuffle randomly

482 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

to get

M =

−1.92062 1.22896 −1.00860 −0.49584
−1.50709 −1.50709 −1.50709 0.82015
−1.22896 1.92062 0.82015 −0.65151
−1.00860 −0.20723 1.00860 −1.00860
−0.82015 0.82015 0.34878 1.92062
−0.65151 −1.22896 −0.65151 0.20723
−0.49584 −0.65151 1.22896 −0.34878
−0.34878 −0.49584 −0.49584 −0.06874
−0.20723 −1.00860 0.20723 0.65151
−0.06874 0.49584 0.06874 −1.22896
0.06874 −0.34878 −1.22896 0.49584
0.20723 0.34878 0.65151 0.34878
0.34878 −0.06874 −0.20723 1.22896
0.49584 −1.92062 −0.82015 −0.20723
0.65151 0.20723 1.92062 −1.92062
0.82015 1.00860 1.50709 1.50709
1.00860 −0.82015 −1.92062 1.00860
1.22896 1.50709 0.49584 −1.50709
1.50709 0.06874 −0.06874 0.06874
1.92062 0.65151 −0.34878 −0.82015

.

As described in Section 1.1,M is approximately independent. In factM has covariance matrix

EE =

1.0000 0.0486 0.0898 −0.0960
0.0486 1.0000 0.4504 −0.2408
0.0898 0.4504 1.0000 −0.3192
−0.0960 −0.2408 −0.3192 1.0000

and EE has Choleski decomposition

F =

1.0000 0.0486 0.0898 −0.0960
0.0000 0.9988 0.4466 −0.2364
0.0000 0.0000 0.8902 −0.2303
0.0000 0.0000 0.0000 0.9391

 .

Thus T = MF−1C is given by

T =

−1.92062 −0.74213 −2.28105 −1.33232
−1.50709 −2.06697 −1.30678 0.54577
−1.22896 0.20646 −0.51141 −0.94465
−1.00860 −0.90190 0.80546 −0.65873
−0.82015 −0.13949 −0.31782 1.76960
−0.65151 −1.24043 −0.27999 0.23988
−0.49584 −0.77356 1.42145 0.23611
−0.34878 −0.56670 −0.38117 −0.14744
−0.20723 −0.76560 0.64214 0.97494
−0.06874 0.24487 −0.19673 −1.33695
0.06874 −0.15653 −1.06954 0.14015
0.20723 0.36925 0.56694 0.51206
0.34878 0.22754 −0.06362 1.19551
0.49584 −0.77154 0.26828 0.03168
0.65151 0.62666 2.08987 −1.21744
0.82015 1.23804 1.32493 1.85680
1.00860 0.28474 −1.23688 0.59246
1.22896 1.85260 0.17411 −1.62428
1.50709 1.20294 0.39517 0.13931
1.92062 1.87175 −0.04335 −0.97245

.

An easy calculation will verify that T has correlation matrix S, as required.

5.9. Working With Samples 483

aggregate Documentation, Release 0.22.0

To complete the IC method we must re-order each column of X to have the same rank order as T. The first column
does not change because it is already in ascending order. In the second column, the first element of Y must be the
14th element of X, the second the 20th, third 10th and so on. The ranks of the other elements are the transpose of

14 20 10 18 11 19 17 13 15 8
12 6 9 16 5 3 7 2 4 1
20 19 16 4 14 13 2 15 5 12
17 6 11 8 1 3 18 9 7 10
18 6 15 14 2 8 9 13 4 19
10 7 3 12 17 1 5 20 11 16

and the resulting re-ordering of X is

T =

123, 567 50, 686 15, 934 16, 706
126, 109 44, 770 16, 839 25, 000
138, 713 57, 685 17, 620 19, 569
139, 016 47, 453 35, 248 20, 166
152, 213 57, 346 20, 804 30, 757
153, 224 45, 191 21, 110 24, 019
153, 407 47, 941 38, 483 23, 375
155, 716 52, 931 17, 859 20, 796
155, 780 49, 420 33, 117 27, 079
161, 678 58, 380 22, 728 15, 406
161, 805 54, 010 17, 265 23, 236
167, 447 66, 972 32, 634 24, 785
170, 737 57, 698 24, 072 30, 136
171, 592 49, 345 30, 357 20, 968
178, 881 68, 053 39, 483 16, 891
181, 678 72, 243 36, 656 35, 108
184, 381 60, 948 17, 233 26, 754
206, 940 86, 685 25, 393 13, 273
217, 092 70, 592 30, 779 21, 178
240, 935 87, 138 25, 198 18, 821

.

The rank correlation matrix of Y is exactly S. The actual linear correlation is only approximately equal to S. The
achieved value is

1.00 0.85 0.26 −0.11
0.85 1.00 0.19 −0.20
0.26 0.19 1.00 0.10
−0.11 −0.20 0.10 1.00

 ,

a fairly creditable performance given the input correlation matrix and the very small number of samples n = 20.
When used with larger sized samples the IC method typically produces a very close approximation to the required
correlation matrix, especially when the marginal distributions are reasonably symmetric.

Extensions of Iman-Conover

Following through the explanation of the IC method shows that it relies on a choice of multivariate reference dis-
tribution. A straightforward method to compute a reference is to use the Choleski decomposition method Equation
([coolA]) applied to certain independent scores. The example in Section 1.3 used normal scores. However nothing
prevents us from using other distributions for the scores provided they are suitably normalized to have mean zero and
standard deviation one.
Another approach to IC is to use a completely different multivariate distribution as reference. There are several
other families of multivariate distributions, including the elliptically contoured distribution family (which includes
the normal and t as a special cases) and multivariate Laplace distribution, which are easy to simulate from. Changing
scores is actually an example of changing the reference distribution; however, for the examples we consider the exact
form of the new reference is unknown.

484 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Alternative Scores

The choice of score distribution has a profound effect on the multivariate distribution output by the IC method. The
basic Iman-Conover algorithm uses normally distributed scores. We now show the impact of using exponentially and
uniformly distributed scores.
The next figure shows three bivariate distributions with identical marginal distributions (shown in the lower right hand
plot), the same correlation coefficient of 0.643 ± 0.003 but using normal scores (top left), exponential scores (top
rigtht) and uniform scores (lower left). The input correlation to the IC method was 0.65 in all three cases and there
are 1000 pairs in each plot. Here the IC method produced bivariate distributions with actual correlation coefficient
extremely close to the requested value.
The normal scores produce the most natural looking bivariate distribution, with approximately elliptical contours.
The bivariate distributions with uniform or exponential scores look unnatural, but it is important to remember that
if all you know about the bivariate distribution are the marginals and correlation coefficient all three outcomes are
possible.

Fig. 1: Bivariate distributions with normal, uniform and exponential scores.

Figure MISSING shows the distribution of the sum of the two marginals for each of the three bivariate distributions
and for independent marginals. The sum with exponential scores has a higher kurtosis (is more peaked) than with

5.9. Working With Samples 485

aggregate Documentation, Release 0.22.0

normal scores. As expected all three dependent sums have visibly thicker tails than the independent sum.
Iman and Conover considered various different score distributions in their paper. They preferred normal scores
as giving more natural looking, elliptical contours. Certainly, the contours produced using exponential or uniform
scores appear unnatural. If nothing else they provide a sobering reminder that knowing the marginal distributions
and correlation coefficient of a bivariate distribution does not come close to fully specifying it!

Multivariate Reference Distributions

The IC method needs some reference multivariate distribution to determine an appropriate rank ordering for the
input marginals. So far we have discussed using the Choleski decomposition trick in order to determine a multivari-
ate normal reference distribution. However, any distribution can be used as reference provided it has the desired
correlation structure. Multivariate distributions that are closely related by formula to the multivariate normal, such as
elliptically contoured distributions and asymmetric Laplace distributions, can be simulated using the Choleski trick.
Elliptically contoured distributions are a family which extends the normal. For a more detailed discussion see Fang
and Zhang. The multivariate t-distribution and symmetric Laplace distributions are in the elliptically contoured
family. Elliptically contoured distributions must have characteristic equations of the form

Φ(t) = exp(it′m)ϕ(t′St)

for some ϕ : R→ R, where m is an r × 1 vector of means and S is a r × r covariance matrix (nonnegative definite
and symmetric). In one dimension the elliptically contoured distributions coincide with the symmetric distributions.
The covariance is S, if it is defined.
If S has rank r then an elliptically contoured distribution x has a stochastic representation

x = m+RT′u(r)

where T is the Choleski decomposition of S, so S = T′T, u(r) is a uniform distribution on the sphere in Rr, and R
is a scale factor independent of u(r). The idea here should be clear: pick a direction on the sphere, adjust by T, scale
by a distance R and finally translate by the means m. A uniform distribution on a sphere can be created as x/‖x‖
where x has a multivariate normal distribution with identity covariance matrix. (By definition, ‖x‖2 =

∑
i x

2
i has a

χ2
r distribution.) Uniform vectors u(r) can also be created by applying a random orthogonal matrix to a fixed vector

(1, 0, . . . , 0) on the sphere. Diaconis describes a method for producing random orthogonal matrices.
The t-copula with ν degrees of freedom has a stochastic representation

x = m+

√
ν√
S
z

where S ∼ χ2
ν and z is multivariate normal with means zero and covariance matrix S. Thus one can easily simulate

from the multivariate t by first simulating multivariate normals and then simulating an independent S and multiplying.
The multivariate Laplace distribution is discussed in Kotz, Kozubowski and Podgorski. It comes in two flavors: sym-
metric and asymmetric. The symmetric distribution is also an elliptically contoured distribution. It has characteristic
function of the form

Φ(t) = 1

1 + t′St/2

where S is the covariance matrix. To simulate, use the fact that
√
WX has a symmetric Laplace distribution ifW is

exponential and X a multivariate normal with covariance matrix S.
The multivariate asymmetric Laplace distribution has characteristic function

Ψ(t) = 1

1 + t′St/2− im′t .

To simulate from WHAT, use the fact that

mW +
√
WX

486 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

has a symmetric Laplace distribution ifW is exponential and X a multivariate normal with covariance matrix S and
means zero. The asymmetric Laplace is not an elliptically contoured distribution.
The next figure compares IC samples produced using a normal copula to those produced with a t-copula. In both
cases the marginals are normally distributed with mean zero and unit standard deviation. The t-copula has ν = 2
degrees of freedom. In both figures the marginals are uncorrelated, but in the right the marginals are not independent.
The t-copula has pinched tails, similar to Venter’s Heavy Right Tailed copulas.

Fig. 2: IC samples produced from the same marginal and correlation matrix using the normal and t copula reference
distributions.

Algorithms for Extended Methods

In Section 1.4.2 we described how the IC method can be extended by using different reference multivariate dis-
tributions. It is easy to change the IC algorithm to incorporate different reference distributions for t-copulas and
asymmetric Laplace distributions. Follow the detailed algorithm to step 10. Then use the stochastic representation to
simulate from the scaling distribution for each row and multiply each component by the resulting number, resulting
in an adjusted T matrix. Then complete steps 11 and 12 of the detailed algorithm.

Comparison With the Normal Copula Method

By the normal copula method we mean the following algorithm, described in Wang or Herzog.
A set of correlated risks (X1, . . . , Xr) with marginal cumulative distribution functions Fi and Kendall’s tau τij =
τ(Xi, Xj) or rank correlation coefficients r(Xi, Xj).

1. Convert Kendall’s tau or rank correlation coefficient to correlation using

ρij = sin(πτij/2) = 2 sin(πrij/6)

and construct the Choleski decomposition S = C′C of S = (ρij).
2. Generate r standard normal variables Y = (Y1, . . . , Yr).
3. Set Z = YC.
4. Set ui = Φ(Zi) for i = 1, . . . , r.
5. Set Xi = F−1

i (ui).
The vectors (X1, . . . , Xr) form a sample from a multivariate distribution with prescribed correlation structure and
marginals Fi.
The Normal Copula method works because of the following theorem from Wang.

5.9. Working With Samples 487

aggregate Documentation, Release 0.22.0

[wangThm] Assume that (Z1, . . . , Zk) have a multivariate normal joint probability density function given by

f(z1, . . . , zk) =
1√

(2π)n|Σ|
exp(−z′Σ−1z/2),

z = (z1, . . . , zk), with correlation coefficients Σij = ρij = ρ(Zi, Zj). Let H(z1, . . . , zk) be their joint cumulative
distribution function. Then

C(u1, . . . , uk) = H(Φ−1(u1), . . . ,Φ
−1(uk))

defines a multivariate uniform cumulative distribution function called the normal copula.
For any set of given marginal cumulative distribution functions F1, . . . , Fk, the set of variables

X1 = F−1
1 (Φ(Z1)), . . . , Xk = F−1

1 (Φ(Zk))

have a joint cumulative function

FX1,...,Xk
(x1, . . . , xk) = H(Φ−1(Fx(u1)), . . . ,Φ

−1(Fk(uk))

with marginal cumulative distribution functions F1, . . . , Fk. The multivariate variables (X1, . . . , Xk) have Kendall’s
tau

τ(Xi, Xj) = τ(Zi, Zj) =
2

π
arcsin(ρij)

and Spearman’s rank correlation coefficients

rkCorr(Xi, Xj) = rkCorr(Zi, Zj) =
6

π
arcsin(ρij/2)

In the normal copula method we simulate fromH and then invert using ([ncm]). In the ICmethod with normal scores
we produce a sample from H such that Φ(zi) are equally spaced between zero and one and then, rather than invert
the distribution functions, we make the jth order statistic from the input sample correspond to Φ(z) = j/(n + 1)
where the input has n observations. Because the jth order statistic of a sample of n observations from a distribution
F approximates F−1(j/(n+ 1)) we see the normal copula and IC methods are doing essentially the same thing.
While the normal copula method and the IC method are confusingly similar there are some important differences to
bear in mind. Comparing and contrasting the two methods should help clarify how the two algorithms are different.

1. Wang [1998] shows the normal copula method corresponds to the IC method when the latter is computed using
normal scores and the Choleski trick.

2. The IC method works on a given sample of marginal distributions. The normal copula method generates the
sample by inverting the distribution function of each marginal as part of the simulation process.

3. Though the use of scores the IC method relies on a stratified sample of normal variables. The normal copula
method could use a similar method, or it could sample randomly from the base normals. Conversely a sample
could be used in the IC method.

4. Only the IC method has an adjustment to ensure that the reference multivariate distribution has exactly the
required correlation structure.

5. IC method samples have rank correlation exactly equal to a sample from a reference distribution with the
correct linear correlation. Normal copula samples have approximately correct linear and rank correlations.

6. An IC method sample must be taken in its entirety to be used correctly. The number of output points is
fixed by the number of input points, and the sample is computed in its entirety in one step. Some IC tools
(@Risk, SCARE) produce output which is in a particular order. Thus, if you sample the nth observation from
multiple simulations, or take the first n samples, you will not get a random sample from the desired distribution.
However, if you select random rows from multiple simulations (or, equivalently, if you randomly permute the
rows output prior to selecting the nth) then you will obtain the desired random sample. It is important to be
aware of these issues before using canned software routines.

7. The normal copula method produces simulations one at a time, and at each iteration the resulting sample is a
sample from the required multivariate distribution. That is, output from the algorithm can be partitioned and
used in pieces.

In summary remember these differences can have material practical consequences and it is important not to misuse
IC method samples.

488 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

Theoretical Underpinnings of the Iman-Conover Method

The theoretical foundations of the Iman-Conover method are elegantly justified by Vitale’s Theorem Vitale [1990].
We will state Vitale’s theorem, explain its relationship to the IC method, and sketch the proof. The result should
give a level of comfort to practitioners using a simulation approach to modeling multivariate distributions. It is not
necessary to follow the details laid out here in order to understand and use the IC method, so the uninterested reader
can skip the rest of the section. The presentation we give follows Vitale’s original paper Vitale [1990] closely.
Functional dependence and independence between two random variables are clearly opposite ends of the depen-
dence spectrum. It is therefore surprising that Vitale’s Theorem says that any bivariate distribution (U, V) can be
approximated arbitrarily closely by a functionally dependent pair (U, TU) for a suitable transformation T .
In order to explain the set up of Vitale’s theorem we need to introduce some notation. Let n be a power of 2. An
interval of the form ((j − 1)/n, j/n) for some n ≥ 1 and 1 ≤ j ≤ n is called a dyadic interval of rank n. An
invertible (Borel) measure-preserving map which maps by translation on each dyadic interval of rank n is called a
permutation of rank n. Such a T just permutes the dyadic intervals, so there is a natural correspondence between
permutations of n elements and transformations T . If the permutation of dyadic intervals has a single cycle (has order
n in the symmetric group) then T is called a cyclic permutation.
Theorem. (Vitale) Let U and V be uniformly distributed variables. There is a sequence of cyclic permutations
T1, T2, . . . such that (U, TnU) converges in distribution to (U, V) as n→∞.
Recall convergence in distribution means that the distribution function of (U, TnU) tends to that of (U, V) at all
points of continuity as n→∞.
The proof of Vitale’s theorem is quite instructive and so we give a detailed sketch.
The proof is in two parts. The first constructs a sequence of arbitrary permutations Tn with the desired property.
The second part shows it can be approximated with cyclic permutations. We skip the second refinement.
Divide the square [0, 1]× [0, 1] into sub-squares. We will find a permutation T such that the distributions of (U, V)
and (U, TU) coincide on sub-squares. Reducing the size of the sub-squares will prove the result.
Fix n, a power of two. Let Ij = ((j − 1)/n, j/n), j = 1, . . . , n. We will find an invertible permutation T such that

Pr(U ∈ Ij , TU ∈ Ik) = Pr(U ∈ Ij , V ∈ Ik) := pjk

for j, k = 1, . . . , n. Define

Ij1 = ((j − 1)/n, (j − 1)/n+ pj1)

Ij2 = ((j − 1)/n+ pj1, (j − 1)/n+ pj1 + pj2)

· · ·
Ijn = ((j − 1)/n+ pj1 + · · ·+ pj,n−1, j/n)

and

Ĩj1 = ((j − 1)/n, (j − 1)/n+ p1j)

Ĩj2 = ((j − 1)/n+ p1j , (j − 1)/n+ p1j + p2j)

· · ·
Ĩjn = ((j − 1)/n+ p1j + · · ·+ pn−1,j , j/n).

By construction the measure of Ijk equals the measure of Ĩkj . The invertible map T which sends each Ijk to Ĩkj by
translation is the map we need because

Pr(U ∈ Ij , T (U) ∈ Ik) = Pr(U ∈ Ij , U ∈ T−1(Ik))

= Pr(U ∈ Ij ∩ T−1(
⋃
l

Ĩkl))

= Pr(U ∈
⋃
l

Ij ∩ Ilk)

= Pr(U ∈ Ijk)
= pjk,

5.9. Working With Samples 489

aggregate Documentation, Release 0.22.0

since the only Ilk which intersects Ij is Ijk by construction, and U is uniform. The transformation T is illustrated
schematically in Table 1 for n = 3. The fact 3 is not a power of 2 does not invalidate the schematic!

Ĩ33 p33
I3 Ĩ32 p23

Ĩ31 p13

Ĩ23 p32
I2 Ĩ22 p22

Ĩ21 p12

Ĩ13 p31
I1 Ĩ12 p21

Ĩ11 p11

I11 I12 I13 I21 I22 I13 I31 I32 I33

I1 I2 I3

If each pjk is a dyadic rational then T is a permutation of the interval. If not then we approximate and use some more
heavy duty results (a 1946 theorem of Birkhoff on representation by convex combinations of permutation matrices)
to complete the proof.
Vitale’s theorem can be extended to non-uniform distributions.
Corollary. (Vitale) Let U and V be arbitrary random variables. There is a sequence of functions S1, S2, . . . such
that (U, SnU) converges in distribution to (U, V) as n→∞.
Let F be the distribution function ofU andG for V . Then F (U) andG(V) are uniformly distributed. Apply Vitale’s
theorem to get a sequence of functions Tn. Then Sn = G−1TnF is the required transformation.

5.9.4 The Rearrangement Algorithm

The Rearrangement Algorithm (RA) is a practical and straightforward method to determine the worst-VaR sum. The
RA works by iteratively making each marginal crossed (counter-monotonic) with the sum of the other marginal dis-
tributions. It is easy to program and suitable for problems involving hundreds of variables and millions of simulations.
The Rearrangement Algorithm was introduced in Puccetti and Ruschendorf [2012] and subsequently improved in
Embrechts et al. [2013].
Algorithm Input: Input samples are arranged in a matrix X̃ = (xij) with i = 1, . . . ,M rows corresponding to
the simulations and j = 1, . . . , d columns corresponding to the different marginals. VaR probability parameter p.
Accuracy threshold ϵ > 0 specifies convergence criterion.
Algorithm Steps

1. Sort each column of X̃ in descending order.
2. Set N := d(1− p)Me.
3. Create matrix X as the N × d submatrix of the top N rows of X̃ .
4. Randomly permute rows within each column of X .
5. Do Loop

• Create a new matrix Y as follows. For column j = 1, . . . , d:
– Create a temporary matrix Vj by deleting the jth column of X
– Create a column vector v whose ith element equals the sum of the elements in the ith row of Vj
– Set the jth column of Y equal to the jth column ofX arranged to have the opposite order to v, i.e.,
the largest element in the jth column of X is placed in the row of Y corresponding to the smallest
element in v, the second largest with second smallest, etc.

• Compute y, the N × 1 vector with ith element equal to the sum of the elements in the ith row of Y .
• Compute x from X similarly.

490 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

• Compute y∗ := min(y), the smallest element of y.
• Compute x∗ := min(x).
• If y∗ − x∗ ≥ ϵ then set X := Y and repeat the loop.
• If y∗ − x∗ < ϵ then break from the loop.

6. Stack Y on top of the (M −N)× d submatrix ofM −N bottom rows of X̃ .
7. Output: The result approximates the worst VaRp arrangement of X̃ .

Only the top N values need special treatment; all the smaller values can be combined arbitrarily because they aren’t
included in the worst-VaR rearrangement. Given thatX consists of the worst 1− p proportion of each marginal, the
required estimated VaRp is the least row sum of Y , that is y∗. In implementation, x∗ can be carried forward as the
y∗ from the previous iteration and not recomputed. The statistics x∗ and y∗ can be replaced with the variance of the
row-sums of X and Y and yield essentially the same results.
Embrechts et al. [2013] report that while there is no analytic proof the algorithm always works, it performs very well
based on examples and tests where we can compute the answer analytically.

Worked Example

Setup. Compute the worst VaR0.99 of the sum of lognormal distributions with mean 10 and coefficient of variations
1, 2, and 3 by applying the Rearrangement Algorithm to a stratified sample ofN = 40 observations at and above the
99th percentile for the matrix X .
Solution. The table below shows the input and output of the Rearrangement Algorithm.

Table 7: Starting X is shown in the first three columns x0, x1, x2. The
column Sum shows the row sums x0+x1+x2 corresponding to a comono-
tonic ordering. These four columns are all sorted in ascending order. The
right-hand three columns, s0, s1, s2 are the output, with row sum given in
the Max VaR column. The worst-case VaR0.99 is the minimum of the last
column, 352.8. It is 45 percent greater than the additive VaR of 242.5.
Only a sample from each marginal’s largest 1 percent values is shown since
smaller values are irrelevant to the calculation.

x0 x1 x2 Sum s0 s1 s2 Max VaR
49.0 85.6 107.9 242.5 87.1 124.6 141.1 352.8
49.4 86.6 109.5 245.6 70.8 113.6 169.3 353.7
49.9 87.7 111.2 248.8 98.8 127.9 127.4 354.1
50.3 88.9 112.9 252.1 79.9 118.8 155.5 354.1
50.7 90.0 114.7 255.5 83.1 107.1 164.3 354.5
51.2 91.3 116.6 259.1 92.1 139.7 122.8 354.6
51.6 92.6 118.6 262.8 67.7 135.4 151.5 354.7
52.1 93.9 120.6 266.6 108.8 116.1 129.8 354.7
52.6 95.3 122.8 270.7 62.8 105.1 186.9 354.8
53.2 96.7 125.0 274.9 63.9 170.6 120.6 355.0
53.7 98.3 127.4 279.3 69.2 111.3 174.6 355.1
54.3 99.9 129.8 284.0 72.7 144.5 138.1 355.3
54.9 101.5 132.4 288.8 59.9 101.5 194.1 355.5
55.5 103.3 135.2 293.9 127.5 103.3 125.0 355.8
56.1 105.1 138.1 299.3 60.8 162.6 132.4 355.9
56.8 107.1 141.1 305.0 66.3 109.1 180.5 355.9
57.5 109.1 144.4 311.1 61.8 149.8 144.4 356.0
58.3 111.3 147.9 317.5 65.0 155.8 135.2 356.0
59.1 113.6 151.5 324.3 74.8 121.6 159.7 356.1
59.9 116.1 155.5 331.5 77.1 131.5 147.9 356.5
60.8 118.8 159.7 339.3 59.1 179.9 118.6 357.5

continues on next page

5.9. Working With Samples 491

aggregate Documentation, Release 0.22.0

Table 7 – continued from previous page
x0 x1 x2 Sum s0 s1 s2 Max VaR
61.8 121.6 164.3 347.7 58.3 99.9 202.0 360.1
62.8 124.6 169.3 356.7 57.5 191.1 116.6 365.3
63.9 127.9 174.6 366.4 56.8 98.3 210.9 366.0
65.0 131.5 180.5 377.0 56.1 96.7 221.0 373.9
66.3 135.4 186.9 388.7 55.5 205.1 114.7 375.4
67.7 139.7 194.1 401.5 54.9 95.3 232.7 382.9
69.2 144.5 202.0 415.7 54.3 223.3 112.9 390.5
70.8 149.8 210.9 431.6 53.7 93.9 246.3 393.9
72.7 155.8 221.0 449.5 53.2 92.6 262.5 408.2
74.8 162.6 232.7 470.1 52.6 248.7 111.2 412.5
77.1 170.6 246.3 494.0 52.1 91.3 282.3 417.7
79.9 179.9 262.5 522.3 51.2 288.1 109.5 448.8
83.1 191.1 282.3 556.5 51.6 90.0 307.2 448.9
87.1 205.1 307.2 599.4 50.7 88.9 340.0 479.6
92.1 223.3 340.0 655.5 50.3 87.7 386.6 524.6
98.8 248.7 386.6 734.1 49.9 366.9 107.9 524.7
108.8 288.1 461.1 858.0 49.4 86.6 461.1 597.2
127.5 366.9 615.7 1110.1 49.0 85.6 615.7 750.3

The table illustrates the worst-case VaR may be substantially higher than when the marginals are perfectly correlated,
here 45 percent higher at 352.8 vs. 242.5. The form of the output columns shows the two part structure. There is a
series of values up to 356 involving moderate sized losses from each marginal with approximately the same total. The
larger values of the rearrangement are formed from a large value from one marginal combined with smaller values
from the other two.
The bold entry 366.4 indicates when the comonotonic sum of marginals exceeds the worst 0.99-VaR arrangement.
Performing the same calculation with N = 1000 samples from the largest 1 percent of each marginal produces an
estimated worst VaR of 360.5.
The following code replicates this calculation in aggregate. The answer relies on random seeds and is slightly different
from the table above.

In [1]: import aggregate as agg

In [2]: import numpy as np

In [3]: import pandas as pd

In [4]: import scipy.stats as ss

In [5]: ps = np.linspace(0.99, 1, 40, endpoint=False)

In [6]: params = {i: agg.mu_sigma_from_mean_cv(10, i) for i in [1,2,3]}

In [7]: df = pd.DataFrame({f'x_{i}': ss.lognorm(params[i][1],
...: scale=np.exp(params[i][0])).isf(1-ps)
...: for i in [1,2,3]}, index=ps)
...:

In [8]: df_ra = agg.rearrangement_algorithm_max_VaR(df)

In [9]: agg.qd(df_ra, float_format=lambda x: f'{x:.1f}', max_rows=100)

x_1 x_2 x_3 total
30 75.3 120.1 157.6 352.9
11 69.7 117.4 166.5 353.6
25 68.2 151.4 134.3 353.8

(continues on next page)

492 Chapter 5. Technical Guides

aggregate Documentation, Release 0.22.0

(continued from previous page)
6 87.6 146.0 120.2 353.9
39 77.7 122.9 153.6 354.2
24 66.8 141.2 146.4 354.4
3 63.2 129.3 161.9 354.4
34 71.3 106.3 176.9 354.6
7 60.4 172.3 122.3 355.0
21 99.4 112.6 143.1 355.0
23 73.2 110.4 171.5 355.0
18 128.2 102.7 124.5 355.4
37 64.3 108.3 182.8 355.5
10 61.3 157.4 137.0 355.7
19 109.5 114.9 131.6 356.0
17 62.2 104.5 189.3 356.0
4 80.4 126.0 149.9 356.3
16 83.7 132.9 140.0 356.6
15 65.5 164.3 126.8 356.6
28 59.5 101.0 196.5 357.1
0 92.6 136.9 129.1 358.7
31 58.7 181.7 118.3 358.7
29 58.0 99.4 204.6 361.9
1 57.3 193.0 116.4 366.7
20 56.6 97.9 213.6 368.0
13 55.9 96.4 223.8 376.1
38 55.3 207.1 114.5 377.0
2 54.7 95.0 235.6 385.3
9 54.1 225.5 112.8 392.4
14 53.6 93.7 249.3 396.5
36 53.0 92.4 265.7 411.1
33 52.5 251.0 111.1 414.6
26 52.0 91.1 285.6 428.8
8 51.6 290.7 109.5 451.8
27 51.1 89.9 310.8 451.8
5 50.7 88.8 343.9 483.4
35 50.3 370.1 107.9 528.2
32 49.8 87.7 391.0 528.5
12 49.4 86.6 466.1 602.1
22 49.0 85.6 622.1 756.7

There are several important points to note about the Rearrangement Algorithm output and the failure of subadditivity
it induces. They mirror the case d = 2.

• The dependence structure does not have right tail dependence.
• In Table 1, the comonotonic sum is greater than the maximum VaR sum for the top 40 percent observations,
above 366.4. The algorithm output is tailored to a specific value of p and does not work for other ps. It produces
relatively thinner tails for higher values of p than the comonotonic copula.

• The algorithm works for any non-trivial marginal distributions—it is universal.
• The implied dependence structure specifies only how the larger values of each marginal are related; any de-
pendence structure can be used for values below VaRp.

The Rearrangement Algorithm gives a definitive answer to the question “Just how bad could things get?” and perhaps
provides a better base against which to measure diversification effect than either independence or the comonotonic
copula. While the multivariate structure it reveals is odd and specific to p, it is not wholly improbable. It pinpoints
a worst-case driven by a combination of moderately severe, but not extreme, tail event outcomes. Anyone who
remembers watching their investment portfolio during a financial crisis has seen that behavior before! It is a valuable
additional feature for any risk aggregation software.

5.9. Working With Samples 493

aggregate Documentation, Release 0.22.0

494 Chapter 5. Technical Guides

CHAPTER

SIX

DESIGN AND DEVELOPMENT

6.1 Help Structure

Fig. 1: Documentation roadmap.

The documentation is structured around application, access, implementation, and theory.
• Application: destinations, where you can go with the code and problems you can solve.

– User Guides, problem sections
• Access: operating manual, how you access the functions you need to solve your problems

– User Guides, problem sections
– API Reference, traditional API reference documentation
– Dec Language Reference

• Implementation: how the functionality is coded; algorithms.
– Technical Guides

• Theory: the underlying mathematics.
– Technical Guides

495

aggregate Documentation, Release 0.22.0

6.2 Design Philosophy

• Work at the correct speed order…
• …but don’t worry about speed until it becomes a problem
• Save everything until space becomes an issue
• Offer sensible defaults for (almost) everything
• Separate internal naming from user naming and offer standard dataframe renamer dictionaries
• Use sensible number formats

6.3 History

I have built several iterations of software to work with aggregate distributions.
• Late 1990s: a Matlab tool for CNA Re with a graphical interface. Computed aggregates by business unit
and the portfolio total. Used to discover the shocking fact there was only a 53 percent chance of achieving
plan…which is obvious in hindsight but was a surprise at the time.

• Late 1990s: a C++ version of the Matlab code called SADCo in 1997-99. This code sits behind MALT. It
won the CAS award for an online contribution.

• Early 2000s: another C++ version with an implementation of the Iman-Conover method to combine aggregates
with correlation using the (gasp) normal copula, SCARE. Used by SCOR.

• 2003-2005: I worked on Aon Re Services’ simulation based tools called the ALG (Aggregate Loss Generator)
which simulated losses, and Prime/Re which manipulated the simulations and applied various reinsurance
structures. ALG used a shared mixing variables approach to correlation.

• Late 2000s: At Aon Re, I also built related tools
– The Levy measure maker
– A simple approach to multi-year modeling based on re-scaling a base year, convolving using FFTs and
tracking (and stopping) in default scenarios

• 2010s: At Aon Benfield, I was involved with ReMetrica, a very sophisticated, general purpose DFA/ERM
simulation tool.

496 Chapter 6. Design and Development

http://www.mynl.com/old/MALT/home.html
http://www.mynl.com/old/wp/default.html
https://www.aon.com/reinsurance/remetrica/default.jsp

CHAPTER

SEVEN

INTRODUCTION

aggregate builds approximations to compound (aggregate) probability distributions quickly and accurately. It can
be used to solve insurance, risk management, and actuarial problems using realistic models that reflect underlying
frequency and severity. It delivers the speed and accuracy of parametric distributions to situations that usually re-
quire simulation, making it as easy to work with an aggregate (compound) probability distribution as the lognormal.
aggregate includes an expressive language called DecL to describe aggregate distributions and is implemented in
Python under an open source BSD-license.
This help document is in six parts plus a bibliography.

Get up and running: installation, aggregate “hello world”, and a glimpse into the functionality.
Getting Started

497

aggregate Documentation, Release 0.22.0

How to solve real-world actuarial problems using aggregate.
User Guides

Documentation for every class and function, for developers and more advanced users.
API Reference

498 Chapter 7. Introduction

aggregate Documentation, Release 0.22.0

The Dec Language (DecL) for specifying aggregate distributions.
DecL Reference

Probability theory background and the numerical implementation methods employed by aggregate.
Technical Guides

499

aggregate Documentation, Release 0.22.0

Design philosophy, competing products, future development ideas, and historical perspective.
Development

500 Chapter 7. Introduction

BIBLIOGRAPHY

[Ace02] Carlo Acerbi. Spectral measures of risk: A coherent representation of subjective risk aversion. Journal
of Banking & Finance, 26(7):1505–1518, jul 2002. URL: http://linkinghub.elsevier.com/retrieve/pii/
S0378426602002819, doi:10.1016/S0378-4266(02)00281-9.

[ABT17] Hansjörg Albrecher, Jan Beirlant, and Jozef L Teugels. Reinsurance: Actuarial and Statistical Aspects.
John Wiley & Sons, 2017.

[AD88] RR Anderson and Wemin Dong. Pricing catastrophe reinsurance with reinstatement provisions using a
catastrophe model. Casualty Actuarial Society Forum, pages 303–322, 1988.

[AGK19] Richard Arratia, Larry Goldstein, and Fred Kochman. Size bias for one and all. Probability Surveys,
16:1–61, 2019. arXiv:1308.2729, doi:10.1214/13-PS221.

[Bah15] David Bahnemann. Distributions for Actuaries. Casualty Actuarial Society Mongraphs No. 2, 2015.
ISBN 9780962476280. URL: www.casact.org.

[BN90] R.A. Bear and K.J. Nemlick. Pricing the impact of adjustable features and loss sharing provi-
sions of reinsurance treaties. Proceedings of the Casualty Actuarial Society, 77(147):86–87, 1990.
doi:10.1016/0167-6687(93)91078-9.

[Ber97] Stefan Bernegger. The Swiss Re exposure curves and the MBBEFD distribution class. ASTIN Bulletin,
27(1):99–111, 1997.

[Ber83] J Bertram. Calculations of aggregate claims distributions in case of negative risk sums. In 17th ASTIN
Colloquium, Lindau, Germany. 1983.

[Bil86] Patrick Billingsley. Probability and Measure. J. Wiley and Sons, second edition, 1986.
[Bod07] Neil M. Bodoff. Capital Allocation by Percentile Layer. Variance, 3(1):13–30, 2007.
[BTWuthrich17] Tim J. Boonen, Andreas Tsanakas, and Mario V. Wüthrich. Capital allocation for portfo-

lios with non-linear risk aggregation. Insurance: Mathematics and Economics, 72:95–106, 2017.
doi:10.1016/j.insmatheco.2016.11.003.

[BV10] Jonathan M Borwein and Jon D Vanderwerff. Convex Functions - Construction, Characterizations and
Counterexamples. Cambridge University Press, 2010. ISBN 9780521850056.

[BGH+97] Newton Bowers, Hans Gerber, James Hickman, Donald Jones, and Cecil Nesbitt. Actuarial Mathemat-
ics. Society of Actuaries, 1997. doi:10.2307/253313.

[BPVS07] Paul J Brehm, Geoffrey R Perry, Gary G Venter, and E Witcraft Susan. Enterprise risk analysis for
property & liability insurance companies. Guy Carpenter & Company, LLC, 2007.

[But94] Robert P Butsic. Solvency Measurement for Property-Liability Risk-Based Capital Applications. The
Journal of Risk and Insurance, 61(4):656–690, 1994. URL: http://www.jstor.org/stable/253643%
5Cnhttp://www.jstor.org/page/.

[Buhlmann84] Hans Bühlmann. Numerical evaluation of the compound Poisson distribution: Recur-
sion or fast fourier transform? Scandinavian Actuarial Journal, 1984(2):116–126, 1984.
doi:10.1080/03461238.1984.10413759.

501

http://linkinghub.elsevier.com/retrieve/pii/S0378426602002819
http://linkinghub.elsevier.com/retrieve/pii/S0378426602002819
https://doi.org/10.1016/S0378-4266(02)00281-9
https://arxiv.org/abs/1308.2729
https://doi.org/10.1214/13-PS221
www.casact.org
https://doi.org/10.1016/0167-6687(93)91078-9
https://doi.org/10.1016/j.insmatheco.2016.11.003
https://doi.org/10.2307/253313
http://www.jstor.org/stable/253643%5Cnhttp://www.jstor.org/page/
http://www.jstor.org/stable/253643%5Cnhttp://www.jstor.org/page/
https://doi.org/10.1080/03461238.1984.10413759

aggregate Documentation, Release 0.22.0

[CJP13] Luciano Campi, Elyès Jouini, and Vincent Porte. Efficient portfolios in financial markets
with proportional transaction costs. Mathematics and Financial Economics, 7(3):281–304, 2013.
doi:10.1007/s11579-013-0099-4.

[CD03] G. Carlier and R. A. Dana. Core of convex distortions of a probability. Journal of Economic Theory,
113(2):199–222, 2003. doi:10.1016/S0022-0531(03)00122-4.

[CM99] Peter Carr and Dilip Madan. Option valuation using the fast Fourier transform. The Journal of Com-
putational Finance, 2(4):61–73, 1999. doi:10.21314/jcf.1999.043.

[Car13] Robert L Carter. Reinsurance. Springer Science & Business Media, 2013.
[CO11] Alexander Cherny and Dmitri Orlov. On two approaches to coherent risk contribution. Mathematical

Finance, 21(3):557–571, 2011. doi:10.1111/j.1467-9965.2010.00441.x.
[Cla14] David R Clark. Basics of Reinsurance Pricing Actuarial Study Note. CAS Study Note, 2014. URL:

http://www.casact.org/library/studynotes/Clark_2014.pdf.
[CT04] David R Clark and Charles A Thayer. A primer on the exponential family of distributions. Ca-

sualty Actuarial Society Spring Forum, pages 117–148, 2004. URL: papers2://publication/uuid/
C7FF0B8F-F767-4F09-9714-F0D3711A30D8.

[Con99] W J Conover. Practical nonparametric statistics. John Wiley and Sons, third edition, 1999.
[CS73] P. C. Consul and L. R. Shenton. Some interesting properties of Lagrangian distributions. Communica-

tions in Statistics, 2(3):263–272, 1973. doi:10.1080/03610927308827073.
[CODonnell09] Christopher L. Culp and Kevin J. O'Donnell. Catastrophe reinsurance and risk capital in the wake of

the credit crisis. The Journal of Risk Finance, 10(5):430–459, 2009. URL: http://www.emeraldinsight.
com/10.1108/15265940911001367, doi:10.1108/15265940911001367.

[CP05] J. David Cummins and Richard D. Phillips. Estimating the Cost of Equity Capital for Property-Liability
Insurers. Journal of Risk and Insurance, 72(3):441–478, 2005. URL: http://onlinelibrary.wiley.com/
doi/10.1111/j.1539-6975.2005.00132.x/full.

[DPP93] Chris D Daykin, Teivo Pentikainen, and Martti Pesonen. Practical risk theory for actuaries. Chapman
and Hall/CRC, 1993.

[Del00] Freddy Delbaen. Coherent risk measures (Pisa Notes). Pisa Notes, 24(4):733–739, 2000.
doi:10.1007/BF02809088.

[Den01] Michel Denault. Coherent allocation of risk capital. The Journal of Risk, 4(1):1–34, 2001. URL: ftp:
//ftp.sam.math.ethz.ch/pub/risklab/papers/CoherentAllocation.pdf, doi:10.21314/jor.2001.053.

[Den19] Michel Denuit. Size-biased transform and conditional mean risk sharing, with application to p2p insur-
ance and tontines. ASTIN Bulletin, 49(3):591–617, 2019. doi:10.1017/asb.2019.24.

[DD12] Michel Denuit and Jan Dhaene. Convex order and comonotonic conditional mean risk sharing.
Insurance: Mathematics and Economics, 51(2):265–270, 2012. URL: http://dx.doi.org/10.1016/j.
insmatheco.2012.04.005, doi:10.1016/j.insmatheco.2012.04.005.

[DHR22] Michel Denuit, Peter Hieber, and Christian Y. Robert. Mortality Credits Within Large Survivor Funds.
ASTIN Bulletin, 52(3):813–834, 2022. doi:10.1017/asb.2022.13.

[DR20] MichelM.Denuit and CYRobert. Risk Reduction byConditionalMeanRisk SharingWithApplication
to Collaborative Insurance. Technical Report, UC Louvain, 2020.

[DKLT12] Jan Dhaene, Alexander Kukush, Daniel Linders, and Qihe Tang. Remarks on quantiles and distortion
risk measures. European Actuarial Journal, 2(2):319–328, 2012.

[DHardleG12] Jin Chuan Duan, Wolfgang Karl Härdle, and James E. Gentle. Handbook of computational finance.
Handbook of Computational Finance, pages 1–804, 2012. doi:10.1007/978-3-642-17254-0.

[EGrubelP93] P. Embrechts, R. Grübel, and S. M. Pitts. Some applications of the fast Fourier transform al-
gorithm in insurance mathematics. Statistica Neerlandica, 47(1):59–75, 1993. doi:10.1111/j.1467-
9574.1993.tb01406.x.

[EF09] Paul Embrechts andMarco Frei. Panjer recursion versus FFT for compound distributions.Mathematical
Methods of Operations Research, 69(3):497–508, 2009. doi:10.1007/s00186-008-0249-2.

502 Bibliography

https://doi.org/10.1007/s11579-013-0099-4
https://doi.org/10.1016/S0022-0531(03)00122-4
https://doi.org/10.21314/jcf.1999.043
https://doi.org/10.1111/j.1467-9965.2010.00441.x
http://www.casact.org/library/studynotes/Clark_2014.pdf
papers2://publication/uuid/C7FF0B8F-F767-4F09-9714-F0D3711A30D8
papers2://publication/uuid/C7FF0B8F-F767-4F09-9714-F0D3711A30D8
https://doi.org/10.1080/03610927308827073
http://www.emeraldinsight.com/10.1108/15265940911001367
http://www.emeraldinsight.com/10.1108/15265940911001367
https://doi.org/10.1108/15265940911001367
http://onlinelibrary.wiley.com/doi/10.1111/j.1539-6975.2005.00132.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1539-6975.2005.00132.x/full
https://doi.org/10.1007/BF02809088
ftp://ftp.sam.math.ethz.ch/pub/risklab/papers/CoherentAllocation.pdf
ftp://ftp.sam.math.ethz.ch/pub/risklab/papers/CoherentAllocation.pdf
https://doi.org/10.21314/jor.2001.053
https://doi.org/10.1017/asb.2019.24
http://dx.doi.org/10.1016/j.insmatheco.2012.04.005
http://dx.doi.org/10.1016/j.insmatheco.2012.04.005
https://doi.org/10.1016/j.insmatheco.2012.04.005
https://doi.org/10.1017/asb.2022.13
https://doi.org/10.1007/978-3-642-17254-0
https://doi.org/10.1111/j.1467-9574.1993.tb01406.x
https://doi.org/10.1111/j.1467-9574.1993.tb01406.x
https://doi.org/10.1007/s00186-008-0249-2

aggregate Documentation, Release 0.22.0

[EKluppelbergM97] Paul Embrechts, Claudia Klüppelberg, and Thomas Mikosch. Modelling Extremal Events.
Springer Verlag, Berlin Heidelberg, 1997. doi:10.1007/978-3-642-33483-2.

[EPR13] Paul Embrechts, Giovanni Puccetti, and Ludger Ruschendorf. Model uncertainty and VaR aggregation.
Journal of Banking and Finance, 37(8):2750–2764, 2013. doi:10.1016/j.jbankfin.2013.03.014.

[Fel71] William Feller. An Introduction to Probability Theory and its Applications, Volume 2. J. Wiley and Sons,
second edition, 1971. ISBN 0471257095.

[FMPP19] Ginda Fisher, Lawrence McTaggart, Jill Petker, and Rebecca Pettingell. Individual Risk Rating Study
Note. CAS Exam 8 Study Note, 2019.

[FollmerS11] Hans Föllmer and Alexander Schied. Stochastic finance: an introduction in discrete time. Walter de
Gruyter, third edit edition, 2011.

[FollmerS16] Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time. Walter
de Gruyter, Berlin, Boston, fourth edition, 2016. ISBN 9788578110796. arXiv:arXiv:1011.1669v3,
doi:10.1017/CBO9781107415324.004.

[Ger82] Hans U. Gerber. On the numerical evaluation of the distribution of aggregate claims and its
stop-loss premiums. Insurance Mathematics and Economics, 1(1):13–18, 1982. doi:10.1016/0167-
6687(82)90016-6.

[Gra97] Jan Grandell. Mixed poisson processes. Volume 77. CRC Press, 1997.
[GS07] Helmut Grundl and Hato Schmeiser. Capital allocation for insurance companies—What Good Is It?

Journal of Risk and Insurance, 2007. URL: http://www.jstor.org/stable/2691539.
[GrubelH99] Rudolf Grübel and Renate Hermesmeier. Computation of Compound Distributions I: Aliasing Errors

and Exponential Tilting. Astin Bulletin, 29(2):197–214, 1999. doi:10.2143/AST.29.2.504611.
[GrubelH00] Rudolf Grübel and Renate Hermesmeier. Computation of Compound Distributions II: Dis-

cretization Errors and Richardson Extrapolation. ASTIN Bulletin, 30(2):309–332, 2000.
doi:10.2143/AST.30.2.504638.

[HM83] Philip E Heckman and Glenn G Meyers. The calculation of aggregate loss distributions from claim
severity and claim count distributions. Proceedings of the Casualty Actuarial Society, pages 49–66,
1983.

[HC03] David L Homer and David R Clark. Insurance Applications of Bivariate Distributions. Proceedings
of the Casualty Actuarial Society, 90(iid):274–307, 2003. URL: http://www.casact.org/pubs/proceed/
proceed03/03274.pdf.

[HF96] Rob J. Hyndman and Yanan Fan. Sample Quantiles in Statistical Packages. American Statistician,
50(4):361–365, 1996. doi:10.1080/00031305.1996.10473566.

[Hurlimann86] W. Hürlimann. Error Bounds for Stop-loss Premiums Calculated with the Fast Fourier Transform.
Scandinavian Actuarial Journal, 1986(2):107–113, 1986. doi:10.1080/03461238.1986.10413798.

[IJW10] Rustam Ibragimov, Dwight Jaffee, and Johan Walden. Pricing and Capital Allocation for Multiline
Insurance Firms. Journal of Risk and Insurance, 77(3):551–578, mar 2010. URL: http://doi.wiley.
com/10.1111/j.1539-6975.2010.01353.x, doi:10.1111/j.1539-6975.2010.01353.x.

[Jew22a] Stephen Jewson. Application of uncertain hurricane climate change projections to catastrophe risk
models. Stochastic Environmental Research and Risk Assessment, 2022. URL: https://doi.org/10.1007/
s00477-022-02198-y, doi:10.1007/s00477-022-02198-y.

[Jew22b] Stephen Jewson. Projections of Changes in U.S. Hurricane Damage Due to Projected Changes in Hur-
ricane Frequencies. submitted, 2022.

[JKK05] Norman L Johnson, Samuel Kotz, and AdrienneWKemp.Univariate discrete distributions. JohnWiley
& Sons, 2005.

[JK01] Elyès Jouini and Hédi Kallal. Efficient trading strategies in the presence of market frictions. Review of
Financial Studies, 14(2):343–369, 2001. doi:10.1093/rfs/14.2.343.

[Jorgensen97] Bent Jørgensen. The theory of dispersion models. CRC Press, 1997.

Bibliography 503

https://doi.org/10.1007/978-3-642-33483-2
https://doi.org/10.1016/j.jbankfin.2013.03.014
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1016/0167-6687(82)90016-6
https://doi.org/10.1016/0167-6687(82)90016-6
http://www.jstor.org/stable/2691539
https://doi.org/10.2143/AST.29.2.504611
https://doi.org/10.2143/AST.30.2.504638
http://www.casact.org/pubs/proceed/proceed03/03274.pdf
http://www.casact.org/pubs/proceed/proceed03/03274.pdf
https://doi.org/10.1080/00031305.1996.10473566
https://doi.org/10.1080/03461238.1986.10413798
http://doi.wiley.com/10.1111/j.1539-6975.2010.01353.x
http://doi.wiley.com/10.1111/j.1539-6975.2010.01353.x
https://doi.org/10.1111/j.1539-6975.2010.01353.x
https://doi.org/10.1007/s00477-022-02198-y
https://doi.org/10.1007/s00477-022-02198-y
https://doi.org/10.1007/s00477-022-02198-y
https://doi.org/10.1093/rfs/14.2.343

aggregate Documentation, Release 0.22.0

[KGDD08] Rob Kaas, Marc Goovaerts, Jan Dhaene, and Michel Denuit.Modern Actuarial Risk Theory. Springer,
2008. ISBN 978-3-540-70992-3. arXiv:arXiv:1011.1669v3, doi:10.1007/978-3-540-70998-5.

[KPW19] Stuart A Klugman, Harry H Panjer, and Gordon E Willmot. Loss Models: From Data to Decisions.
Volume 715. John Wiley & Sons, 5 edition, 2019.

[Kus01] Shigeo Kusuoka. On law invariant coherent risk measures. Advances in Mathematical Economics, 3:83–
95, 2001. URL: http://link.springer.com/chapter/10.1007/978-4-431-67891-5_4.

[Korner22] Thomas William Körner. Fourier analysis. Cambridge university press, 2022.
[Loe55] Michel Loeve. Probability Theory. D. Van Nostrand Company, 1955. ISBN 9780486814889.

doi:10.1137/1006078.
[Loe17] Michel Loeve. Probability theory. Courier Dover Publications, 2017.
[Lud91] Stephen J Ludwig. An Exposure Rating Approach to Pricing Excess-Of-Loss Reinsurance. Proceedings

of the Casualty Actuarial Society, 1991.
[Luk70] Eugene Lukacs. Characteristic Functions. Griffin, London, 2 edition, 1970.
[LS09] Xiaolin Luo and Pavel V Shevchenko. Computing Tails of Compound Distributions Using Direct Nu-

merical Integration. Journal of Computational Finance, 13(2):1–33, 2009.
[LS11] Xiaolin Luo and Pavel V Shevchenko. A Short Tale of Long Tail Integration. Numerical Algorithms,

56(4):577–590, 2011. arXiv:arXiv:1005.1705v1.
[Maj18] John A. Major. Distortion Measures on Homogeneous Financial Derivatives. Insurance: Mathemat-

ics and Economics, 79:82–91, 2018. URL: http://www.ssrn.com/abstract=2972955http://linkinghub.
elsevier.com/retrieve/pii/S0167668717303384, doi:10.2139/ssrn.2972955.

[MM20] John A. Major and Stephen J. Mildenhall. Pricing and Capital Allocation for Multiline Insurance Firms
With Finite Assets in an Imperfect Market. Arxiv, pages 1–33, 2020. URL: http://arxiv.org/abs/2008.
12427, arXiv:2008.12427.

[MAKL95] Paul Malliavin, Hélène Airault, Leslie Kay, and Gérard Letac. Integration and probability. Volume 157.
Springer Science & Business Media, 1995.

[Man05] Donald Mango. Insurance Capital as a Shared Asset. Astin Bulletin, 35(2):471–486, 2005. URL: https:
//www.beanactuary.com/pubs/forum/06fforum/577.pdf.

[MMAB13] Donald Mango, John Major, Avraham Adler, and Claude Bunick. Capital Tranch-
ing: A RAROC Approach to Assessing Reinsurance Cost Effectiveness. Variance,
7(September):82–91, 2013. URL: http://www.actuaries.org.uk/sites/all/files/documents/pdf/
capital-tranching-raroc-approach-assessing-reinsurance-cost-effectiveness.pdf.

[MM04] Massimo Marinacci and Luigi Montrucchio. A characterization of the core of convex games through
Gateaux derivatives. Journal of Economic Theory, 116(2):229–248, 2004. URL: http://dx.doi.org/10.
1016/S0022-0531(03)00258-8, doi:10.1016/S0022-0531(03)00258-8.

[MPFV02] Ana J Mata, D Ph, Brian Fannin, and Mark A Verheyen. Pricing Excess of Loss Treaty with Loss
Sensitive Features: An Exposure Rating Approach. In General Insurance Convention. 2002.

[MN19] Peter McCullagh and John A Nelder. Generalized linear models. Routledge, 2019.
[McG69] John S McGuinness. Is “probable maximum loss” (PML) a useful concept? Proceedings of Casualty

Actuarial Society, LVI(May):31–48, 1969.
[McK14] Henry McKean. Probability: the classical limit theorems. Cambridge University Press, 2014.
[MR06] Christian Menn and Svetlozar T Rachev. Calibrated FFT-based density approximations for

α-stable distributions. Computational Statistics and Data Analysis, 50(8):1891–1904, 2006.
doi:10.1016/j.csda.2005.03.004.

[Mey96] Glenn G Meyers. The competitive market equilibrium risk load formula for catastrophe ratemaking.
PCAS, pages 563–600, 1996.

[Mey19] Glenn GMeyers. A Cost of Capital RiskMargin Formula For Non-Life Insurance Liabilities.Variance,
12(2):186–198, 2019.

504 Bibliography

https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1007/978-3-540-70998-5
http://link.springer.com/chapter/10.1007/978-4-431-67891-5_4
https://doi.org/10.1137/1006078
https://arxiv.org/abs/arXiv:1005.1705v1
http://www.ssrn.com/abstract=2972955 http://linkinghub.elsevier.com/retrieve/pii/S0167668717303384
http://www.ssrn.com/abstract=2972955 http://linkinghub.elsevier.com/retrieve/pii/S0167668717303384
https://doi.org/10.2139/ssrn.2972955
http://arxiv.org/abs/2008.12427
http://arxiv.org/abs/2008.12427
https://arxiv.org/abs/2008.12427
https://www.beanactuary.com/pubs/forum/06fforum/577.pdf
https://www.beanactuary.com/pubs/forum/06fforum/577.pdf
http://www.actuaries.org.uk/sites/all/files/documents/pdf/capital-tranching-raroc-approach-assessing-reinsurance-cost-effectiveness.pdf
http://www.actuaries.org.uk/sites/all/files/documents/pdf/capital-tranching-raroc-approach-assessing-reinsurance-cost-effectiveness.pdf
http://dx.doi.org/10.1016/S0022-0531(03)00258-8
http://dx.doi.org/10.1016/S0022-0531(03)00258-8
https://doi.org/10.1016/S0022-0531(03)00258-8
https://doi.org/10.1016/j.csda.2005.03.004

aggregate Documentation, Release 0.22.0

[Mil04] Stephen J Mildenhall. A Note on the Myers and Read Capital Allocation Formula. North American
Actuarial Journal, 8(2):32–44, 2004. URL: http://library.soa.org/library-pdf/naaj0402_3.pdf.

[Mil05] Stephen J Mildenhall. Correlation and Aggregate Loss Distributions With An Emphasis On The Iman-
Conover Method. Casualty Actuarial Society Forum, 2005.

[Mil17] Stephen J. Mildenhall. Actuarial Geometry. Risks, 2017. doi:10.3390/risks5020031.
[Mil22] Stephen J. Mildenhall. Similar Risks Have Similar Prices: A Useful and Exact Quantification. Insur-

ance: Mathematics and Economics, 105:203–210, 2022. URL: https://doi.org/10.1016/j.insmatheco.
2022.04.006, doi:10.1016/j.insmatheco.2022.04.006.

[MM22a] Stephen J. Mildenhall and John A. Major. Pricing Insurance Risk: Theory and Practice. John Wiley &
Sons, Inc., 2022.

[MM22b] Stephen J. Mildenhall and John A. Major. Pricing Insurance Risk: Theory and Practice. John Wiley &
Sons, Inc., 2022. ISBN 9781119130536.

[MP98] Moshe Arye Milevsky and Steven E. Posner. Asian Options, the Sum of Lognormals , and the Recip-
rocal Gamma Distribution. Journal of Financial and Quantitative Analysis, 33(3):409–422, 1998.

[MWJHF17] Kirsten Mitchell-Wallace, Matthew Jones, John Hillier, and Matthew Foote. Natural Catastrophe Risk
Managment and Modeling - A Practitioner's Guide. Wiley-Blackwell, 2017.

[MC87] Stewart C Myers and Richard A Cohn. A discounted cash flow approach to property-liability insurance
rate regulation. In Fair Rate of Return in Property-Liability Insurance, pages 55–78. Springer, 1987.

[MReadJr01] Stewart C Myers and James A Read Jr. Capital allocation for insurance companies. Journal of Risk
and Insurance, 68(4):545–580, 2001. URL: http://www.jstor.org/stable/2691539.

[PW92] Harry H Panjer and Gordon E Willmot. Insurance risk models. Society of Actuaries, 1992.
[PL83] Harry H. Panjer and B. W. Lutek. Practical aspects of stop-loss calculations. Insurance: Mathematics

and Economics, 2:159–177, 1983.
[PPP01] Dmitry E Papush, Gary S Patrik, and Felix Podgaits. Approximations of the Aggregate Loss Distri-

bution. Casualty Actuarial Society Forum, Winter:175–186, 2001. URL: http://www.casact.org/pubs/
forum/01wforum/01wf175.pdf.

[PPZ21] Dmitry E Papush, Aleksey S Popelyukhin, and Jasmine G Zhang. Approximating the Aggregate Loss
Distribution. Variance, 14(2):1–10, 2021.

[Par15] Pietro Parodi. Pricing in General Insurance. CRC Press, 2015. ISBN 9781466581487.
[PCA98] Richard D. Phillips, J. David Cummins, and Franklin Allen. Financial Pricing of Insurance in the

Multiple-Line Insurance Company. Journal of Risk and Insurance, 65(4):597–636, 1998. URL:
http://www.jstor.org/stable/253804http://www.jstor.org/stable/10.2307/253804http://www.jstor.
org/stable/253804%5Cnhttp://www.jstor.org/stable/10.2307/253804, doi:10.2307/253804.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes
in C. Cambridge University Press, 2nd editio edition, 1992. ISBN 0521431085.

[PR12] Giovanni Puccetti and Ludger Ruschendorf. Computation of sharp bounds on the distribution of a
function of dependent risks. Journal of Computational and Applied Mathematics, 236(7):1833–1840,
2012. URL: http://dx.doi.org/10.1016/j.cam.2011.10.015, doi:10.1016/j.cam.2011.10.015.

[Rob92] John P. Robertson. The computation of aggregate loss distributions. Proceedings of the Casualty Actu-
arial Society, 79(150):57–133, 1992.

[RR14] R. T. Rockafellar and J. O. Royset. Random variables, monotone relations, and convex analysis.Math-
ematical Programming, 148(1-2):297–331, 2014. doi:10.1007/s10107-014-0801-1.

[SW14] Adrien Saumard and Jon A. Wellner. Log-concavity and strong log-concavity: a review. Statistics Sur-
veys, 8:45–114, 2014. arXiv:1404.5886, doi:10.1214/14-SS107.

[ST08] P Schaller andGTemnov. Efficient and Precise Computation of Convolutions: Applying FFTs to Heavy
Tailed Distributions. Computational Methods in Applied Mathematics, 8(2):187–200, 2008.

Bibliography 505

http://library.soa.org/library-pdf/naaj0402_3.pdf
https://doi.org/10.3390/risks5020031
https://doi.org/10.1016/j.insmatheco.2022.04.006
https://doi.org/10.1016/j.insmatheco.2022.04.006
https://doi.org/10.1016/j.insmatheco.2022.04.006
http://www.jstor.org/stable/2691539
http://www.casact.org/pubs/forum/01wforum/01wf175.pdf
http://www.casact.org/pubs/forum/01wforum/01wf175.pdf
http://www.jstor.org/stable/253804 http://www.jstor.org/stable/10.2307/253804 http://www.jstor.org/stable/253804%5Cnhttp://www.jstor.org/stable/10.2307/253804
http://www.jstor.org/stable/253804 http://www.jstor.org/stable/10.2307/253804 http://www.jstor.org/stable/253804%5Cnhttp://www.jstor.org/stable/10.2307/253804
https://doi.org/10.2307/253804
http://dx.doi.org/10.1016/j.cam.2011.10.015
https://doi.org/10.1016/j.cam.2011.10.015
https://doi.org/10.1007/s10107-014-0801-1
https://arxiv.org/abs/1404.5886
https://doi.org/10.1214/14-SS107

aggregate Documentation, Release 0.22.0

[SDRuszczynski09] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on Stochastic Pro-
gramming. Number May. Society for Industrial and Applied Mathematics, 2009. ISBN 978-0-89871-
687-0. URL: http://epubs.siam.org/doi/book/10.1137/1.9780898718751, arXiv:arXiv:1011.1669v3,
doi:10.1137/1.9780898718751.

[She06] Michael Sherris. Solvency, capital allocation, and fair rate of return in insurance. Journal of Risk and
Insurance, 73(1):71–96, 2006. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2006.
00166.x/full.

[She10] Pavel V. Shevchenko. Calculation of aggregate loss distributions. Journal of Operational Risk, 5(2):3–
40, 2010. URL: http://arxiv.org/abs/1008.1108, arXiv:1008.1108.

[SS11] Elias M Stein and Rami Shakarchi. Fourier analysis: an introduction. Volume 1. Princeton University
Press, 2011.

[SW71] Elias M Stein and GuidoWeiss. Introduction to Fourier analysis on Euclidean spaces. Volume 1. Prince-
ton university press, 1971.

[Str97] Robert W. Strain. Reinsurance. Robert W. Strain Publishing & Seminars, Incorporated, 1997.
[Str86] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.
[Svi10] Gregor Svindland. Continuity properties of law-invariant (quasi-)convex risk functions on $L^\infty $.

Mathematics and Financial Economics, 3(1):39–43, 2010. doi:10.1007/s11579-010-0026-x.
[Tas99] Dirk Tasche. Risk contributions and performance measurement. Report of the Lehrstuhl fur mathema-

tische Statistik, TU Munchen, pages 1–26, 1999. URL: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.68.9393&rep=rep1&type=pdf.

[TW08] Grigory Temnov and Richard Warnung. A Comparison of Loss Aggregation Methods for Operational
Risk. Journal of Operational Risk, 3(1):1–22, 2008.

[Ter13] Audrey Terras. Harmonic analysis on symmetric spaces—Euclidean Space, the Sphere, and the
Poincar\/e Upper Half-Plane. Springer Science & Business Media, 2013.

[TB03] Andreas Tsanakas and Christopher Barnett. Risk capital allocation and cooperative pricing of insur-
ance liabilities. Insurance: Mathematics and Economics, 33(2):239–254, 2003. doi:10.1016/S0167-
6687(03)00137-9.

[VMK06] Gary G. Venter, John A. Major, and Rodney E. Kreps. Marginal Decomposition of Risk Mea-
sures. ASTIN Bulletin, 36(2):375–413, oct 2006. URL: http://poj.peeters-leuven.be/content.php?url=
article&id=2017927, doi:10.2143/AST.36.2.2017927.

[Ver04] R J Verrall. Bayesian Generalized Linear Model for the Bornhuetter-Furguson Method of Claims Re-
serving. North American Actuarial Journal, 8(3):67–89, 2004.

[Vit90] Richard A. Vitale. On stochastic dependence and a class of degenerate distributions. Lecture Notes-
Monograph Series, pages 459–469, 1990. URL: http://projecteuclid.org/euclid.lnms/1215457581.

[Wan95] Shaun S. Wang. Insurance pricing and increased limits ratemaking by proportional hazards trans-
forms. Insurance: Mathematics and Economics, 17(1):43–54, 1995. URL: http://dx.doi.org/10.1016/
0167-6687(95)00010-P, doi:10.1016/0167-6687(95)00010-P.

[Wan96] Shaun S. Wang. Premium Calculation by Transforming the Layer Premium Density. ASTIN
Bulletin, 26(01):71–92, 1996. URL: https://www.cambridge.org/core/product/identifier/
S0515036100003214/type/journal_article, doi:10.2143/AST.26.1.563234.

[Wan98] Shaun S. Wang. Aggregation of correlated risk portfolios: models and algorithms. Proceedings of
the Casualty Actuarial society, pages 848–939, 1998. URL: http://www.casact.com/pubs/proceed/
proceed98/980848.pdf.

[Wan00] Shaun S.Wang. A Class of Distortion Operators for Pricing Financial and Insurance Risks. The Journal
of Risk and Insurance, 67(1):15–36, 2000. doi:10.2307/253675.

[Wan02] Shaun S. Wang. A Universal Framework for Pricing Financial and Insurance Risks. ASTIN Bulletin,
32(2):213–234, 2002. doi:10.2143/AST.32.2.1027.

[Wil91] David Williams. Probability with martingales. Cambridge university press, 1991.

506 Bibliography

http://epubs.siam.org/doi/book/10.1137/1.9780898718751
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1137/1.9780898718751
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2006.00166.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2006.00166.x/full
http://arxiv.org/abs/1008.1108
https://arxiv.org/abs/1008.1108
https://doi.org/10.1007/s11579-010-0026-x
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.9393&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.9393&rep=rep1&type=pdf
https://doi.org/10.1016/S0167-6687(03)00137-9
https://doi.org/10.1016/S0167-6687(03)00137-9
http://poj.peeters-leuven.be/content.php?url=article&id=2017927
http://poj.peeters-leuven.be/content.php?url=article&id=2017927
https://doi.org/10.2143/AST.36.2.2017927
http://projecteuclid.org/euclid.lnms/1215457581
http://dx.doi.org/10.1016/0167-6687(95)00010-P
http://dx.doi.org/10.1016/0167-6687(95)00010-P
https://doi.org/10.1016/0167-6687(95)00010-P
https://www.cambridge.org/core/product/identifier/S0515036100003214/type/journal_article
https://www.cambridge.org/core/product/identifier/S0515036100003214/type/journal_article
https://doi.org/10.2143/AST.26.1.563234
http://www.casact.com/pubs/proceed/proceed98/980848.pdf
http://www.casact.com/pubs/proceed/proceed98/980848.pdf
https://doi.org/10.2307/253675
https://doi.org/10.2143/AST.32.2.1027

aggregate Documentation, Release 0.22.0

[WK16] Huon Wilson and Uri Keich. Accurate pairwise convolutions of non-negative vectors via FFT. Compu-
tational Statistics and Data Analysis, 101:300–315, 2016. URL: http://dx.doi.org/10.1016/j.csda.2016.
03.010, doi:10.1016/j.csda.2016.03.010.

[Woo02] G.Woo. Natural Catastrophe Probable Maximum Loss. British Actuarial Journal, 8(5):943–959, 2002.
doi:10.1017/s1357321700004037.

[vCerny04] Aleš Černý. Introduction to Fast Fourier Transform in Finance. Journal of Derivatives, 12(1):73–88,
2004.

[AonBenfield15] Aon Benfield. Insurance Risk Study, Ed. 10. Technical Report, Aon Limited, 2015.
[DeWaegenaereKL03] Anja De Waegenaere, Robert Kast, and Andre Lapied. Choquet pricing and equilibrium.

Insurance: Mathematics and Economics, 32:359–370, 2003. doi:10.1016/S0167-6687(03)00116-1.

Bibliography 507

http://dx.doi.org/10.1016/j.csda.2016.03.010
http://dx.doi.org/10.1016/j.csda.2016.03.010
https://doi.org/10.1016/j.csda.2016.03.010
https://doi.org/10.1017/s1357321700004037
https://doi.org/10.1016/S0167-6687(03)00116-1

aggregate Documentation, Release 0.22.0

508 Bibliography

PYTHON MODULE INDEX

a
aggregate.bounds, 343
aggregate.constants, 335
aggregate.extensions, 347
aggregate.extensions.basic, 347
aggregate.extensions.case_studies, 347
aggregate.extensions.figures, 349
aggregate.extensions.pentagon, 348
aggregate.extensions.pir_figures, 350
aggregate.extensions.test_suite, 352
aggregate.parser, 280
aggregate.portfolio, 316
aggregate.spectral, 336
aggregate.underwriter, 279
aggregate.utilities, 321

509

aggregate Documentation, Release 0.22.0

510 Python Module Index

INDEX

Symbols
__init__() (aggregate.bounds.Bounds method), 339
__init__() (aggregate.distributions.Aggregate

method), 286
__init__() (aggregate.distributions.Frequency

method), 282
__init__() (aggregate.distributions.Severity method),

282
__init__() (aggregate.portfolio.Portfolio method),

297
__init__() (aggregate.spectral.Distortion method),

336
__init__() (aggregate.underwriter.Underwriter

method), 275
__init__() (aggregate.utilities.Answer method), 321
__init__() (aggregate.utilities.AxisManager

method), 320
__init__() (aggregate.utilities.GreatFormatter

method), 321
__init__() (aggregate.utilities.MomentAggregator

method), 317
__init__() (aggregate.utilities.MomentWrangler

method), 319
__init__() (aggregate.utilities.sEngFormatter

method), 333
_apply_reins_work() (aggre-

gate.distributions.Aggregate method), 287
_asdict() (aggregate.utilities.GCN method), 321
_interpreter_work() (aggre-

gate.underwriter.Underwriter method),
275

_make() (aggregate.utilities.GCN class method), 321
_make_factorial() (aggre-

gate.utilities.MomentWrangler method),
319

_make_var_tvar() (aggregate.portfolio.Portfolio
method), 297

_reins_audit_df_work() (aggre-
gate.distributions.Aggregate method), 287

_replace() (aggregate.utilities.GCN method), 321
_repr_html_() (aggregate.distributions.Aggregate

method), 287
_repr_html_() (aggregate.portfolio.Portfolio

method), 297
_repr_html_() (aggregate.utilities.Answer method),

321

A
a (aggregate.extensions.pentagon.pent_ans attribute), 349
accounting_economic_balance_sheet()

(aggregate.portfolio.Portfolio method), 297
add_defaults() (in module aggre-

gate.extensions.case_studies), 347
add_exa() (aggregate.portfolio.Portfolio method), 297
add_exa_details() (aggregate.portfolio.Portfolio

method), 298
add_exa_sample() (aggregate.portfolio.Portfolio

method), 298
add_f1s() (aggregate.utilities.MomentAggregator

method), 317
add_fs() (aggregate.utilities.MomentAggregator

method), 317
add_fs2() (aggregate.utilities.MomentAggregator

method), 318
adjusting_layer_losses() (in module aggre-

gate.extensions.figures), 349
agg_from_fs() (aggre-

gate.utilities.MomentAggregator static method),
318

agg_from_fs2() (aggre-
gate.utilities.MomentAggregator static method),
318

Aggregate (class in aggregate.distributions), 286
aggregate.bounds

module, 343
aggregate.constants

module, 335
aggregate.extensions

module, 347
aggregate.extensions.basic

module, 347
aggregate.extensions.case_studies

module, 347
aggregate.extensions.figures

module, 349
aggregate.extensions.pentagon

module, 348
aggregate.extensions.pir_figures

module, 350
aggregate.extensions.test_suite

module, 352
aggregate.parser

module, 280

511

aggregate Documentation, Release 0.22.0

aggregate.portfolio
module, 316

aggregate.spectral
module, 336

aggregate.underwriter
module, 279

aggregate.utilities
module, 321

aggregate_error_analysis() (aggre-
gate.distributions.Aggregate method), 287

analysis_collateral() (aggre-
gate.portfolio.Portfolio method), 298

analysis_priority() (aggre-
gate.portfolio.Portfolio method), 298

analyze_distortion() (aggre-
gate.portfolio.Portfolio method), 299

analyze_distortion_add_comps() (aggre-
gate.portfolio.Portfolio method), 300

analyze_distortion_plots() (aggre-
gate.portfolio.Portfolio method), 300

analyze_distortions() (aggre-
gate.portfolio.Portfolio method), 301

Answer (class in aggregate.utilities), 321
apply_agg_reins() (aggre-

gate.distributions.Aggregate method), 287
apply_distortion() (aggre-

gate.distributions.Aggregate method), 287
apply_distortion() (aggre-

gate.portfolio.Portfolio method), 301
apply_distortions() (aggre-

gate.portfolio.Portfolio method), 302
apply_occ_reins() (aggre-

gate.distributions.Aggregate method), 288
approx_ccoc() (in module aggregate.spectral), 339
approximate() (aggregate.distributions.Aggregate

method), 288
approximate() (aggregate.portfolio.Portfolio

method), 302
approximate_work() (in module aggre-

gate.utilities), 321
as_severity() (aggregate.portfolio.Portfolio

method), 302
audits() (aggregate.portfolio.Portfolio method), 302
available_distortions() (aggre-

gate.spectral.Distortion class method), 336
average_distortion() (aggre-

gate.spectral.Distortion static method), 336
AxisManager (class in aggregate.utilities), 320
axiter_factory() (in module aggregate.utilities),

321

B
bagged_distortion() (aggre-

gate.spectral.Distortion static method), 337
best_bucket() (aggregate.portfolio.Portfolio

method), 302
biv_contour_plot() (aggre-

gate.portfolio.Portfolio method), 303

bivariate_density_plots() (in module aggre-
gate.extensions.case_studies), 347

block_iman_conover() (in module aggre-
gate.utilities), 322

bodoff() (aggregate.portfolio.Portfolio method), 303
Bounds (class in aggregate.bounds), 339, 343
build() (aggregate.underwriter.Underwriter method),

276

C
calibrate() (aggre-

gate.extensions.case_studies.ClassicalPremium
method), 347

calibrate_blends() (aggre-
gate.portfolio.Portfolio method), 303

calibrate_distortion() (aggre-
gate.portfolio.Portfolio method), 304

calibrate_distortions() (aggre-
gate.portfolio.Portfolio method), 304

cdf() (aggregate.distributions.Aggregate method), 288
cdf() (aggregate.portfolio.Portfolio method), 305
ceded (aggregate.utilities.GCN attribute), 321
check01() (in module aggregate.portfolio), 316
ClassicalPremium (class in aggre-

gate.extensions.case_studies), 347
cloud_view() (aggregate.bounds.Bounds method),

339, 343
COC (aggregate.extensions.pentagon.pent_ans attribute),

348
code() (in module aggregate.extensions.pentagon), 348
collapse() (aggregate.portfolio.Portfolio method),

305
column_names() (aggre-

gate.utilities.MomentAggregator static method),
318

compute_weight() (aggregate.bounds.Bounds
method), 340, 343

compute_weights() (aggregate.bounds.Bounds
method), 340, 344

convex_example() (aggregate.spectral.Distortion
static method), 337

convex_points() (in module aggregate.portfolio),
316

cotvar() (aggregate.portfolio.Portfolio method), 305
cramer_lundberg() (aggre-

gate.distributions.Aggregate method), 288
create_from_sample() (aggre-

gate.portfolio.Portfolio static method), 305
cumulate_moments() (aggre-

gate.utilities.MomentAggregator static method),
318

curlyBrace() (in module aggre-
gate.extensions.pir_figures), 350

cv_to_shape() (aggregate.distributions.Severity
method), 283

D
density_df (aggregate.distributions.Aggregate prop-

512 Index

aggregate Documentation, Release 0.22.0

erty), 289
density_sample() (aggregate.portfolio.Portfolio

method), 305
describe (aggregate.distributions.Aggregate property),

289
describe (aggregate.portfolio.Portfolio property), 305
dimensions() (aggregate.utilities.AxisManager

method), 320
dir() (aggregate.underwriter.Underwriter method),

276
discretization_agg_example() (in module

aggregate.extensions.figures), 349
discretization_sev_example() (in module

aggregate.extensions.figures), 349
discretize() (aggregate.distributions.Aggregate

method), 289
Distortion (class in aggregate.spectral), 336
distortion() (aggregate.bounds.Bounds method),

340, 344
distortion_df (aggregate.portfolio.Portfolio prop-

erty), 305
distortions_from_params() (aggre-

gate.spectral.Distortion static method), 337
distribution() (aggre-

gate.extensions.case_studies.ClassicalPremium
method), 347

dual_distortion() (in module aggre-
gate.extensions.figures), 349

E
easy_formatter() (in module aggregate.utilities),

323
easy_update() (aggregate.distributions.Aggregate

method), 289
enhance_debugfile() (aggre-

gate.parser.UnderwritingParser static method),
280

entropy_fit() (aggregate.distributions.Aggregate
method), 290

epd_2_assets (aggregate.portfolio.Portfolio prop-
erty), 305

equal_risk_epd() (aggregate.portfolio.Portfolio
method), 305

equal_risk_var_tvar() (aggre-
gate.portfolio.Portfolio method), 306

error() (aggregate.parser.UnderwritingParser
method), 280

estimate_agg_percentile() (in module aggre-
gate.utilities), 323

explain_validation() (aggre-
gate.distributions.Aggregate method), 290

explain_validation() (aggre-
gate.portfolio.Portfolio method), 306

explain_validation() (in module aggre-
gate.utilities), 323

extract_sort_order() (in module aggre-
gate.extensions.case_studies), 348

F
factory() (aggregate.underwriter.Underwriter

method), 276
fig_10_3() (in module aggre-

gate.extensions.pir_figures), 351
fig_10_5() (in module aggre-

gate.extensions.pir_figures), 351
fig_10_6() (in module aggre-

gate.extensions.pir_figures), 351
fig_4_1() (in module aggre-

gate.extensions.pir_figures), 351
freq_pmf() (aggregate.distributions.Aggregate

method), 290
Frequency (class in aggregate.distributions), 280
frequency_examples() (in module aggre-

gate.utilities), 323
friendly() (in module aggregate.utilities), 323
from_DataFrame() (aggregate.portfolio.Portfolio

static method), 306
from_dict_of_aggs() (aggre-

gate.portfolio.Portfolio static method), 306
from_Excel() (aggregate.portfolio.Portfolio static

method), 306
ft() (aggregate.portfolio.Portfolio method), 306
ft() (in module aggregate.utilities), 324

G
g_dual() (aggregate.spectral.Distortion method), 337
g_ins_stats() (in module aggre-

gate.extensions.case_studies), 348
g_insurance_statistics() (in module aggre-

gate.extensions.figures), 349
g_risk_appetite() (in module aggre-

gate.extensions.figures), 349
gamma() (aggregate.portfolio.Portfolio method), 307
gamma_fit() (in module aggregate.utilities), 324
GCN (class in aggregate.utilities), 321
get_fmts() (in module aggregate.utilities), 324
get_fsa_stats() (aggre-

gate.utilities.MomentAggregator method),
318

getAxSize() (in module aggre-
gate.extensions.pir_figures), 351

gh_example() (in module aggre-
gate.extensions.figures), 349

good_grid() (aggregate.utilities.AxisManager static
method), 320

gradient() (aggregate.portfolio.Portfolio method),
307

grammar() (in module aggregate.parser), 280
GreatFormatter (class in aggregate.utilities), 321
grid() (aggregate.utilities.AxisManager method), 320
grid_size() (aggregate.utilities.AxisManager

method), 320
gross (aggregate.utilities.GCN attribute), 321

H
html_info_blob() (aggre-

Index 513

aggregate Documentation, Release 0.22.0

gate.distributions.Aggregate method), 290
html_title() (in module aggregate.utilities), 324

I
ic_noise() (in module aggregate.utilities), 324
ic_rank() (in module aggregate.utilities), 324
ic_reorder() (in module aggregate.utilities), 324
ic_t_noise() (in module aggregate.utilities), 324
ift() (aggregate.portfolio.Portfolio method), 308
ift() (in module aggregate.utilities), 324
illustrate() (aggre-

gate.extensions.case_studies.ClassicalPremium
method), 347

iman_conover() (in module aggregate.utilities), 325
integral_by_doubling() (in module aggre-

gate.utilities), 325
interpret_program() (aggre-

gate.underwriter.Underwriter method),
276

interpreter_file() (aggre-
gate.underwriter.Underwriter method),
276

interpreter_line() (aggre-
gate.underwriter.Underwriter method),
277

interpreter_list() (aggre-
gate.underwriter.Underwriter method),
277

introspect() (in module aggregate.utilities), 325

J
json() (aggregate.distributions.Aggregate method), 290
json() (aggregate.portfolio.Portfolio method), 308

K
kaplan_meier() (in module aggregate.utilities), 325
kaplan_meier_np() (in module aggregate.utilities),

326
knobble_fonts() (in module aggregate.utilities),

326

L
L (aggregate.extensions.pentagon.pent_ans attribute), 348
limits() (aggregate.distributions.Aggregate method),

290
limits() (aggregate.portfolio.Portfolio method), 308
line_renamer (aggregate.portfolio.Portfolio prop-

erty), 308
list() (aggregate.utilities.Answer method), 321
ln_fit() (in module aggregate.utilities), 326
log_test() (in module aggregate.utilities), 326
logarithmic_theta() (in module aggre-

gate.utilities), 326
logger_level() (aggre-

gate.underwriter.Underwriter static method),
277

logger_level() (in module aggregate.utilities), 326

lognorm_approx() (in module aggregate.utilities),
327

lognorm_lev() (in module aggregate.utilities), 327
LR (aggregate.extensions.pentagon.pent_ans attribute),

348

M
M (aggregate.extensions.pentagon.pent_ans attribute), 349
macro_market_graphs() (in module aggre-

gate.extensions.case_studies), 348
make_all() (aggregate.portfolio.Portfolio method),

308
make_array() (in module aggregate.portfolio), 316
make_audit_df() (aggregate.portfolio.Portfolio

method), 308
make_awkward() (in module aggregate.portfolio),

317
make_ceder_netter() (in module aggre-

gate.utilities), 327
make_corr_matrix() (in module aggre-

gate.utilities), 328
make_figure() (aggregate.utilities.AxisManager

static method), 320
make_mosaic_figure() (in module aggre-

gate.utilities), 328
make_possible_pentagons() (in module aggre-

gate.extensions.pentagon), 348
make_ps() (aggregate.bounds.Bounds method), 340,

344
make_tvar_function() (aggre-

gate.bounds.Bounds method), 341, 344
make_var_tvar() (in module aggregate.utilities),

328
mean_to_scale() (aggregate.distributions.Severity

method), 283
merton_perold() (aggregate.portfolio.Portfolio

method), 308
mixing_convergence() (in module aggre-

gate.extensions.figures), 349
module

aggregate.bounds, 343
aggregate.constants, 335
aggregate.extensions, 347
aggregate.extensions.basic, 347
aggregate.extensions.case_studies,

347
aggregate.extensions.figures, 349
aggregate.extensions.pentagon, 348
aggregate.extensions.pir_figures,

350
aggregate.extensions.test_suite,

352
aggregate.parser, 280
aggregate.portfolio, 316
aggregate.spectral, 336
aggregate.underwriter, 279
aggregate.utilities, 321

MomentAggregator (class in aggregate.utilities), 317

514 Index

aggregate Documentation, Release 0.22.0

moments() (aggregate.utilities.MomentAggregator
method), 319

moments_to_mcvsk() (aggre-
gate.utilities.MomentAggregator method),
319

MomentWrangler (class in aggregate.utilities), 319
moms() (aggregate.distributions.Severity method), 284
moms_analytic() (in module aggregate.utilities),

328
more() (aggregate.distributions.Aggregate method), 290
more() (aggregate.portfolio.Portfolio method), 308
more() (aggregate.underwriter.Underwriter method),

277
more() (in module aggregate.utilities), 329
mu_sigma_from_mean_cv() (in module aggre-

gate.utilities), 329
multi_premium_capital() (aggre-

gate.portfolio.Portfolio method), 308
mv() (in module aggregate.utilities), 329

N
natural_profit_segment_plot() (aggre-

gate.portfolio.Portfolio method), 309
natural_scale() (in module aggre-

gate.extensions.pir_figures), 352
net (aggregate.utilities.GCN attribute), 321
nice() (aggregate.utilities.Answer static method), 321
nice_multiple() (in module aggregate.utilities),

329
nice_program() (aggregate.portfolio.Portfolio

method), 309

P
P (aggregate.extensions.pentagon.pent_ans attribute), 349
p_star() (aggregate.bounds.Bounds method), 341,

344
parse_note() (in module aggregate.utilities), 329
parse_note_ex() (in module aggregate.utilities),

329
partial_e() (in module aggregate.utilities), 330
partial_e_numeric() (in module aggre-

gate.utilities), 330
pdf() (aggregate.distributions.Aggregate method), 291
pdf() (aggregate.portfolio.Portfolio method), 309
ped_distortion() (aggregate.bounds.Bounds

method), 341, 345
pent_ans (class in aggregate.extensions.pentagon), 348
percentiles() (aggregate.portfolio.Portfolio

method), 309
picks() (aggregate.distributions.Aggregate method),

291
picks_work() (in module aggregate.utilities), 330
plot() (aggregate.distributions.Aggregate method), 291
plot() (aggregate.distributions.Severity method), 285
plot() (aggregate.portfolio.Portfolio method), 309
plot() (aggregate.spectral.Distortion method), 337
plot_lee() (in module aggregate.bounds), 346
plot_max_min() (in module aggregate.bounds), 346

pmf() (aggregate.distributions.Aggregate method), 291
pmf() (aggregate.portfolio.Portfolio method), 309
pollaczeck_khinchine() (aggre-

gate.distributions.Aggregate method), 291
Portfolio (class in aggregate.portfolio), 297
power_variance_family() (in module aggre-

gate.extensions.figures), 349
ppf() (aggregate.distributions.Aggregate method), 291
pprint() (in module aggregate.utilities), 330
pprint_ex() (in module aggregate.utilities), 330
pprogram (aggregate.distributions.Aggregate property),

292
pprogram (aggregate.portfolio.Portfolio property), 309
pprogram_html (aggregate.distributions.Aggregate

property), 292
pprogram_html (aggregate.portfolio.Portfolio prop-

erty), 309
PQ (aggregate.extensions.pentagon.pent_ans attribute),

349
premium_capital() (aggregate.portfolio.Portfolio

method), 309
preprocess() (aggregate.parser.UnderwritingLexer

static method), 279
price() (aggregate.distributions.Aggregate method),

292
price() (aggregate.extensions.case_studies.ClassicalPremium

method), 347
price() (aggregate.portfolio.Portfolio method), 309
price() (aggregate.spectral.Distortion method), 338
price2() (aggregate.spectral.Distortion method), 338
price_ccoc() (aggregate.portfolio.Portfolio

method), 310
prices() (aggregate.extensions.case_studies.ClassicalPremium

method), 347
pricing() (in module aggre-

gate.extensions.case_studies), 348
pricing_bounds() (aggregate.portfolio.Portfolio

method), 310
pricing_exhibit() (aggre-

gate.extensions.case_studies.ClassicalPremium
method), 347

principal_extreme_distortion_analysis()
(aggregate.bounds.Bounds method), 341, 345

print_fig() (aggregate.utilities.AxisManager static
method), 320

profit_segment_plot() (aggre-
gate.portfolio.Portfolio method), 310

Q
Q (aggregate.extensions.pentagon.pent_ans attribute), 349
q() (aggregate.distributions.Aggregate method), 292
q() (aggregate.portfolio.Portfolio method), 311
q_sev() (aggregate.distributions.Aggregate method),

292
qd() (in module aggregate.utilities), 331
qdp() (in module aggregate.utilities), 331
qlist() (aggregate.underwriter.Underwriter method),

277

Index 515

aggregate Documentation, Release 0.22.0

qshow() (aggregate.underwriter.Underwriter method),
277

quick_price() (aggregate.bounds.Bounds method),
342, 345

R
random_corr_matrix() (in module aggre-

gate.utilities), 331
read_database() (aggre-

gate.underwriter.Underwriter method),
277

rearrangement_algorithm_max_VaR() (in
module aggregate.utilities), 331

recommend_bucket() (aggre-
gate.distributions.Aggregate method), 292

recommend_bucket() (aggre-
gate.portfolio.Portfolio method), 311

reinsurance_audit_df (aggre-
gate.distributions.Aggregate property), 293

reinsurance_description() (aggre-
gate.distributions.Aggregate method), 293

reinsurance_df (aggregate.distributions.Aggregate
property), 293

reinsurance_kinds() (aggre-
gate.distributions.Aggregate method), 293

reinsurance_occ_layer_df (aggre-
gate.distributions.Aggregate property), 293

reinsurance_occ_plot() (aggre-
gate.distributions.Aggregate method), 293

reinsurance_report_df (aggre-
gate.distributions.Aggregate property), 293

remove_fuzz() (aggregate.portfolio.Portfolio
method), 311

remove_trailing_zeros() (aggre-
gate.utilities.sEngFormatter method), 333

renamer (aggregate.portfolio.Portfolio property), 311
report() (aggregate.portfolio.Portfolio method), 311
report_df (aggregate.distributions.Aggregate prop-

erty), 293
rescale() (aggregate.distributions.Aggregate

method), 293
round_bucket() (in module aggregate.utilities), 332
run_test_suite() (aggre-

gate.underwriter.Underwriter method),
277

S
s_gs_distortion() (aggregate.spectral.Distortion

static method), 338
safe_lookup() (aggregate.underwriter.Underwriter

method), 277
sample() (aggregate.distributions.Aggregate method),

294
sample() (aggregate.portfolio.Portfolio method), 311
sample_compare() (aggregate.portfolio.Portfolio

method), 311
sample_density_compare() (aggre-

gate.portfolio.Portfolio method), 311

save() (aggregate.portfolio.Portfolio method), 311
savings_charge() (in module aggre-

gate.extensions.figures), 350
scatter() (aggregate.portfolio.Portfolio method), 312
sEngFormatter (class in aggregate.utilities), 333
sensible_jump() (in module aggregate.utilities),

333
set_a_p() (aggregate.portfolio.Portfolio method), 312
sev (aggregate.distributions.Aggregate property), 294
Severity (class in aggregate.distributions), 282
severity_error_analysis() (aggre-

gate.distributions.Aggregate method), 294
sf() (aggregate.distributions.Aggregate method), 294
sf() (aggregate.portfolio.Portfolio method), 312
sgamma_fit() (in module aggregate.utilities), 333
show() (aggregate.underwriter.Underwriter method),

277
show_enhanced_exhibits() (aggre-

gate.portfolio.Portfolio method), 312
show_fig() (in module aggregate.utilities), 334
similar_risks_example() (in module aggre-

gate.bounds), 346
similar_risks_graphs_sa() (in module aggre-

gate.bounds), 346
size_figure() (aggregate.utilities.AxisManager

static method), 320
sln_fit() (in module aggregate.utilities), 334
snap() (aggregate.distributions.Aggregate method), 294
snap() (aggregate.portfolio.Portfolio method), 312
spec (aggregate.distributions.Aggregate property), 294
spec (aggregate.portfolio.Portfolio property), 312
spec_ex (aggregate.distributions.Aggregate property),

294
spec_ex (aggregate.portfolio.Portfolio property), 312
stand_alone_pricing() (aggre-

gate.portfolio.Portfolio method), 312
stand_alone_pricing_work() (aggre-

gate.portfolio.Portfolio method), 312
static_moments_to_mcvsk() (aggre-

gate.utilities.MomentAggregator static method),
319

statistics (aggregate.distributions.Aggregate prop-
erty), 294

statistics (aggregate.portfolio.Portfolio property),
313

stats_series() (aggre-
gate.utilities.MomentAggregator method),
319

style_df() (in module aggregate.utilities), 334
subsets() (in module aggregate.utilities), 334
summary() (aggregate.utilities.Answer method), 321
suptitle_and_tight() (in module aggre-

gate.utilities), 334

T
test() (aggregate.spectral.Distortion class method),

339

516 Index

aggregate Documentation, Release 0.22.0

test_suite_file (aggre-
gate.underwriter.Underwriter property),
278

test_var_tvar() (in module aggregate.utilities),
334

tidy() (aggregate.utilities.AxisManager method), 320
tidy_up() (aggregate.utilities.AxisManager static

method), 320
tm_renamer (aggregate.portfolio.Portfolio property),

313
trim_df() (aggregate.portfolio.Portfolio method), 313
tvar() (aggregate.distributions.Aggregate method), 294
tvar() (aggregate.portfolio.Portfolio method), 313
tvar_array() (aggregate.bounds.Bounds method),

342, 345
tvar_cloud() (aggregate.bounds.Bounds method),

342, 345
tvar_hinges() (aggregate.bounds.Bounds method),

342, 346
tvar_sev() (aggregate.distributions.Aggregate

method), 295
tvar_threshold() (aggregate.portfolio.Portfolio

method), 313
tvar_weights() (in module aggregate.spectral), 339
tvar_with_bound() (aggregate.bounds.Bounds

method), 342, 346
tweedie_convert() (in module aggregate.utilities),

335
tweedie_density() (in module aggregate.utilities),

335
twelve_plot() (aggregate.portfolio.Portfolio

method), 313

U
uat() (aggregate.portfolio.Portfolio method), 314
uat_differential() (aggre-

gate.portfolio.Portfolio method), 314
uat_interpolation_functions() (aggre-

gate.portfolio.Portfolio method), 314
Underwriter (class in aggregate.underwriter), 275
UnderwritingLexer (class in aggregate.parser),

279
UnderwritingParser (class in aggregate.parser),

279
universal_renamer() (in module aggre-

gate.extensions.case_studies), 348
update() (aggregate.distributions.Aggregate method),

295
update() (aggregate.portfolio.Portfolio method), 314
update_work() (aggregate.distributions.Aggregate

method), 295
urn() (in module aggregate.extensions.case_studies),

348

V
valid (aggregate.distributions.Aggregate property), 296
valid (aggregate.portfolio.Portfolio property), 315
Validation (class in aggregate.constants), 335

var() (aggregate.portfolio.Portfolio method), 315
var_dict() (aggregate.distributions.Aggregate

method), 296
var_dict() (aggregate.portfolio.Portfolio method),

316

W
write() (aggregate.underwriter.Underwriter method),

278
write_from_file() (aggre-

gate.underwriter.Underwriter method),
278

wtd_tvar() (aggregate.spectral.Distortion static
method), 339

X
xsden_to_meancv() (in module aggregate.utilities),

335
xsden_to_meancvskew() (in module aggre-

gate.utilities), 335

Index 517

	Getting Started
	Installation
	Source Code
	Prerequisites
	License
	Dependencies
	Help Parameters and Examples
	Help Structure
	Help Coding Conventions
	Numbers and Units
	aggregate Hello World

	User Guides
	Student
	What Is an Aggregate Probability Distribution?
	Formal Construction
	Simple Example
	Exercise - Test Your Understanding
	Dice Rolls
	One Dice Roll
	Two Dice Rolls
	Twelve Dice Rolls
	A Dice Roll of Dice Rolls

	Summary of Objects Created by DecL

	Actuarial Student
	Realistic Insurance Example
	College and Exam Questions
	Advantages of Modeling with Aggregate Distributions
	Summary of Objects Created by DecL

	A Ten Minute Guide to aggregate
	Principal Classes
	The Underwriter Class
	Object Creation Using DecL and build()
	Important: Formatting a DecL Program
	Object Creation from the Knowledge Database
	Underwriter Behind the Scenes

	How aggregate Represents Distributions
	The Severity Class
	The Aggregate Class
	Creating an Aggregate Distribution
	Aggregate Quick Diagnostics
	Aggregate Algorithm in Detail
	Basic Probability Functions
	Mixtures
	Accessing Severity in an Aggregate
	Reinsurance

	The Distortion Class
	The Portfolio Class
	Estimating Bucket Size for Discretization
	Hyper-parameters log2 and bs
	Estimating and Testing bs For Aggregate Objects
	Estimating and Testing bs For Portfolio Objects

	Methods and Properties Common To Aggregate and Portfolio Classes
	The info Dataframe
	The describe Dataframe
	The density_df Dataframe
	The statistics Series and Dataframe
	The report_df Dataframe
	The spec and spec_ex Dictionaries
	The DecL Program
	The update() Method
	Statistical Functions
	The plot() Method
	The price() Method
	The snap() Method
	The approximate() Method

	Additional Portfolio Methods
	Conditional Expected Values
	Calibrate Distortions
	Analyze Distortions
	Twelve Plot

	Extensions
	Summary of Objects Created by DecL

	The Dec Language
	DecL Design and Purpose
	Specifying a Realistic Aggregate Distribution
	Alternative Specifications

	The Exposure Clause
	Determining Expected Claim Count

	The Limits Sub-Clause
	The Severity Clause
	Non-Parametric Severity Distributions
	Details

	Parametric Severity
	Shifting and Scaling Severity
	Unconditional Severity
	scipy.stats Continuous Random Variables

	The Frequency Clause
	Non-Parametric Frequency Distributions
	Parametric Frequency Distributions
	Mixed-Poisson Frequency Distributions
	Zero Modification and Zero Truncation

	Mixed Severity Distributions
	Mixed Exponential Distributions
	Saving to the Knowledge
	Different Distributions
	Severity Mixtures and Mixed Frequency

	Limit Profiles
	Vectorization: Limit Profiles and Mixed Severity
	Using a Limit Profile with a Mixed Severity
	Circumventing Products: Modeling Multiple Units in One Aggregate

	The Reinsurance Clauses
	Layering Losses in a Tower

	The Note Clause
	The tweedie Keyword
	Analytic Error Analysis

	Summary of Objects Created by DecL

	Individual Risk Pricing
	Helpful References
	Insurance Charge and Insurance Savings in Aggregate
	Summary of Objects Created by DecL

	Reinsurance Pricing
	Helpful References
	Basic Examples
	Modes of Reinsurance Analysis
	Reinsurance Functions
	Casualty Exposure Rating
	Property Risk Exposure Rating
	Variable Features
	Inwards Analysis of Bear and Nemlick Variable Features
	Specifying the Single Parameter Pareto
	Treaty 1: Aggregate Deductible
	Treaty 2: Aggregate Limit
	Treaty 3: Loss Corridor
	Treaty 4: Retro Rated Program
	Treaty 5: Profit Share
	Treaty 6: Sliding Scale Commission

	Outwards Analysis
	Stochastic Model

	Summary of Objects Created by DecL

	Reserving
	Helpful References
	Modeling the Current Accident Year, Case and IBRN Reserves
	The Resolution of Reserve Uncertainty Over Time

	Catastrophe Modeling
	Helpful References
	Jewson’s US Wind PML Estimates
	Model Description
	Aggregate PML Estimates
	Occurrence PML Estimates
	Feller’s Relationship between AEP and OEP

	Jewson’s US Wind Climate Change Estimates
	ILW Pricing
	Secondary Uncertainty
	Summary of Objects Created by DecL

	Capital Modeling and Risk Management
	Helpful References
	Conditional Expectation as a Risk Management and Visualization Device

	Strategy and Portfolio Management
	Helpful References
	Margin Allocation Using Spectral Risk Measures

	Case Studies
	PIR Case Studies
	Simple Discrete Example
	Tame Case Study
	Catastrophe and Non-Catastrophe (CNC) Case Study
	Hurricane/Severe Convective Storm (HuSCS) Case Study

	Creating a Case Study
	Case Study Factory Arguments
	PIR Case Specifications
	Simple Discrete Example Specification
	Tame Specification
	Catastrophe and Non-Catastrophe Specification
	Hurricane/Severe Convective Storm Specification

	Defining a Custom Case Study
	Standard Case Study Exhibits

	Working With Samples
	Helpful References
	Samples and Densities
	Samples from aggregate Object
	Applying the Iman-Conover Algorithm
	Applying the Re-Arrangement Algorithm
	Creating a Portfolio From a Sample
	Using Samples and the Switcheroo Trick
	Summary of Objects Created by DecL

	Published Problems and Examples
	Grübel and Hermesmeier (1999)
	Poisson/Levy Example

	Embrechts and Frei (2009)
	Poisson/Pareto Example
	Choice of Bandwidth (Bucket Size)

	Denuit (2019 and 2022)
	Poisson/Discrete Example (6.1)
	Mortality Example and Figure

	Loss Data Analytics Book
	Contents
	Distribution Examples
	Gamma distribution
	Pareto distribution
	Weibull distribution

	Mixture Example (3.3.5)
	Coverage Modifications
	Aggregate Loss Distributions
	Portfolio Management

	Loss Models Book
	Contents
	Method of Moments Approximations, Examples 9.3 and 9.4
	Group Dental Insurance, Examples 9.5, 9.6
	Compound Poisson, Example 9.9, 9.10
	ZM Binomial, Example 9.11
	ETNB, Example 9.12
	Poisson Pareto, Example 9.14
	Group Life Individual Risk Model, Example 9.15, 9.18
	Group Life Individual Risk Model, Example 9.16, 9.17

	Bahnemann Monograph
	Contents
	Simple Discrete Aggregate, Example 4.1
	Poisson-Gamma (Tweedie) Aggregate, Example 4.2
	Approximations to the Tweedie, Example 4.3
	Poisson-Discrete Distribution, Example 4.4
	Poisson-Gamma Distribution, Example 4.5
	Poisson-Lognormal Distribution With Limit, Example 4.15
	Poisson-Gamma Distribution and Approximations, Problems 4.7 and 13
	Poisson-Lognormal Layer Statistics, Example 5.13
	Lognormal Increased Limits Factors (ILFs), Example 6.3
	Layer Premium, Example 6.4
	Risk Loads, Example 6.5
	Aggregate Premiums, Example 6.6
	Deductible Credits, Example 6.7
	Summary

	Enterprise Risk Analysis
	Reinsurance Example
	Stochastic Models and Baseline Analysis
	Gross Portfolio
	Net Portfolio
	Ceded Portfolio
	Reinsurance Summary
	Underwriting Result Distributions
	Comparison with ERA Book Figures

	Modern Analysis
	Calibrate Distortions
	Analyze Implied Pricing
	Compare Model Value and Market Price
	Analysis for Stop Loss Reinsurance

	Visualizing Risk

	Other Papers
	Contents
	Wang on the Wang Transform
	Pricing by Layer
	Satellite Pricing

	Wang on Weather Derivatives
	Gerber: Stop Loss Premiums
	Richardson’s Deferred Approach to the Limit

	API Reference
	Underwriter Module
	Underwriter Class
	Other Underwriter functions

	Parser Module
	Lexer Class
	Parser Class
	Remaining Functions

	Distributions Module
	Frequency Class
	Severity Class
	Aggregate Class

	Portfolio Module
	Portfolio Class
	Other Portfolio functions

	Utilities
	Moment Aggregator Class
	Moment Wrangler Class
	Axis Manager Class
	Utilities Module
	Constants

	Distortion Module
	Bounds Module
	Extensions
	Basic
	Case Study Support
	Pentagon
	Samples
	Figures
	PIR Figures
	Test Suite

	Dec Language Reference
	Pre-Processing
	Lexer Term Definitions
	Dec Language Grammar Specification
	Test Suite Programs
	sly Parser

	Technical Guides
	Probability Background
	Helpful References
	Types
	Severity Distributions
	Computing moments
	Lognormal
	Densities of the form f(x)=xc()g(x)
	Pareto

	scipy.stats Severity Distributions

	Frequency Distributions
	Bernoulli Distribution
	Binomial Distribution
	Geometric Distribution
	Poisson Distribution
	Neyman (A) Distribution
	Fixed Distribution

	Moment Generating Functions
	Mixed Frequency Distributions
	Gamma Mixing
	The Variance Multiplier
	Negative Binomial Distribution
	Beta Binomial Distribution
	Shifted Mixing (General)
	Delaporte Mixing (Shifted Gamma)
	Poisson Inverse Gaussian Distribution

	The (a,b,0) and (a,b,1) Classes

	Aggregate Distributions
	Aggregate Mean
	Aggregate Variance
	Aggregate Moment Generating Function

	Shifted Gamma and Lognormal Distributions
	Appendix: Selected scipy.stats Discrete Random Variables
	Appendix: scipy.stats Continuous Random Variables

	Quantiles and Related Risk Measures
	Helpful References
	Quantiles
	Value at Risk
	The Failure of VaR to be Subadditive
	Tail VaR and Related Risk Measures
	Algorithm to Evaluate TVaR for a Discrete Distribution
	CTE, and WCE: Alternatives to TVaR
	Expected Policyholder Deficit

	Insurance Probability
	Helpful References
	Occurrence and Aggregate Probable Maximal Loss
	Probable maximal loss (PML)
	Occurrence Exceeding Probability (OEP)
	Return Periods
	Aggregate Exceeding Probability (AEP)

	Self-Insurance Plan Stop-Loss Insurance
	Adjusting Layer Loss Picks
	The Tweedie Distribution
	Excess Frequency Distributions
	When Is Severity Irrelevant?

	Numerical Methods and FFT Convolution
	Helpful References
	Overview
	A Trilemma
	The aggregate Convolution Algorithm
	Strengths and Weaknesses
	Related Actuarial Literature
	Other Applications
	Conditional Expectations (Kappa)

	Digital Representation of Distributions
	How aggregate Represents a Distribution
	Sidebar: Continuous Discretization

	Discretizing the Severity Distribution
	Infinite Discretization
	Rounding Method Used by Default
	Approximating the Density
	Discretization Example
	Exact Calculation

	Truncation and Normalization
	Truncation Example

	Estimating the Bucket Size
	Occurrence Reinsurance and Loss Picks

	Fourier Transform Convolution Algorithm
	The aggregate Convolution Algorithm: Details
	Algorithm Objective
	Algorithm Inputs
	Default and Reasonable Parameter Values
	Algorithm Steps

	Theory: Why the Algorithm Works
	Using FFT to Invert Characteristic Functions
	Fast Fourier Transforms
	FFT Routines

	Floating Point Arithmetic and Rounding Errors

	Distortions and Spectral Risk Measures
	Helpful References
	Distortion Function and Spectral Risk Measures
	Layer Densities
	Portfolio Pricing with Spectral Risk Measures
	The Equal Priority Default Rule
	Expected Loss Payments at Different Asset Levels
	The Natural Allocation Premium
	Properties of Alpha, Beta, and Kappa
	Examples of functions

	Properties of the Natural Allocation
	No-Undercut and Positive Margin for Independent Risks
	Policy Level Properties, Varying with Asset Level

	The Natural Allocation of Equity
	Appendix: Notation and Conventions

	Bodoff’s Percentile Layer Capital Method
	Helpful References
	Introduction
	Assumptions and Notation
	Three Possible Allocation Methods
	Percentile Layer Allocation: Definition
	Thought Experiments
	Thought Experiment Number 1
	Bodoff Examples 1-3
	Bodoff Example 4
	Pricing for Bodoff Example 4

	Bodoff Summary
	CAS Exam Question: Spring 2018 Question 15

	The Pollaczeck-Khinchine Formula
	Helpful References
	Classical Risk Theory and the Pollaczeck-Khinchine Formula
	FFT Computation
	Using The Pollaczeck-Khinchine Formula I
	Using The Pollaczeck-Khinchine Formula II
	Market Scale and Viability

	Calculations For Each aggregate Class
	Helpful References
	Aggregate Class Calculations
	Portfolio Class Calculations
	Distortion Class Calculations
	Bounds Class Calculations

	Working With Samples
	Helpful References
	Using Samples and The Switcheroo Trick
	The Iman-Conover Method
	Basic Idea
	Theoretical Derivation
	Algorithm
	Simple Example of Iman-Conover
	Extensions of Iman-Conover
	Alternative Scores
	Multivariate Reference Distributions
	Algorithms for Extended Methods
	Comparison With the Normal Copula Method
	Theoretical Underpinnings of the Iman-Conover Method

	The Rearrangement Algorithm
	Worked Example

	Design and Development
	Help Structure
	Design Philosophy
	History

	Introduction
	Bibliography
	Python Module Index
	Index

